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ABSTRACT

Event studies have been fundamental in finance, focusing on analyzing the ripple
effects of sudden market events. Accurately predicting these effects is crucial for
informed decision-making and effective risk management. However, the dynamic
complexity of financial markets and the lack of unified modeling tools make this
task challenging. Previous models, constrained by simplistic assumptions and
limited scopes, have struggled to address this complexity effectively. In contrast,
large language models (LLMs), with their emergent reasoning abilities, offer a
promising solution. In this paper, we introduce FinRipple, a novel training frame-
work that enables LLMs to align with market behavior and develop the capability
to analyze the ripple effects of sudden events. We first construct a time-varying
financial knowledge graph (KG) that is both financially meaningful and noise-
reduced to accurately represent the market state. These KGs are then integrated
into the LLM using adapters as memory modules. Additionally, we align the LLM
with market dynamics by integrating FinRipple with classic asset pricing theories
through a reinforcement learning framework. This market-alignment process col-
lects feedback that enhances the LLM’s foundational ability to analyze financial
events and explain market anomalies that traditional models fail to address. Our
key contributions are as follows: (1) We are the first to define the underexplored
task of “event impact prediction”. Our framework not only establishes this task
but also provides an open-source benchmark, creating a unified evaluation stan-
dard for both academia and industry; (2) FinRipple complements classic asset
pricing models by combining strong theoretical foundations with Al-driven ca-
pabilities, offering an enhanced analysis of residuals unexplained by traditional
models. We also demonstrate its potential for practical applications such as port-
folio management; (3) We conduct a comprehensive analysis to ensure that the
results generated by LLMs in our framework are more logically consistent and
credible, thus improving the reliability of insights for financial decision-making.

1 INTRODUCTION

Event studies have been extensively used to determine the impact of corporate announcements and
market events on the market value of firms (Sorescu et al.,|2017). A well-known recent example un-
derscores the significance of understanding such market reactions: On August 13th, 2024, Starbucks
announced that it would replace its CEO with Chipotle CEO Brian Niccol. This announcement led
to a remarkable shift in the market, sending Starbucks’ stock soaring by 24.5%, marking its best
day ever, while Chipotle’s stock plummeted by over 10%. Some related companies in Starbucks’
supply chain were also affected. For example, Jones Soda Co. saw its stock rise by 9.52%, BRC Inc.
gained 6.25%, and Celsius Holdings Inc. increased by 3.81%. This example demonstrates the ripple
effect that a single market event can have, not just on the company involved, but on other relevant
companies (Ma et al.| 2023)). Predicting these market ripple effects is crucial for financial decision-
making and risk management. Investors and risk managers rely on such insights to anticipate broader
company announcements (Boyd et al.l [2010; [Wu et al.l [2015)), external news or reviews (Xiong &
Bharadwayj, |2013};|Gao et al.| [2015)), or macroeconomic shocks (Chen et al.,|2012), allowing them to
optimize portfolios, mitigate risks, and act swiftly in volatile conditions (Ding et al., 2015; [2014).
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Figure 1: An example of market ripple effects. The announcement of Starbucks’s CEO change not
only boosted its stock but also positively impacted other related companies in the beverage sector.

However, predicting these ripple effects remains a complex and underexplored challenge because of
the intricate, evolving, and interconnected factors at play.

A significant drawback is that financial markets are often much more complex than previously as-
sumed, making it difficult for previous approaches to fully capture the intricate and dynamic nature
of market behaviors. Previous research on event studies has mainly followed two main directions:
case-by-case analysis and unified modeling based on learning theory. Traditional case-by-case stud-
ies typically focus on understanding how market events impact the stock performance of a single
company or a group of companies within the same industry. For example, |Austin|(1993)) measured
the innovative output of patents within the biotechnology industry. [Lepetit et al.[{(2004) discussed the
effects of mergers and acquisitions (M&As) in the banking industry. Ramiah et al.|(2013)) analyzed
how the stock market reacts to the announcement of green policies. While these studies are valu-
able in assessing direct consequences, they often struggle to capture the ripple effects even across
different industries, let alone the complexities of the entire market. Unified modeling based on
learning theory studies has mostly used news sentiments of target companies to predict stock price
movements and has recognized that considering the information of target companies is insufficient
because the stock prices of target companies can be affected by their related companies (Ashtiani
& Raahemi, [2023)). Recent research has explored the integration of multi-source information (Ma
et al., [2023) and employed more advanced embedding models. For instance, several extensions
of transformer-based models were utilized by Mishev et al.| (2020)), demonstrating that combining
transformer representations with deep learning classifiers outperforms lexicon-based and statistical
models in representing event-driven word embeddings. Although these efforts represent a promising
direction for future research, they remain constrained by the limited capacity of the models’ capacity
and the incompleteness of their frameworks, making it difficult to fully capture the dynamic, time-
varying relationships between companies and the broader, evolving financial market. Moreover,
focusing solely on text sentiment for classification tasks often results in the loss of critical infor-
mation. For instance, positive news about one company might negatively impact another company
it is associated with. Therefore, up until now, there is an urgent need for a more comprehensive
approach to capture the ever-changing market dynamics and explain the complex, interconnected
relationships between companies.

Recently, large language models (LLMs) have gained widespread application across numerous fields
owing to their powerful reasoning capabilities (Huang & Chang] 2022). LLMs excel at tasks such
as structured information extraction (Hao et al., 2024), analogical reasoning (Creswell et al., 2022}
Wei et al.| [2022b)), and question answering, making them particularly well-suited for understand-
ing event-driven ripple effects. Given their potential to model complex interactions, leveraging
LLMs for predicting the ripple effects in the financial market is a natural progression. However,
directly applying LLMs to financial markets is insufficient. The inherent complexity of these mar-
kets, where companies are interconnected in dynamic and often noisy relationships, poses significant
challenges (Tang et al., 2022). The relationships between companies are not static; they often react
to multiple market events and information (Cheng & Li, [2021). Without considering the timeliness
of the market events on which the LLM relies, directly applying these models may result in mislead-
ing or inaccurate predictions. To effectively model the ripple effects of market events, it is essential
to augment LLMs with time-sensitive, structured knowledge. This ensures that the model captures
the latest and most relevant information about the current market state and the evolving relationships
between companies.
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A feasible solution to this challenge is the integration of a time-varying financial knowledge graph
(KG). The financial KG provides a structured, noise-reduced view of the market, offering a clear
representation of up-to-date relationships between companies. By continuously updating the KG
with the latest events, we can maintain a reliable snapshot of the current market structure (Yang
et al., 2023b). This approach allows us to model how companies interact with each other and how
those relationships evolve over time, capturing the dynamic nature of financial markets (Cheng et al.,
2020). To integrate this knowledge into the LLM, we adopt an adapter-based approach, enabling us
to inject the structured information from the KG directly into the LLM without the need to retrain
the model from scratch. This not only avoids the potential information loss that could occur with a
retrieval-based approach but also provides an easily extendable framework. After training the LLM
backbone, new market states can simply be encoded into the adapter for inference. By aligning the
LLMs with the financial market and leveraging the power of the KGs, they gain the ability to analyze
the ripple effects of events based on the current market structure.

We validate the effectiveness of our framework in asset pricing and portfolio construction, sup-
ported by extensive training on real-world data. Additionally, we conduct systematic analyses and
case studies to demonstrate that the model’s reasoning process in real markets is reliable. The con-
tributions of this work can be summarized as follows:

* We systematically define the “event impact prediction” task and establish an open-source
benchmark that provides a unified evaluation standard.

* We introduce FinRipple, an easily extensible training paradigm that can transform most
LLMs into specialized financial event analysts, enabling them to accurately predict the
scope of event impacts.

* We rigorously validate our training framework, FinRipple, which augments the LLM with
a time-varying KG and aligns it with the financial market. We showcase its strong potential
for real-world applications, such as asset pricing and portfolio management. Furthermore,
detailed analyses illustrate the model’s reasoning pathways, confirming its ability to pro-
vide reliable insights into the causal relationships driving market impacts.

2 RELATED WORK

2.1 EVENT STUDIES IN FINANCE

Event studies have been extensively employed to assess the impact of significant events on asset
prices and market behavior (Sorescu et al,|2017). An event can be a firm announcement (e.g., the
appointment of a new CMO) or an announcement made by competitors or regulatory bodies that
can affect the value of the focal firm (Acquisti et al., 2006). For example, |Austin|(1993) measured
the innovative output of patents within the biotechnology industry; Lepetit et al.| (2004) discussed
the effects of M&As in the banking industry; and Ramiah et al.| (2013) analyzed the stock market
reaction to green policy announcements. Although these methods have provided valuable insights,
they often struggle to capture the complexity and dynamics inherent in modern financial markets.

Recognizing these limitations, researchers have explored unified modeling approaches based on
learning theory, typically utilizing news sentiment analysis to predict stock price movements (Zhang
& Skiena, [2010; [Pagolu et al.| 2016)). Recent advancements include the integration of multi-source
information (Ma et al.| [2023)), the employment of more advanced embedding models (Kilimci &
Akyokusg| [2019; Mishev et al., | 2020), and usage of large language models (LLMs) (Wu et al.} 2023
Yang et al. [2023a). Despite these promising developments, existing models struggle to fully cap-
ture the dynamic, time-varying relationships between companies and the evolving financial market.
Recent efforts on LLMs for financial tasks have aimed to overcome these challenges through multi-
agent systems (Yu et al| 2024bga; Zhang et al.| |2024a) and by infusing financial trading knowl-
edge (Zhang et al., [2024b; |L1 et al., 2023). Considering the structured, dynamic representations
provided by knowledge graphs (KGs) (Zhang et al.,|2023), FinRipple takes an alternative approach
by combining LLMs with financial KGs to capture ever-changing market dynamics and explain
complex intercompany relationships.
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Figure 2: Overview of FinRipple. The framework comprises three stages: (1) KG Construction:
transforming unstructured data, such as announcements, patents, and transactions, into time-varying
KGs that capture company relationships; (2) KG Injection: creating instruction datasets based on
these KGs and using them to inject structured knowledge into adapters of an LLM without retraining
the original layers; (3) Market Alignment: aligning predictions with real market reaction by using
the correlation between the predicted event impact and CAPM residuals as the reward for PPO to
optimize model performance. The adapter is frozen, and the analysis ability is parameterized into
the original layers of the LLM.

2.2 KG AUGMENTED LLM

Through the augmentation of KGs, existing methodologies aim to mitigate hallucinations, enhance
reasoning capabilities, and recall specific facts (Chen et al.l |2024; |/Agrawal et al., [2023). Research
on using KGs to enhance LLMs can be categorized into two main directions (Wen et al., 2023;
Agrawal et al, 2023): 1) integrating KGs into LLM pre-training and 2) injecting KGs into LLM
inference. For methods that integrate KGs into LLM pre-training, the common practice involves
designing knowledge-aware training objectives by either incorporating KG entities and relations
into the training data (Zhang et al.,|2019; |Sun et al., 2021) or applying KG prediction tasks, such as
link prediction, as additional supervision (Yasunaga et al.,[2022). These methods directly compress
KG knowledge into the parameters of LLMs through supervision. However, creating KGs with
trillions of words is challenging, and these methods do not address the fundamental limitations of
LLMs regarding flexibility, reliability, and transparency.

Injecting structured symbolic knowledge from KGs into LLM inference aims to enhance contextual
understanding, primarily by incorporating them at the input level. Early efforts focused on fusing
KG triples into the inputs of LLMs using attention mechanisms (Liu et al., [2020; |Sun et al., 2020)
or attaching graph encoders to LLM encoders to process KG inputs (Wang et al.l[2019). Subsequent
work further adopted graph neural networks (GNNs) in parallel with LLMs for joint reasoning (Ya-
sunaga et al.,2021) and added interactions between text tokens and KG entities in the intermediate
layers of LLMs (Zhang et al., 2022} |Yao et al., 2023).

3 METHODOLOGY

3.1 PROBLEM FORMULATION

To predict the ripple effects of sudden financial events in dynamic markets, we reformulate this
challenge as a structured learning problem. We model the market as a KG G*, defined as:

C'={d,ch....c}, R ={ri;,lc,cfeC k=12,... K} G ={C, R} (1
Here, n is the number of companies at time ¢, C'* is the set of companies in the financial market,
and R! denotes the relationships between them. Each relationship ri ;. specifies an interaction of
type k between companies ¢! and c§, with k representing one of K possible relationship types (e.g.,
supply chain links, mutual fund holdings).

This task can be framed as a more intricate “link prediction problem”. To account for sudden events,
we introduce a set of events E* = {e!,¢b, ... e }, where m is the number of events at time t.
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This link prediction problem involves expanding the KG to G* = {C?, E, R*}, where the edge
set Rt C (C* x C') U (C* x E') represents relationships both between companies and between
companies and events. Our goal is to predict not just link existence but also the influence of events on

companies, formalized as a function f : C* x E* — [—1I,+1], where f(ct, %) represents the impact

2]
of event e§- on company ct. Positive values of f indicate positive impacts, and higher magnitudes

reflect stronger influence. A value of f(ct, %) equal to zero denotes no measurable impact.

17 7)

This task uses both the KG and real-time news data as inputs. The KG captures structural rela-
tionships between companies, while news data provides event-specific context relevant to financial
market dynamics. The output is a matrix Y!*4! € R"*™_ where each element Yffm = f(cf,eb)
quantifies the predicted impact of event 62‘ on company ct. The time shift At accounts for the finite
lag in market reactions to events, as financial markets typically respond to news extremely quickly,
with impacts often lasting only 1-2 days (Hafez & Xiel 2016). Our objective is to minimize the

following loss function:

min 23 dist (folcl, €} |G") — r(ch, ) @

i=1 j=1

where fo(ct, ez- | G) is the predicted influence parameterized by 0, dist is a measurable distance
function, and r(c}, e}) represents the true influence. However, directly observing r(c}, %) from the
market is challenging, as a company’s daily return may be influenced by various factors. To address
this, we deeply integrate this task with classical asset pricing models to filter out multiple influences.
Specifically, we use the Capital Asset Pricing Model (CAPM) (Sharpel |1964) adjusted residuals to
approximate r. Ideally, these residuals represent the portion of a company’s returns that cannot
be explained by broader market trends, such as systematic risk factors accounted for in the CAPM
model. By focusing on this unexplained component, we attempt to attribute it, at least partially, to
the impact of sudden financial events.

3.2 THE PIPELINE OF FINRIPPLE

In this section, we introduce the implementation details of FinRipple. As shown in Figure 2] Fin-
Ripple starts with the construction of time-varying KGs that incorporate four relationships sup-
ported by prior research: leadership networks, mutual fund holdings, patent relationships, and sup-
ply chains. The specific data sources and construction process for the KG can be found in Ap-
pendix[A.2] The next two key steps are KG injection and market alignment, which we will introduce
in the following subsections.

3.2.1 KNOWLEDGE GRAPH INJECTION

We first convert the time-varying KGs into instruction datasets, primarily composed of three types
of questions: retrieval questions, factual judgments, and factual questions, as described in Ap-
pendix [D.I] We also validate the necessity of including these three types of questions through
our experiments, with detailed results provided in Table [§]in the Appendix [D.I] For a simplified
example, suppose the KG contains a relationship such as “Company A has an upstream supply re-
lationship with Company B.” This relationship is transformed into an instruction-response pair as
follows: Instruction: “Which companies have an upstream supply relationship with Company A?”
Response: “Company B is an upstream supplier of Company A.”

The instruction dataset at a specific time ¢, denoted as D! = {(z!,y!),..., (2%, y% )}, consists of
pairs of questions z! and their corresponding responses y!, which are generated from the knowledge
graph G*. These pairs are designed to effectively teach the model the relationships between compa-
nies. When training on G*, an adapter is saved to store the market structure information. Notably,
if the model’s backbone parameters are modified, the adapter must also be updated accordingly to

ensure proper adaptation.

3.2.2 MARKET ALIGNMENT

We employ a reinforcement learning framework (Schulman et al.|[2017)) to fine-tune the LLM back-
bone while keeping the adapter layers frozen. Before the training process, for each news item, we
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retrieve the corresponding KG for the relevant time and inject it into the adapter, enabling the model
to adapt to the time-varying market structure. Importantly, each time we fine-tune the backbone
of the LLM, the adapter, which stores the information of the KG, is reinitialized and then kept
frozen, ensuring compatibility between the updated backbone parameters and the dynamically in-
jected knowledge. The adapter, once frozen, functions as a static feature extractor that represents
market features at specific times. Meanwhile, the LLM backbone learns to make predictions consis-
tent with the current market context.

After initializing the market structure information through adapter fine-tuning, we further align the
model’s predicted impacts with actual market responses by defining a reward function riTA which
assesses the accuracy of the predictions by comparing the deviations between the CAPM residuals
and the predicted impacts. The expected return F (RiHAt) is calculated using the CAPM, while the
residual €;, representing the portion of returns not explained by the CAPM model, captures market-
independent influences. If our model’s predictions accurately explain these residuals, it indicates the
effectiveness of the event-driven impact estimation. The CAPM residual is calculated as follows:

B(RISY) = Ry + 5, (RS —Ry) . e = RS - BRI, ®

where Ry is the risk-free rate (typically the return of short-term government bonds), 3; represents
the sensitivity of stock 7 to market returns, and Rfjm is the market return at time ¢+ A¢. The market
risk premium is represented by the term RLFAt — Ry. The stock’s expected return is estimated using

pt+at_pt pt+at_pt
R?"’Af — i o7 i , R:;:—Af — —m P m Whel‘e Pt+At

k2 m g
of stock ¢ and the market index at time ¢ + At, respectively. The coefficient (3;, indicating stock-
market sensitivity, is estimated using ordinary least squares (OLS). The objective function for stock
1 is given by:

the following: and P42 are the prices

min Z (eltAh2 = Z (R?m — (Ry + Bi(RyFA — Rf)))Q S
AN t+AL

We aggregate the event impact matrix Y T4% € R"X™ to obtain the total impact Z!T4% € R *™,
where ZiTA" = 377 | VT4 representing the cumulative impact of events on company j. We then

calculate the similarity between Z**2 and the residual vector e!t2* € R*™  defining the reward
function R as:

t t t t : A A
R(Zt+At €t+At) B Zf—i—Af . €f+Af /\Zz mln(Zer t7 G?L t) (5)
" |z et A [l +A% |y

The first term of the above reward function measures how precisely the predicted impacts can ex-
plain the CAPM residuals, ensuring the model accurately learns the influence magnitude of specific
events. At the same time, the regularization controlled by the hyperparameter A maximizes the recall
rate to cover as many relevant impacts as possible. The role of the regularization term is to evalu-
ate the extent to which Z*+2? covers e/T4* by comparing their values element by element (during
training, At is set to 1.) More training details can be found in Appendix B}

4 EXPERIMENT

4.1 BASELINES AND EVALUATION METRICS

In this subsection, we provide a brief introduction to the benchmarks and metrics for the asset pricing
task only. For further details and information on downstream tasks related to portfolio management,
please refer to Appendix

Datasets We selected 10,000 news articles about S&P 500 companies from January 1, 2020, to
June 30, 2022, as the test set, while approximately 110,000 articles from other years were used for
training. Detailed statistics on the dataset about news and KGs can be found in Appendix [E]
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Baselines We adopt several mainstream methods to demonstrate that FinRipple offers a power-
ful solution for this task. The baselines are primarily divided into two categories. The first cate-
gory tests the analogical reasoning capabilities of foundational LLMs, demonstrating that untrained
LLMs lack the ability to effectively analyze event impact. The basic Retrieval-Augmented Genera-
tion (RAG) (Lewis et al.,2020) approach utilizes an embedding model to retrieve relevant subgraph
information from the KG, enabling LLMs to assess impacts based on this data. Zero-Shot Inference
involves providing instructions to the model along with news and concatenated graph information.
However, due to the limited window size of LLMs, some graph data may be incomplete. For com-
panies specifically mentioned in the news, a two-hop subgraph is concatenated; otherwise, random
graph information is used until the LLM’s input window is filled. In-Context Learning (ICL) (Brown
et al.} 2020) builds upon the Zero-Shot approach by adding an example to aid the LLM in reasoning.
The second category primarily includes fine-tuned variations of FinRipple, both without and with
market alignment. It emphasizes that even if the LLM effectively absorbs the graph information,
without aligning with market dynamics, the model still lacks the ability to effectively analyze the
impact of events.

Evaluation metrics To evaluate the effectiveness of FinRipple in analyzing financial market
shocks, we designed an evaluation framework focusing on three metrics: (1) the explanatory power
on the mean of the residuals, (2) the explanatory power on the variance of the residuals, and (3)
the refusal-to-answer rate. The residuals, derived from a CAPM regression of stock returns against
market returns, represent the portion of returns unexplained by market factors. We use these resid-
uals to assess whether predicted event impacts significantly explain the variance in returns through
regression analysis and ANOVA, with p-values indicating statistical significance. Additionally, the
refusal-to-answer rate evaluates the robustness of LLMs in generating meaningful responses in com-
plex, event-driven contexts.

4.2 MAIN RESULT

Model RAG Zero-Shot ICL FinRipple/w-o alignment FinRipple
Coef.  p-value R? Coef. p-value R? Coef. p-value R? Coef.  p-value R? Coef. p-value R?

Ilama2-7b-chat 0.012 0452 0.009 0.031 0.601  0.012  0.042 0.503  0.018  0.047 0.510  0.019  0.150* 0.030  0.083
Ilama2-13b-chat 0.103 0.305  0.054 0.079 0.349  0.039  0.098 0.281  0.061 0.102 0.287  0.058  0.242%* 0.009  0.193
Ilama3-8b-instruct 0.091 0318  0.047 0.072 0402 0.037  0.107 0254 0.058 0.110 0249  0.060 0.278%* 0.004 0251
vicuna-7b-chat 0.118 0.247  0.063  0.102 0298 0.052 0.129 0.198  0.081 0.125 0205  0.074 0.330%*  0.001 0310
vicuna-13b-chat 0.248*  0.032  0.248 0.148 0.149  0.082 0.176 0.098  0.102 0.171*  0.040  0.108 0.395%*  0.000  0.340
Phi-3.5-mini-instruct ~ 0.082 0395 0.032  0.065 0498  0.019  0.094 0.347  0.052  0.096 0340  0.045  0.245%* 0.006  0.155
gemma-2-9b-it 0.097 0.298  0.048  0.083 0354 0.038 0.112 0.245  0.063  0.109 0252 0.061 0.290***  0.001  0.215
GPT 3.5 0.083 0398  0.028  0.062 0.051  0.075 0.056**  0.004 0.112 / / / / / /
GPT ol-preview 0.152 0342 0.047 0.119 0392  0.056 0.192 0.229  0.082 / / / / / /
GPT 40-mini 0.124 0312 0.042 0.312* 0.013 0.035 0.104 0.879  0.103 / / / / / /

Table 1: Comparison of baselines and FinRipple on LLMs. This table focuses on the explanatory
power on the value of the CAPM residuals. The significance levels are indicated as follows: *
p < 0.05, ¥* p < 0.01, *** p < 0.001. Note that cells containing a slash (/) indicate that the model
does not have open-sourced weights available.

As shown in Table|l} both open-source and closed-source LLMs face significant challenges in ana-
lyzing the impact of financial market events without domain-specific training. Despite their strong
capabilities, such as those seen in the GPT series, these models exhibit limited explanatory power
in complex, event-driven scenarios, as indicated by their relatively low R? values, which measure
the proportion of variance in residuals explained. The RAG method, in particular, heavily relies on
the embedding model’s ability to extract event-relevant subgraphs. The volatility in RAG’s perfor-
mance underscores its limitations; for instance, although vicuna-13b-chat achieves an R? of 0.248
with a p-value of 0.032, this result reveals inherent bottlenecks in its capabilities. Similarly, ICL,
which attempts to improve performance by including examples within the input context, offers very
limited enhancement. For example, the llama2-13b-chat model achieves an R? of 0.061 under ICL,
which represents only a marginal improvement over Zero-Shot performance (R? = 0.039), indicat-
ing a minimal impact on its reasoning over event-driven data. However, models utilizing knowledge
injection through FinRipple without alignment exhibit modest gains by incorporating broader mar-
ket information. In stark contrast, models that undergo domain-specific fine-tuning with FinRipple
show significant performance improvements. For example, the llama2-13b-chat model’s R? score
increases to 0.193 after fine-tuning, demonstrating an enhanced ability to generalize and effectively
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capture the impacts of market events. Additionally, vicuna-7b-chat experiences a substantial im-
provement, with its R? increasing from 0.072 under ICL to 0.310 following FinRipple alignment.
This highlights the crucial role of aligning LLMs with market dynamics, irrespective of the original
model size or capabilities.

Furthermore, a notable gap between small and large models is observed. For example, vicuna-
7b-chat scores an R? of 0.340 after FinRipple alignment, which demonstrates that larger models
possess an inherent capacity to learn complex market dynamics.

Model RAG Zero-Shot ICL FinRipple/w-o alignment FinRipple
ANOVA-F ANOVA-p ES ANOVA-F ANOVA-p ES ANOVA-F ANOVA-p ES ANOVA-F ANOVA-p ES ANOVA-F ANOVA-p ES

Illama2-7b-chat 1.624 0.231 0.089 1.304 0.274 0.068 2.392 0.097 0.108 2.565 0.082 0.092 3.123% 0.033 0.142
Illama2-13b-chat 2.175 0.139 0.102 1.782 0.188 0.082 2.634 0.075 0.117 3.052* 0.051 0.105  4.103%* 0.012 0.198
Tlama3-8b-instruct 1.210 0.324 0.085 2.221 0.141 0.099 2452 0.088 0.112 2.835 0.069 0.101 4.110%* 0.010 0.203
vicuna-7b-chat 0.910 0.452 0.071 1.512 0.248 0.074 2.731 0.060 0.115 2.672 0.074 0.097 3.832% 0.019 0.341
vicuna-13b-chat 2.703 0.112 0.115 2.910% 0.058 0.110 3.001* 0.052 0.125 3.932%* 0.031 0.119  5.231%#* 0.003 0.287
Phi-3.5-mini-instruct 1.563 0.257 0.097 2.334 0.126 0.104 2.815 0.062 0.118 3.014* 0.048 0.110  4.315%* 0.009 0.215
gemma-2-9b-it 2.443 0.128 0.109 1.905 0.172 0.091 2.447 0.089 0.095 3.122% 0.039 0.108  4.012%* 0.014 0.159
GPT 3.5 1.375 0.301 0.090 1.645 0.223 0.088 2.087 0.129 0.105 / / / / / !
GPT 4.0-preview 0.812 0.443 0.067 2.112 0.145 0.100 2.372 0.098 0.117 / / / / / !
GPT 4o-mini 2.153 0.144 0.099 2.875% 0.059 0.108 3.245 0.061 0.145 / / / / / /

Table 2: Comparison of baselines and FinRipple on various models using ANOVA analysis.
ANOVA-F represents the F-value from the ANOVA test, indicating the ratio of systematic variance
to error variance. ANOVA-p represents the p-value for statistical significance, with * indicating
p < 0.05, ** indicating p < 0.01, and *** indicating p < 0.001. Eta Squared (ES) represents
the correlation ratio, which indicates the proportion of variance explained by the model. Cells with
a slash (/) indicate that the model cannot be fine-tuned using FinRipple due to unavailable open-
source weights.

In line with our experience, the
refusal-to-answer rate largely depends

. . N Model Zero-Shot ICL FinRipple
on the model’s instruction-following
bilit As shown in Tabl llama2-7b-chat 04140.16 0254009 021+0.11
Capability. § show able P} llama2-13b-chat 036+£0.18 0.13+£0.08  0.15 = 0.09
Zero-Shot methods generally perform llama3-8b-instruct 0454019 0114007  0.14 +0.08
: : vicuna-7b-chat 0394+0.14 022+0.10 023 +0.05
poquy' across all models, with high vicuna-13b-chat 0344015 0.13+£002 0.10 &+ 0.04
variability in refusal rates, such as Phi-3.5-mini-instruct 048 + 021 031 £0.12 026 + 0.09
0.41 = 0.16 for llama2-7b-chat and gemma-2-9b-it 038 +0.17 02340.08 0.18 £0.06
0.48 = 0.21 for Phi-3.5-mini-instruct. GPT 35 0.32 0.18
This indicates that Zero-Shot methods GPT 4.0-preview 0.14 0.10
GPT 4o-mini 0.12 0.09

have limited ability to comprehend in-
structions for complex financial tasks
and are highly sensitive to decod-
ing parameters. In contrast, closed-
source models like GPT 4.0-preview
and GPT 4o0-mini demonstrate signif-
icantly lower refusal rates, at 0.14
and 0.12 respectively, reflecting their
stronger instruction-following capabilities. The effectiveness of FinRipple also varies depending
on the model, with a significant reduction in refusal rate for models like vicuna-13b-chat (0.10 £
0.04). This suggests that effective instruction design plays a crucial role in achieving better model
alignment and performance. Furthermore, we recognize that instruction-following ability is a key
factor in FinRipple’s effectiveness. This means that the stronger the base LLM, the greater the
effectiveness it can achieve once aligned with the financial market.

Table 3: Refusal-to-Answer Rate Comparison. The fluctu-
ating values indicate the range of variation under different
temperature settings. This experiment is conducted on our
benchmark, where refusal-to-answer samples are those that
could not be post-processed into valid outputs.

4.3 PORTOFOLIO MANAGEMENT

To further demonstrate the effectiveness of FinRipple, we implement a simple intraday trading
strategy based on the event impact prediction. The strategy selects stocks that exhibit the highest
positive predicted event-driven impacts and creates a daily portfolio that rebalances at the end of
each trading day. Specifically, the steps are as follows:

1. Each morning, based on the predicted impact results, we rank all stocks in our universe by
the magnitude of their predicted impact.
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2. The top 10% of stocks with the highest predicted positive impact are selected for a long
position, while the bottom 10% with the highest predicted negative impact are shorted.

3. At the end of the day, the portfolio is rebalanced, and the next day’s selection is based on
new predictions.

In accordance with previous portfolio management studies (Xu et al., [2024)), we selected several
benchmarks, including Equal Weighting, Volatility Weighting, the Markowitz Model, and Min-
Variance Weighting. Furthermore, we employed multiple evaluation metrics, such as daily return
(Rg), sharpe ratio (S,), and maximum drawdown (MDD), as presented in Table E} To prevent data
contamination, the backtest period was set from January 2020 to June 2022, ensuring the reliability
of the results. A detailed introduction to portfolio strategies and their evaluation can be obtained in
Appendix [El The results clearly demonstrate that accurately predicting the range of impacts from

Benchmark Daily Return (R4 x 10~')  Sharpe Ratio (S,) Maximum Drawdown (MDD) Win Rate
Equal Weighting 0.034 0.882 -0.351 0.582
Volatility Weighting 0.041 1.021 -0.312 0.643
Markowitz Model 0.029 0.954 -0.292 0.613
Min-Variance Weighting 0.028 0.821 -0.401 0.552
FinRipple 0.052 1.153 -0.283 0.685

Table 4: Summary of backtest results for different portfolio management strategies on S&P 500
constituent stocks (January 2020 to June 2022). Note that the daily return is presented with a factor
of 10~ for better readability.

financial market events can significantly mitigate portfolio risks. The strategy based on FinRipple
outperforms other benchmarks in key metrics, including daily return, Sharpe ratio, and maximum
drawdown, achieving a daily return of 0.052, a Sharpe ratio of 1.153, and a maximum drawdown
of —0.283. In contrast, strategies like Equal Weighting and Min-Variance Weighting exhibit higher
maximum drawdowns, indicating greater vulnerability to market shocks when lacking precise im-
pact predictions. Overall, accurate event impact forecasting plays a crucial role in enhancing risk
control and improving investment outcomes.

4.4  ANALYSIS
4.4.1 KNOWLEDGE INJECT ANALYSIS

In this subsection, we first analyze the necessity of knowledge injection. When effectively injecting
KGs into LLMs, optimizing the model’s understanding of market structures is paramount. One
strategy involves using a preprocessing module to filter potential subgraphs as inputs. The simplest
approach is to traverse one-hop and two-hop subgraphs related to a target company. While this
method may be applicable in some contexts, it fails to capture the market’s dynamic complexity,
particularly in scenarios where events do not specifically target individual companies, such as those
affecting entire supply chains. Another strategy is to leverage RAG, which heavily relies on the

Example of a news event not targeting a specific company:

@;% In August 2021, the Biden administration announced a plan to invest $7.3 billion in the construction of
electric vehicle (EV) charging infrastructure. This initiative aims to establish 50,000 public charging stations
across the United States by 2030, supporting the widespread adoption of electric vehicles. This effort is part of a
broader strategy to promote clean energy and reduce carbon emissions, ultimately creating a more environmentally
friendly transportation system.

Figure 3: An example where subgraph search is not applicable. As shown in the figure, this news
event impacts the entire electric vehicle charging infrastructure industry rather than targeting a spe-
cific company.

performance of embedding models designed to recall companies that are “semantically similar” to
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specific queries. However, these embedding models often overlook the deeper market relationships
associated with specific events when filtering for potentially impacted companies. This dependency
can lead to significant misjudgments or biases in the model’s event impact predictions.

In contrast, the parameterization approach, which transforms KGs into adjustable parameters,
provides a more comprehensive reflection of market trends and their complex interrelationships.
This method enables dynamic adjustment and optimiza-

tion of parameters during training, allowing the model to < ps 10
better capture the nonlinear dynamics of the market. By < . L - ¢ K
employing time-varying adapters, the model’s adaptability ~ ~ ¢ ¢ N ¢ Kos
to changes in market structure is enhanced, improving its “ g & © g«
responsiveness and predictive accuracy regarding market ¢ pe ¢ e .
dynamic. For news events that focus on a specific cen- : e B):ub o oeg
tral company, as Figure ] shows, RAG primarily retrieves ) o 5
based on semantic similarity, which often leads to a low e\ * o & X e 0 s
recall rate when dealing with larger graphs. This limitation ¢ R Y NN ™~

also affects first- and second-degree nodes, reducing the ¢ v o ¢ o oz
effectiveness of the retrieval process. Subgraph retrieval @ centatcompary @ contal compaty
without alignment may select a larger number of relevant e ¢ ¢ o
companies, but it often lacks the necessary logical struc- © Knowidege injecti i ) D) FinRipp

ture to make meaningful predictions. FinRipple, by con-
trast, effectively captures not only the relationships among
entities but also the logical pathways of impact from the
central company, offering a more coherent and precise pre-
diction of event impact. The clear propagation routes ob-
served in FinRipple highlight its ability to model the cas-
cading effects of an event through the network, accurately
representing both direct and indirect influences.

Figure 4: This diagram compares candi-
date companies identified by FinRipple
with those identified by other methods.
Due to the complexity of the full net-
work, only selected nodes in the exam-
ples are shown for illustration purposes.

4.4.2 CASE STUDY

Recollection

In January 2020, MGM Resorts International sold the MGM Grand and Mandalay Bay to a joint venture including Blackstone
Group Inc. as part of MGM'’s "asset-light" strategy to divest real estate and focus on sports betting and entertainment.

In 2017, Hilton Worldwide (HLT) spun off its real estate assets into Park Hotels & Resorts (PK) REIT to focus on hotel
management and brand services, simplifying its structure and reducing heavy assets.

Analysis Inference

Vanguard Group holds shares in MGM. If MGM divests its real estate
assets, Vanguard may adjust investments in similar sectors, potentially
affecting Simon Property Group holding comparable real estate assets.

Vanguard Group Simon Property Grou

Vanguard Group holds shares in both MGM and Cisco Systems. MGM's
asset divestiture may reduce demand for network equipment, impacting
Cisco Systems' revenue and Vanguard's returns on its Cisco holdings.

e

MGM\ Cisco Systems Vanguard Group

Vanguard Group holds shares in United Technologies. MGM's asset
divestiture may affect United Technologies’ performance and
Vanguard's investment returns.

—_—
United Technologies Vanguard Group

Figure 5: Using the CoT technique to analyze the reasoning process of vicuna-13b-chat. The model
is aligned by FinRipple.

We believe that the logical reasoning capability of LLMs lies in their ability to establish connections
with previously acquired knowledge or patterns. Therefore, in the inference process, we employ a
straightforward Chain-of-Thought (CoT) (Wei et al.,2022a) approach to capture the intricate reason-
ing pathways, ultimately leading to the refined outcomes of FinRipple, as illustrated in the Figure[3]
We can clearly observe that the inference process of the LLM, after being aligned with the financial
market, is divided into three distinct steps: the first step involves establishing connections with past
news, the second step focuses on analysis, and the third step derives the impact pathways. It is worth
noting that not all news articles can directly establish connections with past knowledge. News that
has undergone pre-training or supervised fine-tuning (SFT) is often more likely to be fully recalled
and integrated into reasoning processes.

10
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A DATASETS DETAILS

Data preparation is critical in ensuring the quality and relevance of the input information for our
model. This phase is bifurcated into two primary components: the collection of news events and the
construction of the time-varying financial KG.

A.1 NEWS COLLECTION AND PROCESSING:

The origin 792,684 news articles are sourced from Dow Jones News Services and the Wall Street
Journal, and stored as structured XML files. The structured dataset comprises eight variables, includ-
ing {Publication_datetime, Publisher_name, Region_code, Company_code, Title, Body, Word_count,
Action}. Detailed descriptions of these variables are provided in Table Using the ‘Company_code’
variable, we filtered out 129,753 news articles about individual S&P 500 firms, covering the period
from March 8, 2001, to October 30, 2023. After removing the irrelevant variables, the remaining
eight variables and their descriptions are detailed in Table[5] Figure[6](A) illustrates the distribution
of news articles over time. Notably, only 2 articles were recorded in 2001, while the highest number
of articles, 16,103, was collected in 2012. The analysis of word counts reveals that the average
number of words per news article is 5,443.85, with the maximum word count reaching 77,086 and
the minimum at 23 words. This variation indicates a wide range of article lengths, from brief news
briefs to extensive, in-depth reports. Figure [6] (B) presents the top ten companies with the highest
number of news articles in the dataset. This ranking highlights the companies that receive the most
media attention, which may be attributed to their market influence, recent activities, or significant
corporate actions. We further analyzed the properties of daily news based on the ‘Action’ variable,
as shown in Figure@ (C). 63.94% of the news articles pertain to organizational adjustments, which
include changes in the company’s business strategy, personnel, or departmental structures. 36.06%
of the news articles involve new initiatives, such as the establishment of new companies, launching
new projects or services, hiring new executives, and introducing new product lines, etc.

Variable | Description
Publication_datetime | Date and time of news article publication. It records the exact date and
time when the news article was officially published.
Publisher_name Name of the news publisher. It indicates the media outlet or organiza-
tion that published the news article.
Region_code Geographical region code. It specifies the geographic location relevant
to the company’s operational area.
Company_code Unique identifier or code for the relevant company. A unique code that
identifies the company mentioned in the news.
Title Title of news article. A brief headline that summarizes the main topic
or event described in the news article.
Body The detailed news content.
Word_count Number of total word count in the body of the news article.
Action Type of corporate action mentioned in the news. Its value can be ‘rep’
or ‘add’.

Table 5: The variables in the collected news articles dataset.

A.2 KNOWLEDGE GRAPH CONSTRUCTION:

We constructed comprehensive financial KGs aimed at capturing the multifaceted interrelationships
between companies and their potential impacts on profitability. Each company is represented as a
node, while the interrelationships between companies constitute the edges of the KGs. To achieve
this, we integrate various types of relationships derived from multiple data sources, ensuring a rich
and nuanced representation of corporate interactions.

* Technical Relevance Relationships. We collect detailed and comprehensive information
on firms’ patents, including their corresponding Cooperative Patent Classification (CPC)
codes, from the USPTO (United States Patent and Trademark Office) database to ensure a
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2012: 16,103 0 3000 7000

Goldman Sachs Group Inc.

JPMorgan Chase & Co.

Test Set Walmart Inc. Addition

Morgan Stanley 36.06%

Wells Fargo&Co.

Textron Inc.

Citigroup Inc.

Southern California Edison Replacement
Bank of America Corporation 63.94%

2003: 16 Merrill Lynch

2001 2006 2012 2018 2023
(A) Number of news articles per year (B) Companies with top 10 news count (C) Proportions ‘Action’ types

Figure 6: The statistics results of our collected news articles. (A) demonstrates the temporal distri-
bution of news articles, (B) displays the company rankings with the top ten news counts, and (C)
shows the properties of different corporate actions.

robust foundation for analyzing technical relevance and relationships between companies.
Following the methodology outlined in |Lee et al.| (2019), we calculate pairwise technical
closeness between two firms by measuring the correlation of CPC code distribution across
their portfolios. In this kind of KGs, an edge between two companies reflects their patent-
based technical similarity. The strength of the edge is proportional to the degree of technical
similarity, capturing the depth of their technological connections.

* Supply Chain Relationships. Information on firms’ supply chains is extracted from the
Compustat-Capital IQ database. In this kind of KGs, nodes represent companies, and edges
indicate input-output relationships between companies. The strength of an edge is deter-
mined by the financial value of transactions between companies, providing a weighted
representation of the intensity of their supply chain interactions.

» Shared Leadership Relationships. We obtain detailed information on firms’ top lead-
ers from the Boardex database. This data highlights interconnections between companies
through shared executive affiliations. In this kind of KGs, edges denote the number of
directors who simultaneously serve on the boards of two companies. This construction
approach quantifies the degree of overlap in leadership structures, capturing the corporate
governance ties between firms.

* Mutual Fund Holding Relationships. Data on mutual fund holdings of the listed U.S.
firms is sourced from the Thomson/Refintiv database. Utilizing this information, we con-
struct the holding-based KGs where an edge between two companies signifies that they are
held by the same mutual fund. This relationship reflects the shared ownership structures
and potential investment linkages among firms.

By extracting different types of relationships from these diverse data sources, we are able to construct
a KG reflecting various dimensions of corporate interactions. In the KG, each company and event
is represented as a node, while the interrelationships between companies (such as collaborations or
competitions) and the impact of events on companies constitute the edges of the graph.

In the process of constructing the KG, we pay special attention to associations supported by empir-
ical financial research, such as future technology linkages evidenced by patent data and upstream-
downstream enterprise relationships. This focus ensures that the KG not only documents the static
relationships but also delves deeply into how these relationships influence company performance
under varying market conditions and in response to specific events. The resulting KG provides a
comprehensive understanding of the interactions among S&P 500 companies and offers the frame-
work a robust and comprehensive understanding foundation.

Our KG dataset is divided into training and testing sets. The training set covers the period from
March 2001 to December 2019 (226 months), and the testing set encompasses the period from
January 2020 to June 2022 (30 months). Table[6] presents detailed statistics for both the training and
testing KGs. It includes the number of contained graphs, the average number of nodes per graph,
the average number of edges per graph, and the distribution of relationship multiplicities between
nodes.
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Graph Avg. Nodes Avg. Edges Single Dual Triple

Taphs per Graph per Graph  Relationship (%) Relationships (%) Relationships (%)
Training set 226 6621.6018 13,844,186 92.7923 7.1956 0.0104
Testing set 30 6452.1667 14,228,088 95.0923 4.9007 0.0053

Table 6: KG Data Statistics

B FINRIPPLE DETAILS

B.1 THE DETAILED PIPELINE OF FINRIPPLE

Algorithm 1 Training Pipeline of FinRipple

Training Process:

Input: KG s G* = {G*',...,G"}, News data N* = {N',... N™}, Pretrained LLM backbone
fo, Adapters gy

Output: Updated LLM backbone parameters 6*

1: for each time step t do
2:  Initialize an empty set I = {}, collect the KG G* = {C* R'} and news data N* =

{nt, ... ,nk,}.
3: for each article n; € N* do
4: Inject the corresponding KG G into the adapter g,:
gl < 96(G), f§ = g\ + fo
5: Inference the impact Y;ﬁ'm based on n§
A t t
YA e f5(nf), I« TUY
6: Compute the CAPM residuals:
LA = RIFA — B(RIFA), B(RIFM) = Ry + Bi(RSTS = Ry)
7: Calculate the reward at time ¢:
gt+At | t+AL S min(ZHAt AT n
t+At _t+At\ __ 7 7 (e t+At __ t+At
BT ET0) = gmmarag T arar, where Z7 =2 Y5
8: end for
9: Update 6 based on accumulated rewards.
¢ t
agn) . .
0+ 0+ aE; |Vylog fg(at\ng)MAt where A, = R" — V(n})
ol (at|nj)
10: end for

Inference Process:
Input: new event e,,,, and the corresponding KG G?new,

1: Inject G*»<v into the frozen adapter g:

9o < go(G™*)
2: Use the fine-tuned LLM backbone fy- to predict the impact of the new event:
Yt = fo- (Gt"ew,enew) where Y represents the predicted impact of ¢,,.,, on the companies
t

3: Output the predicted impact matrix Y.
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B.2 THE PROMPTS USED IN FINRIPPLE

The following is a detailed prompt designed in FinRipple to guide the LLM for financial event anal-
ysis. The LLM is instructed to evaluate the impact of news on companies and provide a structured
output. The news report will be placed in the “[INSERT MARKET NEWS REPORT]” section. The
LLM is expected to determine the affected companies, classify the impact type and assign an im-
pact score from -10 to +10. A high positive or negative score indicates the strength of the potential
market effect. The output should include specific company names, detailed descriptions, and adhere
strictly to the given format for consistency and clarity. An example is provided within the prompt to
illustrate the expected response.

Instruction:

You are a financial event analyst focused on analyzing the potential
impacts of news reports on the market. Based on the given news content
and current market structure, evaluate and output the affected companies
, the type of impact (positive, negative, or neutral), and a score
representing the strength of the impact (ranging from -10 to +10,

where -10 indicates a very negative impact, and +10 indicates a very
positive impact). Provide pecific company names and event descriptions
for clarity and utility. Here is an example.

Input Example:

"Company A announces a partnership with Company B to jointly develop new
technology, expected to significantly enhance production efficiency
and increase market share."

Output Format Example:

{
"impact_analysis": {
"affected_companies": |

{

"name": "Company A",
"impact_type": "positive",
"impact_score": 8
3y
{
"name": "Company B",
"impact_type": "positive",
"impact_score": 6
}
1,
"analysis": "The partnership between Company A and Company B is

expected to enhance their technological capabilities and market
competitiveness, likely increasing their revenues and stock prices.

}
Input (you need to analyze):
[INSERT MARKET NEWS REPORT]

Provide your result, strictly following the output format in the
example, without any additional output.
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C ASSET PRICING MODELS

Asset pricing models are essential tools in finance for understanding the relationship between risk
and expected return. This appendix briefly introduces three prominent models: CAPM, Fama-
French Three-Factor Model (Fama3), and Fama-French Five-Factor Model (Fama5).

C.1 CAPITAL ASSET PRICING MODEL

The CAPM describes the relationship between systematic risk and expected return. The expected
return of an asset is proportional to its beta, which measures the sensitivity of the asset’s returns to
market returns. The formula for CAPM is:

E(Ri) = Ry + Bi (E(Rm) — Ry) (6)

where E(R;) represents the expected return of the asset, R ¢ is the risk-free rate, 3; is the asset’s
beta that measures its sensitivity to market movements, and E(R,,) is the expected return of the
market.

C.2 FAMA-FRENCH THREE-FACTOR MODEL

The Fama3 expands upon CAPM by including two additional factors: size and value. The size
premium, denoted as Small Minus Big (SMB), captures the excess return of small-cap stocks over
large-cap stocks, while the value premium, denoted as High Minus Low (HML), captures the excess
return of high book-to-market stocks over low book-to-market stocks. The model is represented as:

E(R;) = Ry + B; (E(Ry) — Ry) + s x SMB + h x HML 7)

where s and h represent the sensitivities of the asset’s returns to the SMB and HML factors, respec-
tively.

C.3 FAMA-FRENCH FIVE-FACTOR MODEL

The Fama$5 extends Fama3 by adding two more factors: profitability and investment. The profitabil-
ity premium, denoted as Robust Minus Weak (RMW), captures the excess return of firms with high
profitability over those with low profitability. The investment premium, denoted as Conservative
Minus Aggressive (CMA), captures the excess return of firms with conservative investment policies
over those with aggressive policies. The updated model is:

E(R;) = Ry + i (E(Ry) — Ry) + 5 X SMB 4+ h x HML + 7 x RMW + ¢ x CMA  (8)

where r and c represent the sensitivities to the RMW and CMA factors, respectively.

C.4 RESIDUALS AND MARKET ANOMALIES

Residuals of these models represent the portion of an asset’s return not captured by the included
risk factors. By analyzing residuals, investors can identify abnormal returns that the models fail
to explain. These anomalies often arise due to market inefficiencies, information asymmetries, or
other idiosyncratic risks not accounted for by the systematic factors in the models. Understanding
residuals helps investors gain insights into potential mispricing and hidden variables in the market,
revealing opportunities or risks that standard models overlook.
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D OTHER EXPERIMENTAL RESULTS

D.1 THE ACCURACY OF KG INJECTION

Problem Classification \ Typical Questions

“Which companies have a common CEO relationship with {}?”
“Which companies have an upstream-downstream relationship with

Retrieval { } 9
Questions “Which companies have multiple relationships with {}?”
“Which companies have one relationship with {}?”
“Which companies have one relationship with {}?”
Factual “Are there supply chain upstream and downstream transactions between

f’”
Judgments ‘{‘} and {} . ”»
‘Are the companies {} and {} held by the same fund?

“Are the companies {} and {} held by the same fund?”

“What is the relationship between {} and {}?”
“What is the technical similarity between {} and {}?”
“What is the technical similarity score between {} and {}?”

Factual
Questions

Table 7: The three classes of instruction questions generated from KGs.

Model | All | w/oRQ | w/oFJ | w/oFQ
Gemma-2b-it 84.6% | 38.5% 154% | 30.8%
Gemma-7b-it 69.2% | 30.8% | 46.2% | 46.2%

Llama-13b-chat | 61.5% | 7.7% 15.4% | 23.1%

Table 8: Ablation study results for the three classes of questions: Retrieval Questions (RQ), Factual
Judgments (FJ) and Factual Questions (FQ). The above results are averaged over five shuffles of the
subgraph.

We used a random subgraph of 100 nodes for training, with an 8:2 split between the training and
testing datasets. The results indicate that all three types of questions are beneficial. Note that some
questions may not be answered correctly if the information needed is not fully covered by the train-
ing set. If all information is covered, our tests show that the adapter’s memory accuracy reaches
approximately 90%. We constructed three types of questions by traversing the KG , as shown in
Table [/l The first category, Retrieval Questions, focuses on identifying specific relationships be-
tween companies, such as shared CEOs or upstream-downstream connections. The second category,
Factual Judgments, is used to determine whether certain relationships exist, such as common fund
holdings or supply chain transactions. Finally, the third category, Factual Questions, aims to explore
the details of relationships between entities, such as the nature of technical similarities or similarity
scores.

D.2 EVALIDATION ON OTHER ASSET PRICING MODELS

In this subsection, we also evaluate FinRipple’s ability to explain the residuals of other models
including Fama3 and Fama5. Based on our experimental findings, as shown in Table[9]and Table [T0}
we observe that the explanatory difficulty of Fama3 and Fama5 residuals gradually decreases. This
reduction is primarily due to the stepwise exclusion of interfering factors from the residuals. The
contributions of different variables were compared using standardized regression coefficients, as
shown in Figure[7] The results reveal that these factors exhibit distinct cyclical patterns. To account
for these dynamics, we constructed training objectives based on the more challenging CAPM model.
Although this approach increases the optimization difficulty, it ensures stable performance even
when certain factors become less effective.
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Model RAG Zero-Shot ICL FinRipple/w-o alignment FinRipple
Coef. p-value R?>  Coef. p-value R? Coef. p-value R?  Coef. p-value R? Coef.  p-value R?

Illama2-7b-chat 0.021 0482  0.013 0.040 0.657 0.021 0.058 0.287  0.145 0.090 0.520 0.152 0.310* 0.021 0.275
llama2-13b-chat 0.132 0.405  0.074 0.095 0445 0.065 0.158 0245 0138 0.182 0314 0.195 0.445% 0.013  0.390
Illama3-8b-instruct 0.102 0.365  0.051 0.067 0.380 0.030 0.088 0370  0.099 0.211 0.402 0.178 0.370 0.007  0.400
vicuna-7b-chat 0.158 0235  0.095 0.112 0400 0.078 0.215 0.142  0.134 0.250 0.188 0.256  0.515%*#*  0.001 0.485
vicuna-13b-chat 0.505%%  0.028* 0.145 0.172 0210  0.123 0.290*  0.031 0.255 0365 0.175 0.342  0.610%*#*  0.001 0.550
Phi-3.5-mini-instruct ~ 0.097 0512 0.032 0.056 0.670 0.026  0.075 0.470  0.086 0.153  0.395 0202  0.285%* 0.005  0.335
gemma-2-9b-it 0.112 0298  0.061 0.089 0423 0.047 0.178 0285 0.144 0.265 0.305 0.330  0.395%*#*  0.001  0.445
GPT 3.5 0.060 0455 0.018 0.045 0.550 0.039 0.069*% 0.018 0.106 / / / / / /
GPT 4.0-preview 0.165 0.328 0.045 0.119 0.389 0.063 0.195 0512 0.138 / / / / / /
GPT 4o0-mini 0.198 0215 0.051 0.145 0312 0.055 0.155 0.209  0.121 / / / / / /

Table 9: Differences in the explanatory power of Fama3 residuals by baselines and FinRipple ap-
plied to LLMs. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001. Cells with ‘/* indicate
unavailable model parameters.

Model RAG Zero-Shot ICL FinRipple/w-o alignment FinRipple
Coef.  p-value R? Coef. p-value R?>  Coef. p-value R? Coef. p-value R? Coef. p-value R?

1lama2-7b-chat 0.018 0.489  0.014 0.042 0.670  0.025 0.078 0.260 0.152 0.127  0.445 0.185 0.345%* 0.007  0.300
1lama2-13b-chat 0.155% 0.039  0.082 0.091 0435 0.068 0.180 0428 0.150 0.225 0.309 0.220  0.500%**  0.001 0.420
1lama3-8b-instruct 0.112 0.368  0.059 0.075 0.385 0.034 0.103 0330 0.109 0.265 0.306 0.205  0.405*%*#*  0.001 0.440
vicuna-7b-chat 0.170* 0.021 0.101  0.125 0.370  0.087 0.250 0.303 0.145 0.288  0.107 0.280  0.565%**  0.001 0.525
vicuna-13b-chat 0.540**  0.010  0.160 0.190* 0.042 0.148 0.320 0.315 0260 0420 0.111 0.375  0.655%%%  0.000  0.590
Phi-3.5-mini-instruct ~ 0.105 0.495 0.038  0.050 0.690 0.032 0.090 0460 0.095 0.185 0422 0.230 0.330%* 0.004  0.360
gemma-2-9b-it 0.140% 0.028  0.068 0.087 0425 0.048 0.205 0.727 0.155 0305 0.267 0.360  0.430*%*F*  0.001 0.485
GPT 3.5 0.070 0.435 0.023  0.038 0.585 0.039 0.085 0.322 0.120 / / / / / /
GPT 4.0-preview 0.180* 0.031 0.050  0.125 0.390 0.062 0.220 0.606  0.150 / / / / / /
GPT 4o0-mini 0.205 0.629  0.058 0.145 0315 0.061 0.175 0.703  0.135 / / / / / /

Table 10: Differences in the explanatory power of Fama3 residuals by baselines and FinRipple
applied to LLMs. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001. Cells with /¢
indicate unavailable model parameters.
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Figure 7: Variable importance of Fama-French 5 factors on 2018 returns.
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E BASELINES DETAILS

E.1 ASSET PRICING
E.1.1 ZERO SHOT

Zero-shot inference enables the model to analyze a wider range of market scenarios without relying
on specific examples. The prompt used is shown as following:

Instruction:

You are a financial event analyst focused on analyzing the potential
impacts of news reports on the market. Based on the given news content
and current market structure, evaluate and output the affected companies
(TICKER in SP500), the type of impact (positive, negative, or neutral),
and a score representing the strength of the impact (ranging from -10

to +10, where -10 indicates a very negative impact and +10 indicates

a very positive impact). Provide specific company names and event
descriptions for clarity and utility. A market news report, company’s
knowledge graph information, specific requirements and output format
will be provided below.

Market news report:

[INSERT MARKET NEWS REPORT]

Knowledge Graph (current market struture you can refer to):
[INSERT KNOWLEDGE GRAPH]

Requirement:

"Provide your result, strictly following the output format below,
without any additional output."

Output Format:

"Please provide your response in a structured JSON format. The JSON
should have a top-level object with a single key ’impact_analysis’.

The value of ’impact_analysis’ should be an object containing two keys:
"affected_companies’: An array of objects:

"name’ : The company’s name (string)

"impact_type’: The type of impact, e.g. ’"positive’ or ’"negative’ (string)
"impact_score’: A numerical score representing the impact (integer)
"analysis’: A string containing a brief analysis of the overall impact.
Please ensure that the JSON is properly formatted and uses double

quotes for strings.

Here’s an example of how the structure should look:
{
"impact_analysis’: {
"affected_companies’: [
{
"name’ : ’Company Name’,
"impact_type’: ’impact type’,
"impact_score’: score
br
1,
"analysis’: ’"Your analysis text here.’

}
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E.1.2 RAG AND ICL

To effectively analyze financial events and their market impact, we employ a ICL baseline. This
method provides the model with a concrete example, demonstrating the expected input format, anal-
ysis process, and output structure. By presenting a sample scenario and its corresponding analy-
sis, we establish a clear framework for the model to follow. For the RAG method, we use text-
embedding-ada-002 as our embedding model, with the same prompt template as used in ICL. The
following prompt illustrates this few-shot learning technique:

Instruction:

You are a financial event analyst focused on analyzing the potential
impacts of news reports on the market. Based on the given news content
and current market structure, evaluate and output the affected companies
(TICKER in SP500), the type of impact (positive, negative, or neutral),
and a score representing the strength of the impact (ranging from -10 to
+10, where -10 indicates a very negative impact, and +10 indicates a very
positive impact). Provide pecific company names and event descriptions
for clarity and utility. Here is an example.

Input Example:

"Company A announces a partnership with Company B to jointly develop new
technology, expected to significantly enhance production efficiency
and increase market share."

Output Format Example:

{
"impact_analysis": {
"affected_companies": [

{

"name": "Company A",
"impact_type": "positive",
"impact_score": 8
}s
{
"name": "Company B",
"impact_type": "positive",
"impact_score": 6
}
1,
"analysis": "The partnership between Company A and Company B is

expected to enhance their technological capabilities and market
competitiveness, likely increasing their revenues and stock prices.

}
Input (you need to analyze):

"Company A announces a partnership with Company B to jointly develop new
technology, expected to significantly enhance production efficiency
and increase market share."

Knowledge Graph (current market struture you can refer to):

(Company A, Company B, supplier)

(Company C, Company D, subsidiary)

(Company E, Company F, competitor)

(Company G, Company H, partner)

(Company I, Company J, investor)

(Company Q, Company R, technology provider)

Provide your result, strictly following the output format in the
example, without any additional output.
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E.2 STATISTICAL METRICS

This subsection introduces key statistical metrics used to evaluate the explanatory power of inde-
pendent variables on the dependent variable, including Coefficient (Coef.), p-value, Coefficient of
Determination (R?), ANOVA F-statistic (ANOVA-F), ANOVA p-value (ANOVA-p), and Effect Size

(1?).

Coefficient (Coef.) The coefficient (/3;) represents the estimated effect of an independent variable
X, on the dependent variable Y, holding all other variables constant. The regression equation is
given by Y = By + 1 X1 + B2 Xo + - - + B, X, + €, where € is the error term.

p-value The p-value indicates the statistical significance of each coefficient, measuring the prob-
ability of observing the estimated effect under the null hypothesis that the coefficient is zero. A
smaller p-value suggests stronger evidence against the null hypothesis.

Coefficient of Determination (R2) The Coefficient of Determination (R?) measures the propor-

tion of variance in the dependent variable that is explained by the independent variables. It is calcu-
n Ry

latedas R2 =1 — %, where y; is the observed value, g; is the predicted value, and ¥ is
=1 2

the mean of the observed values.

ANOVA F-statistic (ANOVA-F) The ANOVA F-statistic tests whether the regression model ex-
plains a significant proportion of variance in the dependent variable compared to a model with no

: . MS;egression . :
predictors. It is calculated as F' = — where MSegression 1S the mean square due to regression,
residual

and MS cgiqual 1S the mean square due to residual error. Higher values of F' suggest a better fit of the
model.

ANOVA p-value (ANOVA-p) The ANOVA p-value indicates the statistical significance of the F-
statistic, reflecting the probability of obtaining the computed F-statistic under the null hypothesis
that the regression model has no explanatory power.

Effect Size (n?) Effect Size (%) represents the proportion of the total variance in the dependent
variable that is attributable to an independent variable or a set of independent variables. It is cal-
culated as 7]2 = Sgbsel%, where SSpetween 1S the sum of squares between groups, and SSiy is the
total sum of s.quares.0 "This metric helps determine the magnitude of the effect of the independent

variables.

E.3 PORTFOLIO MANAGEMENT

Portfolio management involves the selection and optimization of asset allocation to maximize the
return within a given investment process (Hu and Lin, 2019). In this section, we describe the im-
plementation details of five benchmark portfolio strategies: Equal Weighting, Volatility Weighting,
Markowitz Model, Min-Variance Weighting, and FinRipple. These benchmarks are evaluated us-
ing metrics such as Daily Return (R;), Sharpe Ratio (.S,), Maximum Drawdown (MDD), and Win
Rate. In our experiments, we use historical data from the past 30 days as input. To simplify the
comparison and ensure fairness, tax rates are set to zero across all scenarios.

E.3.1 EQUAL WEIGHTING

The Equal Weighting strategy assigns an equal weight to each asset in the portfolio:

i=1,2,...,N 9)

i

where w; represents the weight of asset 4, and /V is the total number of assets.
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E.3.2 VOLATILITY WEIGHTING

The Volatility Weighting strategy allocates weights inversely proportional to the historical volatility
of each asset:

1
wi=—2 i=1,2,...,N (10)

where o; is the historical volatility (standard deviation) of asset 7.

E.3.3 MARKOWITZ MODEL

The Markowitz Model, also known as the Mean-Variance Optimization Model, aims to maximize
expected return for a given level of risk or minimize risk for a given expected return:

A
max WT‘u — §WTEW (11D

st. 1Tw=1, w>0 (12)

Where w is the vector of portfolio weights, p is the expected return vector, X is the covariance
matrix of asset returns, and A = 1 is the risk aversion parameter, representing a moderate balance
between risk and return.

E.3.4 MIN-VARIANCE WEIGHTING

The Min-Variance Weighting strategy seeks to construct a portfolio with the lowest overall risk:

min  w!Xw (13)
w
st. 1Tw=1, w>0 (14)

where X is the covariance matrix of asset returns.

E.4 METRICS OF PORTOFOLIO MANAGEMENT

The benchmarks are evaluated using the following metrics:

Daily Return (R;) The daily return measures the return of an asset over one day, calculated as
R; = %, where P, is the asset price at time ¢, and P,_; is the price on the previous trading
day.

Sharpe Ratio (S,) The Sharpe ratio measures investment performance compared to a risk-free

asset, adjusted for risk, using the formula S, = @, where R, is the average annual return, R f

is the risk-free rate, and o, is the standard deviation of the return.

Maximum Drawdown (MDD) Maximum Drawdown represents the maximum observed loss
N . . . P,—P
from a peak to a trough of an asset’s price, given by MDD = max;c(1 77 (%), where
J st J
P, is the price at time ¢, and 7T’ is the total time period considered.

Win Rate (Wr) Win Rate represents the percentage of time periods in which the portfolio achieves

T
a positive return, defined as Wr = w x 100%, where R; is the return at time ¢, T is the
total number of time periods considered, and I(R; > 0) is an indicator function that equals 1 if
R; > 0, and 0 otherwise.
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F REPRODUCIBILITY STATEMENT

F.1 HYPERPARAMETER SELECTION

We conducted hyperparameter tuning on a small-scale dataset to determine the optimal settings for
minimizing the refusal-to-answer rate. The resulting hyperparameter settings are shown in Table[T1]
aiming to reduce the likelihood of model refusal while maintaining high response quality. In the
reward function, A is set to 0.1. We used LoRA (Low-Rank Adaptation) (Hu et al., 2021 to fine-
tune the model, with key settings including lora_alpha = 16, lora_dropout = 0.1, and rank r = 64.

Model Temperature Top-k Top-p
Ilama2-7b-chat 0.8 40 0.85
Ilama2-13b-chat 0.7 50 0.90
Ilama3-8b-instruct 0.7 30 0.80
vicuna-7b-chat 0.8 45 0.88
vicuna-13b-chat 0.7 50 0.92
Phi-3.5-mini-instruct 0.9 35 0.86
gemma-2-9b-it 0.9 25 0.83
GPT 3.5 0.8 30 0.80
GPT 4.0-preview 0.8 40 0.85
GPT 40-mini 0.7 40 0.87

Table 11: Hyperparameter settings.

F.2 COMPUTATIONAL RESOURCES AND CODE AVAILABILITY
The training and inference results required a total of over 9000 GPU hours using 25 A800 (80G)

GPUs. We will release a user-friendly training framework along with the complete benchmark
dataset in the future.
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