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ABSTRACT

In continual learning, gradient projection algorithms avoid forgetting by project-
ing the gradient onto the orthogonal complement of the feature space of previous
tasks, thereby ensuring the model’s stability. However, strict orthogonal projec-
tion can cause the projected gradient to deviate sharply from the original gradient,
damaging the model’s learning ability to new tasks and reducing its plasticity.
Gradient-projection methods that relax the orthogonality constraint alleviate the
deviation introduced by strict projection, yet the degree of gradient distortion re-
mains large and the model’s plasticity still needs improvement. To address such an
issue, we propose a continual-learning method based on two-stage gradient pro-
jection that improves the model’s plasticity for new tasks while preserving its sta-
bility on previous tasks. Specifically, in the first stage, we design a loss-sensitive
space (LSS) regularization term (soft regularization) on top of the cross-entropy
loss to constrain the gradient to update as closely as possible along directions or-
thogonal to the feature space of previous tasks, thereby maintaining plasticity. In
the second stage, a scaled projection (hard projection) further constrains the gra-
dient to update along directions approximately orthogonal to the feature space of
previous tasks, thus ensuring stability. Experimental results on three benchmark
image classification datasets demonstrate that our method, for the first time, re-
duces the gap between the achieved classification accuracy and the task-specific
upper bound (multitask) to within roughly 2%, indicating that the model possesses
both strong plasticity and stability.

1 INTROFCTION

Continual learning (CL) allows a model to acquire new knowledge without forgetting previously
learned information [French| (1999); McCloskey & Cohen| (1989). The capacity to preserve ear-
lier knowledge while studying a new task is called stability, and the capacity to absorb new in-
formation is called plasticity. Balancing these two objectives is known as the stability—plasticity
dilemma Abraham & Robins|(2005)), which is a significant challenge.

Among various CL paradigms, gradient-projection methods are attractive for their negligible
memory overhead and algorithmic simplicity. Unlike replay approaches that store past data
Chaudhry et al.| (2019c¢)); Hyder et al.| (2022); [Prabhu et al.| (2020b) or architectural solutions that
grow subnetworks dynamically |Guo et al.|(2020); Mallya & Lazebnik| (2018)), gradient-projection
algorithms leave the original network intact and require no sample rehearsal. They mitigate catas-
trophic forgetting by constraining the update for a new task to be orthogonal to a space spanned by
representations of earlier tasks (e.g., GPM |Saha et al.| (2021) and OWM [Zeng et al.|(2019)). Strict
orthogonality excels at stability but often harms plasticity, because it suppresses gradient compo-
nents that are useful for the current task. Recent variants soften this constraint by introducing a
scaling matrix that controls how much the gradient is allowed to approach the protected space, for
example, SGP Saha & Roy|(2023)) applies a diagonal scaling on the protected basis to modulate the
projected component, and SD [Zhao et al.| (2023)) separates plasticity and stability spaces to improve
the overall trade-off.
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Figure 1: The red arrows denote the gradients actually used to update the parameters after projec-
tion. gy is the original cross-entropy gradient, and the blue dashed lines indicate the discrepancy
between gradients. (a) g; is directly projected onto the orthogonal complement of the protected
space, yielding g“FM. The difference between g; and g-F™ is large, indicating severe distortion.
(b) g4 is projected onto the orthogonal complement of the scaled space, so part of its components
(green arrow) is preserved, producing gPGF. The gap between g; and gCF is reduced but remains
considerable. (¢) By minimizing the projection of g; onto the protected space LSS (purple arrow),
gq is refined to g7, which lies closer to the orthogonal direction. Projecting g; onto the orthogonal

complement then gives gf!, and the difference between g7 and gi! becomes much smaller.

However, when the gradient is nearly parallel to the feature space, projecting it onto the orthogonal
complement pushes it far from the original gradient, causing severe distortion in both direction and
magnitude (Fig. (a)). Methods such as SGP relax the strict constraint to alleviate this, but for
critical directions where the constraint cannot be loosened, substantial distortion still occurs (Fig. E]

(b)).

Ouridea To address the above issue, we propose a two-stage gradient projection strategy based on
a loss-sensitive space (LSS) to reduce the distortion introduced by conventional projection operators
and thereby improve plasticity. As shown in Fig.[T](c), if we first restrict the gradient to update along
directions approximately orthogonal to the feature space and then apply the standard projection, the
projection no longer induces large angular deviation or significant shrinkage in length. Specifically,
in the first update stage (Fig. [I(c)), we augment the cross-entropy loss with a regularization term
that minimizes the gradient’s component inside the previous-task feature space, forcing the update
to move as close as possible to its orthogonal directions. To more accurately quantify the importance
of each basis vector in that space, we introduce scaling coefficients derived from the second-order
information of past-task losses: Using a diagonal Fisher approximation and the quadratic term of
a second-order Taylor expansion, we estimate the loss increase induced by parameter perturbations
and use this estimate to rescale the basis vectors. In the second stage, we apply a standard projec-
tion to the gradient obtained in stage one. Leveraging SGP’s scaled orthonormal basis, we project
the gradient onto its orthogonal complement to guarantee stability. Because the gradient has al-
ready been guided toward nearly orthogonal directions, this final projection induces only negligible
distortion. Our contributions are as follows:

1. We propose a novel insight: by using a loss-based regularization term to constrain the
gradient update direction, reducing the distortion caused by projection operators.

2. We propose a two-stage gradient projection strategy combining soft regularization with
standard projection, retaining greater plasticity while maintaining stability.

3. To design the soft regularization term, we construct a loss-sensitive space (LSS) from the
second-order information of past tasks’ losses to quantify each basis vector’s importance,
and we provide a theoretical justification for its introduction.

4. Experiments on three image-classification benchmarks confirm that our approach retains
greater plasticity while preserving stability, resulting in improved performance.

2 RELATED WORK

Non-Projection Continual-Learning Methods Continual learning methods are commonly cat-
egorized as replay-based, regularization-based, architectural-based, and optimization-based ap-
proaches [Wang et al|(2024). Replay-based methods usually retain a small buffer of past samples
and interleave them with new data, such as GDumb retrains a model from scratch on the buffered
set, whereas A-GEM samples that buffer online to bound interference with earlier tasks |[Prabhu
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Figure 2: This figure outlines our pipeline. Step 1 is the feature-space construction phase of
projection-based methods: We sample activations and perform an SVD to derive the task-specific
subspace M;_1, update the global feature space M, and then combine M;_; with past task infor-
mation to construct two scaling spaces. Step 2 is the actual training loop. After the current-task data
pass through the network, stage (a) computes the gradient of L., denoted g,; stage (b) combines g,
with the LSS to create a soft regulariser that drives the gradient toward directions orthogonal to the
LSS; stage (c) applies the conventional hard projection to the resulting gradient gtS. Because stage
(b) has already pushed the update toward the orthogonal complement, the subsequent hard projection
removes far fewer components, preserving plasticity while still protecting prior knowledge. The two
key contributions of this paper appear in Step I, where we construct a novel loss-sensitive scaling
(LSS) space, and in Step 2 (b), where the LSS is used to build a soft regulariser that is optimised
jointly with the cross-entropy loss L.

et al.| (2020a)); Lopez-Paz & Ranzato|(2017). Regularization techniques constrain parameter updates
to stay close to previously important values; a seminal example is Elastic Weight Consolidation
(EWC), which adds a Fisher-information penalty, while Learning without Forgetting distils knowl-
edge through soft targets without keeping old samples |Kirkpatrick et al.[{(2017);Li & Hoiem|(2017).
Architectural solutions dynamically allocate or recycle capacity, such as PackNet iteratively prunes
and re-grows task-specific subnetworks, and Tinysubnets combines layer-wise adaptive pruning,
quantization, and weight sharing to exploit sparsity and delay capacity saturation while maintaining
competitive accuracy Mallya & Lazebnikl (2018); |Pietron et al.|(2025)).

Gradient-Projection Methods Optimization based methods adjust the learning dynamics them-
selves—e.g., by adapting gradient directions to reduce interference between tasks and improve over-
all performance. OWM |Zeng et al.|(2019)) constructs a projection operator via recursive least squares
but still shows noticeable forgetting over long task sequences. Adam-NSCL Wang et al.| (2021)
projects gradients onto the null space of the feature-covariance matrix. Gradient Projection Mem-
ory (GPM) |Saha et al.| (2021)) samples layer-wise activations, applies SVD, and projects gradients
onto the orthogonal complement of a low-rank subspace. Class Gradient Projection (CGP) Chen
et al|(2022) replaces task-level subspaces with class-level ones. TRGP |Lin et al.| (2022b) rescales
prior parameters near the current task and then performs orthogonal projection; CUBER [Lin et al.
(2022a) selects gradients beneficial to past tasks by measuring similarity between new and old gradi-
ents. SGP Saha & Roy|(2023) tilts gradients toward low-energy directions; SD|Zhao et al.|(2023) de-
couples plasticity and stability spaces; and GPCNS [Yang et al.[(2024) builds a joint gradient—feature
space to enhance plasticity. Above methods do not constrain update directions to reduce projection-
induced distortion. To our knowledge, this is the first work to address that projection distortion using
a two-stage projection approach.
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3  METHOD

In this section, we first review the preliminary, including the feature-basis construction step and the
model update step. We then introduce our two-stage gradient-projection strategy, which optimizes
update directions to prevent forgetting. In Step 1 (Fig.[2l Step 1. space LSS), we construct a loss-
sensitive space (LSS) to avoid the strict constraints. In Step 2 (Fig. @ step 2 (a)—(b)), we add a
regularizer to constrain the gradient direction and jointly optimize it with the cross-entropy loss to
preserve plasticity as the first stage. We then apply the standard projection operator to project the
total loss gradient g;° onto the orthogonal complement of the protected feature space as the second
stage (Fig.[2} step 2 (c)), ensuring stability with minimal additional distortion.

3.1 PRELIMINARY

Continual Learning Setting In continual learning, a neural network f parameterised by W =
{6°}E_, is trained sequentially on a stream of tasks 7 = {¢t}£_,. Each task ¢ comes with a dataset
Dy = {(zei, yr,s) }it, of size ny, where z;; denotes the input and y, ; its label. After finishing
task ¢, the model is parameterised by W; = {6/ }eL:1- The feature produced by layer ¢ is written
xf” with z{ ; = ;. The training loss for task ¢ is denote as £; = L;(W, D).

Let Rf | = [x{_y,, ®{_y4, ..., ®{_ ], denote the representations sampled from the ¢ — 1-th
task at layer £, and let A@?_, be the parameter change induced by learning the ¢-th task. When
learning a new task t, the parameter tensor will deviates from its optimal value for former tasks due
to the update A®;_,. This process can be formally described as 0{ Rf_, = (0;_, + A0f_,)Rf_, =
0f_R{_, + AO/_ R/ . The 0, will keep the knowledge of task t — 1 if OfRY | = 0/ | R!_,.
That means if A9{_; Rf_; = 0 is satisfied, the forgetting issue will be overcome, which motivates
the gradient-projection method described below (see also Fig. 2] step 1 and step 2(a)/2(c)).

Step 1: Construct Feature Bases After Completing Task ¢ — 1. After finishing the training
of task ¢ — 1, we extract each layer’s representations Rf_; and define its specific feature space as
M{_, = span{R{_,[1 : k]}, where the R{_| = Ut 5¢ vt " is computed with SVD and k
is the smallest & s.t. |S1.x]|% > €]|X]|%(e € [0,1] is the threshold). Let M*(t—2) denote the
accumulated space of all tasks up to t—2. The updated space after task t—1 is

MA(t—1) = M*(t—2) + M! | €))
For scale-based methods, one additional procedure computes a scaling diagonal matrix; for example,

SGP normalizes the singular values in X to obtain the scaling factors S.

Step 2: Update the Model for Task ¢ When training task ¢, we first compute the cross-entropy
gradient g; = Ve ES)E(VV, Dt). To curb catastrophic forgetting, we then project g; onto the or-
thogonal complement of the accumulated subspace M*(t — 1), while controlling the degree of or-

thogonality with a diagonal scaling matrix S = diag(sy, ..., sk):
g™ = ([ = Mt =) S Mt = 1)7) g1. )
For convenience, we introduce the notation Proj%;(g:) = (M SMT") g¢,Proj3;.(g:) = (I —

MSM T) gt, so that setting S = [ recovers the standard unscaled projections onto M and its
orthogonal complement.

The method above avoids forgetting by projecting g; onto the orthogonal complement of M. This
implies that the closer g, lies to M of task ¢ — 1, the greater the distortion in Proj; (g;). We observe
that if g, is already orthogonal to M before projection, then the discrepancy between Proj(g;) and
g¢ i1s minimized, causing less harm to plasticity.

3.2 DUAL-STAGE GRADIENT PROJECTION

Based on above insight, we propose a two-stage gradient-projection strategy that optimizes update
directions to enhance plasticity while preserving stability.
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Soft Projection Stage To constrain the gradient update direction, we introduce a regularization
term that is jointly optimized with the cross-entropy loss, ensuring a proper balance between task
performance and directional restriction (Fig. @ Step 2(a)—(b)).

During the training of task ¢, we denote the cross-entropy loss function gradient of ¢ layer as gf =
Ve LeE (I/V, ]Dt) . We then construct a soft penalty for ¢-th layer

St 2 v - 2
Rign = || Projis, o ()| = 47" = nystar' e - 1)7gf]); ®

where S7 is a scaling matrix attached to M¢(¢ — 1). The total loss becomes
L
Low = Lop+ XY _ Reofts S

However, using a standard orthonormal basis in the regularizer can be overly restrictive, since we
only require the gradient to be orthogonal to the most important directions in M. To align this
constraint with the cross-entropy loss, we replace the original scaling parameter S; in Eq. equa-
tion [3| with a loss-sensitive scaling coefficient (LSS) derived from the curvature information of the
previous-task loss.

Loss-Sensitivity Theoretical Analysis via Taylor Expansion Here, we provide a theoretical anal-
ysis of the perturbation AL;_; to the previous-task loss £,_; caused by the parameter update A6,
during training on task ¢, and decouple this perturbation onto each basis vector of the feature space
to characterize the loss change induced by updating along each direction.

During the training of task ¢, let £;_1(6) denote the loss of task ¢ — 1. Applying the update Af;_;
from task ¢ perturbs this loss to £;_1 (Qt,l + A9t,1). To compute the resulting change in £;_1, we
perform a second-order Taylor expansion around the converged parameter 6;_1:

1
Li1(0i—1 + Ab_1;Dy) ~ Lo—1(0i—1) + VL1 (91:—1)TA9t—1 + 3 AO;_ Hyy Ay,

where H;,_| = Vgﬁt_l (Qt_1) is the Hessian of task ¢ — 1 at convergence. Since task ¢ — 1 has
converged, VoL;—1(6;—1) = 0, the resulting loss change simplifies to AL = %AGIHt_l Ab,.
Inspired by EWC Kirkpatrick et al.|(2017), we approximate the Hessian H;_; by the diagonal
Fisher information matrix F;_1:H;_1 =~ F;_;.

From TRGP theory [Lin et al.| (2022a3b)), during the training of task ¢ — 1, the parameter update
A#!_| lies entirely in the task-specific subspace M/ | = span{Rf_l}. Hence, only perturbations
within M} _, can affect §¢ ;. Thus, during training task ¢, the loss change of prior task ¢ — 1 caused
by the perturbation is

ALy ~ Projye (A6 )) Fy Projye (A0 ),

where F;_; is the Fisher information matrix (diagonal) for loss function of task ¢ — 1. Since the
feature space is typically scaled by a parameter matrix S to enhance the plasticity of the projected
gradient, we next derive the relationship between the perturbation AL;_; in the unscaled space and
its counterpart in the S-scaled space.

Theorem 3.1. During the training of task Ty, for any layer {, let M (t — 1) be the total feature space
up to task t — 1, S the scaling matrix, and g; the cross-entropy gradient. For any previous task j
with loss L£;(8;), let M be its feature subspace. The change in L;(0;) caused by updating 6, with
gt IS
. T .
AL; = ZP? (Projam, (9t)) Fj Proja, (gt), 5)
¢

where py = f (M(t -1, S) (g?), Here f takes a subspace M and a scaling matrix S and returns a
linear operator on any gradient g.(See proof in supplementary materials)

Theorem 1 motivates us to scale the space by the change in old-task losses. From the perspective of
the variation in the old-task loss, the scaling matrix S accounts for only one term p? that contributes
to the change of £; and ignores the loss’s second-order curvature information. Next, we therefore
construct the loss-sensitive space.
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Algorithm 1 Dual-Stage Gradient Projection

Require: Task stream 7 = {D;,...,Dr}; network fy; learning rate 7); scale coefficient «; soft
weight A; threshold e for selecting top-k principal components.
Ensure: Trained weights Wr = {0},
1: M*(0) + @ {protected basis of each layer ¢}
2: S}, S5 <« I {scaling matrix of each layer £}

lss)~sgp
3: fort =1to 7T do

4: [/ Training loop (Fig 2] Step 2)

5 while not converged on D; do

6: Sample minibatch B; C Dy

7: gt < VwLcg(By; W)

8: Liotal = Lcg(Be; W) + >, [IProj it Sias (9013 > equation
9: 9s < Vi Liotal
10: for { =1to L do

Sl

11: gsne < Proj 73" (gs.¢) > equation E
12: 6¢ — ot — 7 gSH, ¢ > equation
13: end for

14:  end while
15:  //Update protected feature space (Fig[2] Step 1)
16: for{=1to L do

17: Sample n, activations Rf

18: Compute M/ via SVD on R! and Fisher matrix F

19: Mt )<—Mé(t—1)UM£z > equation|l]
20: Compute scaling matrix S, |Saha & Roy|(2023)

21: for all new basis uf , € M*(t) do

22: LSW (af,) = Z§'=1 AL;(Fjuf,, Mf) > equation@
23: end for

24: Standardize LSW by Eq. equation|16/and get S}, by Eq. equation

25:  end for

26: end for

27: return W

Constructing the Loss-Sensitive Scaling Space Here, we describe the construction of the LSS
scaling weights, which is performed during the feature-space construction phase immediately after
completing each task and corresponds to Step 1 (LSS space) of the gradient projection paradigm
(Fig.[2)Step 1, pipeline in the supplementary materials).
After the training of task ¢ — 1, to measure the loss sensitivity of each direction in the protected
space M“(t — 1) = [af ,_y, Uy, q, ..., Uj, ], We substitute g/ with each basis vector @, ,
in Eq. equation Since || +—1ll2 = 1, this quantifies the change in task j’s loss due to a unit
perturbation along uZ +—1- Therefore, based on Theorem . we define the loss-sensitive weight
across all tasks j = 1,...,t — 1 as follows:
t—1
¢ ¢
LSW( U p— 1) = 1 Aﬁj(FJ'?ui,t?Mj)
J
(6)
= Z PYOJMe s it— 1) Fy ProjMf(af,t_l).

For all weights, LSW .1 = {LSW (4, ,_;)}F,_,, we normalize them Saha & Roy|(2023) by

S (1+a)LSW( 1t 1) (7)
ML QLSW(at, ) + max,, LSW(at, )’

Thus, the loss-sensitive scaling matrix is

Sll;s = diag(sl,t—h s Sk-,t—l)- (8)
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Hard Projection Stage After computing the loss-sensitive scaling matrix Siss, we replace the

original scaling parameter S; in Eq. (3) with Sig, yielding a new soft-regularization term for each
layer £: REy = ||Projies
without fully preventing forgetting, we then compute the updated gradient of Eq. equation |4} ¢p =
V.wt Lioal, and apply a hard projection to ensure stability (Fig. 2] part (c)):

2 . . . . L
(gf)||2 Since this soft regularizer only refines the gradient direction

g = Proja(er) = (I - MSsapMT) g3, ©)
where M = M(t — 1), and Sscp be another scaling matrix following [Saha & Roy| (2023), con-
structed from the singular values ¥ of SVD(R/_;). Then, we update the parameters 6;_, with

learning rate 7:
0y 01 —ng . (10)

Finally, the framework is presented in Fig. [2[ and main steps of our algorithm are summarized in
Algorithm 2] A more detailed version of the algorithm can be found in Algorithm 1 of the supple-
mentary material.

4 EXPERIMENTS

Datasets. To ensure a fair comparison with previous state-of-the-art continual learning methods,
we follow the commonly adopted evaluation protocol and select three benchmark image classifica-
tion datasets. Specifically, we evaluate our method on Split CIFAR-100 Krizhevsky et al|(2009),
CIFAR-100 Superclass [Yoon et al.| (2020) and Split MinilmageNet |Vinyals et al.| (2016). Split
CIFAR-100 contains 60 000 RGB images over 100 classes split into 10 tasks of 10 classes each
(500 train / 100 test images per class, 32 x 32 resolution). CIFAR-100 Superclass divides the same
100 classes into 20 semantically related superclasses (5 classes each). Split MinilmageNet is a 100-
class subset of ImageNet split into 20 tasks of 5 classes each (500 train / 100 test images per class,
84 x 84).

Implementation Details. For fair comparison, we adopt the same backbones as GPM, TRGP and
SGP on each dataset: a 5-layer AlexNet Krizhevsky et al.| (2012) on Split CIFAR-100; a LeNet
on CIFAR-100 Superclass; and a reduced ResNet-18 He et al.|(2016) on Split MinilmageNet. All
methods use task-incremental learning with a separate classifier head per task, trained with SGD
(momentum 0.9, weight decay 5 x 10~%), batch size 64; 200 epochs per task for Split CIFAR-100
and Split MinilmageNet, 50 epochs for CIFAR-100 Superclass.

Baselines. To maintain consistency with GPM, TRGP, CGP and SGP, we exclude any method that
increases parameters during training [Liang & Li| (2023). Following SGP [Saha & Roy| (2023), we
compare against OWM Zeng et al.|(2019), A-GEM Chaudhry et al.|(2019a), Experience Replay with
Reservoir sampling (ER_Res) |(Chaudhry et al.[(2019b), Adam-NSCL |Wang et al.[(2021), GPM Saha
et al| (2021), FS-DGPM Deng et al.| (2021), CGP |Chen et al.| (2022), TRGP |Lin et al.| (2022b),
SGP |Saha & Roy| (2023) and GPCNS |Yang et al.| (2024). “Multitask™ denotes the upper-bound of
learning all tasks jointly [Hsu et al.| (2018)).

Evaluation Metrics. We employ average accuracy (ACC) and backward transfer (BWT) |Lopez-
Paz & Ranzato| (2017). ACC denotes the average test accuracy across all 7' tasks, and BWT
measures the average decline in test accuracy for previous tasks after learning the current one:
ACC = AT Ry ,BWT = Lo 27 "(Ry; — Ri;), where R;; is the accuracy on task i
after learning task j sequentially.

4.1 MAIN RESULTS

In this section the main result is showed in Table [Il} We denote any feature space used as the soft
constraint by the superscript S; for example, LSS indicates that the LSS space is employed in

the soft step. Spaces applied in the hard projection are marked with the superscript H, e.g. SGp#
denotes that the SGP scaling space is used for hard projection.

Table [glshows average accuracy (ACC) and backward transfer (BWT) for our method (LSS
+ SGPH, LSS® + TRGP™) and existing baselines on three benchmarks. On Split CIFAR 100,
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Table 1: Comparison results on datasets. We report ACC and BWT over 10 runs with random seeds.

Split CIFAR-100 CIFAR-100 Superclass Split MiniImageNet

Method

ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)
Multitask 79.58 4+ 0.54 - 61.00 + 0.20 - 69.46 + 0.62 -
OWM 50.94 4+ 0.60 —30+1 - - 47.48 +£1.28 —12+3
A-GEM 63.98 + 1.22 —15+2 50.35 + 0.80 —-9.5+0.9 57.24 +0.72 —12+1
ER_Res 71.73 +0.63 —-6+1 53.30 + 0.70 —3.4+0.8 58.94 + 0.85 —-7+1
Adam-NSCL 73.77 £ 0.50 —1.6 £ 0.51 56.32 +0.88 —2.424+0.93 59.07 £ 1.10 —4.9+1.32
GPM 72.48 £ 0.40 —0.9+0.0 57.72 +0.70 —-1.2+04 60.41 + 0.61 —0.7+£0.4
FS-DGPM 74.334+0.31 —2.71+£0.17 58.81+0.34 —297+£0.35 61.03+1.08 —1.96+0.78
CGP 74.26 £0.38 —1.48£0.78 57.53+0.52 —1.63+£0.49 60.82+0.55 —0.33+0.21
GPCNS 74.40 +£0.42 —2.16 £0.92 58.50+0.43 —1.86+0.83 63.78+0.62 —2.84+1.15
GPM + GPCNS 73.84+0.29 —0.26 £0.09 58.19+0.38 —0.47+0.34 61.26+0.44 —1.25+0.36
TRGP + GPCNS  75.58 £0.36  —0.06 £0.33  59.51 £0.32 —0.554+0.27 66.07 £ 0.47 0.03 £0.29
SGP + GPCNS 76.254+0.38 —0.13£0.05 59.144+0.40 —0.74+0.36 63.98+0.53 —0.81+0.31
TRGP 74.46 + 0.32 —0.9 +0.01 58.25 + 0.21 —1.71£0.52 61.78 + 0.60 —0.5+0.6
SGP 76.05+0.43 —1.23+£0.75 59.05 4 0.21 —1.44+0.51 62.83 +0.33 —1.124+0.98
LSS®+TRGPH 78.05 £ 0.44 —0.47 £ 0.01 59.32 £ 0.05 —1.28 £0.05 66.03 £ 0.93 —0.62 £ 0.04
LSS® + SGPH 76.62 £ 0.09 —1.22 4+ 0.05 59.51 £ 0.06 —1.76 £ 0.03 67.45 £+ 0.75 —0.10 £0.83

Table 2: Ablation Study on LSS and the Soft Regularization Term
Method SOFT LSS CIFAR-100 Superclass MiniImageNet
ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

@ SGP® + SGPH v 76.28 £0.07 -1.01 £0.04 59.04 £0.03 -2.3040.10 66.72£0.60 -0.71 = 0.42
@ LSS +sGPH v v 76.62 +£0.09 -1.224+0.05 5951 4+0.06 -1.76+0.03 67.454+0.75 -0.10+0.83
@LSST+Lss v v 75124+ 0.09 -0234+0.06 58.01 £0.03 -1.74+0.06 6591 4+ 0.62 0.30 4+ 0.23
@®SGP 76.05+ 043 -1.234+£0.75  59.05 £ 0.21 -1.4 £ 0.51 62.83 £033 -1.124+0.98

ours method achieves the best ACC of 78.05%, surpassing the strongest gradient—projection ri-
val SGP by 2.03%, TRGP by 3.59%, and GPM by 5.57%. Its forgetting remains competitive
(BWT = —1.22%), confirming that the additional plasticity induced by the soft constraint does not
compromise stability. On CIFAR 100 Superclass, With an ACC of 59.51%, LSS outperforms TRGP,
SGP and GPM by 1.3%, 0.5% and 1.8%, respectively, while keeping BWT at —1.76%. On Split
MinilmageNet. On the more demanding 20-task stream, LSS lifts ACC to 67.45%, a gain of 4.6%
over SGP, 5.6% over TRGP and more than 6% over GPM, accompanied by the lowest forgetting
(BWT=-0.30%).

4.2 ABLATION STUDY

In this section, we perform ablation experiments to validate the effectiveness of the Soft—Hard frame-
work and the Loss-Sensitive Space (LSS), as summarized in Table

Adding only the soft step (SGP°+SGP¥) increases CIFAR-100 ACC from 76.05% to 76.28% and
MinilmageNet ACC from 62.83% to 66.72%, confirming a plasticity gain. Replacing the soft sub-
space with LSS (LSS®+SGP) further boosts ACC (e.g. +0.34 on CIFAR-100, +0.73 on Mini-
ImageNet) and reduces BWT, validating LSS. Using LSS for the hard step (LSS®+LSS#) lowers
ACC but sharply improves BWT (CIFAR-100 BWT -1.22%—-0.23%), demonstrating that SGP’s
null-space is key for plasticity while LSS-based projection enhances stability.

4.3 PLASTICITY AND STABILITY ANALYSIS

In this section, we analyze the plasticity and stability of the combined LSS® + SGPY method
(abbreviated as LSS), and study the effect of adding the soft-constraint term to the cross-entropy
loss on model plasticity (see supplementary materials for more results).

The first row of Fig. [3b] shows the first-pass accuracy of LSS and SGP on each task, reflecting the
model’s plasticity. The second and third rows of Fig. [3b|report the post-training accuracy on each
task and the corresponding backward transfer (BWT) relative to the first-pass accuracy, illustrating
the model’s stability. Fig.|3a| (Left) compares vanilla multi-task learning (MTL) with MTL+SOFT,
and plots the corresponding first-pass task accuracies. We see that adding the regularization term has
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almost no adverse effect on the model’s plasticity for new tasks; in fact, it even slightly improves
BWT. Fig. Bd] (Right) shows the trends of accuracy and BWT on the CIFAR-100 dataset as the
soft-weighting parameter « in Eq. equation [[6] increases (where “+00™ indicates that the scaling
parameter tends to infinity, making the LSS equivalent to an unscaled orthonormal basis).

4.4 PARAMETER SENSITIVITY ANALYSIS

We sweep soft constrain parameter A of Eq. equation [ from 0 to 150 on both CIFAR-100 and
MiniImageNet, recording the resulting accuracy and backward transfer (BWT), and the curves
are shown in Fig. il On CIFAR-100, accuracy rises slowly as A increases, whereas BWT quickly
stabilises, suggesting that larger A does not jeopardise stability. On MinilmageNet, small values of
A yield low accuracy and BWT, but both metrics improve gradually with larger )\, indicating that the
soft regulariser supplies additional plasticity and stability. Altogether, these observations show that
LSS is generally insensitive to the exact value of A, while larger value consistently award the model
with greater plasticity.

5 CONCLUSION

In this work, we have identified and analyzed the factors in gradient-projection operators that un-
dermine plasticity in continual learning. By introducing a loss-sensitive regularizer alongside the
cross-entropy loss, we steer update directions so that post-projection distortion is minimized. Our
theoretical analysis demonstrated that the loss-sensitive scaling parameter can better characterize
loss perturbations on previous tasks. Empirical results on image-classification benchmarks showed
that our two-stage gradient-projection method outperformed other projection and regularization ap-
proaches in balancing plasticity and stability. In future work, we will (i) investigate memory-efficient
curvature approximations, (ii) modify the optimization stage to reduce runtime.
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A APPENDIX

Notation Let fyr denote the network with parameters W = {G}ZL:l. We denote per-layer as ¢
and task loss L{(6) of t-th task. Gradients are g; = VyL;(¢) and Hessians H;, = V2L;(6). For a
subspace M, proj . (gt) is the orthogonal projection of gt onto M. After completing task ¢, the
global feature space is denoted by M (t).

B PROOFS AND DERIVATIONS

Lemma B.1. Fix a task t and a layer (. Let M* (t — 1) be the protected space accumulated up to
task t — 1, and let S* be the (layerwise) scaling operator acting on M*(t —1). Denote by g¢ € R%
the cross-entropy gradient at layer {, and by ./\/lg C M (t — 1) the feature space associated with a
previous task j. Define the S-weighted update

Lat
50t = Proyf—ﬂ(t_l)L (gf).

Assume that the leakage component (Proj;\g;;‘g(t_l)l —Projyre—1)+ )(gf), which lies in M*(t—1),
is colinear with ProjM§ (g?) (e.g., S* is isotropic on ./\/lf). Then there exists a scalar py € R such
that

Projpe (00) = pe Projpe (), (11)

where py can be written as

<P7"0j/\m. (66°), PTOjM’%(Qf)>
pr = - o , (12)
‘ ¢
[Proig I

i.e., py measures the fraction of gi that remains in the unscaled space M*(t — 1) (and hence can
re-enter M? ) after projecting g¢ onto the orthogonal complement of the scaled space S*M*(t — 1).

Proof. By definition of the S-weighted projection,

.qt . .g¥¢ .
60" = Pm]}%ﬂ(tqw(gf) = PTOJMé(f,—nL(Qf) + (ijfﬂ(tqw _PTOJMZ(t—l)l)(gf)'

€ M(t—1)+ € Mt (t—1)

Projecting both sides onto M4 € M*(t — 1) yields

. . . . .gt .
PrO]Mﬁ(dHZ) = P?"OJM;(PTOJW(Hw(gf)) +PTO]M;?((PTOJJ%I’«(t—l)L7P7’0‘71\7Ie(t71)L)(gf))~

=0

By the colinearity assumption, the rightmost term is a scalar multiple of Proj . (gf), i.e.,
J
Projpe(60°) = pe Projae(g;),
J J

for some p, € R. Taking the inner product with Proj . (g¢) and normalising by its squared norm
J
gives the explicit expression equation[I3|for p,, which proves Eq equation[TT}

. .gt . .
<PTO]M§((PTO]]%[£@_1)L - Pro]M“(t—l)l)(gf)) PTOJM§(95)> (13)
be = ' . 2 '
| Proju: a1

~ (Proju(a8"), Proje(af)) "

1Projae (g5

O

12
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Theorem B.2 (Theorem 1 in Sec. 3.2 of the main text). During the training of task t, fix any layer
(. Let M*(t — 1) be the protected (total) feature space accumulated up to task t — 1, let S* be the
layerwise scaling operator, and let gf be the cross-entropy gradient at layer (. For any previous task
J with loss L;(0) and feature subspace M? C M*(t — 1), consider the actual update

Lot
50° = Proy%g(tfl)L(gf).

Assume that Projy.(50%) is colinear with Proj v (gf) (e.g., S* is isotropic on M?), and define
J J
the scalar

<Pr0jMe_ (60°), Proj e (gf)>

; 2
|Projus D1
Approximating the Hessian of L; at layer £ by the Fisher information F}, the change in L; caused
by applying {50%}, while training task t is

pe =

.
AL; = Y p} (Prong(gf)) Fj Projs (g1)- (15)
14

Equivalently, p, measures the component of gf that remains in the unscaled space M Z(t —1) (and
hence can re-enter Mf ) after projecting g¢ onto the orthogonal complement of the scaled space

SENLE(t — 1).

Proof. Let 0; denote the parameters after finishing task j. Consider the small update 56 = {60,
applied during task ¢. A second-order Taylor expansion of L; around ¢; gives

.
L;(0; 4 0) — Lj(0;) = (VL;(0;), 60) +3 2(505) HE 660" + o(]|60]1%),
%/_/ Vi

where VL;(0;) = 0. For cross-entropy losses, it is standard to approximate H f by the Fisher
information F}; (up to a constant factor that can be absorbed). Moreover, in many continual-learning

constructions the curvature of L; concentrates on the protected subspace /\/lg and the cross-terms
with (M%)+ are negligible, so that

-
(60") " F; 50" ~ (ij v (595)) F; Proj . (86°).
Summing over ¢ yields
.
AL; ~ 1 Z (ProjMe (59£)) Fj Proj . (660°).
é J J
By the colinearity assumption there exists a scalar p, such that

Proje (66°) = pe Proje (91),

with py given explicitly in the theorem statement. Substituting this relation into the quadratic form
and absorbing the factor % into F; (or redefining AL; accordingly) we obtain

.
AL; = Zp? (PTOjMf;T (gf)) Ej Proje (9),
¢

which is exactly Eq equation O

13
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C ALGORITHMIC DETAILS

In this section, we present the detailed construction of the feature spaces used in Step 1 of our
two-stage gradient-projection method, providing an expanded account of Step 1 in the main text
(Sec. 3.1), including how to select the top r orthonormal basis vectors {u;,, ..., u;, } via a threshold
€, how to construct the task-specific subspace M;_, and how to update the global feature space
M (t — 2) once training on task ¢ — 1 is complete. We then present the pipeline illustrating the
construction of the loss-sensitive space. Finally, we provide the full algorithmic procedure as Algo-

rithm 2]
C.1 A SVD AND k-RANK APPROXIMATION

Singular Value Decomposition (SVD) can be used to factorize a rectangular matrix R = ULV T €
R™*™ into the product of three matrices, where U € R™*™ and V' € R"™*™ are orthonormal,
and X is a diagonal matrix containing the singular values sorted along its main diagonal. If the
rank of R is r < min(m,n), then R = Y .|_, o;u; viT , where u; and v; are the left and right
singular vectors and o; € diag(X) are the singular values. A k-rank approximation of R can be
written as R, = Zle o; U; viT with £ < r, where k is chosen as the smallest index satisfying
|Rill% > €|/ R||%. Here, || - || denotes the Frobenius norm and €, € (0,1) is the threshold
hyperparameter.

C.2 CONSTRUCTING THE TASK—SPECIFIC SUBSPACE M¢_;

Let the global feature space accumulated up to task ¢ —2 be M*(t—2) = [uf, ..., u’] € R¥*" with
orthonormal columns, and let Rf_; € R¥*™ denote the representation matrix extracted from data
of task t —1 at layer £. We select the most informative directions for task ¢—1 by combining (i) the
portion of RY_, that lies in the old global space M*(¢—2) and (ii) the portion that is orthogonal to
1t.

(i) Energy inside the old global space For each basis u¢ of M*(t—2), compute its contribution to
R jasdf = [[(u)) TR |2 = (uf)TRE_{(RY_)) Tuf. Large 6¢ indicates that the corresponding
old direction is important for the current task.

({i) Energy beyf)nd the old globag space l{emove the component of R/ ; already captlAJred by
MZA(t —A2) via Rf_| = Ri_; — M*(t—2)M*(t—2)TR/_,, and compute its thin SVD R{ , =
U'SHVAT. The squared singular values &f? quantify the energy of novel directions ﬂfl that are
orthogonal to M*(t—2).

(iii) Joint selection Form a single score vector by concatenation § = (5{, N L L ,c}fnz)
and sort it in descending order to get d(;y > &) > ---. Choose the smallest kf | such that
kE

Siat 6w = e ||Ri_1||% with ey, € (0,1). Let Iyq be the indices among the top-kf_; that
come from {46!} and I,y those that come from {5 2}. The task—specific subspace is then M{_; =
Huf] i€l [ag] he Imv], optionally followed by an orthonormalization step. This M?_, captures
both the reused directions from the previous global space and the novel directions required by task
t—1.

C.3 UPDATE FEATURE SPACE M (t — 2)

To obtain the updated global feature space M (t — 1) after learning task ¢ — 1, we start from the
previous global space M*(t — 2) and the task’s representation Rf_; € RN, We extract the task-
specific subspace M!_; (see Constructing the task—specific subspace), then we update M (t — 2),
that is

M(t—1) = M(t—2) & M|,

i.e., by taking the column span of [M*(t—2), M _,] and orthonormalizing once. Equivalently, since
Mf_l contains reused and novel directions, in practice we only append the novel bases {ﬁﬁ}he I
M(t=1) = span([M*(t=2), iy lne 1, )-

nov *

14
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Algorithm 2 Dual-Stage Gradient Projection Algorithm

Require: Task stream 7 = {D;,...,Dr}; network fy with L layers; learning rate 7; energy

threshold e; scale coefficient «; soft weight A;

Ensure: Trained weights Wr = {6}/,
1: M* < @ {protected basis on each layer ¢}

2. §¢

lss?

Z . .
Ssgp < 1 {scaling matrix of each layer ¢}

3: memory < <
4: fort =1to 7T do

5:  // Begin Training Loop (Main text Sec.3.1 Step 2)

6:  while not converged on D; do

7: Sample minibatch B; C D,

8 gt < VWLCE(Bt; W) ,

9: Lot ¢ Leg(Bg; W) + A ngProj%;S (g0)|13 > Main text Sec.3.2 Eq. (4)
10: gs < vWLtotal
11: f0r€:1t0Ld9
12: gSH, ¢ Projfvfﬁ,’l (gs,0) > Main text Sec.3.2 Eq. (9)
13: gt — 9t — 7 gsH, ¢ > Main text Sec.3.2 Eq. (10)
14: end for

15:  end while

16:  // Update Protected Feature Space (Main text Sec.3.1 Step 1)

17:  for{=1to L do

18: gf = VWLCE(Dt; W)

19: Construct fisher matrix F} «— g]%
20: Sample n activations R?
21: Y o= |[(M(t— 1))TR{C||§ > Supplment Sec.3.2 Step (i)
22: f{f =R/ — M*(M*)TR! > Supplment Sec.3.2 Step (i7)
23: (U,3) «+ SVD(RY) > Supplment Sec.3.2 Step(ii)
24: k <« smallest k s.t. ||[2, Z]1.4]|% > €]|[2, Z]|% > Supplment Sec.3.2 Step(iii)
25: Get M{ by Supplment Sec.3.2 Step (iii) and k
26: M M* o M¢ > Supplment Sec.3.3
27: (U, %) < SVD(RY)
28: Sty = SGP(SL,: %) > Constructing the SGP Scaling Matrix
29: for all new basis u; ; € M, do
30: LSW (uf’t) = 23:1 ProjMﬁ(uf’t)TFj ProjMﬁ(uf’t). > Main text Sec.3.2 Eq. (6)

4
31: Sit = (+e) st(u”) , > Main text Sec.3.2 Eq. (7)
’ o LSW(uf_],) +max,, LSW(ufmt)

32: end for
33: Sf., « diag(s1,. .., S|re|) > Main text Sec.3.2 Eq. (8)
34: memory < Fy, My
35:  end for
36: end for
37: return W

C.4 LOSS-SENSITIVE SPACE PIPELINE

In this section, we illustrate the loss-sensitive space (LSS) construction pipeline used at the end
of task ¢t —1. Figure [5] depicts the entire procedure for transforming each basis vector u; of the
k-dimensional orthonormal space M (t—1) = [ul, ... ,uk] (drawn inside the unit circle) into its
scaled counterpart u}°". The process consists of the following steps:

1.

{ui 5:1-

Basis decomposition Decompose the protected feature space into its individual directions

15
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1
Uy ALSW (uy) = Z AL; ui® = f(ALSW (u1))uy

=

® ® ®a®
My /v: AL = %(ufl)zl‘"n

uf' = Projy, (u) A

u; / new
L} Mz <

1 i
Uy U u ALy = E(u‘”)zﬁz ' ue
. /l' uf? = Proju, (u) [} = ul®” = f(ALSW (u)w; "
- ALSW () = z AL —
U / A / upew
y

1
o ALz = E(ufg)zl’zz
uf® = Projy,, (u;) Fy

1 t-1y2
Ly = SR
uf™ = Proju,_, (up) Fiq

Uk R = f(ALSW (uie)) e

\ oes ALSW (ug) = ZAL] \

Figure 5: Loss-Sensitive Space Pipeline: (1) The arrows inside the unit circle denote different basis
vectors of the feature subspace M (¢t — 1); (2) the colored parallelograms represent the past tasks’
task-specific feature spaces Mj.;—1, and the colored curves indicate task curvature information, i.e.,
the Fisher matrices .

2. Task-wise projection For each direction u;, we project it onto every previous task-specific sub-
space M; (j = 1,...,t — 1) to determine how a unit-length perturbation A@ along u; affects the
stored parameters 0;.

3. Loss sensitivity per task Incorporate the curvature of each past task via its Fisher matrix F; and
compute

ALj(u;) = (Proju, (wi)) " FjProja, (u;),

which estimates the loss increase of task j caused by a unit-length move along u;. Averaging over
all past tasks yields the loss-sensitivity weight

4. Normalization and scaling matrix Apply a normalization function f that maps the values
ALSW (u;) to the interval [0, 1], producing the scaling coefficients s; = f(ALSW (u;)), where
f is Eq. (7) in the main text. Collect them in the diagonal matrix S)ss = diag(sy, ..., Sk).

5. Constructing the feature space LSS Finally, scale the original orthonormal basis to obtain the
loss-sensitive space Mpss(t—1) = [slul, SoUg, ..., skuk], which is used in Stage 1 of our
two-stage gradient-projection algorithm.

D EXPERIMENTAL PROTOCOL

In this section, we give the statistics of three datasets applied to conduct experiments in Table[3] In
addition, the settings of hyperparameters for all the considered methods are demonstrated in Table[d]
Where CIFAR-100, Superclass and MinilmageNet denote 10-Split CIFAR-100, 20-Split CIFAR-100
Superclass and 20-Split MinilmageNet respectively. Finally, we provide supplementary results for
the “plasticity and stability analysis” and “parameter sensitivity analysis” experiments presented in
the main text.

16



Under review as a conference paper at ICLR 2026

D.1 DATASETS AND SPLITS

We list datasets (e.g., CIFAR-100 10-split, MinilmageNet), class orders, samples per task, and any
randomization rules.

Table 3: Statistics of the three benchmarks used in our experiments.

10-Split CIFAR-100 20-Split CIFAR-100 20-Split MiniImageNet

Total Number of Tasks 10 20 20

Total Number of Classes 100 100 100

Size of Input Data 3 x32x 32 3 x32x 32 3 x84 x84
Number of Classes / Task 10 5 5

Sample Size of Training Set / Task 4750 2375 2450
Sample Size of Valid Set / Task 250 125 50

Sample Size of Test Set / Task 1000 500 500

Unless otherwise stated, we use the repository’s default backbone (kept fixed across tasks) and only
expand the final linear classifier as classes accumulate. All runs use SGD with momentum 0.9 and
the same data preprocessing as in the main paper. Steps per epoch are computed as [ Nyin /B with
batch size B; iterations per task are (steps/epoch) x (epochs).

10-Split CIFAR-100  Optimizer: SGD (momentum 0.9). Initial learning rate: 0.05. Scheduler:
Reduce-on-Plateau on the validation metric with patience = 7, factor = 2 (i.e., LR is divided by 2
when the metric plateaus), and minimum LR 10~*. Batch sizes: 64/64 for train/test. Each task is
trained for 200 epochs. With Ny, = 4750 and B = 64, steps/epoch = [4750/64] = 75, yielding
about 15,000 iterations per task.

20-Split CIFAR-100 Superclass  Optimizer: SGD (momentum 0.9). Initial learning rate: 0.01.
Scheduler: Reduce-on-Plateau with patience = 6, factor = 2, and minimum LR 10~5. Batch
sizes: 64/64. Each task is trained for 50 epochs. With Ny.n = 2375 and B = 64, steps/epoch
= [2375/64] = 38, giving about 1,900 iterations per task.

20-Split MinilmageNet  Optimizer: SGD (momentum 0.9). Initial learning rate: 0./. Scheduler:
Reduce-on-Plateau with patience = b, factor = 3, and minimum LR 103, Batch sizes: 64/64. Each
task is trained for 100 epochs. With Ny, = 2450 and B = 64, steps/epoch = [2450/64] = 39,
resulting in about 3,900 iterations per task.

D.2 HYPERPARAMETERS

The settings of hyperparameters for all the considered methods are demonstrated in Tabel[d] Since
both LSS and SGP require a hyperparameter to adjust the scaling in Eq. equation[I6] we denote this
hyperparameter by aggp when the method is SGP and by ag,gg when the method is LSS.

D.3 PLASTICITY AND STABILITY

In this section we analyse the plasticity and stability of our method on all benchmarks by comparing,
for each task, the first-pass accuracy (1st-ACC) and the backward transfer (BWT) under different
training objectives. We consider the following two settings:

1. Cross-Entropy Only The model is trained using only the cross-entropy loss, which max-
imises plasticity but provides the lowest stability:
9 = VueLes(W,Di), L= Lck.

2. Cross-Entropy + LSS soft regulariser The training objective augments the cross-entropy
with an LSS-based soft regulariser that penalises the gradient component inside the pro-
tected subspace:

L=Lop+ A |[Proji(gh)]a,
¢

where the soft-regulariser hyperparameters are chosen to achieve the best results (see Table-
3 for details).
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Table 4: List of hyperparameter settings in baseline approaches and our methods. Here, /r denotes
the initial learning rate, and n is the number of samples drawn from previous tasks to construct the
projection space for the current task.

Methods Hyperparameter Settings

Multitask Ir: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MinilmageNet).

OWM Ir: 0.01 (CIFAR-100), 0.1 (MinilmageNet).

A-GEM Ir: 0.05 (CIFAR-100, Superclass), 0.1 (MinilmageNet); memory size (samples): 2000
(CIFAR-100, Superclass), 500 (MinilmageNet).

ER_Res Ir: 0.05 (CIFAR-100, Superclass), 0.1 (MinilmageNet).

Adam-NSCL Ir: 10~ (CIFAR-100, Superclass), 5 x 1075 (MinilmageNet).

GPM Ir: 0.01 (CIFAR-100, Superclass), 0.1 (MinilmageNet); ns: 125 (CIFAR-100, Superclass),
100 (MinilmageNet).

FS-DGPM Ir, m3: 0.01 (CIFAR-100, Superclass), 0.1 (MinilmageNet); /r for sharpness, n:1: 0.001
(CIFAR-100), 0.01 (Superclass, MinilmageNet); Ir for DGPM, 7n2: 0.01 (CIFAR-100, Su-
perclass, MinilmageNet); memory size (samples): 1000 (CIFAR-100, Superclass, Mini-
ImageNet); ns: 125 (CIFAR-100, Superclass), 100 (MinilmageNet).

CGP Ir: 0.04 (CIFAR-100), 0.03 (Superclass), 0.1 (MinilmageNet); ns: 125 (CIFAR-100, Su-
perclass), 100 (MinilmageNet).

TRGP Ir: 0.01 (CIFAR-100, Superclass), 0.1 (MinilmageNet); ns: 125 (CIFAR-100, Superclass),
100 (MinilmageNet).

SGP Ir: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MinilmageNet); ns: 125 (CIFAR-100, Su-
perclass), 100 (MinilmageNet); a: 5 (CIFAR-100), 3 (Superclass), 1 (MinilmageNet).

GPCNS Ir: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MinilmageNet); a: 5 (CIFAR-100), 4.5
(Superclass), 3 (MinilmageNet).

GPM + GPCNS Ir: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MinilmageNet); a: 1.5 (CIFAR-100), 4.5
(Superclass), 1 (MinilmageNet); ns: 125 (CIFAR-100, Superclass), 100 (MinilmageNet).

TRGP + GPCNS  Ir: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MinilmageNet); a: 1.5 (CIFAR-100), 4.5
(Superclass), 1 (MinilmageNet); ns: 125 (CIFAR-100, Superclass), 100 (MinilmageNet).

SGP + GPCNS Ir: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MinilmageNet); a: 1.5 (CIFAR-100), 4.5
(Superclass), 1 (MinilmageNet); ns: 125 (CIFAR-100, Superclass), 100 (MinilmageNet).

LSS + SGP Ir: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MinilmageNet); arss: 10 (CIFAR-100),
10 (Superclass), 5 (MinilmageNet); asgp: 10 (CIFAR-100), 3 (Superclass), 5 (Minilm-
ageNet); A: 1e0 (CIFAR-100, Superclass, MinilmageNet) ns: 125 (CIFAR-100, Super-
class), 100 (MinilmageNet).

LSS + TRGP Ir: 0.05 (CIFAR-100), 0.01 (Superclass), 0.1 (MinilmageNet); A: 1e0 (CIFAR-100, Super-

class, MinilmageNet) ns: 125 (CIFAR-100, Superclass), 100 (MinilmageNet).

We further provide a sensitivity analysis for the loss-sensitive scaling (LSS) parameters. With hy-
perparameter «, each basis scaling factor (cf. Eq. (7) in the main text) is

(1+a) LSW(uf,_,)
aLSW(a!,_,) + max,, LSW(a!, ,_,)

) (16)

Sit—1 =

and the scaling matrix is

sts = diag(SLtfh .. -78k,t71)- (17)

From the left subpanel of Figure |§Ka)—(b) and (c), we observe that adding the soft regulariser does
not materially harm plasticity: the 1st-ACC remains essentially on par with the Cross-Entropy-only
setting. In contrast, from the right subpanels of Figure[6(a)—(c), we see that as « increases, accuracy
gradually drops. Under the same A, the unit-orthonormal variant (denoted by “4-00”, i.e. Siss = I)
imposes a stronger constraint and causes a more severe performance drop.

These results indicate that, with a moderate «, the soft regulariser preserves plasticity while reducing
the distortion introduced by the subsequent hard projection. However, as a — oo, the scaling fac-
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Figure 6: Four subplots showing (a) CIFAR-100 plasticity analysis, (b) MinilmageNet plasticity
analysis, (c) CIFAR-100 20-Split plasticity analysis, and (d) CIFAR-100 20-Split A sensitivity anal-
ysis.

tors approach 1, the constraint on g; becomes overly strong, and performance degrades—plasticity
suffers most in the unit-orthonormal limit. Thus, a suitable v achieves minimal projection-induced
distortion with almost no damage to plasticity.

D.4 PARAMETER SENSITIVE ANALYSIS

In this section, as a supplement to the main paper’s experiments, we analyze the sensitivity of the
regularization weight A on the CIFAR-100 20-split benchmark. Our total training loss is defined as

Etotal = £CE +A Rsofta

where Rgort = ||PIOJLSS Gt H2 As shown in Figure Ekd), the best performance is achieved at

A = 1073, and overall the model remains stable for \ in the range [5 x 1073, 6 x 10~!]. This
demonstrates that our method exhibits low parameter sensitivity on this dataset.

E REPRODUCIBILITY CHECKLIST

E.1 ENVIRONMENT

All experiments were conducted on a single Ubuntu 22.04 machine with 13th Gen Intel(R)
Core(TM) i5-13600KF CPU and one NVIDIA GeForce RTX 4090 (24 GB; CUDA 11.8). Our
code is implemented in Python 3.8.20 using PyTorch 2.2.04+cul18 and TorchVision 0.17.0+cul18.
Unless otherwise specified, CUDA and cudnn versions are those bundled with the installed PyTorch
build (reported as torch.version.cuda and torch.backends.cudnn.version ()).

E.2 CODE

The source code required to reproduce our experiments is bundled as the folder code/ in the sup-
plementary material. Please place the entire code/ folder in the same directory and and keep its
internal directory structure unchanged. To run:

1. Create a Python environment following code/requirements.txt.

2. From the root of code/, execute the main entry script, e.g.,

cd code
python LSS_cifarl00.py
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