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ABSTRACT

Recent studies have shown that the generalization of neural networks is corre-
lated with the sharpness of the loss landscape and flat minima suggests a better
generalization ability than sharp minima. In this paper, we introduce a method
called optimum shifting (OS), which changes the parameters of a neural network
from sharper minima to a flatter one while maintaining the same training loss.
Our approach is based on the observation that when the input and output of a
neural network are fixed, the matrix multiplications within the network can be
treated as systems of under-determined linear equations, enabling adjustment of
parameters in solution space. This can be accomplished by solving a constrained
optimization problem, which is easy to implement. Furthermore, we introduce a
practical stochastic optimum shifting (SOS) technique utilizing neural collapse
theory to reduce computational costs and provide more degrees of freedom for op-
timum shifting. In our experiments, we present various DNNs (e.g., VGG, ResNet,
DenseNet, and Vit) on the CIFAR 10/100 and Tiny-Imagenet datasets to validate
the effectiveness of our method.

1 INTRODUCTION

0

0.5

1

1.5

2

2.5

3

3.5

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

�1�2

Figure 1: Schematic of Optimum Shifting

Deep Neural Networks (DNNs) are powerful and have
shown remarkable results in various fields, including com-
puter vision (Goodfellow et al., 2020; Sohl-Dickstein et al.,
2015; Kingma & Welling, 2013) and natural language
processing (OpenAI, 2023; Vaswani et al., 2017). It for-
mulates a learning problem as an optimization problem
and utilizes stochastic gradient descent and its variants to
minimize the loss function:

min
Θ

1
𝑛

𝑛∑︁
𝑖=1

𝐿 ( 𝑓 (x𝑖 ,Θ), y𝑖). (1)

Today, DNNs are overparameterized and capable of provid-
ing larger hypothesis space with normally better solutions
having small training errors. However, this expansive hy-
pothesis space is concurrently populated with different
minima, each characterized by distinct generalization abil-
ities. Recent studies have shown that generalization is
correlated with the sharpness of the loss landscape and flat
minima suggest a better generalization ability than sharp minima Keskar et al. (2016); Neyshabur
(2017); Hochreiter & Schmidhuber (1994); Keskar et al. (2017); Chaudhari et al. (2019); Gatmiry
et al. (2023). In this work, we aim at answering this question:

Can we modify the parameters of a neural network from one point to a flatter one while maintaining
the same training loss?

In this paper, we propose a method called optimum shifting (OS) to attain this specific objective. It
changes the parameters of a neural network from the current point to a flatter one while maintaining
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the same training loss value. This approach is based on the matrix multiplication within the neural
network:

Av = b, (2)

where A ∈ R𝑚×𝑛 represents the input matrix, and v ∈ R𝑛 denotes the parameters in the neural
network’s linear layer. Consider it to be a set of linear equations, and the parameter v can be modified
in the solution space. Assume that the rows in A are independent without loss of generality, the
equation Av = b is under-determined if 𝑚 < 𝑛 and has infinite solutions for v. This property allows
us to move the neural network parameters from the current point v in the solution space to another
point v∗ by minimizing the sharpness (in particular, the trace of its Hessian (Gatmiry et al., 2023)),
which can be calculated by solving a simple constraint optimization problem.

The main challenge for the method above is that it requires keeping training loss unchanged across all
training samples. Using the entire training set for OS demands a significantly large memory capacity
and huge computational costs. Moreover, OS in the whole dataset results in a less under-determined
input matrix, which limits the degrees of freedom for optimum shifting. To overcome these challenges,
we take inspiration from stochastic gradient descent, which uses a small batch to conduct gradient
descent, thereby reducing computational costs. We propose stochastic optimum shifting, which
performs OS on a small batch of data. With this approach, the generalization ability of the neural
network is improved and computational costs are decreased. According to the theory of the Neural
Collapse (NC) (Zhu et al., 2021; Tirer & Bruna, 2022; Zhou et al., 2022), if the loss is unchanged in
a small batch of training data (typically, “𝑏𝑎𝑡𝑐ℎ ≥ 𝑛" where 𝑛 is the class number), it is expected to
be unchanged across all training data. Therefore, the empirical loss is expected to remain unchanged
under stochastic optimum shifting algorithm.

To summarize, our contributions include:

• We propose optimum shifting (OS) and stochastic optimum shifting (SOS), which enable us
to modify the parameters of neural networks while maintaining the same training loss value.
We prove that the generalization ability has increased in the Hessian trace perspectives.

• We present experiments on two recognition tasks to verify the effectiveness of OS. We
train VGG, ResNets, DenseNets, and Vit-B on CIFAR10/100 and Tiny-ImageNet datasets
and Yolo detector on the PASCAL VOC dataset. Experiments show that by using OS, the
training process can be stabilized and models can obtain better generalization.

• The proposed OS and SOS are compatible and can be easily integrated into traditional
regularization techniques, such as weight decay and recently proposed approaches to find
flatter minima, such as the sharpness-aware minimization (SAM) method (Foret et al., 2021).

2 RELATED WORK

Flatness and Generalization Research on the correlation between generalization and sharpness
can be traced back to (Hochreiter & Schmidhuber, 1994). (Yao et al., 2020; Jiang et al., 2019)
perform a large-scale empirical study on various notions of generalization measures and show that
sharpness-based measures correlate with generalization best. (Keskar et al., 2017) observe that when
increasing the batch size of SGD, the test error and sharpness of the trained model will both increase.
(Gatmiry et al., 2023) show that with standard restricted isometry property on the measurement,
minimizing the trace of Hessian can lead to better generalization. Although (Dinh et al., 2017) argue
that for networks with scaling invariance, there always exist models with good generalization but
with arbitrarily large sharpness. However, it does not contradict our main result here, which only
asserts the solution with a minimal trace of Hessian generalizes well, but not vice versa. Therefore,
recent studies have proposed several penalty-based sharpness regularization methods to improve the
generalization. SAM (Foret et al., 2021) was proposed to penalize the sharpness of the landscape to
improve the generalization. The full-batch SAM aims to minimize worst-direction sharpness (Hessian
spectrum) and 1-SAM aims to minimize the average-direction sharpness (Hessian trace) (Wen et al.,
2023). Furthermore, (Kwon et al., 2021) proposed adaptive SAM, where optimization could keep
invariant to a specific weight-rescaling operation. In addition, (Zhao et al., 2022) proposes to improve
the generalization by penalizing the gradient norm of loss function during optimization. It is worth
noting that the methods above are all penalty-based methods, i.e. adding a penalty term, which
represents the flatness, to the loss function. Compared with them, our method is a constraint and
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objective separation method, which separates the flatness and loss value as two isolated objectives
to optimize. As a result, our OS can be easily integrated into penalty-based methods (e.g. SAM) to
achieve better performance.

Neural Collapse. Recent seminal works empirically demonstrated that last-layer features and
classifiers of a trained DNN exhibit an intriguing Neural Collapse (NC) phenomenon (Zhu et al.,
2021; Tirer & Bruna, 2022; Zhou et al., 2022). Specifically, it has been shown that the learned features
(the output of the penultimate layer) of within-class samples converge to their class means. Moreover,
NC seems to take place regardless of the choice of loss functions. We utilize this phenomenon
and propose stochastic optimum shifting, which can reduce the computational costs and provide
more degrees of freedom for optimum shifting. For example, when we apply optimum shifting to
ResNet/DenseNet for CIFAR 100 classification, by ensuring the loss remains unchanged across 100
samples, the loss remains probabilistic unchanged on the whole 50,000 training data points.

3 OPTIMUM SHIFTING

3.1 NOTATIONS

Throughout this paper, we denote S ≜ ∪𝑛
𝑖=1{(x𝑖 , y𝑖)} as the training set containing 𝑛 training samples,

𝐿 as the loss function, and 𝑓 (x𝑖) as the neural network approximation. A l-convolutional-layer neural
network is expressed as:

𝑓 (x) = v𝑇vec {𝜎(F𝑙 ∗ 𝜎(F𝑙−1 ∗ · · ·𝜎(F1 ∗ x) · · · ))} , (3)

where ∗ denotes the convolution operator, 𝜎(𝑥) = max{0, 𝑥} is the entry-wise ReLU activation and F𝑙

is the convolution in the 𝑙-th layer. The vectorized output of 𝑖-th layer is represented using vec(x𝑙,𝑖) ∈
R𝑚𝑙 . We vectorized parameters in each layer and stack it as W = [vec(v), vec(F𝑙), · · · , vec(F1))]

3.2 MAIN RESULTS

Before proceeding, we first define the flatness of neural networks. There are many measures to define
the flatness. But currently, the trace of Hessian has been theoretically proved with the generalization
bound (Gatmiry et al., 2023). In this paper, we define flatness by the Hessian trace.

Definition 1 The flatness 𝐹 (𝐿) is defined as the trace of the Hessian matrix H𝐿 of the loss function
𝐿 with respect to network parameters W :

𝐹 (𝐿) ≜ tr(H𝐿) = tr(∇2
W𝐿 (f (x𝑖), y𝑖)). (4)

Next, we show the main theorem of our paper. It shows that for different neural networks such as
CNN, ResNet, DenseNet and MLP, the lower bound and upper bound of the Hessian trace are linear
with the Frobenius norm of the weight in the final linear layer. So if we minimize the Frobenius norm
of the weight in the final linear layer, both the upper bound and lower bound of the Hessian trace will
also be minimized, thus suggesting a better generalization ability.

Theorem 1 For a l-convolutional-layer neural network, given the loss function 𝐿, the trace of
Hessian can be upper bounded by:

𝐶0 + 𝐶1∥v∥2 ≤ tr(H𝐿) ≤ 𝐶0 + 𝐶2∥v∥2 (5)

where 𝐶0, 𝐶1, 𝐶2 are constants and independent of the last hidden layer’s weight v. So if ∥v∥2 is
minimized, both the upper bound and lower bound of the Hessian trace will also be minimized.

Theorem 2 For a l-convolutional-layer ResNet, given the loss function 𝐿, the trace of Hessian can
be upper bounded by:

𝐶0 + 𝐶3∥v∥2 ≤ tr(H𝐿) ≤ 𝐶0 + 𝐶4∥v∥2 (6)

where 𝐶0, 𝐶3, 𝐶4 are constants and independent of the last hidden layer’s weight v. So if ∥v∥2 is
minimized, both the upper bound and lower bound of the Hessian trace will also be minimized.
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Theorem 3 For a l-convolutional-layer DenseNet, given the loss function 𝐿, the trace of Hessian
can be upper bounded by:

𝐶0 + 𝐶5∥v∥2 ≤ tr(H𝐿) ≤ 𝐶0 + 𝐶6∥v∥2 (7)

where 𝐶0, 𝐶5, 𝐶6 are constants and independent of the last hidden layer’s weight v. So if ∥v∥2 is
minimized, both the upper bound and lower bound of the Hessian trace will also be minimized.

Theorem 4 For a l-fully-connected neural network, given the loss function 𝐿, the trace of Hessian
can be upper bounded by:

𝐶0 + 𝐶7∥v∥2 ≤ tr(H𝐿) ≤ 𝐶0 + 𝐶8∥v∥2 (8)

where 𝐶0, 𝐶7, 𝐶8 are constants and independent of the last hidden layer’s weight v. So if ∥v∥2 is
minimized, both the upper bound and lower bound of the Hessian trace will also be minimized.

The proof of the four theorems is detailed in Appendices A.1 to A.4.

3.3 METHODOLOGY

The linear layer R𝑚 → R𝑛 with activation function 𝜎 can be represented as follows:

𝜙 𝑓 𝑐 (v) = 𝜎(Av + c) (9)

where A ∈ R𝑏𝑎𝑡𝑐ℎ×𝑚, v ∈ R𝑚×𝑛, c ∈ R𝑏𝑎𝑡𝑐ℎ×𝑛 and 𝑏𝑎𝑡𝑐ℎ is the input batch size. We denote the
result of Av as :

Av B b. (10)

The training loss value of a neural network will not change no matter how the parameter v is adjusted
if the input matrix A and output matrix b are both fixed. Specifically, the equation Av = b defines
a system of linear equations. If this system is under-determined, then v has an infinite number of
solutions. Any option in the solution space is available as a replacement for the current v. As stated in
Section.3.2, both the upper bound and lower bound of the Hessian trace are linear with ∥v∥2. If ∥v∥2

is minimized, both the upper bound and lower bound of the Hessian trace will also be minimized. As
a result, we prefer replacing the current point with the one that has the least Frobenius norm in the
solution space. This can be obtained by solving a least-square problem as follows:

minimize ∥v∥2 (11)
subject to Av = b. (12)

Thus, we aim to find the point with the smallest Frobenius norm in the solution space to replace
current v. Because v ∈ R𝑚×𝑛 is a matrix, we need to decompose it into 𝑛 independent least-squares
problems. The 𝑖-th column of v is denoted as v𝑖 , and the Lagrangian for the least-square problem is:

𝐿1 (v1, · · · , v𝑛,λ1, · · · ,λ𝑛) =
𝑛∑︁
𝑖=1

(v𝑇𝑖 v𝑖 + λ𝑇
𝑖 (Av𝑖 − b𝑖)). (13)

Since 𝐿1 is a convex quadratic function of each (v𝑖 ,λ𝑖), we can find the minimum (v∗
𝑖
,λ∗

𝑖
) from the

optimality condition:
∇v𝑖 𝐿1 = 2v𝑖 +A𝑇λ𝑖 = 0, (14)

∇λ𝑖
𝐿1 = Av𝑖 − b𝑖 = 0, (15)

which yeilds a closed form solution v∗
𝑖
= A𝑇 (AA𝑇 )−1b𝑖 . By resolving 𝑛 independent least

square problems, we can finally identify the point with the smallest Frobenius norm as v∗ =

[v∗1, v
∗
2, · · · , v

∗
𝑛] = A𝑇 (AA𝑇 )−1b.

4 STOCHASTIC OPTIMUM SHIFTING

As stated above, when the neural network’s parameters is changed by OS, the training loss is expected
to remain unchanged for all data samples. But for implementation, it is hampered by the three issues.
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• Computing large batch size: The typical batch size for neural network training is much
smaller than the dataset size. However, to perform OS, the neural network must be fed the
entire dataset, which increases the computational costs and requires large memory size.

• Performing Gaussian elimination: The rows of the input matrix were presumed indepen-
dent in the previous section. But this supposition isn’t always true in actual circumstances.
Gaussian elimination is utilized to reduce the linearly dependent row vectors. There is a
sizable computational challenge involved in applying Gaussian elimination to a large matrix.

• Degrees of freedom for optimum shifting: When conducting optimum shifting, smaller
rows and larger columns of the input matrix A result in a larger solution space of the
equation Av = b, increasing the degrees of freedom to find a flatter v. However, the rows of
A represent the batch size, which must be large in the first issue.

These problems lead to the question that: How can we reduce the computational costs while providing
additional degrees of freedom for optimum shifting? For the first one, we take inspiration from
stochastic gradient descent, which balances convergence efficiency and computational costs by
performing gradient descent on a small batch. We propose a practical approach named stochastic
optimum shifting (SOS) to reduce computational costs. Specifically, it uses a small batch to conduct
OS after training the model for each 𝑠 iteration. The whole training process is as follows: First, to
make the input matrix A row independent, we perform Gaussian elimination to the linear system
equations. Then we follow the method stated in Section. 3.3 to compute the new parameter. The
algorithm details are outlined in Algorithm 1.

Input: Training set S ≜ ∪𝑛
𝑖=1{(x𝑖 ,y𝑖)}, batch size

𝑏1, 𝑏2 for SGD and SOS, step size 𝛾 > 0.
for number of training epochs do

Sample batch B = {(x1,y1), ...(x𝑏2 ,y𝑏2 )};
Compute input and output matrix ;
A =

[
x𝐿,1,x𝐿,2, · · · ,x𝐿,𝑏2

]
b =[

v𝑇x𝐿,1, v𝑇x𝐿,2, · · · , v𝑇x𝐿,𝑏2

]
;

for each columns v𝑖 in the final linear layer do
Gaussian elimination to make A row

independent:
[A∗, b𝑖∗] = Gaussian eliminate( [A, b𝑖]) ;

Update the parameters:
v∗
𝑖
= A∗ (A∗ (A∗)𝑇 )−1b𝑖∗;

end
for 𝑡 = 0, 1, · · · , 𝑠 do

Update all parameters using SGD;
W𝑡 = W𝑡−1 − 𝛾 1

𝑏1

∑𝑏1
𝑖=1 ∇W𝑡−1𝐿;

end
end

Algorithm 1: SOS algorithm during training

 

optim
um

 shifting

Figure 2: Schematic of the OS algorithm.

To achieve optimum shifting, the training loss is expected to remain unchanged across the entire
dataset. However, for stochastic optimum shifting, we only maintain it unchanged in a small batch.
As we will show in Section. 5.2.1, performing stochastic optimum shifting with a limited batch of
300 images scarcely increases the empirical training loss. Instead, it sometimes helps to stabilize the
training process. A recent study in neural collapse (Zhu et al., 2021; Tirer & Bruna, 2022; Zhou et al.,
2022) helps us to understand this phenomenon. It reveals that: as training progresses, the within-class
variation of the activations becomes negligible as they collapse to their class means. For example,
when training on CIFAR100 dataset, the images will converge to the 100 class means. Therefore,
if the loss of 100 images remains unchanged after performing optimum shifting to the final fully
connective layer, the loss of the entire dataset will also remain nearly unchanged.

Moreover, the small batch for optimum shifting also offers more degrees of freedom for optimum
shifting. For instance, when the last layer maps a vector with 1024 dimensions to 100 dimensions.
The weight matrix v ∈ R1024×100. When feeding the entire dataset to the neural network, the input
matrix A ∈ R50000×1024, which may not be under-determined. When using stochastic optimum
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shifting, the input matrix A ∈ R300×1024, which means that the systems of linear equations are
under-determined. And it must have infinite solutions in the solution space.

5 EXPERIMENT VALIDATION

In order to assess SOS’s efficacy, we investigate the performance of different DNNs (VGG, ResNet,
DenseNet, ViT) on different computer vision tasks, including CIFAR10/100, Tiny-Imagenet classifi-
cation and object detection. In the first subsection, SOS is applied to trained deep models, and in the
second subsection, it is further applied repeatedly in the training process of deep models. When SOS
is applied in the training process, we compare our method with two other training schemes: one is
the standard SGD training scheme and the other is the SAM (Foret et al., 2021) training scheme. As
we can see below, SOS improves the generalization ability of trained models, standard SGD scheme,
and SAM training scheme.

Table 1: Test Accuracy on CIFAR Classification for trained models

Dataset CIFAR100 CIFAR10
Augmentation Basic Mixup Basic Mixup

SOS ✓ × ✓ × ✓ × ✓ ×
VGG-16 70.23 70.18 73.86 72.74 91.81 91.76 93.43 93.12
ResNet-18 77.68 77.53 80.99 79.11 95.12 94.96 95.93 95.66
ResNet-50 78.12 77.85 81.54 81.33 95.11 95.08 96.41 96.03
DenseNet-201 80.24 80.07 82.45 81.95 95.41 95.34 96.21 96.17

    Hessain before SOS
    tr(H) = 1809.27
    Top eigenvalue = 309.2

    Hessian after SOS
    tr(H) = 1364.97
    Top eigenvalue = 228.3

(a) VGG16 on CIFAR10

    Hessain before SOS
    tr(H) = 2143.51
    Top eigenvalue = 60.54

    Hessian after SOS
    tr(H) = 1964.17
    Top eigenvalue = 59.03

(b) ResNet18 on CIFAR100

Figure 3: Top 100 eigenvalues of the Hessian matrix before and after SOS.

5.1 APPLY SOS TO TRAINED MODELS

Test Accuracy We first evaluate SOS by applying it to trained deep models on CIFAR10 and
CIFAR100 dataset (Krizhevsky et al., 2009), which consists of 50k training images and 10k testing
images in 10 and 100 classes. Different convolutional neural network architectures are tested,
including relatively simple architectures, such as VGG (Simonyan & Zisserman, 2014), and complex
architectures, such as ResNet (He et al., 2016) and DenseNet (Huang et al., 2017). For the training
datasets, we employ data augmentations. One is the basic augmentation (basic normalization and
random horizontal flip) and the other is Mixup augmentation (Zhang et al., 2017). Table. 1 shows the
result. We can see all the test accuracy has been improved slightly by SOS. For example, the test
accuracy of VGG-16 on CIFAR100 has been improved from 72.74% to 73.86%.
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Hessian Analysis We visualize the top 100 eigenvalues of the Hessian matrix before and after SOS
in ascending order as shown in Figure 3. The orange and blue spots represent the eigenvalue before
and after SOS. We also calculate the trace and top 1 eigenvalue for analysis. We can see that both the
trace (average-direction sharpness) and the top 1 eigenvalue (worst-direction sharpness) have been
minimized by SOS, which is consistent with our proposed Theorem 1.

5.2 APPLY SOS IN TRAINING PROCESS

The smoothness of loss landscape can benefit the optimization process of neural networks (Gouk
et al., 2021; Santurkar et al., 2018). We argue that SOS can smooth the loss landscape, thus stabilizing
the training process and improving the generalization ability of neural networks. In this section, we
apply SOS during the training process and analysis the loss and test accuracy.

5.2.1 CIFAR10 AND CIFAR100 CLASSIFICATION

Loss analysis. We first analyze the training loss with and without SOS. We use SGD,
Adam (Kingma & Ba, 2014), and Adagrad (Duchi et al., 2011) to train VGG16 on CIFAR10,
ResNet18 (He et al., 2016) and DenseNet121 (Huang et al., 2017) on CIFAR100 (Krizhevsky et al.,
2009) without any data augmentation. As shown in Fig. 4, the 𝑥-axis is the training epochs and the
𝑦-axis is the training loss value.

SG
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(b) ResNet18 on CIFAR100
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(f) DenseNet201 on CIFAR100
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(i) DensesNet201 on CIFAR100

Figure 4: Visualization of the training loss for different models and optimizers with and without SOS.

Figure. 4 shows that the loss with SOS is almost the same or lower than the loss without SOS, which
validates our statement in Section. 4 that SOS will not affect the training loss value. Moreover,
Figure. 4b to Figure. 4i shows that SOS can help stabilize the training process when it is unstable.
When the training process without SOS fluctuated a lot, SOS smoothed its loss landscape and
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stabilized the highly erratic training process. Moreover, for Figure. 4d, SOS even makes the model
converge earlier.

Generalization ability test. Next, we demonstrate that SOS can also improve the generalization
ability of neural networks when applied in the training process. We apply SGD to train the same four
CNN models under the CIFAR10 and CIFAR100 datasets with the same data augmentation strategies.
Following (Huang et al., 2017), the weight decay is 10−4 and a Nesterov momentum of 0.9 without
damping. The batch size is set to be 64 and the models are trained for 300 epochs. The initial learning
rate is set to be 0.1 and divided by 10 and is divided by 10 at 50% and 75% of the total number of
training epochs. All images are applied with a simple random horizontal flip and normalized using
their mean and standard deviation. We focus on the comparisons between four different training
schemes, namely the standard SGD scheme, SOS on SGD schemes, SAM scheme (Foret et al., 2021),
and SOS on SAM schemes. Given that both SGD and SAM search optimal parameters within local
regions, our SOS operates globally and thus can be integrated with SGD and SAM to attain better
generalization.

Table 2: Testing accuracy of different CNN models on CIFAR10 and CIFAR100 when implementing
the four training schemes.

CIFAR100 CIFAR10

VGG-16 Basic Mixup augmentation Basic Mixup augmentation

SGD 70.2 72.7 91.8 93.1
SOS + SGD 71.5 78.3 92.1 93.6
SAM 74.8 74.3 94.4 94.8
SOS+SAM 74.9 75.3 94.7 95.0
ResNet-18 Basic Mixup augmentation Basic Mixup augmentation

SGD 77.5 79.1 95.0 95.7
SOS + SGD 78.1 79.8 95.2 96.2
SAM 78.6 80.2 95.9 96.1
SOS+SAM 79.2 80.4 96.1 96.4
ResNet-50 Basic Mixup augmentation Basic Mixup augmentation

SGD 77.9 81.3 95.1 96.0
SOS + SGD 78.3 81.9 95.7 96.3
SAM 78.5 81.7 95.8 96.5
SOS+SAM 78.9 82.3 96.2 96.8
DenseNet-201 Basic Mixup augmentation Basic Mixup augmentation

SGD 80.1 82.0 95.3 96.2
SOS + SGD 80.4 82.5 95.8 96.6
SAM 80.8 82.8 96.1 96.8
SOS+SAM 82.0 83.1 96.5 97.0

As we can see in Table. 2, all the accuracy of the four CNN network architectures on CIFAR10 and
CIFAR100 have been improved with SOS compared to the standard SGD and SAM schemes without
SOS. The test accuracy is also increased, for example, the test accuracy of VGG-16 on CIFAR100
has been improved from 72.7% to 78.3%

Parameters’ weight study The model parameters’ weight with and without SOS is shown in
Figure. 6. The Frobenius norm of the last linear layer’s weight increases a lot before dividing the
learning rate by 10. It has been slowed down when the learning rate is divided and the weight starts
to decrease rapidly for the model with OS. When SOS is applied, the increase rate is slowed down for
the DenseNet. For VGG, the weight does not increase but decreases from the first epoch.
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Figure 6: Weight visualization.

Table 3: Tiny-Imagenet classification.

ResNet50 Dense121 Vit-B

SGD 52.4 67.4 53.7

SOS + SGD 53.8 71.1 63.1

SAM 66.8 73.7 80.7

SOS + SAM 67.1 75.4 81.5

Table 4: Object detection.

VOC Yolo-V5s Yolo-V5x

mAP w/ SOS 83.4±0.2 87.1±0.2

mAP w/o SOS 83.7±0.1 87.4±0.2

5.2.2 TINY-IMAGENET

We evaluate our method on the Tiny-ImageNet classification dataset using three deep vision models:
ResNet50 (He et al., 2016), DenseNet121(Huang et al., 2017), and Vision Transformer architecture
ViT-B with pre-trained model (Dosovitskiy et al., 2020). For data augmentation, we adopt the
Cut-Mix augmentation (Yun et al., 2019). Likewise, we still adopt the four training schemes for
comparisons. All the models are trained within 200 epochs with a cosine learning rate schedule.

Table 3 reports the test accuracy on Tiny-Imagenet classification with different models and different
training schemes. As we can see from the table, applying SOS in the standard SGD training can
improve generalization. For example, the test accuracy of DenseNet121 is improved from 67.4% to
71.1% by simply applying SOS in the standard SGD training process. Moreover, the accuracy can be
improved from 73.7% to 75.4% by applying SOS in the SAM training process. Again, this confirms
the effectiveness of our scheme for practical application.

5.2.3 OBJECT DETECTION

Our method improves generalization performance on other recognition tasks. We do experiments on
other computer vision tasks, such as object detection to validate the good generalization performance
of our OS method. Table 4 shows the object detection baseline results with and without OS on
PASCAL VOC dataset (Everingham et al., 2010). We adopt YOLOv5s and YOLOv5x (Jocher et al.,
2020) as the detection model and We see that the performance (mAP) of the two models is improved
when applied with SOS.

6 CONCLUSION

In this paper, we introduce a novel technique called optimum shifting, to move the parameters
of neural networks from sharper minima to flatter minima while keeping the training loss value
unchanged. It treats the matrix multiplications in the network as systems of under-determined linear
equations and modifies parameters in the solution space. To reduce the computational costs and
increase the degrees of freedom for optimum shifting, we proposed stochastic optimum shifting,
which selects a small batch for optimum shifting. The neural collapse phenomenon guarantees that
the proposed stochastic optimum shifting remains empirical loss unchanged. We perform experiments
to show that stochastic optimum shifting improves the generalization ability on different vision tasks,
reduces the Hessian trace, keeps the empirical loss unchanged and stabilizes the training process.
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A APPENDIX

A.1 PROOF OF THEOREM 1

We denote x𝑙,𝑖 as the output of 𝑙-th layer of neural network with input data sample x𝑖:

x𝑙,𝑖 = 𝜎(F𝑙 ∗ · · ·𝜎(F1 ∗ x𝑖) · · · ). (16)

The Hessian trace of loss function tr(H𝐿) can be represented as:

tr(H𝐿) =
𝑚𝐿+1∑︁
𝑝=1

tr(∇2
v𝑝
𝐿) +

𝑙∑︁
𝑙0=1

tr(∇2
vec(F𝑙0 )

𝐿), (17)

where v𝑝 denotes the 𝑝-th column of v. The gradient of 𝐿 with respect to v is

𝜕𝐿

𝜕v𝑝

=
1
𝑛

𝑛∑︁
𝑖=1

𝜕𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑝 (x𝑖)𝑇

𝜕 𝑓𝑝 (x𝑖)
𝜕v𝑝

=
1
𝑛

𝑛∑︁
𝑖=1

𝜕𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑝 (x𝑖)𝑇

vec(x𝐿,𝑖)𝑇 , (18)

where 𝑓𝑝 (x𝑖) denotes the 𝑝-th element in 𝑓 (x𝑖). So, the second-order derivative is as follows:

∇2
v𝑝
𝐿 =

1
𝑛

𝑛∑︁
𝑖=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑝 (x𝑖)𝑇𝜕 𝑓𝑝 (x𝑖)𝑇

vec(x𝐿,𝑖)vec(x𝐿,𝑖)𝑇 . (19)

Because the output of the classifier does not change, ∇2
v𝐿 is independent of v and will not change.

For the second part:

∇vec(F𝑙0 )𝐿 =
1
𝑛

𝑛∑︁
𝑖=1

𝜕𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇

v𝑇
𝐿−1∏
𝑞=𝑙+1

[
(Σ𝑞,𝑖vec(F𝑞)𝑇 ⊗ 𝐼𝑞)𝑀𝑞

] [
Σ𝑙,𝑖 𝐼𝑙 ⊗ 𝜙(x𝑙,𝑖)

] , (20)

where Σ𝑙,𝑖 = Diag
[
1
{
vec(x𝑙,𝑖) > 0

}]
, 𝐼𝑙 ∈ R |x𝑙+1,𝑖 |× |x𝑙+1,𝑖 |1 is an identity matrix, and 𝑀𝑙 is an

indicator matrix satisfying vec(𝜙(x𝑙,𝑖)) = 𝑀𝑙vec(x𝑙,𝑖) (Wu, 2020; Vedaldi & Lenc, 2015). So the
second order derivative is:

∇2
vec(F𝑙0 )

𝐿 =
1
𝑛

𝑛∑︁
𝑖=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

v𝑇
𝐿−1∏
𝑞=𝑙+1

[
(Σ𝑞,𝑖vec(F𝑞)𝑇 ⊗ 𝐼𝑞)𝑀𝑞

] [
Σ𝑙,𝑖 𝐼𝑙 ⊗ 𝜙(x𝑙,𝑖)

]
𝑇

·

v𝑇
𝐿−1∏
𝑞=𝑙+1

[
(Σ𝑞,𝑖vec(F𝑞)𝑇 ⊗ 𝐼𝑞)𝑀𝑞

] [
Σ𝑙,𝑖 𝐼𝑙 ⊗ 𝜙(x𝑙,𝑖)

] . (21)

We use S to denote
∏𝐿−1

𝑞=𝑙+1
[
(Σ𝑞,𝑖vec(F𝑞)𝑇 ⊗ 𝐼𝑞)𝑀𝑞

] [
Σ𝑙,𝑖 𝐼𝑙 ⊗ 𝜙(x𝑙,𝑖)

]
. And tr(𝐻𝐿) can be ex-

pressed as:

tr(𝐻𝐿) =
1
𝑛

𝑛∑︁
𝑖=1

𝑚𝐿+1∑︁
𝑝=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑝 (x𝑖)𝑇𝜕 𝑓𝑝 (x𝑖)𝑇

∥vec(x𝐿,𝑖)∥2 + 1
𝑛

𝑙∑︁
𝑙0=1

𝑛∑︁
𝑖=1

tr
{

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

S𝑇vv𝑇S
}

(22)

So the trace of Hessian can be upper bounded by:

tr(H𝐿) ≤
1
𝑛

𝑛∑︁
𝑖=1

𝑚𝐿+1∑︁
𝑝=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑝 (x𝑖)𝑇𝜕 𝑓𝑝 (x𝑖)𝑇

∥vec(x𝐿,𝑖)∥2 + ∥v∥2

𝑛

𝑙∑︁
𝑙0=1

𝑛∑︁
𝑖=1

tr
{

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

S𝑇S

}
,

(23)

Thus, we have finished the proof of the upper bound. For the lower bound, because SS𝑇 is semi-
positive definite, so we factorized it as:

SS𝑇 = 𝑄

[
Λ 0
0 0

]
𝑄𝑇 (24)

1 |𝐴| denotes the number of elements in 𝐴.
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where 𝑄 is orthogonal matrix and Λ is is a diagonal matrix. The second part of Eq. (22) can be lower
bounded as:

∇2
vec(F𝑙 )𝐿 =

1
𝑛

𝑙∑︁
𝑙0=1

𝑛∑︁
𝑖=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

tr(S𝑇vv𝑇S) (25)

=
1
𝑛

𝑙∑︁
𝑙0=1

𝑛∑︁
𝑖=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

tr(vv𝑇𝑄
[
Λ 0
0 0

]
𝑄𝑇 ) (26)

=
1
𝑛

𝑙∑︁
𝑙0=1

𝑛∑︁
𝑖=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

tr(vv𝑇𝑄
[
Λ 0
0 0

]
𝑄𝑇 )tr(

[
Λ−1 0

0 0

]
)

tr(
[
Λ−1 0

0 0

]
)

(27)

≥ 1
𝑛

𝑙∑︁
𝑙0=1

𝑛∑︁
𝑖=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

∥v∥2

tr(Λ−1)
(28)

(29)

Thus, we have finished the proof of lower bound.

The first part is independent with ∥v∥2. And the second part is linearly dependent on ∥v∥2. So if
∥v∥2 is minimized, then the upper and lower bound of the Hessian trace will also be minimized, and
we end the proof.

A.2 PROOF OF THEOREM 2

For ResNet, which uses skip connection that bypasses the non-linear transformations:

x2𝑘+1,𝑖 = 𝜎(F2𝑘 ∗ 𝜎(F2𝑘−1 ∗ x2𝑘−1,𝑖) + x2𝑘−1,𝑖) (30)
= 𝜎(F2𝑘 ∗ x2𝑘,𝑖 + x2𝑘−1,𝑖) (31)

It can also be represented as:

vec(x2𝑘+1,𝑖) = Σ2𝑘,𝑖
[
vec(F2𝑘 ∗ x2𝑘,𝑖) + vec(x2𝑘−1,𝑖)

]
(32)

=


Σ2𝑘,𝑖 𝐼2𝑘 ⊗ 𝜙(x2𝑘,𝑖)vec(F2𝑘) + Σ2𝑘,𝑖vec(x2𝑘−1,𝑖)

Σ2𝑘,𝑖 (F 𝑇
2𝑘 ⊗ 𝐼2𝑘)𝑀2𝑘vec(x2𝑘,𝑖) + Σ2𝑘,𝑖vec(x2𝑘−1,𝑖)

(33)

So the gradient with respect to vec(F ) and vec(x2𝑘−1) is:
𝜕vec(x2𝑘+1,𝑖)
𝜕vec(x2𝑘−1,𝑖)𝑇

= Σ2𝑘,𝑖 (F 𝑇
2𝑘 ⊗ 𝐼2𝑘)𝑀2𝑘Σ2𝑘−1,𝑖 (F 𝑇

2𝑘−1 ⊗ 𝐼2𝑘−1)𝑀2𝑘−1 + Σ2𝑘,𝑖 (34)

𝜕vec(x2𝑘+1,𝑖)
𝜕vec(F2𝑘)𝑇

= Σ2𝑘,𝑖 𝐼2𝑘 ⊗ 𝜙(x2𝑘,𝑖) (35)

𝜕vec(x2𝑘+1,𝑖)
𝜕vec(F2𝑘−1)𝑇

= Σ2𝑘,𝑖 (F 𝑇
2𝑘 ⊗ 𝐼2𝑘)𝑀2𝑘Σ2𝑘−1,𝑖 𝐼2𝑘−1 ⊗ 𝜙(x2𝑘−1,𝑖) (36)

We assume that 𝑙 is multiples of 2, i.e. ∃𝑡 s.t. 𝑙 = 2𝑡, and we represent the neural network as follows:

𝑓 (x𝑖) = v𝑇vec(𝜎(F2𝑡 ∗ x2𝑡 ,𝑖 + x2𝑡−1,𝑖)) (37)

The gradient of 𝑓 with respect to vec(F2𝑙0 ) and vec(F2𝑙0−1) are:

∇vec(F2𝑙0 ) 𝑓 =
𝜕 𝑓

𝜕vec(x2𝑡+1,𝑖)𝑇

[
𝑡∏

𝑟=𝑙+1
(
𝜕vec(x2𝑟+1,𝑖)
𝜕vec(x2𝑟−1,𝑖)𝑇

)
]
𝜕vec(x2𝑙0+1,𝑖)
𝜕vec(F2𝑙)𝑇

(38)

∇vec(F2𝑙0−1 ) 𝑓 =
𝜕 𝑓

𝜕vec(x2𝑡+1,𝑖)𝑇

[
𝑡∏

𝑟=𝑙+1
(
𝜕vec(x2𝑟+1,𝑖)
𝜕vec(x2𝑟−1,𝑖)𝑇

)
]
𝜕vec(x2𝑙0+1,𝑖)
𝜕vec(F2𝑙−1)𝑇

(39)

(40)
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We denote
[∏𝐿−1

𝑟=𝑙+1 (
𝜕x2𝑟+1,𝑖
𝜕x𝑇

2𝑟−1,𝑖
)
] [
1𝑟%2=0

[
𝜕vec(x2𝑙0+1,𝑖 )
𝜕vec(F2𝑙 )𝑇

]
+ 1𝑟%2=1

[
𝜕vec(x2𝑙0+1,𝑖 )
𝜕vec(F2𝑙−1 )𝑇

] ]
as S. The Hessian

trace can be represented as

tr(𝐻𝐿) =
1
𝑛

𝑚𝐿+1∑︁
𝑞=1

𝑛∑︁
𝑖=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑞 (x𝑖)𝑇𝜕 𝑓𝑞 (x𝑖)𝑇

∥vec(x𝐿,𝑖)∥2+ (41)

1
𝑛

𝑛∑︁
𝑖=1

𝑙∑︁
𝑙0=1

tr
{

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

S𝑇vv𝑇𝑆
}

(42)

This has the same form as Eq. (22). So the Hessian trace is upper bounded by:

tr(H𝐿) ≤
1
𝑛

𝑛∑︁
𝑖=1

𝑚𝐿+1∑︁
𝑝=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑝 (x𝑖)𝑇𝜕 𝑓𝑝 (x𝑖)𝑇

∥vec(x𝐿,𝑖)∥2 + ∥v∥2

𝑛

𝑙∑︁
𝑙0=1

𝑛∑︁
𝑖=1

tr
{

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

S𝑇S

}
,

(43)

and lower bounded by:

∇2
vec(F𝑙 )𝐿 ≥ 1

𝑛

𝑛∑︁
𝑖=1

𝑚𝐿+1∑︁
𝑝=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑝 (x𝑖)𝑇𝜕 𝑓𝑝 (x𝑖)𝑇

∥vec(x𝐿,𝑖)∥2 + 1
𝑛

𝑙∑︁
𝑙0=1

𝑛∑︁
𝑖=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

∥v∥2

tr(Λ−1)
(44)

A.3 PROOF OF THEOREM 3

When neural networks using dense connective pattern, which is represented as follows:

x𝑙+1,𝑖 = 𝜎(F𝑙 ∗
[
x𝑙,𝑖 , · · · ,x1,𝑖

]
) (45)

= 𝜎(
𝑙∑︁
𝑗=1

F𝑙 ∗ x 𝑗 ,𝑖) (46)

We vectorize it and represented the dense connection as:

vec(x𝑙+1,𝑖) = Σ𝑙,𝑖


𝑙∑︁
𝑗=1

(F 𝑇
𝑗 ⊗ 𝐼 𝑗 )vec(𝜙(x 𝑗 ,𝑖))

 (47)

=

𝑙∑︁
𝑗=1

[
Σ𝑙,𝑖 (F 𝑇

𝑗 ⊗ 𝐼 𝑗 )vec(𝜙(x 𝑗 ,𝑖))
]

(48)

The neural network with 𝐿 convolutional layer can be represented as:

𝑓 (x𝑖) = v𝑇vec(x𝐿,𝑖) (49)

The gradient of 𝑝-th layer output with respect to 𝑞-th layer output is:

𝜕vec(x𝑝,𝑖)
𝜕vec(x𝑞,𝑖)𝑇

=

𝑝∑︁
𝑜=𝑞

𝑜∏
𝑗=𝑞

Σ 𝑗 ,𝑖 (F 𝑇
𝑗 ⊗ 𝐼 𝑗 )𝑀 𝑗 (50)

So the gradient of 𝑓 with respect to vec(F𝑙) is:

𝜕 𝑓 (x𝑖)
𝜕vec(F𝑙)𝑇

=
𝜕 𝑓 (x𝑖)

𝜕vec(x𝐿+1)𝑇
𝜕vec(x𝐿+1)
𝜕vec(x𝑙+1)𝑇

𝜕vec(x𝑙+1)
𝜕vec(F𝑙)𝑇

(51)

= v𝑇
[

𝐿∑︁
𝑜=𝑙+1

𝑜∏
𝑗=𝑞

Σ 𝑗 ,𝑖 (F 𝑇
𝑗 ⊗ 𝐼 𝑗 )𝑀 𝑗

]
Σ𝑙,𝑖 𝐼𝑙 ⊗ 𝜙(x𝑙,𝑖) (52)

B v𝑇S (53)
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The trace of Hessian can be represented as

tr(𝐻𝐿) =
1
𝑛

𝑚𝐿+1∑︁
𝑞=1

𝑛∑︁
𝑖=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑞 (x𝑖)𝑇𝜕 𝑓𝑞 (x𝑖)𝑇

∥vec(x𝐿,𝑖)∥2+ (54)

1
𝑛

𝑛∑︁
𝑖=1

𝑙∑︁
𝑙0=1

tr
{

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

S𝑇vv𝑇𝑆
}

(55)

This has the same form as Eq. (22). So the Hessian trace is upper bounded by:

tr(H𝐿) ≤
1
𝑛

𝑛∑︁
𝑖=1

𝑚𝐿+1∑︁
𝑝=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑝 (x𝑖)𝑇𝜕 𝑓𝑝 (x𝑖)𝑇

∥vec(x𝐿,𝑖)∥2 + ∥v∥2

𝑛

𝑙∑︁
𝑙0=1

𝑛∑︁
𝑖=1

tr
{

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

S𝑇S

}
,

(56)

and lower bounded by:

∇2
vec(F𝑙 )𝐿 ≥ 1

𝑛

𝑛∑︁
𝑖=1

𝑚𝐿+1∑︁
𝑝=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑝 (x𝑖)𝑇𝜕 𝑓𝑝 (x𝑖)𝑇

∥vec(x𝐿,𝑖)∥2 + 1
𝑛

𝑙∑︁
𝑙0=1

𝑛∑︁
𝑖=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

∥v∥2

tr(Λ−1)
(57)

A.4 PROOF OF THEOREM 4

For a fully connected neural network. Let {(x1, y1), · · · , (x𝑛, y𝑛)} be a set of n training samples. We
consider l-hidden-layer neural networks as follows.

𝑓 (x) = v𝑇𝜎(W 𝑇
𝑙 𝜎(W 𝑇

𝑙−1 · · ·𝜎(W 𝑇
1 x) · · · )) (58)

where 𝜎(𝑥) = max{0, 𝑥} is the entry-wise ReLU activation. W𝑙 ∈ R𝑚𝑙−1×𝑚𝑙 . Given input x𝑖 , We
denote the output after the 𝑙0-th layer using x𝑙0 ,𝑖

x𝑙0 ,𝑖 = 𝜎(W 𝑇
𝑙0
𝜎(W 𝑇

𝑙0−1 · · ·𝜎(W 𝑇
1 x𝑖) · · · )) (59)

= (
𝑙∏

𝑟=1
Σ𝑟 ,𝑖W

𝑇
𝑟 )x𝑖 (60)

where Σ1,𝑖 = Diag(1{W 𝑇
1 x𝑖 > 0}), and Σ𝑙0 ,𝑖 = Diag

[
1

{
W 𝑇

𝑙0
(∏𝑙0−1

𝑟=1 Σ𝑖,𝑟W
𝑇
𝑟 )x𝑖 > 0

}]
. We have

𝑓 (x𝑖) = v𝑇x𝑙,𝑖 . The Hessian trace of loss function tr(H𝐿) can be represented as:

tr(H𝐿) =
𝑚𝑙+1∑︁
𝑝=1

tr(∇2
v𝑝
𝐿) +

𝑙∑︁
𝑙0=1

tr(∇2
vec(F𝑙0 )

𝐿), (61)

where v𝑝 denotes the 𝑝-th column of v. The gradient of 𝐿 with respect to v is

𝜕𝐿

𝜕v𝑝

=
1
𝑛

𝑛∑︁
𝑖=1

𝜕𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑝 (x𝑖)𝑇

𝜕 𝑓𝑝 (x𝑖)
𝜕v𝑝

=
1
𝑛

𝑛∑︁
𝑖=1

𝜕𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑝 (x𝑖)𝑇

vec(x𝐿,𝑖)𝑇 , (62)

where 𝑓𝑝 (x𝑖) denotes the 𝑝-th element in 𝑓 (x𝑖). So, the second-order derivative is as follows:

∇2
v𝑝
𝐿 =

1
𝑛

𝑛∑︁
𝑖=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑝 (x𝑖)𝑇𝜕 𝑓𝑝 (x𝑖)𝑇

vec(x𝐿,𝑖)vec(x𝐿,𝑖)𝑇 . (63)

The gradient of 𝐿 with respect to the 𝑝-th column of W𝑙 (denoted by W𝑝,𝑙) is :

∇W𝑝,𝑙
𝐿 =

1
𝑛

𝑛∑︁
𝑖=1

𝜕𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑝 (x𝑖)𝑇

[
v𝑇 (

𝐿∏
𝑟=𝑙+1

Σ𝑟 ,𝑖W
𝑇
𝑟 )Σ𝑙,𝑖0𝑝 (x𝑙,𝑖)

]
(64)
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where 0𝑝 (x𝑙,𝑖) denotes a 𝑚𝑙+1 × 𝑚𝑙 matrix in which the 𝑝-th row equals to the 𝑝-th row of x𝑙,𝑖 and
the other 𝑚𝑙+1 − 1 rows equals are all zeros. And the Hessian of 𝐿 with respect to W𝑝,𝑙 is

∇2
W𝑝,𝑙

𝐿 =
1
𝑛

𝑛∑︁
𝑖=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

[
v𝑇 (

𝐿∏
𝑟=𝑙+1

Σ𝑟 ,𝑖W
𝑇
𝑟 )Σ𝑙,𝑖0𝑝 (x𝑙,𝑖)

]𝑇 [
v𝑇 (

𝐿∏
𝑟=𝑙+1

Σ𝑟 ,𝑖W
𝑇
𝑟 )Σ𝑙,𝑖0𝑝 (x𝑙,𝑖)

]
(65)

B
1
𝑛

𝑛∑︁
𝑖=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

S𝑇vv𝑇S (66)

Thus, the trace of Hessian has the same form as Eq. (22). So the it is upper bounded by:

tr(H𝐿) ≤
1
𝑛

𝑛∑︁
𝑖=1

𝑚𝐿+1∑︁
𝑝=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑝 (x𝑖)𝑇𝜕 𝑓𝑝 (x𝑖)𝑇

∥vec(x𝐿,𝑖)∥2 + ∥v∥2

𝑛

𝑙∑︁
𝑙0=1

𝑛∑︁
𝑖=1

tr
{

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

S𝑇S

}
,

(67)

and lower bounded by:

∇2
vec(F𝑙 )𝐿 ≥ 1

𝑛

𝑛∑︁
𝑖=1

𝑚𝐿+1∑︁
𝑝=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓𝑝 (x𝑖)𝑇𝜕 𝑓𝑝 (x𝑖)𝑇

∥vec(x𝐿,𝑖)∥2 + 1
𝑛

𝑙∑︁
𝑙0=1

𝑛∑︁
𝑖=1

𝜕2𝐿 ( 𝑓 (x𝑖), y𝑖)
𝜕 𝑓 (x𝑖)𝑇𝜕 𝑓 (x𝑖)𝑇

∥v∥2

tr(Λ−1)
(68)

B HESSIAN ANALYSIS OF SOS DURING TRAINING

The evolution of the trace of Hessian during training with and without SOS is show in Fig. 7. We
train VGG16 and ResNet18 on CIFAR10 and CIFAR100 dataset for 200 epoches and visualize the
trace of Hessian during training. It shows that the trace of Hessian during training is keep increasing.
However, when we apply SOS to the model during training, the trace of Hessian has been minimized,
which indicates a better generalization ability.
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(a) VGG on CIFAR10
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(b) VGG on CIFAR100
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(c) ResNet 18 on CIFAR10
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(d) ResNet 18 on CIFAR100

Figure 7: Visualization of the Hessian trace for different models and dataset with and without SOS
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C SOCIAL IMPACTS

As a new method to change the parameters of neural network and increase the generalization ability,
it may be beneficial to models applied in different fields such as computer vision. Besides, it may
boost the studies in generalization and loss landscape analysis. Thus, we believe that our algorithm
will bring positive impacts on both academia and industry.
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