
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DUAL-STAGE GRADIENT PROJECTION BASED CON-
TINUAL LEARNING: ENHANCING PLASTICITY AND
PRESERVING STABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

In continual learning, gradient projection algorithms avoid forgetting by project-
ing the gradient onto the orthogonal complement of the feature space of previous
tasks, thereby ensuring the model’s stability. However, strict orthogonal projec-
tion can cause the projected gradient to deviate sharply from the original gradient,
damaging the model’s learning ability to new tasks and reducing its plasticity.
Gradient-projection methods that relax the orthogonality constraint alleviate the
deviation introduced by strict projection, yet the degree of gradient distortion re-
mains large and the model’s plasticity still needs improvement. To address such an
issue, we propose a continual-learning method based on two-stage gradient pro-
jection that improves the model’s plasticity for new tasks while preserving its sta-
bility on previous tasks. Specifically, in the first stage, we design a loss-sensitive
space (LSS) regularization term (soft regularization) on top of the cross-entropy
loss to constrain the gradient to update as closely as possible along directions or-
thogonal to the feature space of previous tasks, thereby maintaining plasticity. In
the second stage, a scaled projection (hard projection) further constrains the gra-
dient to update along directions approximately orthogonal to the feature space of
previous tasks, thus ensuring stability. Experimental results on three benchmark
image classification datasets demonstrate that our method, for the first time, re-
duces the gap between the achieved classification accuracy and the task-specific
upper bound (multitask) to within roughly 2%, indicating that the model possesses
both strong plasticity and stability.

1 INTROFCTION

Continual learning (CL) allows a model to acquire new knowledge without forgetting previously
learned information French (1999); McCloskey & Cohen (1989). The capacity to preserve ear-
lier knowledge while studying a new task is called stability, and the capacity to absorb new in-
formation is called plasticity. Balancing these two objectives is known as the stability–plasticity
dilemma Abraham & Robins (2005), which is a significant challenge.

Among various CL paradigms, gradient-projection methods are attractive for their negligible
memory overhead and algorithmic simplicity. Unlike replay approaches that store past data
Chaudhry et al. (2019c); Hyder et al. (2022); Prabhu et al. (2020b) or architectural solutions that
grow subnetworks dynamically Guo et al. (2020); Mallya & Lazebnik (2018), gradient-projection
algorithms leave the original network intact and require no sample rehearsal. They mitigate catas-
trophic forgetting by constraining the update for a new task to be orthogonal to a space spanned by
representations of earlier tasks (e.g., GPM Saha et al. (2021) and OWM Zeng et al. (2019)). Strict
orthogonality excels at stability but often harms plasticity, because it suppresses gradient compo-
nents that are useful for the current task. Recent variants soften this constraint by introducing a
scaling matrix that controls how much the gradient is allowed to approach the protected space, for
example, SGP Saha & Roy (2023) applies a diagonal scaling on the protected basis to modulate the
projected component, and SD Zhao et al. (2023) separates plasticity and stability spaces to improve
the overall trade-off.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝑔!"#$
𝑔! 𝑔!%"#

Protected spaceProtected space

𝑔!
②	𝑔!&

(a) (b) (c)
①	𝑔!%

𝑔!

Regula
rizatio

n term

𝑃𝑟𝑜𝑗!""(𝑔#)

Protected space

Projected gradient

Cross Entropy gradient

Gap between gradients

Saved 𝑔! component

Figure 1: The red arrows denote the gradients actually used to update the parameters after projec-
tion. gt is the original cross-entropy gradient, and the blue dashed lines indicate the discrepancy
between gradients. (a) gt is directly projected onto the orthogonal complement of the protected
space, yielding gGPM

t . The difference between gt and gGPM
t is large, indicating severe distortion.

(b) gt is projected onto the orthogonal complement of the scaled space, so part of its components
(green arrow) is preserved, producing gSGP

t . The gap between gt and gSGP
t is reduced but remains

considerable. (c) By minimizing the projection of gt onto the protected space LSS (purple arrow),
gt is refined to gSt , which lies closer to the orthogonal direction. Projecting gSt onto the orthogonal
complement then gives gHt , and the difference between gSt and gHt becomes much smaller.

However, when the gradient is nearly parallel to the feature space, projecting it onto the orthogonal
complement pushes it far from the original gradient, causing severe distortion in both direction and
magnitude (Fig. 1 (a)). Methods such as SGP relax the strict constraint to alleviate this, but for
critical directions where the constraint cannot be loosened, substantial distortion still occurs (Fig. 1
(b)).

Our idea To address the above issue, we propose a two-stage gradient projection strategy based on
a loss-sensitive space (LSS) to reduce the distortion introduced by conventional projection operators
and thereby improve plasticity. As shown in Fig. 1 (c), if we first restrict the gradient to update along
directions approximately orthogonal to the feature space and then apply the standard projection, the
projection no longer induces large angular deviation or significant shrinkage in length. Specifically,
in the first update stage (Fig. 1(c)), we augment the cross-entropy loss with a regularization term
that minimizes the gradient’s component inside the previous-task feature space, forcing the update
to move as close as possible to its orthogonal directions. To more accurately quantify the importance
of each basis vector in that space, we introduce scaling coefficients derived from the second-order
information of past-task losses: Using a diagonal Fisher approximation and the quadratic term of
a second-order Taylor expansion, we estimate the loss increase induced by parameter perturbations
and use this estimate to rescale the basis vectors. In the second stage, we apply a standard projec-
tion to the gradient obtained in stage one. Leveraging SGP’s scaled orthonormal basis, we project
the gradient onto its orthogonal complement to guarantee stability. Because the gradient has al-
ready been guided toward nearly orthogonal directions, this final projection induces only negligible
distortion. Our contributions are as follows:

1. We propose a novel insight: by using a loss-based regularization term to constrain the
gradient update direction, reducing the distortion caused by projection operators.

2. We propose a two-stage gradient projection strategy combining soft regularization with
standard projection, retaining greater plasticity while maintaining stability.

3. To design the soft regularization term, we construct a loss-sensitive space (LSS) from the
second-order information of past tasks’ losses to quantify each basis vector’s importance,
and we provide a theoretical justification for its introduction.

4. Experiments on three image-classification benchmarks confirm that our approach retains
greater plasticity while preserving stability, resulting in improved performance.

2 RELATED WORK

Non-Projection Continual-Learning Methods Continual learning methods are commonly cat-
egorized as replay-based, regularization-based, architectural-based, and optimization-based ap-
proaches Wang et al. (2024). Replay-based methods usually retain a small buffer of past samples
and interleave them with new data, such as GDumb retrains a model from scratch on the buffered
set, whereas A-GEM samples that buffer online to bound interference with earlier tasks Prabhu

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ℒ!"(𝑊,𝐷#)

𝑔!"# = 𝐼	 − 𝑀𝑆𝑀$ 𝑔!"

𝑔#$%

Update model using 𝑔#$%

𝑔$
(∇𝐿#&#'()

(c) Hard Projection(a) Cross-Entropy Loss (b) Soft Regularization

𝑔#
(∇ℒ!")

Model
min
%

𝐿!&!'(= ℒ)* + 𝜆ℛ+&,!

𝑡𝑎𝑠𝑘!-.	has finished training

𝑡𝑎𝑠𝑘!-.

training

…

𝑡𝑎𝑠𝑘!

𝐷!

Trained
Model

Sampling

Forward
Task specific
information
𝐹!…#$%, 𝑀%…#$%

𝑡𝑎𝑠𝑘!	is training

SVD(𝑅#$%)

𝑠𝑝𝑎𝑐𝑒	𝑀!"#

𝑠𝑝𝑎𝑐𝑒	𝑀!"#

𝑠𝑝𝑎𝑐𝑒	𝐿𝑆𝑆Step 1

ℛ+&,!= 𝑃𝑟𝑜𝑗/""(𝑔!) 0
Step 2

𝑔$!𝑔$!%

OURS Sec. 3.2

OURS Sec. 3.2

𝑀!-. +𝑀 → 𝑀

Σ
normalize 𝑆

Construct Feature Space

Figure 2: This figure outlines our pipeline. Step 1 is the feature-space construction phase of
projection-based methods: We sample activations and perform an SVD to derive the task-specific
subspace Mt−1, update the global feature space M , and then combine Mt−1 with past task infor-
mation to construct two scaling spaces. Step 2 is the actual training loop. After the current-task data
pass through the network, stage (a) computes the gradient of Lce, denoted gt; stage (b) combines gt
with the LSS to create a soft regulariser that drives the gradient toward directions orthogonal to the
LSS; stage (c) applies the conventional hard projection to the resulting gradient gSt . Because stage
(b) has already pushed the update toward the orthogonal complement, the subsequent hard projection
removes far fewer components, preserving plasticity while still protecting prior knowledge. The two
key contributions of this paper appear in Step 1, where we construct a novel loss-sensitive scaling
(LSS) space, and in Step 2 (b), where the LSS is used to build a soft regulariser that is optimised
jointly with the cross-entropy loss Lce.

et al. (2020a); Lopez-Paz & Ranzato (2017). Regularization techniques constrain parameter updates
to stay close to previously important values; a seminal example is Elastic Weight Consolidation
(EWC), which adds a Fisher-information penalty, while Learning without Forgetting distils knowl-
edge through soft targets without keeping old samples Kirkpatrick et al. (2017); Li & Hoiem (2017).
Architectural solutions dynamically allocate or recycle capacity, such as PackNet iteratively prunes
and re-grows task-specific subnetworks, and Tinysubnets combines layer-wise adaptive pruning,
quantization, and weight sharing to exploit sparsity and delay capacity saturation while maintaining
competitive accuracy Mallya & Lazebnik (2018); Pietron et al. (2025).

Gradient-Projection Methods Optimization based methods adjust the learning dynamics them-
selves—e.g., by adapting gradient directions to reduce interference between tasks and improve over-
all performance. OWM Zeng et al. (2019) constructs a projection operator via recursive least squares
but still shows noticeable forgetting over long task sequences. Adam-NSCL Wang et al. (2021)
projects gradients onto the null space of the feature-covariance matrix. Gradient Projection Mem-
ory (GPM) Saha et al. (2021) samples layer-wise activations, applies SVD, and projects gradients
onto the orthogonal complement of a low-rank subspace. Class Gradient Projection (CGP) Chen
et al. (2022) replaces task-level subspaces with class-level ones. TRGP Lin et al. (2022b) rescales
prior parameters near the current task and then performs orthogonal projection; CUBER Lin et al.
(2022a) selects gradients beneficial to past tasks by measuring similarity between new and old gradi-
ents. SGP Saha & Roy (2023) tilts gradients toward low-energy directions; SD Zhao et al. (2023) de-
couples plasticity and stability spaces; and GPCNS Yang et al. (2024) builds a joint gradient–feature
space to enhance plasticity. Above methods do not constrain update directions to reduce projection-
induced distortion. To our knowledge, this is the first work to address that projection distortion using
a two-stage projection approach.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHOD

In this section, we first review the preliminary, including the feature-basis construction step and the
model update step. We then introduce our two-stage gradient-projection strategy, which optimizes
update directions to prevent forgetting. In Step 1 (Fig. 2, Step 1. space LSS), we construct a loss-
sensitive space (LSS) to avoid the strict constraints. In Step 2 (Fig. 2, step 2 (a)–(b)), we add a
regularizer to constrain the gradient direction and jointly optimize it with the cross-entropy loss to
preserve plasticity as the first stage. We then apply the standard projection operator to project the
total loss gradient gSt onto the orthogonal complement of the protected feature space as the second
stage (Fig. 2, step 2 (c)), ensuring stability with minimal additional distortion.

3.1 PRELIMINARY

Continual Learning Setting In continual learning, a neural network f parameterised by W =
{θℓ}Lℓ=1 is trained sequentially on a stream of tasks T = {t}Tt=1. Each task t comes with a dataset
Dt = {(xt,i, yt,i)}nt

i=1 of size nt, where xt,i denotes the input and yt,i its label. After finishing
task t, the model is parameterised by Wt = {θℓt}Lℓ=1. The feature produced by layer ℓ is written
xℓ
t,i, with x1

t,i= xt,i. The training loss for task t is denote as Lt = Lt(W,Dt).

Let Rℓ
t−1 =

[
xℓ
t−1,1, xℓ

t−1,2, . . . , xℓ
t−1,ns

]
, denote the representations sampled from the t − 1-th

task at layer ℓ, and let ∆θℓt−1 be the parameter change induced by learning the t-th task. When
learning a new task t, the parameter tensor will deviates from its optimal value for former tasks due
to the update ∆θℓt−1. This process can be formally described as θℓtR

ℓ
t−1 =

(
θℓt−1 +∆θℓt−1

)
Rℓ

t−1 =

θℓt−1R
ℓ
t−1 + ∆θℓt−1R

ℓ
t−1. The θt will keep the knowledge of task t − 1 if θℓtR

ℓ
t−1 = θℓt−1R

ℓ
t−1.

That means if ∆θℓt−1R
ℓ
t−1 = 0 is satisfied, the forgetting issue will be overcome, which motivates

the gradient-projection method described below (see also Fig. 2, step 1 and step 2(a)/2(c)).

Step 1: Construct Feature Bases After Completing Task t − 1. After finishing the training
of task t − 1, we extract each layer’s representations Rℓ

t−1 and define its specific feature space as

M ℓ
t−1 = span

{
Rℓ

t−1[1 : k]
}

, where the Rℓ
t−1 = U ℓ

t−1Σ
ℓ
t−1V

ℓ
t−1

⊤ is computed with SVD and k

is the smallest k s.t. ∥Σ1:k∥2F ≥ ϵ∥Σ∥2F (ϵ ∈ [0, 1] is the threshold). Let M̄ ℓ(t−2) denote the
accumulated space of all tasks up to t−2. The updated space after task t−1 is

M̄ ℓ(t−1) = M̄ ℓ(t−2) + M ℓ
t−1 (1)

For scale-based methods, one additional procedure computes a scaling diagonal matrix; for example,
SGP normalizes the singular values in Σℓ to obtain the scaling factors S.

Step 2: Update the Model for Task t When training task t, we first compute the cross-entropy
gradient gt = ∇W ℓ L(t)

CE

(
W,Dt

)
. To curb catastrophic forgetting, we then project gt onto the or-

thogonal complement of the accumulated subspace M̄ ℓ(t − 1), while controlling the degree of or-
thogonality with a diagonal scaling matrix S = diag(s1, . . . , sk):

gprojt =
(
I − M̄ ℓ(t− 1)S M̄ ℓ(t− 1)⊤

)
gt. (2)

For convenience, we introduce the notation ProjSM (gt) =
(
M SM⊤) gt,ProjSM⊥(gt) =

(
I −

M SM⊤) gt, so that setting S = I recovers the standard unscaled projections onto M and its
orthogonal complement.

The method above avoids forgetting by projecting gt onto the orthogonal complement of M̄ . This
implies that the closer gt lies to M̄ of task t−1, the greater the distortion in ProjM̄ (gt). We observe
that if gt is already orthogonal to M̄ before projection, then the discrepancy between Proj(gt) and
gt is minimized, causing less harm to plasticity.

3.2 DUAL-STAGE GRADIENT PROJECTION

Based on above insight, we propose a two-stage gradient-projection strategy that optimizes update
directions to enhance plasticity while preserving stability.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Soft Projection Stage To constrain the gradient update direction, we introduce a regularization
term that is jointly optimized with the cross-entropy loss, ensuring a proper balance between task
performance and directional restriction (Fig. 2, Step 2(a)–(b)).

During the training of task t, we denote the cross-entropy loss function gradient of ℓ layer as gℓt =
∇wℓLCE

(
W,Dt

)
. We then construct a soft penalty for ℓ-th layer

Rℓ
soft =

∥∥∥ProjSℓ
1

M̄ℓ(t−1)
(gℓt)

∥∥∥2
2
=

∥∥M̄ ℓ(t− 1)Sℓ
1M̄

ℓ(t− 1)⊤gℓt
∥∥2
2

(3)

where Sℓ
1 is a scaling matrix attached to M ℓ(t− 1). The total loss becomes

Ltotal = LCE + λ
∑L

ℓ=1
Rℓ

soft, (4)

However, using a standard orthonormal basis in the regularizer can be overly restrictive, since we
only require the gradient to be orthogonal to the most important directions in M . To align this
constraint with the cross-entropy loss, we replace the original scaling parameter S1 in Eq. equa-
tion 3 with a loss-sensitive scaling coefficient (LSS) derived from the curvature information of the
previous-task loss.

Loss-Sensitivity Theoretical Analysis via Taylor Expansion Here, we provide a theoretical anal-
ysis of the perturbation ∆Lt−1 to the previous-task lossLt−1 caused by the parameter update ∆θt−1

during training on task t, and decouple this perturbation onto each basis vector of the feature space
to characterize the loss change induced by updating along each direction.

During the training of task t, let Lt−1(θ) denote the loss of task t− 1. Applying the update ∆θt−1

from task t perturbs this loss to Lt−1

(
θt−1 +∆θt−1

)
. To compute the resulting change in Lt−1, we

perform a second-order Taylor expansion around the converged parameter θt−1:

Lt−1

(
θt−1 +∆θt−1;Dt

)
≈ Lt−1

(
θt−1

)
+∇θLt−1

(
θt−1

)⊤
∆θt−1 +

1

2
∆θ⊤t−1Ht−1 ∆θt−1,

where Ht−1 = ∇2
θLt−1

(
θt−1

)
is the Hessian of task t − 1 at convergence. Since task t − 1 has

converged, ∇θLt−1(θt−1) ≈ 0, the resulting loss change simplifies to ∆L ≈ 1
2 ∆θ⊤t Ht−1 ∆θt.

Inspired by EWC Kirkpatrick et al. (2017), we approximate the Hessian Ht−1 by the diagonal
Fisher information matrix Ft−1:Ht−1 ≈ Ft−1.

From TRGP theory Lin et al. (2022a;b), during the training of task t − 1, the parameter update
∆θℓt−1 lies entirely in the task-specific subspace M ℓ

t−1 = span
{
Rℓ

t−1

}
. Hence, only perturbations

within M ℓ
t−1 can affect θℓt−1. Thus, during training task t, the loss change of prior task t− 1 caused

by the perturbation is

∆Lt−1 ≈ ProjMℓ
t−1

(
∆θℓt−1

)⊤
Ft−1 ProjMℓ

t−1

(
∆θℓt−1

)
,

where Ft−1 is the Fisher information matrix (diagonal) for loss function of task t − 1. Since the
feature space is typically scaled by a parameter matrix S to enhance the plasticity of the projected
gradient, we next derive the relationship between the perturbation ∆Lt−1 in the unscaled space and
its counterpart in the S-scaled space.

Theorem 3.1. During the training of task Tt, for any layer ℓ, let M̄(t−1) be the total feature space
up to task t − 1, S the scaling matrix, and gℓt the cross-entropy gradient. For any previous task j
with loss Lj(θj), letMj be its feature subspace. The change in Lj(θj) caused by updating θt with
gt is

∆Lj =
∑
ℓ

p2ℓ
(
ProjMj

(gℓt)
)⊤

Fj ProjMj
(gℓt), (5)

where pℓ = f
(
M̄(t− 1), S

)
(gℓt), Here f takes a subspace M and a scaling matrix S and returns a

linear operator on any gradient g.(See proof in supplementary materials)

Theorem 1 motivates us to scale the space by the change in old-task losses. From the perspective of
the variation in the old-task loss, the scaling matrix S accounts for only one term p2ℓ that contributes
to the change of Lj and ignores the loss’s second-order curvature information. Next, we therefore
construct the loss-sensitive space.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Dual-Stage Gradient Projection

Require: Task stream T = {D1, . . . ,DT }; network fW ; learning rate η; scale coefficient α; soft
weight λ; threshold ϵ for selecting top-k principal components.

Ensure: Trained weights WT = {θℓ}Lℓ=1

1: M̄ ℓ(0)← ∅ {protected basis of each layer ℓ}
2: Sℓ

lss, S
ℓ
sgp ← I {scaling matrix of each layer ℓ}

3: for t = 1 to T do
4: // Training loop (Fig 2 Step 2)
5: while not converged on Dt do
6: Sample minibatch Bt ⊂ Dt

7: gt ← ∇WLCE(Bt;W)

8: Ltotal ← LCE(Bt;W) +
∑

ℓ∥ProjS
ℓ
lss

M̄ℓ (gt)∥22 ▷ equation 4
9: gS ← ∇WLtotal

10: for ℓ = 1 to L do
11: gSH,ℓ ← Proj

Sℓ
sgp

M̄ℓ,⊥(gS,ℓ) ▷ equation 9

12: θℓ ← θℓ − η gSH,ℓ ▷ equation 10
13: end for
14: end while
15: //Update protected feature space (Fig 2 Step 1)
16: for ℓ = 1 to L do
17: Sample ns activations Rℓ

t
18: Compute M ℓ

t via SVD on Rℓ
t and Fisher matrix F ℓ

t
19: M̄ ℓ(t)← M̄ ℓ(t− 1) ∪M ℓ

t ▷ equation 1
20: Compute scaling matrix Sℓ

sgp Saha & Roy (2023)
21: for all new basis uℓ

i,t ∈ M̄ ℓ(t) do
22: LSW

(
ūℓ
i,t

)
=

∑t
j=1 ∆Lj(Fj , u

ℓ
i,t,M

ℓ
j) ▷ equation 6

23: end for
24: Standardize LSW by Eq. equation 16 and get S̄ℓ

lss by Eq. equation 17
25: end for
26: end for
27: return W

Constructing the Loss-Sensitive Scaling Space Here, we describe the construction of the LSS
scaling weights, which is performed during the feature-space construction phase immediately after
completing each task and corresponds to Step 1 (LSS space) of the gradient projection paradigm
(Fig. 2 Step 1, pipeline in the supplementary materials).

After the training of task t − 1, to measure the loss sensitivity of each direction in the protected
space M̄ ℓ(t − 1) =

[
ūℓ
1,t−1, ū

ℓ
2,t−1, . . . , ū

ℓ
k,t−1

]
, we substitute gℓt with each basis vector ūℓ

i,t−1

in Eq. equation 15. Since ∥ūℓ
i,t−1∥2 = 1, this quantifies the change in task j’s loss due to a unit

perturbation along ūℓ
i,t−1. Therefore, based on Theorem B.2, we define the loss-sensitive weight

across all tasks j = 1, . . . , t− 1 as follows:

LSW
(
ūℓ
i,t−1

)
=

∑t−1

j=1
∆Lj(Fj , u

ℓ
i,t,M

ℓ
j)

=
∑t−1

j=1
ProjMℓ

j

(
ūℓ
i,t−1

)⊤
Fj ProjMℓ

j

(
ūℓ
i,t−1

)
.

(6)

For all weights, LSWall = {LSW(ūℓ
m,t−1)}km=1, we normalize them Saha & Roy (2023) by

si,t−1 =
(1 + α) LSW(ūℓ

i,t−1)

αLSW(ūℓ
i,t−1) + maxm LSW(ūℓ

m,t−1)
. (7)

Thus, the loss-sensitive scaling matrix is

Sℓ
lss = diag

(
s1,t−1, . . . , sk,t−1

)
. (8)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Hard Projection Stage After computing the loss-sensitive scaling matrix Slss, we replace the
original scaling parameter S1 in Eq. (3) with Slss, yielding a new soft-regularization term for each
layer ℓ: Rℓ

soft =
∥∥ProjSlss

Mℓ (g
ℓ
t)
∥∥2
2
. Since this soft regularizer only refines the gradient direction

without fully preventing forgetting, we then compute the updated gradient of Eq. equation 4: gS
t =

∇wℓLtotal, and apply a hard projection to ensure stability (Fig. 2 part (c)):

gSH,ℓ
t = ProjSSGP

M⊥

(
gS,ℓ
t

)
=

(
I −MSSGPM⊤) gS,ℓ

t , (9)

where M = M(t − 1), and SSGP be another scaling matrix following Saha & Roy (2023), con-
structed from the singular values Σ of SVD(Rℓ

t−1). Then, we update the parameters θℓt−1 with
learning rate η:

θℓt−1 ← θℓt−1 − η gSH,ℓ
t . (10)

Finally, the framework is presented in Fig. 2 and main steps of our algorithm are summarized in
Algorithm 2. A more detailed version of the algorithm can be found in Algorithm 1 of the supple-
mentary material.

4 EXPERIMENTS

Datasets. To ensure a fair comparison with previous state-of-the-art continual learning methods,
we follow the commonly adopted evaluation protocol and select three benchmark image classifica-
tion datasets. Specifically, we evaluate our method on Split CIFAR-100 Krizhevsky et al. (2009),
CIFAR-100 Superclass Yoon et al. (2020) and Split MiniImageNet Vinyals et al. (2016). Split
CIFAR-100 contains 60 000 RGB images over 100 classes split into 10 tasks of 10 classes each
(500 train / 100 test images per class, 32× 32 resolution). CIFAR-100 Superclass divides the same
100 classes into 20 semantically related superclasses (5 classes each). Split MiniImageNet is a 100-
class subset of ImageNet split into 20 tasks of 5 classes each (500 train / 100 test images per class,
84× 84).

Implementation Details. For fair comparison, we adopt the same backbones as GPM, TRGP and
SGP on each dataset: a 5-layer AlexNet Krizhevsky et al. (2012) on Split CIFAR-100; a LeNet
on CIFAR-100 Superclass; and a reduced ResNet-18 He et al. (2016) on Split MiniImageNet. All
methods use task-incremental learning with a separate classifier head per task, trained with SGD
(momentum 0.9, weight decay 5 × 10−4), batch size 64; 200 epochs per task for Split CIFAR-100
and Split MiniImageNet, 50 epochs for CIFAR-100 Superclass.

Baselines. To maintain consistency with GPM, TRGP, CGP and SGP, we exclude any method that
increases parameters during training Liang & Li (2023). Following SGP Saha & Roy (2023), we
compare against OWM Zeng et al. (2019), A-GEM Chaudhry et al. (2019a), Experience Replay with
Reservoir sampling (ER Res) Chaudhry et al. (2019b), Adam-NSCL Wang et al. (2021), GPM Saha
et al. (2021), FS-DGPM Deng et al. (2021), CGP Chen et al. (2022), TRGP Lin et al. (2022b),
SGP Saha & Roy (2023) and GPCNS Yang et al. (2024). “Multitask” denotes the upper-bound of
learning all tasks jointly Hsu et al. (2018).

Evaluation Metrics. We employ average accuracy (ACC) and backward transfer (BWT) Lopez-
Paz & Ranzato (2017). ACC denotes the average test accuracy across all T tasks, and BWT
measures the average decline in test accuracy for previous tasks after learning the current one:
ACC = 1

T

∑T
i=1 RT,i,BWT = 1

T−1

∑T−1
i=1

(
RT,i − Ri,i

)
, where Rj,i is the accuracy on task i

after learning task j sequentially.

4.1 MAIN RESULTS

In this section the main result is showed in Table 1. We denote any feature space used as the soft
constraint by the superscript S; for example, LSSS indicates that the LSS space is employed in
the soft step. Spaces applied in the hard projection are marked with the superscript H , e.g. SGPH

denotes that the SGP scaling space is used for hard projection.

Table 1 shows average accuracy (ACC) and backward transfer (BWT) for our method (LSSS

+ SGPH, LSSS + TRGPH) and existing baselines on three benchmarks. On Split CIFAR 100,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison results on datasets. We report ACC and BWT over 10 runs with random seeds.

Method Split CIFAR-100 CIFAR-100 Superclass Split MiniImageNet

ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Multitask 79.58 ± 0.54 – 61.00 ± 0.20 – 69.46 ± 0.62 –
OWM 50.94 ± 0.60 −30 ± 1 – – 47.48 ± 1.28 −12 ± 3
A-GEM 63.98 ± 1.22 −15 ± 2 50.35 ± 0.80 −9.5 ± 0.9 57.24 ± 0.72 −12 ± 1
ER Res 71.73 ± 0.63 −6 ± 1 53.30 ± 0.70 −3.4 ± 0.8 58.94 ± 0.85 −7 ± 1
Adam-NSCL 73.77 ± 0.50 −1.6 ± 0.51 56.32 ± 0.88 −2.42 ± 0.93 59.07 ± 1.10 −4.9 ± 1.32
GPM 72.48 ± 0.40 −0.9 ± 0.0 57.72 ± 0.70 −1.2 ± 0.4 60.41 ± 0.61 −0.7 ± 0.4
FS-DGPM 74.33 ± 0.31 −2.71 ± 0.17 58.81 ± 0.34 −2.97 ± 0.35 61.03 ± 1.08 −1.96 ± 0.78
CGP 74.26 ± 0.38 −1.48 ± 0.78 57.53 ± 0.52 −1.63 ± 0.49 60.82 ± 0.55 −0.33 ± 0.21
GPCNS 74.40 ± 0.42 −2.16 ± 0.92 58.50 ± 0.43 −1.86 ± 0.83 63.78 ± 0.62 −2.84 ± 1.15
GPM + GPCNS 73.84 ± 0.29 −0.26 ± 0.09 58.19 ± 0.38 −0.47 ± 0.34 61.26 ± 0.44 −1.25 ± 0.36
TRGP + GPCNS 75.58 ± 0.36 −0.06 ± 0.33 59.51 ± 0.32 −0.55 ± 0.27 66.07 ± 0.47 0.03 ± 0.29
SGP + GPCNS 76.25 ± 0.38 −0.13 ± 0.05 59.14 ± 0.40 −0.74 ± 0.36 63.98 ± 0.53 −0.81 ± 0.31
TRGP 74.46 ± 0.32 −0.9 ± 0.01 58.25 ± 0.21 −1.71 ± 0.52 61.78 ± 0.60 −0.5 ± 0.6
SGP 76.05 ± 0.43 −1.23 ± 0.75 59.05 ± 0.21 −1.4 ± 0.51 62.83 ± 0.33 −1.12 ± 0.98

LSSS+TRGPH 78.05 ± 0.44 −0.47 ± 0.01 59.32 ± 0.05 −1.28±0.05 66.03 ± 0.93 −0.62 ± 0.04

LSSS + SGPH 76.62 ± 0.09 −1.22 ± 0.05 59.51 ± 0.06 −1.76 ± 0.03 67.45 ± 0.75 −0.10± 0.83

Table 2: Ablation Study on LSS and the Soft Regularization Term

Method SOFT LSS CIFAR-100 Superclass MiniImageNet

ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

1⃝ SGPS + SGPH ✓ 76.28 ± 0.07 -1.01 ± 0.04 59.04 ± 0.03 -2.30 ± 0.10 66.72 ± 0.60 -0.71 ± 0.42
2⃝ LSSS+SGPH ✓ ✓ 76.62 ± 0.09 -1.22 ± 0.05 59.51 ± 0.06 -1.76 ± 0.03 67.45 ± 0.75 -0.10 ± 0.83
3⃝LSSS+LSSH ✓ ✓ 75.12 ± 0.09 -0.23 ± 0.06 58.01 ± 0.03 -1.74 ± 0.06 65.91 ± 0.62 0.30 ± 0.23

4⃝SGP 76.05 ± 0.43 -1.23 ± 0.75 59.05 ± 0.21 -1.4 ± 0.51 62.83 ± 0.33 -1.12 ± 0.98

ours method achieves the best ACC of 78.05%, surpassing the strongest gradient–projection ri-
val SGP by 2.03%, TRGP by 3.59%, and GPM by 5.57%. Its forgetting remains competitive
(BWT=−1.22%), confirming that the additional plasticity induced by the soft constraint does not
compromise stability. On CIFAR 100 Superclass, With an ACC of 59.51%, LSS outperforms TRGP,
SGP and GPM by 1.3%, 0.5% and 1.8%, respectively, while keeping BWT at −1.76%. On Split
MiniImageNet. On the more demanding 20-task stream, LSS lifts ACC to 67.45%, a gain of 4.6%
over SGP, 5.6% over TRGP and more than 6% over GPM, accompanied by the lowest forgetting
(BWT=−0.30%).

4.2 ABLATION STUDY

In this section, we perform ablation experiments to validate the effectiveness of the Soft–Hard frame-
work and the Loss-Sensitive Space (LSS), as summarized in Table 2.

Adding only the soft step (SGPS+SGPH) increases CIFAR-100 ACC from 76.05% to 76.28% and
MiniImageNet ACC from 62.83% to 66.72%, confirming a plasticity gain. Replacing the soft sub-
space with LSS (LSSS+SGPH) further boosts ACC (e.g. +0.34 on CIFAR-100, +0.73 on Mini-
ImageNet) and reduces BWT, validating LSS. Using LSS for the hard step (LSSS+LSSH) lowers
ACC but sharply improves BWT (CIFAR-100 BWT -1.22%→-0.23%), demonstrating that SGP’s
null-space is key for plasticity while LSS-based projection enhances stability.

4.3 PLASTICITY AND STABILITY ANALYSIS

In this section, we analyze the plasticity and stability of the combined LSSS + SGPH method
(abbreviated as LSS), and study the effect of adding the soft-constraint term to the cross-entropy
loss on model plasticity (see supplementary materials for more results).

The first row of Fig. 3b shows the first-pass accuracy of LSS and SGP on each task, reflecting the
model’s plasticity. The second and third rows of Fig. 3b report the post-training accuracy on each
task and the corresponding backward transfer (BWT) relative to the first-pass accuracy, illustrating
the model’s stability. Fig. 3a (Left) compares vanilla multi-task learning (MTL) with MTL+SOFT,
and plots the corresponding first-pass task accuracies. We see that adding the regularization term has

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2 4 6 8 10
Task

40

50

60

70

80

90
AC

C
(%

)

ACC of soft
ACC of mlt
BWT of soft
BWT of mlt

50

40

30

20

10

0

BW
T

(%
)

0 30 60 90 120 +
-2%

0%

75%

77%

75.74%

76.53%
76.72%

76.56% 76.46%

76.12%

-1.93%

-1.01% -1.17% -1.17% -1.11%
-1.44%

ACC
BWT

(a) Left: Comparison of the first-task accuracy and
per-task BWT between soft constraint and uncon-
strained MLT on the CIFAR-100 dataset; Right: Im-
pact of scaling parameters α for different LSS bases
on accuracy and BWT (Experiments are all con-
ducted on CIFAR-100 dataset).

2 4 6 8 10

72.5

75.0

77.5

80.0

82.5

AC
C(

%
)

10-split-CIFAR-100
SGP
LSS+SGP

2 4 6 8 10

70

75

80

AC
C(

%
)

2 4 6 8 10

4

2

0

BW
T(

%
)

5 10 15 20
30

40

50

60

70

20-split-CIFAR-100

5 10 15 20

40

50

60

70

5 10 15 20

8

6

4

2

0

5 10 15 20
50

60

70

80
20-split-MiniImageNet

5 10 15 20

50

60

70

5 10 15 20

10

5

0

(b) Comparison of ACC(1st), ACC(last) and BWT
for SGP vs. LSS+SGP(OURS).

Figure 3: Overall comparison of methods on CIFAR-100.

0 25 50 75 100 125 150
 (×1e1)

65

70

75

Ac
cu

ra
cy

 (%
)

Parameter Sensitivity

1.25

1.00

0.75

0.50

0.25

0.00

BW
T

(%
)

CIFAR-100 ImageNet BWT CIFAR-100 BWT ImageNet

Figure 4: Parameter Sensitivity Analysis

almost no adverse effect on the model’s plasticity for new tasks; in fact, it even slightly improves
BWT. Fig. 3a (Right) shows the trends of accuracy and BWT on the CIFAR-100 dataset as the
soft-weighting parameter α in Eq. equation 16 increases (where “+∞” indicates that the scaling
parameter tends to infinity, making the LSS equivalent to an unscaled orthonormal basis).

4.4 PARAMETER SENSITIVITY ANALYSIS

We sweep soft constrain parameter λ of Eq. equation 4 from 0 to 150 on both CIFAR-100 and
MiniImageNet, recording the resulting accuracy and backward transfer (BWT), and the curves
are shown in Fig. 4. On CIFAR-100, accuracy rises slowly as λ increases, whereas BWT quickly
stabilises, suggesting that larger λ does not jeopardise stability. On MiniImageNet, small values of
λ yield low accuracy and BWT, but both metrics improve gradually with larger λ, indicating that the
soft regulariser supplies additional plasticity and stability. Altogether, these observations show that
LSS is generally insensitive to the exact value of λ, while larger value consistently award the model
with greater plasticity.

5 CONCLUSION
In this work, we have identified and analyzed the factors in gradient-projection operators that un-
dermine plasticity in continual learning. By introducing a loss-sensitive regularizer alongside the
cross-entropy loss, we steer update directions so that post-projection distortion is minimized. Our
theoretical analysis demonstrated that the loss-sensitive scaling parameter can better characterize
loss perturbations on previous tasks. Empirical results on image-classification benchmarks showed
that our two-stage gradient-projection method outperformed other projection and regularization ap-
proaches in balancing plasticity and stability. In future work, we will (i) investigate memory-efficient
curvature approximations, (ii) modify the optimization stage to reduce runtime.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Wickliffe C Abraham and Anthony Robins. Memory retention–the synaptic stability versus plastic-
ity dilemma. Trends in neurosciences, 28(2):73–78, 2005.

Arslan Chaudhry, Ranzato Marc’Aurelio, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. In 7th International Conference on Learning Representations, ICLR
2019. International Conference on Learning Representations, ICLR, 2019a.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, P Dokania,
P Torr, and M Ranzato. Continual learning with tiny episodic memories. In Workshop on Multi-
Task and Lifelong Reinforcement Learning, 2019b.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, P Dokania,
P Torr, and M Ranzato. Continual learning with tiny episodic memories. In Workshop on Multi-
Task and Lifelong Reinforcement Learning, 2019c.

Cheng Chen, Ji Zhang, Jingkuan Song, and Lianli Gao. Class gradient projection for continual
learning. In Proceedings of the 30th ACM International Conference on Multimedia, pp. 5575–
5583, 2022.

Danruo Deng, Guangyong Chen, Jianye Hao, Qiong Wang, and Pheng-Ann Heng. Flattening sharp-
ness for dynamic gradient projection memory benefits continual learning. Advances in Neural
Information Processing Systems, 34:18710–18721, 2021.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128–135, 1999.

Yunhui Guo, Mingrui Liu, Tianbao Yang, and Tajana Rosing. Improved schemes for episodic
memory-based lifelong learning. Advances in Neural Information Processing Systems, 33:1023–
1035, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual learning
scenarios: A categorization and case for strong baselines. arXiv preprint arXiv:1810.12488, 2018.

Rakib Hyder, Ken Shao, Boyu Hou, Panos Markopoulos, Ashley Prater-Bennette, and M Salman
Asif. Incremental task learning with incremental rank updates. In European Conference on
Computer Vision, pp. 566–582. Springer, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Yan-Shuo Liang and Wu-Jun Li. Adaptive plasticity improvement for continual learning. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 7816–
7825, 2023.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Beyond not-forgetting: Continual learning with
backward knowledge transfer. Advances in Neural Information Processing Systems, 35:16165–
16177, 2022a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Trgp: Trust region gradient projection for
continual learning. In The Tenth International Conference on Learning Representations, 2022b.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 7765–7773, 2018.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Marcin Pietron, Kamil Faber, Dominik Żurek, and Roberto Corizzo. Tinysubnets: An efficient and
low capacity continual learning strategy. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 19913–19920, 2025.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions
our progress in continual learning. In European conference on computer vision, pp. 524–540.
Springer, 2020a.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions
our progress in continual learning. In European conference on computer vision, pp. 524–540.
Springer, 2020b.

Gobinda Saha and Kaushik Roy. Continual learning with scaled gradient projection. In Proceedings
of the AAAI conference on artificial intelligence, volume 37, pp. 9677–9685, 2023.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
International Conference on Learning Representations, 2021.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE transactions on pattern analysis and machine
intelligence, 46(8):5362–5383, 2024.

Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Training networks in null space of feature
covariance for continual learning. In Proceedings of the IEEE/CVF conference on Computer
Vision and Pattern Recognition, pp. 184–193, 2021.

Chengyi Yang, Mingda Dong, Xiaoyue Zhang, Jiayin Qi, and Aimin Zhou. Introducing common
null space of gradients for gradient projection methods in continual learning. In Proceedings of
the 32nd ACM International Conference on Multimedia, pp. 5489–5497, 2024.

Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust continual
learning with additive parameter decomposition. In Eighth International Conference on Learning
Representations, ICLR 2020. ICLR, 2020.

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual learning of context-dependent pro-
cessing in neural networks. Nature Machine Intelligence, 1(8):364–372, 2019.

Zhen Zhao, Zhizhong Zhang, Xin Tan, Jun Liu, Yanyun Qu, Yuan Xie, and Lizhuang Ma. Re-
thinking gradient projection continual learning: Stability/plasticity feature space decoupling. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3718–
3727, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

Notation Let fW denote the network with parameters W = {θ}Lℓ=1. We denote per-layer as ℓ
and task loss Lℓ

t(θ) of t-th task. Gradients are gt = ∇θLt(θ) and Hessians Ht = ∇2
θLt(θ). For a

subspaceM, projM⊥(gt) is the orthogonal projection of gt ontoM. After completing task t, the
global feature space is denoted by M̄(t).

B PROOFS AND DERIVATIONS

Lemma B.1. Fix a task t and a layer ℓ. Let M̄ ℓ(t − 1) be the protected space accumulated up to
task t− 1, and let Sℓ be the (layerwise) scaling operator acting on M̄ ℓ(t− 1). Denote by gℓt ∈ Rdℓ

the cross-entropy gradient at layer ℓ, and byMℓ
j ⊆ M̄ ℓ(t− 1) the feature space associated with a

previous task j. Define the S-weighted update

δθℓ := ProjS
ℓ

M̄ℓ(t−1)⊥

(
gℓt
)
.

Assume that the leakage component
(
ProjS

ℓ

M̄ℓ(t−1)⊥
−ProjM̄ℓ(t−1)⊥

)
(gℓt), which lies in M̄ ℓ(t−1),

is colinear with ProjMℓ
j
(gℓt) (e.g., Sℓ is isotropic onMℓ

j). Then there exists a scalar pℓ ∈ R such
that

ProjMℓ
j

(
δθℓ

)
= pℓ ProjMℓ

j

(
gℓt
)
, (11)

where pℓ can be written as

pℓ :=

〈
ProjMℓ

j
(δθℓ), P rojMℓ

j
(gℓt)

〉
∥∥ProjMℓ

j
(gℓt)

∥∥2
2

, (12)

i.e., pℓ measures the fraction of gℓt that remains in the unscaled space M̄ ℓ(t − 1) (and hence can
re-enterMℓ

j) after projecting gℓt onto the orthogonal complement of the scaled space SℓM̄ ℓ(t− 1).

Proof. By definition of the S-weighted projection,

δθℓ = ProjS
ℓ

M̄ℓ(t−1)⊥(g
ℓ
t) = ProjM̄ℓ(t−1)⊥(g

ℓ
t)︸ ︷︷ ︸

∈ M̄ℓ(t−1)⊥

+
(
ProjS

ℓ

M̄ℓ(t−1)⊥ − ProjM̄ℓ(t−1)⊥

)
(gℓt)︸ ︷︷ ︸

∈ M̄ℓ(t−1)

.

Projecting both sides ontoMℓ
j ⊆ M̄ ℓ(t− 1) yields

ProjMℓ
j
(δθℓ) = ProjMℓ

j

(
ProjM̄ℓ(t−1)⊥(g

ℓ
t)
)

︸ ︷︷ ︸
=0

+ ProjMℓ
j

((
ProjS

ℓ

M̄ℓ(t−1)⊥−ProjM̄ℓ(t−1)⊥
)
(gℓt)

)
.

By the colinearity assumption, the rightmost term is a scalar multiple of ProjMℓ
j
(gℓt), i.e.,

ProjMℓ
j
(δθℓ) = pℓ ProjMℓ

j
(gℓt),

for some pℓ ∈ R. Taking the inner product with ProjMℓ
j
(gℓt) and normalising by its squared norm

gives the explicit expression equation 13 for pℓ, which proves Eq equation 11:

pℓ =

〈
ProjMℓ

j

((
ProjS

ℓ

M̄ℓ(t−1)⊥
− ProjM̄ℓ(t−1)⊥

)
(gℓt)

)
ProjMℓ

j
(gℓt)

〉
∥∥ProjMℓ

j
(gℓt)

∥∥2
2

(13)

=

〈
ProjMℓ

j
(δθℓ), P rojMℓ

j
(gℓt)

〉
∥∥ProjMℓ

j
(gℓt)

∥∥2
2

. (14)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Theorem B.2 (Theorem 1 in Sec. 3.2 of the main text). During the training of task t, fix any layer
ℓ. Let M̄ ℓ(t − 1) be the protected (total) feature space accumulated up to task t − 1, let Sℓ be the
layerwise scaling operator, and let gℓt be the cross-entropy gradient at layer ℓ. For any previous task
j with loss Lj(θ) and feature subspaceMℓ

j ⊆ M̄ ℓ(t− 1), consider the actual update

δθℓ = ProjS
ℓ

M̄ℓ(t−1)⊥(g
ℓ
t).

Assume that ProjMℓ
j
(δθℓ) is colinear with ProjMℓ

j
(gℓt) (e.g., Sℓ is isotropic onMℓ

j), and define
the scalar

pℓ :=

〈
ProjMℓ

j
(δθℓ), P rojMℓ

j
(gℓt)

〉
∥∥ProjMℓ

j
(gℓt)

∥∥2
2

.

Approximating the Hessian of Lj at layer ℓ by the Fisher information Fj , the change in Lj caused
by applying {δθℓ}ℓ while training task t is

∆Lj =
∑
ℓ

p2ℓ

(
ProjMℓ

j
(gℓt)

)⊤
Fj ProjMℓ

j
(gℓt). (15)

Equivalently, pℓ measures the component of gℓt that remains in the unscaled space M̄ ℓ(t − 1) (and
hence can re-enter Mℓ

j) after projecting gℓt onto the orthogonal complement of the scaled space
SℓM̄ ℓ(t− 1).

Proof. Let θj denote the parameters after finishing task j. Consider the small update δθ = {δθℓ}ℓ
applied during task t. A second-order Taylor expansion of Lj around θj gives

Lj(θj + δθ)− Lj(θj) = ⟨∇Lj(θj), δθ⟩︸ ︷︷ ︸
=0

+ 1
2

∑
ℓ

(
δθℓ

)⊤
Hℓ

j δθ
ℓ + o(∥δθ∥2),

where ∇Lj(θj) = 0. For cross-entropy losses, it is standard to approximate Hℓ
j by the Fisher

information Fj (up to a constant factor that can be absorbed). Moreover, in many continual-learning
constructions the curvature of Lj concentrates on the protected subspaceMℓ

j and the cross-terms
with (Mℓ

j)
⊥ are negligible, so that(

δθℓ
)⊤

Fj δθ
ℓ ≈

(
ProjMℓ

j
(δθℓ)

)⊤
Fj ProjMℓ

j
(δθℓ).

Summing over ℓ yields

∆Lj ≈ 1
2

∑
ℓ

(
ProjMℓ

j
(δθℓ)

)⊤
Fj ProjMℓ

j
(δθℓ).

By the colinearity assumption there exists a scalar pℓ such that

ProjMℓ
j
(δθℓ) = pℓ ProjMℓ

j
(gℓt),

with pℓ given explicitly in the theorem statement. Substituting this relation into the quadratic form
and absorbing the factor 1

2 into Fj (or redefining ∆Lj accordingly) we obtain

∆Lj =
∑
ℓ

p2ℓ

(
ProjMℓ

j
(gℓt)

)⊤
Fj ProjMℓ

j
(gℓt),

which is exactly Eq equation 15.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C ALGORITHMIC DETAILS

In this section, we present the detailed construction of the feature spaces used in Step 1 of our
two-stage gradient-projection method, providing an expanded account of Step 1 in the main text
(Sec. 3.1), including how to select the top r orthonormal basis vectors {ui1 , . . . , uir} via a threshold
ϵ, how to construct the task-specific subspace Mt−1, and how to update the global feature space
M̄(t − 2) once training on task t − 1 is complete. We then present the pipeline illustrating the
construction of the loss-sensitive space. Finally, we provide the full algorithmic procedure as Algo-
rithm 2.

C.1 A SVD AND k-RANK APPROXIMATION

Singular Value Decomposition (SVD) can be used to factorize a rectangular matrix R = UΣV ⊤ ∈
Rm×n into the product of three matrices, where U ∈ Rm×m and V ∈ Rn×n are orthonormal,
and Σ is a diagonal matrix containing the singular values sorted along its main diagonal. If the
rank of R is r ≤ min(m,n), then R =

∑r
i=1 σi ui v

⊤
i , where ui and vi are the left and right

singular vectors and σi ∈ diag(Σ) are the singular values. A k-rank approximation of R can be
written as Rk =

∑k
i=1 σi ui v

⊤
i with k ≤ r, where k is chosen as the smallest index satisfying

∥Rk∥2F ≥ ϵth∥R∥2F . Here, ∥ · ∥F denotes the Frobenius norm and ϵth ∈ (0, 1) is the threshold
hyperparameter.

C.2 CONSTRUCTING THE TASK–SPECIFIC SUBSPACEMℓ
t−1

Let the global feature space accumulated up to task t−2 be M̄ ℓ(t−2) = [uℓ
1, . . . , u

ℓ
r] ∈ Rd×r with

orthonormal columns, and let Rℓ
t−1 ∈ Rd×N denote the representation matrix extracted from data

of task t−1 at layer ℓ. We select the most informative directions for task t−1 by combining (i) the
portion of Rℓ

t−1 that lies in the old global space M̄ ℓ(t−2) and (ii) the portion that is orthogonal to
it.

(i) Energy inside the old global space For each basis uℓ
i of M̄ ℓ(t−2), compute its contribution to

Rℓ
t−1 as δℓi = ∥(uℓ

i)
⊤Rℓ

t−1∥22 = (uℓ
i)

⊤Rℓ
t−1(R

ℓ
t−1)

⊤uℓ
i . Large δℓi indicates that the corresponding

old direction is important for the current task.

(ii) Energy beyond the old global space Remove the component of Rℓ
t−1 already captured by

M̄ ℓ(t−2) via R̂ℓ
t−1 = Rℓ

t−1 − M̄ ℓ(t−2) M̄ ℓ(t−2)⊤Rℓ
t−1, and compute its thin SVD R̂ℓ

t−1 =

Û ℓΣ̂ℓ(V̂ ℓ)⊤. The squared singular values σ̂ℓ 2
h quantify the energy of novel directions ûℓ

h that are
orthogonal to M̄ ℓ(t−2).

(iii) Joint selection Form a single score vector by concatenation δ =
(
δℓ1, . . . , δ

ℓ
r, σ̂ℓ 2

1 , . . . , σ̂ℓ 2
m

)
and sort it in descending order to get δ(1) ≥ δ(2) ≥ · · · . Choose the smallest kℓt−1 such that∑kℓ

t−1

i=1 δ(i) ≥ ϵth ∥Rℓ
t−1∥2F with ϵth ∈ (0, 1). Let Iold be the indices among the top-kℓt−1 that

come from {δℓi} and Inov those that come from {σ̂ℓ 2
h }. The task–specific subspace is thenMℓ

t−1 =[[
uℓ
i

]
i∈Iold

,
[
ûℓ
h

]
h∈Inov

]
, optionally followed by an orthonormalization step. ThisMℓ

t−1 captures
both the reused directions from the previous global space and the novel directions required by task
t−1.

C.3 UPDATE FEATURE SPACE M̄(t− 2)

To obtain the updated global feature space M̄ ℓ(t − 1) after learning task t − 1, we start from the
previous global space M̄ ℓ(t − 2) and the task’s representation Rℓ

t−1 ∈ Rd×N . We extract the task-
specific subspaceMℓ

t−1 (see Constructing the task–specific subspace), then we update M̄(t − 2),
that is

M̄ ℓ(t− 1) = M̄ ℓ(t− 2) ⊕ Mℓ
t−1,

i.e., by taking the column span of [M̄ ℓ(t−2),Mℓ
t−1] and orthonormalizing once. Equivalently, since

Mℓ
t−1 contains reused and novel directions, in practice we only append the novel bases {ûℓ

h}h∈Inov :
M̄ ℓ(t−1) = span

(
[M̄ ℓ(t−2), ûℓ

h]h∈Inov

)
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 Dual-Stage Gradient Projection Algorithm

Require: Task stream T = {D1, . . . ,DT }; network fW with L layers; learning rate η; energy
threshold ϵ; scale coefficient α; soft weight λ;

Ensure: Trained weights WT = {θℓ}Lℓ=1

1: M̄ ℓ ← ∅ {protected basis on each layer ℓ}
2: Sℓ

lss, S
ℓ
sgp ← I {scaling matrix of each layer ℓ}

3: memory ← ∅
4: for t = 1 to T do
5: // Begin Training Loop (Main text Sec.3.1 Step 2)
6: while not converged on Dt do
7: Sample minibatch Bt ⊂ Dt

8: gt ← ∇WLCE(Bt;W)

9: Ltotal ← LCE(Bt;W) + λ
∑

ℓ∥ProjS
ℓ
lss

M̄ℓ (gt)∥22 ▷ Main text Sec.3.2 Eq. (4)
10: gS ← ∇WLtotal
11: for ℓ = 1 to L do
12: gSH,ℓ ← Proj

Sℓ
sgp

M̄ℓ,⊥(gS,ℓ) ▷ Main text Sec.3.2 Eq. (9)

13: θℓ ← θℓ − η gSH,ℓ ▷ Main text Sec.3.2 Eq. (10)
14: end for
15: end while
16: // Update Protected Feature Space (Main text Sec.3.1 Step 1)
17: for ℓ = 1 to L do
18: gf = ∇WLCE(Dt;W)
19: Construct fisher matrix Ft ← g2f
20: Sample ns activations Rℓ

t
21: Σ̄ = ∥(M ℓ(t− 1))⊤Rℓ

t∥22 ▷ Supplment Sec.3.2 Step (i)

22: R̂ℓ
t = Rℓ

t − M̄ ℓ (M̄ ℓ)⊤Rℓ
t ▷ Supplment Sec.3.2 Step (ii)

23: (Û , Σ̂)← SVD(R̂ℓ
t) ▷ Supplment Sec.3.2 Step(ii)

24: k ← smallest k s.t. ∥[Σ̂, Σ̄]1:k∥2F ≥ ϵ∥[Σ̂, Σ̄]∥2F ▷ Supplment Sec.3.2 Step(iii)
25: GetMℓ

t by Supplment Sec.3.2 Step (iii) and k
26: M̄ ℓ ← M̄ ℓ ⊕Mℓ

t ▷ Supplment Sec.3.3
27: (U,Σ)← SVD(Rℓ

t)
28: Sℓ

sgp = SGP (Sℓ
sgp; Σ) ▷ Constructing the SGP Scaling Matrix

29: for all new basis ui,t ∈ M̄ℓ do
30: LSW

(
uℓ
i,t

)
=

∑t
j=1 ProjMℓ

j

(
uℓ
i,t

)⊤
Fj ProjMℓ

j

(
uℓ
i,t

)
. ▷ Main text Sec.3.2 Eq. (6)

31: si,t =
(1+α) LSW

(
uℓ
i,t

)
αLSW

(
uℓ
i,t

)
+maxm LSW

(
uℓ
m,t

) , ▷ Main text Sec.3.2 Eq. (7)

32: end for
33: S̄ℓ

lss ← diag(s1, . . . , s|M̄ℓ|) ▷ Main text Sec.3.2 Eq. (8)
34: memory ← Ft,Mt

35: end for
36: end for
37: return W

C.4 LOSS-SENSITIVE SPACE PIPELINE

In this section, we illustrate the loss-sensitive space (LSS) construction pipeline used at the end
of task t−1. Figure 5 depicts the entire procedure for transforming each basis vector ui of the
k-dimensional orthonormal space M̄(t−1) =

[
u1, . . . , uk

]
(drawn inside the unit circle) into its

scaled counterpart unew
i . The process consists of the following steps:

1. Basis decomposition Decompose the protected feature space into its individual directions
{ui}ki=1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

…

…

∆𝐿𝑆𝑊(𝑢!) =)∆𝐿"

#$!

"%!

∆𝐿𝑆𝑊(𝑢&) =)∆𝐿"

#$!

"%!

…

𝑢!

𝑢"

𝑢#

…

𝑢!

𝑢"

𝑢#

𝑢"$%& = 𝑓(∆𝐿𝑆𝑊(𝑢"))𝑢"

𝑢!$%& = 𝑓(∆𝐿𝑆𝑊(𝑢!))𝑢!

𝑢#$%& = 𝑓(∆𝐿𝑆𝑊(𝑢#))𝑢#

𝑢"$%& 𝑢!$%&

𝑢#$%&

∆𝐿! =	
1
2
(𝑢'#!)(𝐹#!

∆𝐿(=	
1
2 (𝑢'

#()(𝐹#(

∆𝐿) =	
1
2
(𝑢'#))(𝐹#)

∆𝐿#$! =	
1
2
(𝑢'#$!)(𝐹#$!

∆𝐿𝑆𝑊(𝑢') =)∆𝐿"

#$!

"%!

&

Figure 5: Loss-Sensitive Space Pipeline: (1) The arrows inside the unit circle denote different basis
vectors of the feature subspace M̄(t − 1); (2) the colored parallelograms represent the past tasks’
task-specific feature spaces M1:t−1, and the colored curves indicate task curvature information, i.e.,
the Fisher matrices Fj .

2. Task-wise projection For each direction ui, we project it onto every previous task-specific sub-
space Mj (j = 1, . . . , t − 1) to determine how a unit-length perturbation ∆θ along ui affects the
stored parameters θj .

3. Loss sensitivity per task Incorporate the curvature of each past task via its Fisher matrix Fj and
compute

∆Lj(ui) = (ProjMj (ui))
⊤FjProjMj (ui),

which estimates the loss increase of task j caused by a unit-length move along ui. Averaging over
all past tasks yields the loss-sensitivity weight

∆LSW (ui) =
1

t− 1

t−1∑
j=1

∆Lj(ui).

4. Normalization and scaling matrix Apply a normalization function f that maps the values
∆LSW (ui) to the interval [0, 1], producing the scaling coefficients si = f

(
∆LSW (ui)

)
, where

f is Eq. (7) in the main text. Collect them in the diagonal matrix Slss = diag(s1, . . . , sk).

5. Constructing the feature space LSS Finally, scale the original orthonormal basis to obtain the
loss-sensitive space M̄LSS(t−1) =

[
s1u1, s2u2, . . . , skuk

]
, which is used in Stage 1 of our

two-stage gradient-projection algorithm.

D EXPERIMENTAL PROTOCOL

In this section, we give the statistics of three datasets applied to conduct experiments in Table 3. In
addition, the settings of hyperparameters for all the considered methods are demonstrated in Table 4.
Where CIFAR-100, Superclass and MiniImageNet denote 10-Split CIFAR-100, 20-Split CIFAR-100
Superclass and 20-Split MiniImageNet respectively. Finally, we provide supplementary results for
the “plasticity and stability analysis” and “parameter sensitivity analysis” experiments presented in
the main text.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.1 DATASETS AND SPLITS

We list datasets (e.g., CIFAR-100 10-split, MiniImageNet), class orders, samples per task, and any
randomization rules.

Table 3: Statistics of the three benchmarks used in our experiments.

10-Split CIFAR-100 20-Split CIFAR-100 20-Split MiniImageNet

Total Number of Tasks 10 20 20
Total Number of Classes 100 100 100
Size of Input Data 3× 32× 32 3× 32× 32 3× 84× 84
Number of Classes / Task 10 5 5
Sample Size of Training Set / Task 4750 2375 2450
Sample Size of Valid Set / Task 250 125 50
Sample Size of Test Set / Task 1000 500 500

Unless otherwise stated, we use the repository’s default backbone (kept fixed across tasks) and only
expand the final linear classifier as classes accumulate. All runs use SGD with momentum 0.9 and
the same data preprocessing as in the main paper. Steps per epoch are computed as ⌈Ntrain/B⌉ with
batch size B; iterations per task are (steps/epoch) × (epochs).

10-Split CIFAR-100 Optimizer: SGD (momentum 0.9). Initial learning rate: 0.05. Scheduler:
Reduce-on-Plateau on the validation metric with patience = 7, factor = 2 (i.e., LR is divided by 2
when the metric plateaus), and minimum LR 10−4. Batch sizes: 64/64 for train/test. Each task is
trained for 200 epochs. With Ntrain = 4750 and B = 64, steps/epoch = ⌈4750/64⌉ = 75, yielding
about 15,000 iterations per task.

20-Split CIFAR-100 Superclass Optimizer: SGD (momentum 0.9). Initial learning rate: 0.01.
Scheduler: Reduce-on-Plateau with patience = 6, factor = 2, and minimum LR 10−5. Batch
sizes: 64/64. Each task is trained for 50 epochs. With Ntrain = 2375 and B = 64, steps/epoch
= ⌈2375/64⌉ = 38, giving about 1,900 iterations per task.

20-Split MiniImageNet Optimizer: SGD (momentum 0.9). Initial learning rate: 0.1. Scheduler:
Reduce-on-Plateau with patience = 5, factor = 3, and minimum LR 10−3. Batch sizes: 64/64. Each
task is trained for 100 epochs. With Ntrain = 2450 and B = 64, steps/epoch = ⌈2450/64⌉ = 39,
resulting in about 3,900 iterations per task.

D.2 HYPERPARAMETERS

The settings of hyperparameters for all the considered methods are demonstrated in Tabel 4. Since
both LSS and SGP require a hyperparameter to adjust the scaling in Eq. equation 16, we denote this
hyperparameter by αSGP when the method is SGP and by αLSS when the method is LSS.

D.3 PLASTICITY AND STABILITY

In this section we analyse the plasticity and stability of our method on all benchmarks by comparing,
for each task, the first-pass accuracy (1st-ACC) and the backward transfer (BWT) under different
training objectives. We consider the following two settings:

1. Cross-Entropy Only The model is trained using only the cross-entropy loss, which max-
imises plasticity but provides the lowest stability:

gℓt = ∇wℓLCE

(
W,Dt

)
, L = LCE.

2. Cross-Entropy + LSS soft regulariser The training objective augments the cross-entropy
with an LSS-based soft regulariser that penalises the gradient component inside the pro-
tected subspace:

L = LCE + λ
∑
ℓ

∥∥ProjSlss

Mℓ (g
ℓ
t)
∥∥2
2
,

where the soft-regulariser hyperparameters are chosen to achieve the best results (see Table-
3 for details).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: List of hyperparameter settings in baseline approaches and our methods. Here, lr denotes
the initial learning rate, and ns is the number of samples drawn from previous tasks to construct the
projection space for the current task.

Methods Hyperparameter Settings

Multitask lr: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MiniImageNet).

OWM lr: 0.01 (CIFAR-100), 0.1 (MiniImageNet).

A-GEM lr: 0.05 (CIFAR-100, Superclass), 0.1 (MiniImageNet); memory size (samples): 2000
(CIFAR-100, Superclass), 500 (MiniImageNet).

ER Res lr: 0.05 (CIFAR-100, Superclass), 0.1 (MiniImageNet).

Adam-NSCL lr: 10−4 (CIFAR-100, Superclass), 5× 10−5 (MiniImageNet).

GPM lr: 0.01 (CIFAR-100, Superclass), 0.1 (MiniImageNet); ns: 125 (CIFAR-100, Superclass),
100 (MiniImageNet).

FS-DGPM lr, η3: 0.01 (CIFAR-100, Superclass), 0.1 (MiniImageNet); lr for sharpness, η1: 0.001
(CIFAR-100), 0.01 (Superclass, MiniImageNet); lr for DGPM, η2: 0.01 (CIFAR-100, Su-
perclass, MiniImageNet); memory size (samples): 1000 (CIFAR-100, Superclass, Mini-
ImageNet); ns: 125 (CIFAR-100, Superclass), 100 (MiniImageNet).

CGP lr: 0.04 (CIFAR-100), 0.03 (Superclass), 0.1 (MiniImageNet); ns: 125 (CIFAR-100, Su-
perclass), 100 (MiniImageNet).

TRGP lr: 0.01 (CIFAR-100, Superclass), 0.1 (MiniImageNet); ns: 125 (CIFAR-100, Superclass),
100 (MiniImageNet).

SGP lr: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MiniImageNet); ns: 125 (CIFAR-100, Su-
perclass), 100 (MiniImageNet); α: 5 (CIFAR-100), 3 (Superclass), 1 (MiniImageNet).

GPCNS lr: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MiniImageNet); α: 5 (CIFAR-100), 4.5
(Superclass), 3 (MiniImageNet).

GPM + GPCNS lr: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MiniImageNet); α: 1.5 (CIFAR-100), 4.5
(Superclass), 1 (MiniImageNet); ns: 125 (CIFAR-100, Superclass), 100 (MiniImageNet).

TRGP + GPCNS lr: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MiniImageNet); α: 1.5 (CIFAR-100), 4.5
(Superclass), 1 (MiniImageNet); ns: 125 (CIFAR-100, Superclass), 100 (MiniImageNet).

SGP + GPCNS lr: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MiniImageNet); α: 1.5 (CIFAR-100), 4.5
(Superclass), 1 (MiniImageNet); ns: 125 (CIFAR-100, Superclass), 100 (MiniImageNet).

LSS + SGP lr: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MiniImageNet); αLSS : 10 (CIFAR-100),
10 (Superclass), 5 (MiniImageNet); αSGP : 10 (CIFAR-100), 3 (Superclass), 5 (MiniIm-
ageNet); λ: 1e0 (CIFAR-100, Superclass, MiniImageNet) ns: 125 (CIFAR-100, Super-
class), 100 (MiniImageNet).

LSS + TRGP lr: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MiniImageNet); λ: 1e0 (CIFAR-100, Super-
class, MiniImageNet) ns: 125 (CIFAR-100, Superclass), 100 (MiniImageNet).

We further provide a sensitivity analysis for the loss-sensitive scaling (LSS) parameters. With hy-
perparameter α, each basis scaling factor (cf. Eq. (7) in the main text) is

si,t−1 =
(1 + α) LSW

(
ūℓ
i,t−1

)
αLSW

(
ūℓ
i,t−1

)
+maxm LSW

(
ūℓ
m,t−1

) , (16)

and the scaling matrix is
Sℓ
lss = diag

(
s1,t−1, . . . , sk,t−1

)
. (17)

From the left subpanel of Figure 6(a)–(b) and (c), we observe that adding the soft regulariser does
not materially harm plasticity: the 1st-ACC remains essentially on par with the Cross-Entropy-only
setting. In contrast, from the right subpanels of Figure 6(a)–(c), we see that as α increases, accuracy
gradually drops. Under the same λ, the unit-orthonormal variant (denoted by “+∞”, i.e. Slss = I)
imposes a stronger constraint and causes a more severe performance drop.

These results indicate that, with a moderate α, the soft regulariser preserves plasticity while reducing
the distortion introduced by the subsequent hard projection. However, as α → ∞, the scaling fac-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

2 4 6 8 10
Task

40

50

60

70

80

90

AC
C

(%
)

ACC of soft
ACC of mlt
BWT of soft
BWT of mlt

50

40

30

20

10

0

BW
T

(%
)

0 30 60 90 120 +
-2%

0%

75%

77%

75.74%

76.53%
76.72%

76.56% 76.46%

76.12%

-1.93%

-1.01% -1.17% -1.17% -1.11%
-1.44%

ACC
BWT

(a) CIFAR-100 plasticity analysis

0 2 4 6 8 10 12 14 16 18 20
Task

40

50

60

70

80

90

AC
C

(%
)

ACC of soft
ACC of mlt
BWT of soft
BWT of mlt

50

40

30

20

10

0

BW
T

(%
)

0 5 10 30 100 +-1%
0%

60%

68%

65.31%

67.45%

66.79%

65.93% 66.07%

63.52%

-0.59%
-0.10% -0.19% -0.07%

-0.33%
-0.00%

ACC
BWT

(b) MiniImageNet plasticity analysis

0 2 4 6 8 10 12 14 16 18 20
Task

20

30

40

50

60

70

80

AC
C

(%
)

ACC of soft
ACC of mlt
BWT of soft
BWT of mlt

50

40

30

20

10

0

BW
T

(%
)

0 5 10 30 100 +
-2%

0%

59%

60%

59.21%

59.51% 59.51%
59.39%

59.50%

59.07%

-1.99%

-1.45%

-1.87%

-1.55% -1.63%

-1.29%

ACC
BWT

(c) CIFAR-100 20-Split plasticity analysis

0 6e-4 7e-4 8e-4 9e-4 1e-3 2e-3 3e-3 4e-3 5e-3

59.1

59.2

59.3

59.4

59.5

Ac
cu

ra
cy

 (%
)

Parameter Sensitivity

2.0

1.5

1.0

0.5

0.0

BW
T

(%
)

CIFAR-100-20 BWT CIFAR-100-20

(d) CIFAR-100 20-Split λ sensitivity analysis

Figure 6: Four subplots showing (a) CIFAR-100 plasticity analysis, (b) MiniImageNet plasticity
analysis, (c) CIFAR-100 20-Split plasticity analysis, and (d) CIFAR-100 20-Split λ sensitivity anal-
ysis.

tors approach 1, the constraint on gt becomes overly strong, and performance degrades—plasticity
suffers most in the unit-orthonormal limit. Thus, a suitable α achieves minimal projection-induced
distortion with almost no damage to plasticity.

D.4 PARAMETER SENSITIVE ANALYSIS

In this section, as a supplement to the main paper’s experiments, we analyze the sensitivity of the
regularization weight λ on the CIFAR-100 20-split benchmark. Our total training loss is defined as

Ltotal = LCE + λRsoft,

where Rsoft =
∥∥ProjLSS(gt)∥∥2. As shown in Figure 6(d), the best performance is achieved at

λ = 10−3, and overall the model remains stable for λ in the range [5 × 10−3, 6 × 10−1]. This
demonstrates that our method exhibits low parameter sensitivity on this dataset.

E REPRODUCIBILITY CHECKLIST

E.1 ENVIRONMENT

All experiments were conducted on a single Ubuntu 22.04 machine with 13th Gen Intel(R)
Core(TM) i5-13600KF CPU and one NVIDIA GeForce RTX 4090 (24 GB; CUDA 11.8). Our
code is implemented in Python 3.8.20 using PyTorch 2.2.0+cu118 and TorchVision 0.17.0+cu118.
Unless otherwise specified, CUDA and cudnn versions are those bundled with the installed PyTorch
build (reported as torch.version.cuda and torch.backends.cudnn.version()).

E.2 CODE

The source code required to reproduce our experiments is bundled as the folder code/ in the sup-
plementary material. Please place the entire code/ folder in the same directory and and keep its
internal directory structure unchanged. To run:

1. Create a Python environment following code/requirements.txt.
2. From the root of code/, execute the main entry script, e.g.,

cd code
python LSS_cifar100.py

19

	Introfction
	Related Work
	 Method
	Preliminary
	Dual-Stage gradient projection

	Experiments
	Main Results
	Ablation Study
	Plasticity and Stability Analysis
	Parameter Sensitivity Analysis

	Conclusion
	Appendix
	Proofs and Derivations
	Algorithmic Details
	A SVD and k-rank Approximation
	Constructing the Task–Specific Subspace Mt-1
	Update Feature Space siunitxunit-deprecatedࡡ爠barbarM(t-2)
	Loss-Sensitive Space Pipeline

	Experimental Protocol
	Datasets and Splits
	Hyperparameters
	Plasticity and Stability
	Parameter Sensitive Analysis

	Reproducibility Checklist
	Environment
	Code

