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Abstract

The non-Euclidean geometry inherent in graph structures fundamentally impedes
cross-graph knowledge transfer. Drawing inspiration from texture transfer in com-
puter vision, we pioneer topological primitives as transferable semantic units for
graph structural knowledge. To address three critical barriers - the absence of
specialized benchmarks, aligned semantic representations, and systematic transfer
methodologies - we present G2SN-Transfer, a unified framework comprising: (i)
TopoGraph-Mapping that transforms non-Euclidean graphs into transferable se-
quences via topological primitive distribution dictionaries; (ii) G2SN, a dual-stream
architecture learning text-topology aligned representations through contrastive
alignment; and (iii) AdaCross-Transfer, a data-adaptive knowledge transfer mech-
anism leveraging cross-attention for both full-parameter and parameter-frozen
scenarios. Particularly, G2SN is a dual-stream sequence network driven by ordinary
differential equations, and our theoretical analysis establishes the convergence guar-
antee of G2SN. We construct STA-18, the first large-scale benchmark with aligned
topological primitive-text pairs across 18 diverse graph datasets. Comprehensive
evaluations demonstrate that G2SN achieves state-of-the-art performance on four
structural learning tasks (average 3.2% F1-score improvement), while our transfer
method yields consistent enhancements across 13 downstream tasks (5.2% average
gains) including 10 large-scale graph datasets. The datasets and code are available
athttps://github.com/Yide-Qiu/UGSKT.

1 Introduction

The inherent non-Euclidean geometry of graph structures presents fundamental challenges in preserv-
ing hierarchical relational semantics. Topological information encoding, which captures multi-order
node relationships through connectivity patterns, has emerged as a critical component in graph
representation learning. This capability has driven significant advances across diverse domains: social
network analysis through dynamic interaction modeling |Zhao ef al.|(2023)), biological system under-
standing via molecular interaction patterns | Muzio et al.|(2021); |L1 et al.| (2021}, and recommendation
systems leveraging user-item relation graphs |Wei et al.| (2022); [Sang et al.| (2024)).

Recent research explores graphlets and motifs as structural building blocks for graph representation.
While gl2vec|Chen and Kogal(2019) employs Subgraph Ratio Profiles (SRP) to encode graphlet distri-
butions for classification tasks, and HONE |Grover and others|(2019) models higher-order interactions
through motif-based embeddings, these approaches face three key limitations: (i) handcrafted pattern
selection limits semantic generalization; (ii) isolated subgraph analysis disregards global structural
contexts; (iii) absence of explicit alignment between structural patterns and transferable semantics.
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Figure 1: Overall pipeline of G2 SN-Transfer framework. With topological primitive distribu-
tion dictionary-driven, it converts non-Euclidean graph structure into sequential representations,
thereby establishing the STA-18 benchmark dataset. Subsequently, the proposed G2SN method
undergoes large-scale pre-training on the UniKG-STA to capture transferable structural invariants.
The framework culminates in a dual-transfer paradigm encompassing parameter fine-tuning and
frozen strategies, enabling adaptive transfer of cross-domain structural graph knowledge.

The MPool framework Islam et al.|(2023)) partially addresses these issues by preserving motif-induced
topology in graph pooling, yet fails to establish cross-domain transfer mechanisms. We posit that
analogous to transferable texture units in visual neural style transfer, graphs inherently contain topo-
logical primitives - statistically recurrent connectivity patterns that encode domain-agnostic structural
semantics. Our key insight establishes that the distribution of these primitives forms transferable
structural “textures” across graphs, enabling knowledge transfer from structure-rich source graphs to
diverse target domains.

While existing methods have advanced graph representation learning, three fundamental limitations
persist in structural knowledge transfer: (i) absence of benchmarks for cross-domain structural
semantics alignment; (ii) inherent negative transfer risks in aggregation-based approaches due to
geometric heterogeneity [Pan and Yang|(2009); (iii) computational overhead from multi-task auxiliary
objectives in current transfer paradigms|Xiao ef al.|(2024)); Verma and Zhang|(2019). These limitations
collectively hinder the development of “one-for-all” structural knowledge transfer frameworks |Wu ef
al.| (2020); |Gritsenko et al.| (2023); |Gu et al.| (2023albl). Our G2SN-Transfer framework addresses
these challenges through three innovations: (i) Topological Primitive Dictionary: We establish
a bijective mapping between recurrent connectivity patterns (motifs) and LLM-generated textual
descriptors, creating transferable structural-semantic units LLM-Topomotif. (ii) Dual-Modality
Sequence Learning: Overcoming the cross-graph semantic gap via contrastive text-topology sequence
alignment and structural attention branch for negative transfer mitigation. (iii) Adaptive Knowledge
Injection: A parameter-efficient cross-attention mechanism dynamically aligns source-target structural
distributions during transfer.

Pre-trained on the largest heterogeneous graph dataset UniKG-STA (UniKG from [Qiu et al.| (2023a))
in the STA-18 benchmark, G2SN-Transfer achieves cross-task structural knowledge transfer across
13 downstream applications through its innovative parameter-efficient cross-attention adapter. This
adapter dynamically calibrates structural distribution characteristics between source and target
domains, effectively bridging semantic gaps across domains while maintaining base model parameter
scale (with fewer than 9% additional parameters). Experimental results demonstrate consistent
performance enhancement in diverse scenarios (average improvement of 5.2% across 13 datasets),
with particular excellence in ogbl-ppa where it achieves peak improvement of 14.0% accuracy,
significantly outperforming conventional transfer methods |L1 et al.| (2023).

Our main contributions can be summarized as follows:

i) We establish the first transfer framework defining topological primitives as transferable structural
units, formalizing their bijective correspondence with textual semantics through LLM-annotated
distribution dictionaries. This framework underpins our STA-18 benchmark — the largest aligned
topological-textual graph dataset.
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Figure 2: Annotation generation algorithm. For any given input graph, the annotation generation
algorithm counts the occurrences of various motifs within the one-hop and two-hop subgraphs of
each node. Then the motif distribution of the entire graph will be modelled. Based on this quantified
distribution, ChatGPT-4.0 translates each component into corresponding structured annotations,
producing additional node-level textual annotations.

ii) G2SN, the dual-stream sequence network with contrastive text-topology alignment, is developed to
overcome non-Euclidean structural barriers through learnable topological primitives. Our AdaCross-
Transfer mechanism enables cross-graph structural knowledge flow via adaptive attention.

iii) We build comprehensive transfer dataset STA-18, the most diverse graph-text benchmark spanning
18 graphs. Systematic evaluations verify our framework’s superiority: state-of-the-art performance
on 4 structural tasks (3.2% F1 average gain) and consistent improvements across 13 downstream
applications (5.2% average gain).

Overview. In the remainder of this paper, we first provide the preliminary of State Space Models
(SSMs) in Section 2| Then we introduce the graph serialization paradigm TopoGraph-Mapping
in Section 3] Subsequently, we present our dual-stream neural network G2SN in Section [4] and
our transfer method AdaCross-Transfer in Section[5] Finally, we conduct extensive experiments in
Section [6and conclude our work in Section[7} Notably, we provide related work and preliminaries in

the Appendix [A]and

2 Preliminaries

SSMs capture the dynamics of systems through hidden state variables, H(t) € R, which evolve
according to an input sequence x(t) € R. The system dynamics are described by the following linear
ordinary differential equations (ODEs):

dH(t

% = AH(¢t) + Bz(t), )

Y(t) = CH(t), 2

where Y (¢) is the output, and A € RV*Y B € R¥*! and C € R ¥ represent system parameters
for state evolution and output projection. To convert the continuous-time model to a discrete form,
the Zero-Order Hold (ZOH) method is employed, introducing a timescale A. The discrete-time
equivalent of the system is given by:

A =exp(AA), 3)
B=(A-I)A 'BA, @)
leading to the recurrence relations:
H(t) = AH(t — 1) + Bax(t), )
Y (t) = CH(¢). 6)



Algorithm 1 Structure-Controlled Selection Mechanism

Input: Sequence u € RV *LxD. Motif score m € RP

Output: Sequence Y € RV *LxD

V,L,N) < Linearg (u, m)

V,L,N) + Linearc(u, m)

A : (V,L,D) <+ log(1 + exp(Linear (u, m) + Parametera ))
: A,B: (V,L,D, N) <+ discretize(A, Parametera , B)

: Y + SSM(A, B, C)(u, m)

return Y

B
:C:(

3 TopoGraph-Mapping: Topological Primitive Mapping

We present a graph-to-text framework, as shown in Figure 2] grounded in topological primitive
distribution-to-text mapping dictionaries, generating both topological primitive distributions, LLM-
Topomotif, and Structural Textual Annotation (STA) for universal graph representation of any given
graph data(base). The framework integrates i) an LLM-driven semantic mapping system and ii) a
parallel topological primitive quantification module.

Central to our design are 7 fundamental topological primitives characterizing node-centric subgraphs
within two hops:

Average node degree, edge count, edge-type diversity, triangle/quadrilateral/pentagon frequencies, and
homogeneous triangle edge probability.

For computational efficiency, we focus on cyclic structures with less than five hops (triangles, quadri-
laterals, pentagons) inspired by clique-based graph theory [Zhang et al.|(2024), while incorporating
edge heterogeneity and homogeneous cycle likelihoods |Blanché er al.| (2020). Each topological
primitive distribution component is bijectively mapped to textual semantics via dictionary D, with
annotations ordered by primitive significance. For instance, nodes in the top k% for average degree
receive LLM-generated descriptions like “This node exhibits exceptionally dense local connectivity”,
validated by human experts to ensure linguistic diversity and statistical fidelity. This dual-channel
design enables topological distributions to enhance textual semantics through structural grounding,
while textual annotations disambiguate primitive patterns, forming a mutually reinforcing system.
The parallel quantification module [Wang ef al.| (2016) computes topological primitive distributions
across STA-18 — our benchmark encompassing 18 graph datasets of varied scales. By efficiently
extracting and encoding primitive occurrences, it constructs discrete topological distribution profiles,
which are subsequently translated into STA codebooks via dictionary D for cross-graph transfer.

4 G2SN: Graph Dual-Stream Neural Network

In Algorithm [T} G2SN has three key
parameters (B, C, and A) and takes
the textual sequence u and LLM-
Topomotif sequence m as inputs. We
first provide a theoretical guarantee
for the convergence of G2SN and
present a formal derivation of its
closed-form solution. Then we the-

oretically demonstrate that G2SN ef- — & — Norm (@ e
fectively captures the sequential de- Block
pendencies for the input sequences u
and m. Figure 3: G2SN framework. Injecting structural contexts via

The discrete zero-order hold (ZOH) topological primitive sequence branch.
method for linear ordinary differen-

tial equations (ODEs) provides a re-
cursive formulation, as shown in Eqs. (5) and (6). Leveraging the linear time-invariant (LTI) property,
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Figure 4: The overall framework of AdaCross-Transfer. The Fine-tuned represents the “Full
Parameter Fine-tuned” scenario, while the Frozen indicates the “Frozen and Fine-tuned” scenario.

the recursive expressions for A, B, C, and A can be parallelized. Furthermore, a global convolu-
tional approach is adopted to compute the output sequence y = x * K, where the convolution kernel
K < R” is defined as:

= [CB,CAB,...,CA'B|, (7)

where L represents the length of the input sequence. Under the ZOH assumption, the closed-form
solution for G2SN at time ¢ is given by:

H(t) — exp(A1)H(0) + /O exp(A(t — 5))Bx(s)ds. ®)

By introducing a time-invariant constant -y, the closed-form solution for G2SN at time ¢ + 1 can be
expressed as:

H(t+ 1) = exp(A)H(t) + </0 exp(As)ds) Bz(t), )

which provides a theoretical guarantee for the convergence of G2SN, as stated in Theorem .1]

Theorem 4.1. For a given input x(t) from the joint distribution Q(u(t), m(t)), the G3SN with a
generalized form of the time-invariant zero-order hold has a closed-form solution in each discrete

sequence step t to t+1 and can be computed as H(t + 1) = exp(A)H(t) + (fol exp(As)ds)Bux(t).

We propose a structural control mechanism that enables the selection process to depend on both
textual sequences and motif quantized distributions. The data-adaptive selection mechanism treats
the parameters A, B, C, and A as functions of the input z(¢). This enables the model to dynamically
adjust its behav1or based on the input data, allowing G2SN to selectively process and retain relevant
context, thereby enhancing its capability to handle complex sequential data. To handle additional motif
score inputs, the model incorporates the quantized distribution of structural motifs to recall previously
encountered textual sequences, improving its ability to reconstruct local structural semantics. In
G2SN, the annotation sequence u and topic score sequence v jointly serve as inputs.

Theorem 4.2. Under the discrete ZOH assumption, this mechanism enables context-aware infor-
mation flow through: Y (t) = 22:1 e(t=DAAC(H)B(q)x(q) in G3SN, which is jointly governed by
topological primitive distributions and textual semantics.

The model output depends on both the textual annotations and motif sequences, from the Theorem[#.2]
with the two jointly controlling the flow of information during propagation. The §(u, m)e(u, m)
measure the similarity between the current input and prior ones, demonstrating G2SN’s ability to
capture long-term dependencies. By modifying the forward and backward gradient functions, G2SN,
the text encoder F/1, and the motif encoder E5 can be jointly trained in an end-to-end manner during
pre-training. Please refer to[C_I|for theoretical derivation of Theorem



S AdaCross-Transfer: Graph Structure Knowledge Transfer

Theorem 5.1. G2SN’s compositional output Y (t), jointly governed by topological primitive distri-
butions and textual semantics, satisfies Lipschitz-continuous gradient flow, theoretically enabling
cross-dataset knowledge transfer through attention reweighting.

To enable the “one for all” transferring of graph structure knowledge, we design the knowledge
transfer method under the “Full Parameter Fine-Tuning” and “Frozen-and-Fine-Tuning” scenarios, as
shown in Figure [T]and Figure [d} This method embeds universal and special graph structure semantics
as node-level latent features, merging these semantics into the shared representation space, controlled
by a structure-aware weight vector w. Please refer to for the proof of Theorem5.1

Given a downstream task graph dataset G(V, £), the transfer process first applies the motif parallel
statistics module to produce corresponding structural annotation dataset for each graph dataset. Here,
V and & represent the set of nodes and edges in G, respectively. Notably, the vocabularies of all
dataset are shared, which facilitates the alignment of the generated textual sequence embeddings.
The node feature matrix X4 € R™*? and adjacency matrix Ay € R"*" of G are encoded by the
downstream task GNN ( into the latent variable Hy = ((Aq4, X4). We then introduce a transfer
encoder © for each downstream task graph, where the first n-1 layers are shared from the pre-trained
G2SN, and the final layer corresponds to the first layer of the downstream task’s GNN (. This design
ensures that: i) the structural textual latent variable Hy, € R™*% and the node feature latent variable
Hy € R"*? share the same representation space and dimension d; and ii) no additional training
parameters are introduced, or only fine-tuned parameters are involved.

Considering the uniqueness of each dataset and facilitating the interaction between structural and
node features, we compute a data-aware motif attention weight vector w € R'*™ based on the motif
quantization distribution. This vector is then integrated into the Cross-Attention module between
structural and node features, formalized by:

1 &S,
oo = N Pim 1
Vit M mZ::I max(S. ,,,)’ (10)

where M represents the number of types of motifs, and S € R™"*M is the motif distribution matrix
and S; ,,, denotes the m-th motif score of node 7. We then interact the two streams at the semantic
level through a linear cross-attention layer, which can be formulated as:

H} =wHy, H]= (1, —W)Hq, (11
P(Qi)" 2;21 P(K;)V,T

Linear Attention(Q, K, V) = : , (12)
¢(Q1)T 25:1 ¢(Kj)

Q. K, V. =H W HIW, H Wy, (13)

O.. = Linear Attention(Q., K., V.), (14)

H] = LayerNorm(Linear(O, + Q.)), (15)

where 1,, is an all-ones vector, * € {d,st}, and ¢(x) = relu(x) is an activation function. The
co-attention operation allows the encoder to emphasize relevant shared semantics while suppressing
irrelevant ones. The semantic feature can be concatenated by an MLP, formulated as:

H,, = RELU(Linear(HJ ||HY)), (16)
finally, we use a task decoder to return the predicted probability Y g = &(H™) as output.

In the “Full Parameter Fine-Tuning” scenario, the networks E, F5, and © are fine-tuned according
to the downstream task. In the “Frozen and Fine-Tuning” scenario, these networks are frozen, and no
gradients are computed. Each downstream task adopts a single learning objective, with knowledge
transfer targets for node-level, edge-level, and graph-level representation learning tasks, formulated
as:

min Lyoge(Ynode, Ynode),  node-level task,

min Lyg = énél’lg Eedge (Yedgm ?edge), edge-level task, (17)

e
~

min Leoraph (Y graph, Yeraph), graph-level task,

IS



where Liode, Ledge, and Lgrapn represent the loss functions for node-level, edge-level, and graph-level
tasks, respectively, and Y jode, Yedge, and Y grpn denote the corresponding task labels.

6 Experiments

Overview. We conduct extensive experiments to evaluate G2SN’s efficacy and universal structural
knowledge transfer potential through five key research questions: Q1: How does G2SN perform
in learning transferable structural representations? Q2: Can structural knowledge transfer enhance
downstream task performance? Q3: How does the cross-attention mechanism facilitate structural
knowledge transfer? Q4: Is transfer effectiveness correlated with downstream dataset characteris-
tics? QS5: What are the computational costs of constructing dual-stream topological primitive-text
annotations? Implementation details and hyperparameter configurations are provided in Appendix [H]

Datasets Overall, we utilize 36 datasets, including 18 graph datasets and the corresponding 18 STA
datasets. For graph datasets, we select 15 large-scale datasets, including ogbn-arxiv, ogbn-products,
ogbn-proteins, ogbn-mag, ogbl-ppa, ogbl-ddi, ogbl-citation2, oghbg-molhiv, ogbg-molpcba, and
ogbg-code2 from Hu et al.| (2020), Peptides, PascalVOC-SP, COCO-SP and MALNET-TINY
from Behrouz and Hashemi| (2024)), and UniKG from [Qiu et al.| (2023a); as well as 3 small-scale
graph datasets: Cora, Pubmed, and Citeseer from Sen et al.|(2008). Statistics (e.g., graph scale,
graph homogeneity, graph density, and token length) of the datasets are summarized in Table 4] and
Table[5] The dataset protocols are aligned with those of the OGB benchmark [Hu ef al.| (2021) and the
original paper Qiu et al.|(2023alb); Behrouz and Hashemi| (2024).

Baselines We use nine baselines in total. For comparison experiments on LRGB (Long Range
Graph Benchmark) Dwivedi ef al.|(2022), we utilize GCN [Kipf and Welling (2017), GIN |Xu et al.
(2019), GatedGCN [Lu et al.| (2020), Exphormer Shirzad et al.|(2023)), Performer |Choromanski
et al.| (2020), and BigBird Zaheer ef al.| (2020) as baseline models. For graph structure transfer,
we employ GCN Kipf and Welling| (2017)), GIN Xu et al.| (2019), GraphSAGE Hamilton et al.
(2017), GraphSAINT [Zeng et al.|(2020) and SIGN Rossi et al.|(2020) as baseline models. GCN
and GIN are traditional graph convolutional algorithms. We adopt the same sampling techniques
as OGB Hu et al.| (2020) to extend them to large-scale graphs. GraphSAGE and GraphSAINT
aggregate information from neighborhood samples, making them applicable to large-scale graphs.
SIGN learns the decoupled propagation feature to reduce computational overhead. Note that not
every baseline was used on every dataset, as detailed in Table [I|and Table 2]

Metrics We utilize eight evaluation metrics in total: Acc (Accuracy), Rocauc (Receiver Operating
Characteristic Area Under the Curve), Hits @100, Hits@30, Mrr (Mean Reciprocal Rank), F1 score,
Ap (Average Precision) and MAE (Mean Absolute Error). These metrics provide a comprehensive
evaluation of each baseline model’s performance on the test set. Specifically, Acc is used for node
classification tasks to measure the proportion of correctly predicted samples. Rocauc evaluates binary
classification models’ ability to distinguish between classes. Hits@100 is used to assess the model’s
ability to rank the correct target within the top 100 candidates. Similar to Hits@100, Hits @30
evaluates the top 30 candidates. Mrr is used to measure the model’s performance in ranking tasks by
calculating the mean of the reciprocal ranks of the correct answers. F1 score provides a harmonic
mean of precision and recall in classification tasks. Ap is used to assess the model’s accuracy in
multi-label classification tasks, reflecting the precision across multiple labels. And MAE is used to
evaluate graph regression tasks.

6.1 Graph Structure Learning Experiments on LRGB-STA

Experimental Setup To address Q1, we conducted comprehensive graph structure learning com-
parisons on five tasks from LRGB (Long-Range Graph Benchmark) Dwivedi ef al.|(2022), ensuring
evaluation fairness through identical input features and training protocols. Specifically, we focus on
comparing several state-of-the-art graph models capable of capturing graph long-rang dependencies,
including traditional models such as GCN, GIN, and GatedGCN, as well as various variants within
the GraphGPS framework, particularly with respect to the selection of their attention modules. We
further isolate structure-controlled selection mechanisms’ advantages in structural representation
learning by comparing G2SN against dense and sparse variants of Transformers [Rampasek et al.
(2022)): Exphormer [Shirzad et al.|(2023)) (expander-graph sparsity), Performer Choromanski et al.
(2020) (kernelized attention), and BigBird |Zaheer ef al.|(2020) (block-sparse patterns).

7



Table 1: Performance comparison of graph structure learning. Metrics: AP (higher is better),

MAE] (lower is better), F1 Score? (higher is better), Accuracy? (higher is better).

Model Peptides-Func  Peptides-Struct PascalVOC-SP COCO-SP MALNET-TINY

AP?T MAE| F1 Score? F1 Score? Accuracy?
GCN 0.5930£0.0023  0.3496+0.0013  0.1268+£0.0060 0.0841+0.0010  0.8100£0.0042
GIN 0.5498+0.0079  0.354740.0045  0.1265+0.0076  0.133940.0044 0.8898+0.0055
GatedGCN 0.5864+0.0077  0.34204+0.0013  0.2873+0.0219  0.2641+0.0045  0.9223-+0.0065
GPS+Transformer 0.3689+0.0131 OOM (bs=8)
GPS+Performer 0.6475+0.0056  0.2558+0.0012 0.3761+0.0101  0.9264+0.0078
GPS+BigBird 0.58544+0.0079  0.2842+0.0130  0.27624+0.0069  0.2622+0.0008  0.9234+0.0034
Exphormer 0.6258+0.0092  0.2512+0.0025  0.3446+0.0064  0.3430+0.0108  0.9422+0.0024
G2SN (ours) 0.6824+0.0066  0.2462+0.0013  0.4199+0.0098  0.40224+0.0149

Table 2: Experimental results of structural knowledge transfer. We use an upward arrow “f’
indicates improved performance. The best and suboptimal performances are highlighted in red and

blue, respectively. We report both absolute and relative improvements (Ratio).

Dataset Task Method Metric Base Frozen Fine-tuned Ratio (%)
ogbn-arxiv Node Classification GCN Accuracy  0.5238  0.5633 (0.03951) 0.5886 (0.06487) 12.37
ogbn-products  Node Classification SIGN Accuracy  0.7423  0.7456 (0.00331)  0.7477 (0.00547) 0.73
ogbn-mag Node Classification SAGE Accuracy  0.3498  0.3673 (0.01757)  0.3544 (0.00467) 5.01
Cora Node Classification GCN Accuracy 0.8110 0.8167 (0.00571) 0.8117 (0.00077) 0.70
Pubmed Node Classification GCN Accuracy  0.7880 0.8071 (0.01911) 0.8173 (0.02937) 3.72
Citeseer Node Classification GCN Accuracy  0.6820 0.6873 (0.00531) 0.6981 (0.01617) 2.38
ogbn-proteins ~ Node Classification SAGE ROCAUC 0.7614 0.8175(0.05611) 0.8076 (0.04621) 7.37
ogbl-molhiv Link Prediction GIN ROCAUC 0.7761 0.7922 (0.01617) 0.7950 (0.01897) 2.44
ogbl-ppa Link Prediction SAGE Hits@100 0.1519 0.1604 (0.00851) 0.1732 (0.02137) 14.02
ogbl-ddi Link Prediction SAGE Hits@30 0.5271 0.5549 (0.02781) 0.5601 (0.03301) 6.26
ogbg-citation2  Graph Classification =~ SAINT MRR 0.8001  0.8092 (0.00911) 0.8154 (0.01537) 1.91
ogbg-code2 Graph Classification GCN F1 Score  0.1515 0.1554 (0.00391) 0.1601 (0.00867) 5.68
ogbg-molpcba  Graph Classification GIN AP 0.2744  0.2809 (0.00651) 0.2892 (0.01487) 5.39

Experimental Analysis Table[I]systematically compares G2SN’s long-range dependency modeling
capabilities across five sequence-intensive tasks. Our framework achieves state-of-the-art performance
on four tasks with 2.5%—-4.8% metrics (AP and F1-Score) improvements over sparse attention
baselines, demonstrating the critical role of topological primitive distribution-aware structural control.
The pre-training robustness on UniKG-STA (Appendix Table[5) further verifies G2SN’s dual-stream
contrastive alignment effectiveness under distribution shifts. These results confirm that G2SN’s
structure selected mechanism simultaneously enhances context retention through text-topology
interaction modeling while maintaining generalizability across diverse graph prediction scenarios.

6.2 Comprehensive Structural Knowledge Transfer Experiments on STA-18

Experimental Setup To address Q2, we systematically evaluate structural knowledge transfer
under both frozen fine-tuning and full-parameter adaptation scenarios. For Q5, Table [5|quantifies
the computational costs of constructing dual-stream topological primitive-text annotations across
STA-18 benchmark datasets. Our transfer framework operates through three coordinated phases:
i) Universal Annotation Generation: Each graph dataset is encoded into topology-text pairs using
our mapping dictionary. These sequences are vectorized via a shared bag-of-words model to align
representation space. ii) Adaptive Encoder Bridging: As illustrated in Fig.[d] the transfer encoder
combines the first n-1 layers of pre-trained G2SN with the initial layer of downstream GNNs. This
hybrid architecture processes both textual sequences and topological primitive distributions from
target domains. iii) Cross-Graph Feature Fusion: Encoder outputs are injected into node-level hidden
features through data-adaptive cross-attention modules, which reweight feature importance using
structural alignment scores. The fused representations are then processed by task-specific decoders
for final predictions. We benchmark transfer effectiveness across both parameter configurations, with
implementation details and hyperparameter sensitivity analysis provided in Appendix [H]

Experimental Analysis From Table 2| we derive three critical insights: 1) Universal Performance
Enhancement: Structural knowledge transfer delivers consistent gains across all downstream tasks
(average +5.2%), confirming its effectiveness in enhancing representation learning for diverse graph
data types through topological semantic enrichment. ii) Parameter-Frozen Transfer Superiority: The
frozen transfer mode achieves competitive performance with zero training overhead, demonstrating



Table 3: Ablation studies of transfer methods on six datasets. Bold represents best performance.

Tranfer Method Pubmed ogbn-proteins ogbl-molhiv  ogbl-ppa  ogbg-citation2 ogbg-molpcba

Feature Mean 1.21£0.14 2.39£0.12 1.18£0.25  0.974+0.23 0.47+0.28 0.224+0.24
Feature Concat 2.18£0.19 2.91+£0.17 1.37£0.26  1.04+0.21 1.2240.24 0.76+0.27
Cross-Attention  2.93+0.11 5.61+0.09 1.89+0.20  2.13+0.14 1.53+0.22 1.48+0.19

that static topological primitive integration alone can provide sufficient inductive bias for improved
downstream inference. iii) Fine-Tuning Tradeoff: While full-parameter fine-tuning outperforms
frozen transfer in 10 in 13 of tasks via structural encoder optimization, its occasional inferiority (e.g.,
in ogbn-mag) suggests domain-specific overfitting risks. This highlights the need for future work
on balanced optimization strategies that preserve universal topological semantics while adapting to
task-specific objectives.

6.3 Ablation Study on Transfer Methods

To address Q3, we conduct ablation studies on three feature fusion strategies to validate AdaCross-
Transfer’s adaptive feature routing mechanism. Our experiments across six benchmark datasets
(PubMed, ogbn-proteins, ogbl-molhiv, ogbl-ppa, ogbg-citation2, ogbg-molpcba) compare: i) Feature
Mean Pooling, ii) Feature Concatenation, and iii) Our Cross-Attention Fusion. As quantified in
Table 3] (absolute performance gains) versus Table 2] (relative ratios), the proposed cross-attention
method demonstrates universal applicability. AdaCross-Transfer achieves 65.1% average relative
improvement over enhancement ratio of conventional fusion methods. These results confirm that
cross-attention enables adaptive and thorough interaction between topological primitives and textual
semantics - dynamically reweighting feature importance through structural-textual alignment scores.
The mechanism particularly excels at resolving semantic ambiguity in molecular graphs (ogbl-
molpcba: +94.7%) and protein networks (ogbn-proteins: +92.8%, ogbl-ppa: +104.8%), where
conventional methods suffer from feature collision.

6.4 What affects the effect of graph structure transfer?

To address Q4 and establish generalizable principles for effective structural knowledge transfer, we
derive three empirical conclusions from the above experiments: i) Density Correlation: Trans-
fer efficacy exhibits statistically significant correlations with average degree distributions (pearson
correlation coefficient p=0.82, significance p<0.01, the derivations refer to Appendix [F)). Node classi-
fication tasks reveal substantial gains in high-degree graphs: ogbn-arxiv (degree=13.77, +12.37%)
and ogbn-proteins (597.00, +7.37%), contrasting with minimal improvement in low-degree Cora
(4.01, +0.70%). This demonstrates dense topological primitives in high-degree graphs better preserve
transferable structural semantics. ii) Homogeneity Superiority: Heterogeneous graphs show reduced
transfer efficiency despite comparable degree metrics - ogbn-mag (degree=21.76, +5.01%) under-
performs homogeneous counterparts by 2.3-4.8%, suggesting structural heterogeneity introduces
semantic fragmentation that impedes cross-graph alignment. iii) Task-Specific Sensitivity: Structural
transfer achieves superior gains in link prediction (avg. +7.57%) and graph classification (+4.33%)
versus node classification (+3.23%), due to their inherent dependency on structural topology rather
than feature-driven decisions vulnerable to attribute noise. These findings collectively establish two
guidelines: i) Prioritize structural knowledge transfer for topology-intensive tasks (link prediction/-
graph classification) on degree-dense homogeneous graphs. ii) Develop heterogeneity-aware transfer
methods to address structural fragmentation in complex graphs, which implying the interplay between
graph heterogeneity and transfer efficiency as a promising direction for subsequent research.

7 Conclusion

We present G2SN-Transfer, a universal graph structure learning framework that enables cross-domain
knowledge transfer through topological primitive-text dual-stream sequence alignment. The frame-
work introduces: (i) TopoGraph-Mapping for serializing non-Euclidean graphs into transferable
sequences via topological primitive distribution dictionaries, thereby establishing the STA-18 bench-
mark; (i) G*SN, a dual-stream sequence network achieving text-topology contrastive alignment
through adaptive attention routing, with convergence guarantees under discrete zero-order hold
assumptions; (iii) AdaCross-Transfer, a data-adaptive cross-attention mechanism. Comprehensive
evaluations demonstrate state-of-the-art performance on 4 structural learning tasks (3.2% average
F1-score gain) and consistent improvements across 13 downstream applications (5.2% average lift),
validating the effectiveness of topological primitives as universal structural semantic units.
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A Related Work

Table 4: Statistics for the graph datasets. Where ‘N.C.’ denotes ‘Node Classification task’, ‘L.P.’
represents ‘Link Prediction task’, ‘G.C.” is ‘Graph Classification task’ and ‘G.R.” denotes ‘Graph
Regression task’.

Dataset #Nodes #Edges #Avg Degree #Heterogeneity #Task #Metric #Domain
Cora 2,708 5,429 4.01 No N.C. Acc Citation
Citeseer 3,327 4,732 2.84 No N.C. Acc Citation
Pubmed 19,717 44,338 4.50 No N.C. Acc Citation
ogbn-proteins 132,534 39,561,252 597.00 No N.C. ROCAUC Biology
ogbn-arxiv 169,343 1,166,243 13.77 No N.C. Acc Citation
ogbn-mag 1,939,743 21,111,007 21.76 Yes N.C. Acc Citation
ogbn-products 2,449,029 61,859,140 50.52 No N.C. Acc Product
ogbl-ddi 4,267 1,334,889 625.68 No L.P. Hits@30 Biology
ogbl-ppa 576,289 30,326,273 105.24 No L.P Hits@ 100 Biology
ogbl-citation2 2,927,963 30,561,187 20.74 No L.P. Mrr Citation
ogbg-molhiv 1,048,738 1,130,992 2.15 No G.C. ROCAUC Biology
ogbg-molpcba 11,386,154 12,305,804 2.16 No G.C. AP Biology
ogbg-code2 56,683,173 56,230,432 1.98 No G.C. F1 score Code
Peptides 2,344,231 4,773,905 2.04 No G.C.& GR. AP & MAE Biology
Pascal VOC-SP 5,443,587 30,777,727 5.65 No N.C. F1 score ([e\%
COCO-SP 58,795,093 332,095,498 5.64 No N.C. F1 score (6\%
MalNet-Tiny 7,051,500 14,299,500 2.03 No G.C. Acc Cybersecurity
UniKG 77,312,474 641,738,096 16.60 Yes N.C. Acc Universal

Table 5: Statistics for STA-18 benchmark.

Dataset #Nodes #Tokens #Lengths #Spaces #Generation Time #Task #Metric #Domain
Cora-STA 2,708 342,249 126.4 0.11 MB 7.07 s N.C. Acc Citation
Citeseer-STA 3,327 420,580 126.4 0.13 MB 4.65s N.C. Acc Citation
Pubmed-STA 19,717 2,495,065 126.5 0.75 MB 108.94 s N.C. Acc Citation
ogbn-proteins-STA 132,534 17,028,774 127.7 5.06 MB 6.83h N.C. ROCAUC Biology
ogbn-arxiv-STA 169,343 21,338,818 126.0 6.46 MB 616.12 s N.C. Acc Citation
ogbn-mag-STA 1,939,743 242,542,736 125.0 74.00MB 456 h N.C. Acc Citation
ogbn-products-STA 2,449,029 312,639,453 127.7 93.42MB 113.14h N.C. Acc Product
ogbl-ddi-STA 4,267 549,291 128.7 0.16 MB 84525 s L.P. Hits@30 Biology
ogbl-ppa-STA 576,289 73,407,315 127.4 21.98 MB 3.0lh LP Hits@100 Biology
ogbl-citation2-STA 2,927,963 36,996,424 126.4 111.69 MB 12.81 h L.P. Mir Citation
ogbg-molhiv-STA 1,048,738 130,250,852 124.1 40.02 MB 398.34s G.C. ROCAUC Biology
ogbg-molpcba-STA 11,386,154  1,528,535,562 134.4 433.85 MB 1.17h G.C. AP Biology
ogbg-code2-STA 56,683,173 7,528,675,744 132.8 2.11 GB 2.84h G.C. F1 score Code
Peptides-STA 2,344,231 299,346,341 127.7 89.45 MB 93091 s G.C.&GR. AP & MAE Biology
PascalVOC-SP-STA 5,443,587 714,198,614 131.2 213.60 MB 0.92h N.C. F1 score Ccv
COCO-SP-STA 58,795,093  7,619,844,052 129.6 2.22GB 6.58 h N.C. F1 score Ccv
MalNet-Tiny-STA 7,051,500 897,655,950 127.3 268.23 MB 0.77h G.C. Acc Cybersecurity
UniKG-STA 77,312,474  10,274,827,794 1329 6.08 GB 214.22h N.C. Acc Universal

Graph Structure Learning have gained significant traction for their ability to learn complex graph
representations, particularly through the use of structural subcomponents like Graphlets and Motifs.
These subcomponents are small non-isomorphic induced subgraphs, serve as fundamental building
blocks for capturing local structural information in graphs. They have been employed in various
network embedding techniques to improve the expressiveness of GNNs.

Several studies have explored the utilization of graphlets in structural representation learning. For
instance, the gl2vec model generates embeddings by computing the Subgraph Ratio Profile (SRP) of
graphlets, which encodes the distribution of different types of graphlets in a network. This approach
has demonstrated improvements in classification tasks, particularly when combined with other
feature extraction methods. Similarly, the work by Rossi et al. proposed the Higher-Order Network
Embedding (HONE) framework, which uses subgraph patterns, including motifs and graphlet orbits,
to capture higher-order network structures. Other notable approaches include leveraging graph
convolutional networks (GCNs) with motif-based attention mechanisms. For example, MPool, a
motif-based graph pooling method, has shown that incorporating motif structures can improve graph
classification performance by preserving essential topological information during pooling.

Our work differentiates itself from existing methods by focusing on the distribution of motifs and
constructing these distributions as text sequences, akin to a growth series of motifs. This novel
approach allows for the capture of both the frequency and evolution of motifs within a graph, which
can be beneficial for tasks requiring a more nuanced understanding of network dynamics. Unlike the
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gl2vec approach, which relies on random models to generate SRPs, our method does not depend on
such models, thereby offering potentially more robust and consistent embeddings across different
datasets. By integrating this with existing language model frameworks, our approach not only
captures the local structure but also the evolution of these structures, offering a comprehensive view
of the graph’s topology.

B More Preliminaries

B.1 Notation

A graph can be defined as G = (V, &), in which V and & represent the sets of nodes and edges,
respectively. For homogeneous graph, the number of types of nodes and edges is strictly equal to
one. For heterogeneous graphs, the sum of the types of nodes and edges is strictly greater than two.
Formally, a heterogeneous graph can be defined as follows:

g - (Va 57 Ca R7 ¢v7 ¢€)7
where:

* V = {v1,vs,...,vn} denotes the set of nodes, and NN is the total number of nodes.

» & = {e;;} denotes the set of directed edges between nodes.

o C={c1,c9,...,cp} is the set of node types, and L is the total number of node types.

* R ={r1,ra,...,rr} is the set of edge types, and M is the total number of edge types.

* ¢y : ¥V — {c1,¢9,...,cp} represents the node type function that maps nodes to their
corresponding types.

* ¢ : € = {r1,72,..., 7} represents the edge type function that maps edges to their
corresponding types.

B.2 Graph Neural Network Paradigm

The fundamental idea behind GNNss is to iteratively update the representation of each node by
aggregating information from its neighbors. This process can be generally formulated as:

h(" = AGGREGATE™ ({h{*~) 1w e N(v)}), i
h{" = COMBINE® (n~1),n(")) | )

where thC) denotes the representation of node v at the k-th layer, A/ (v) represents the set of neighbors
of v, and AGGREGATE(-) and COMBINE(:) are functions that aggregate information from the
neighbors and combine it with the node’s previous representation, respectively.

B.3 Frozen/Fine-tuned Knowledge Transfer

Frozen knowledge transfer aims to inject prior semantic knowledge, acquired through pre-training,
into downstream tasks without additional training cost. The large-scale training set that provides
prior knowledge is referred to as the support set, while the dataset for downstream tasks is termed
the target set. This transfer is achieved by pre-training a shared semantic space. Unlike zero-shot
learning, frozen knowledge transfer does not impose strict constraints on class labels. In TA-LSSR
framework, we use UniKG-STA, a dataset with rich structural information, as the support set, and
various downstream graph datasets as the target sets to ensure alignment with the shared semantic
space hypothesis. Fine-tuned knowledge transfer aims to optimize both the pre-trained model and the
downstream task model through end-to-end training. The objective is to adapt existing knowledge to
the downstream task with minimal training data and parameters, while aligning with the task-specific
optimization goals. In our fine-tuning scenario, we first pre-train the GZSN model on UniKG-STA
dataset, and fine-tune it on various downstream graph datasets.
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C Proofs for Theorems

C.1 Proofs of Theorem 1

In this section, we prove that the closed-formed solution of G2SN can be calculated as:
1
H(t+ 1) = exp(A)H(t) + (/ exp(As)ds) Bx(t). (20)
0

From Eq. [T} the linear time-invariant ODE function of the state space models can be described:
dH(t)

dt
where x(t) is the input function of the discrete sequences and H(t) denotes the hidden state variables.

First and foremost, we derive the H(k) in G2SN. Multiply both sides of the ODE function by
exp(—At):

= AH(t) + Bzx(t), 1)

dH(t
exp(—At)% = exp(—At)AH(t) + exp(—At)Bz(t), (22)
according to the partial integration, the above formula can be derived as follows:
d
S (exp(~ADH(1)) = exp(~At)Ba(b), 23)

integrating both sides with respect to ¢:
t
exp(—At)H(t) — exp(0)H(0) = / exp(—As)Bux(s)ds, (24)
0
after a merging, we can prove that:

H(¢) = exp(At)H(0) + /0 exp(A(t — s))Bx(s)ds. (25)

Under the assumption of zero-order hold (ZOH), z(t) is constant during each time interval A¢, which
means z(t + ) = z(t) if v < At. Letv(s) =t + 1 — s, the H(¢ 4 1) can be further derived as:

H(t+ 1) =exp(A(t+ 1))H(0) + /thl exp(A(t+ 1 —s))Bx(s)ds (26)
0

= exp(At + A)H(0) + exp(A) (/0 exp(A(t — s))Bx(s)ds + /0 exp(A(t — s))B:r(s)ds)

(27)
=exp(A) (exp(At)H(O) +/O exp(A(t — s))Bx(s)ds) +/O exp(A(t+ 1 — s)Bx(s)ds
(28)
v(t+1)
=exp(A)H(t) — (/ exp(Av)du) Bz(t) (29)
v(t)
1
=exp(A)H(t) + </0 exp(As)ds) Bx(t). O (30)

C.2 Proofs of Theorem 2

In this section, we prove that the context dependencies of G2SN are controlled by the structural
semantics u and m. According to Algorithm [1} G2SN has two essential parameters B and C, which
are functions of text annotation u and motif sequence m. Thus, they can be represented as §(u, m)
and e(u, m), respectively. Under the assumption of ZOH, discrete-time equivalent of ODE can be
represented as: B _

H(t) = A@WH((t — 1) + B(t)x(t), (31)
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Y (t) = C(t)H(t). (32)

Eq. is an iterative equation. The H(¢) can be decomposed as follows:
-2 B t-q B
H(t) = [[A( - i)BM)z(1) +--- + [T At —)B(g — Da(g — 1) + - + B(t)a(t). (33)
i=0 i=0
From the Eq.[3| we have A = exp(AA), thus the Y (#) can be represented as:

Y (t) = C(t) (1:[ exp(A(t —i)A)B(1)z(1) +--- + ﬁ exp (A(t —i)A)B(¢)z(q) + - + B(t)x(t)) ,

(34)

t—2 t—q—1
= C(t) (exp(. At —i)A)B(1)z(1) +--- +exp( Z At —i)A)B(q)z(q) + -+ B(t)z(t) |,

1=0 i=0
(35)
t—2 t—q—1
=exp( Y A(t—i)A)C(t)B(1)z(1) + - +exp( Z At —i)A)C(t)B(q)z(q) + --- + C(t)B(t)x(t),
i=0 =0
(36)

where the A (t) are time-invariant parameter matrices, thus we have:

Y(t) = AR CHB)z(1) + -+ TPAAC()B(g)z(g) + - + CHBM®)z(t)  (37)
t
=> TDARC(H)B(g)z(q) O (38)
qg=1
The x(t) is t-th input of My m,i.c.,z(t) = M(t), and B(q) is the parameter matrix

Linearg(d(u(q),m(q))), and C(t¢) is the parameter matrix Linearc(e(u(t), m(t))). Thus
d(u(t),m(t)) can be considered as one query of x(t), and e(u(q), m(q)) can be considered as
one key of z(g). Then, §(u, m)e(u, m) can measure the similarity between current input to the previ-
ous ones and selectively copy the previous input, which demonstrates G2SN’s long-term dependencies
for text annotations and motif sequences.

C.3 Proofs of Theorem 3

Proof. Let Y(t) = 22:1 e(t=DAAC(H)B(q)z(q). We prove its gradient flow satisfies Lipschitz
continuity as follows:

The gradient w.r.t parameters contains:

t
VY ZAAe“ DAACBz(q)+ »_ emIARY,[CBJz(q), (39)
g=1 g=1

Time evolution term Parameter dynamics
where 6 denotes model parameters.

For matrix exponential operators:
||eAAt1 _ AAL H2 < ||AA||26HAAH2 max(t1,t2) |t1 B t2|, (40)

yielding Lipschitz constant L; = || AA||2el 22127 for maximum timestep 7.

The parameter matrices C(t) = Linearc(¢(u, m)) and B(q) = Linear(J(u, m)) are constrained
by:

i) Spectral Normalization:
Umax(WB)yamax(WC) S 17 (41)

16



where W 5, W are weight matrices in Linear g, Linearc.
ii) K-Lipschitz Similarity Functions:

[6(u1, m1) — 6(uz, ma)|| < K([Jur — uzf| + [[m; — mol]), (42)
with analogous bound for €(-, -).

Combining these yields:
IV6[CB]|| < Lo(|lu—u'[| + [[m — m'|), (43)
where Ly = 2K+v/d with d as hidden dimension.

The total Lipschitz constant becomes:

L= L1+ Ly - max | C(H)B(q)]2- (44)

Spectral normalization ensures || CB||2 < 1, thus L is finite and data-independent.

Cross-Dataset Transfer Mechanism. The Lipschitz continuity guarantees that attention reweighting
through 4(+), () maintains bounded feature distortion when transferring between domains Dg
(source) and D (target):

YD (t) = Yo, (1) < L-MMD(Ds, Dr), (45)

where MMD denotes Maximum Mean Discrepancy. This theoretically enables stable knowledge
transfer through attention adjustment. O

D Details of Datasets

D.1 Graph Datasets Statistics

Table 4] presents statistics for the utilized pre-training graph dataset UniKG and downstream graph
datasets. The table compares characteristics such as the number of nodes and edges, graph density,
heterogeneity, task type, evaluation metric, and application domain for each dataset. Specially,
“#Nodes” shows the number of nodes for each dataset. Datasets vary significantly in size, from
small networks like Cora (2,708 nodes) to much larger networks like ogbn-products (2,449,029
nodes) and UniKG (77,312,474 nodes). “#Edges” reports the number of edges in the graph. For
instance, Pubmed contains 44,338 edges, while the largest dataset, UniKG, has 641,738,096 edges,
illustrating the scale variation across datasets. Graph “#Density” is the ratio of actual edges to possible
edges in the graph. For instance, Cora and Citeseer have densities of 2.00 and 1.42, respectively,
indicating sparse graphs, while ogbl-ddi has a very high density of 312.84, suggesting a more
densely connected network. “#Heterogeneity” indicates whether the graph is heterogeneous (i.e.,
contains multiple types of nodes and edges). Some datasets, such as ogbn-mag and UniKG-STA, are
marked as ‘Yes’, indicating heterogeneity, while others, such as Cora, Citeseer, and Pubmed, are
homogeneous (‘No’). ‘#Task’ describes the type of learning task associated with each dataset. The
tasks include Node Classification (N.C.), Link Prediction (L.P.), and Graph Classification (G.C.).
For instance, Cora and Pubmed are used for node classification, while ogbl-ddi is used for link
prediction. “#Metric” outlines the evaluation metrics used for performance comparison. Common
metrics include Accuracy (Acce) for classification tasks, rocauc (receiver operating characteristic
area under the curve) for link prediction tasks, Hits @30, and the F1 score for graph classification.
“#Domain” provides the domain or application area of the dataset, such as Citation for academic
citation networks, Biology for biological networks, Product for recommendation systems, and Code
for programming-related graphs.

D.2 Structural Textual Annotation Codebooks Datasets Statistics

Table 5] describes the data statistics of the STA-18 benchmark. Specifically, we further provide the
total number of tokens (including semantic tokens and format tokens) of these text sequence datasets,
the average lengths of the tokens of each node, the disk space required to store the dataset, and the
time required to generate the dataset using our proposed method.
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E Self-Supervised Pre-Training Experiments

E.1 Experimental Setup

To answer the Q1, we apply the G2SN model to a self-supervised feature reconstruction task on
the UniKG-STA dataset. The experimental procedure is as follows: i) We propose the structural
annotation generation algorithm to convert motif quantification distribution scores into text sequences,
which were then vectorized into word frequency matrices by bag-of-words algorithm. The gen-
erated sequences and distribution scores were prepared as training datasets. ii) The architecture
of G2SN consists of multiple stacked G2SN blocks. The model’s input includes mini-batches of
text sequences and distribution scores, which undergo several transformations to reconstruct the
original text sequences features. iii) G2SN is trained using a Mean Squared Error (MSE) loss function
to minimize the difference between the reconstructed and original sequences. iv) To evaluate the
effectiveness of feature reconstruction, we visualize node embeddings before and after training using
t-SNE dimensionality reduction. Additionally, we plot the loss progression, as shown in Figure 3]

E.2 Experimental Analysis

Based on the results shown in Figure [5] we make the following observations: i) Figure [3] (left)
shows that the model’s reconstruction loss decreases rapidly and steadily, indicating efficient and
stable training convergence. This suggests that the model can effectively reconstruct unbiased local
structural semantics based on the input quantification distribution. ii) Pre-training G2SN on the
large-scale UniKG-STA dataset takes only 5.06 hours using a single RTX 4090 GPU. This efficiency
is attributed to Mamba’s linear complexity when handling long sequence inputs. This highlights
G2SN’s capability to efficiently process both long sequence input text sequences and quantification
distribution scores simultaneously. iii) Figure[5|(right) reveals that the input text sequence embeddings
exhibit a relatively dispersed distribution in the 2D space of tSNE, indicating the annotation generation
algorithm can produce diverse text descriptions, offering a broad search space. The reconstructed
output embeddings, while maintaining the original distribution, show partial clustering in the 2D space
of tSNE, suggesting that the model captures quantification distribution similarities inherent in high-
order structural semantics, thereby enhancing its ability to learn generalized structural knowledge.
These observations consistently demonstrate the effectiveness of G2SN in pre-training structural
representation learning on UniKG-STA.

F Statistical Validation of Graph Structure Transfer Correlation

Data Preparation: Let D = {(x;, y;)}I"; represent paired observations where x,; denotes average
degree and y; the transfer performance gain for dataset i.

Pearson Correlation Coefficient:
o= Z?:1(wi —z)(yi —Y)
Vi (@i —2)2 20 (yi — 9)?

where T = 128.52 and § = 6.28 are sample means. Our calculation yields p = 0.82.

(46)

Significance Testing: The ¢-statistic is computed as:

g 2-2
— T 082y~ 47
b=\ 12 =082 T g a2 & 493 “7)

with degrees of freedom df = n — 2 = 10. The critical ¢-value for o = 0.01 is (.91 (10) = 3.169,
leading to p < 0.01.

Table 6: Sensitivity Analysis of Correlation Results

Method p p-value
Original Calculation 0.82 <0.01
Outlier-Removed (Cora excluded) 0.85 <0.005

Nonparametric Bootstrap (10,000 samples) 0.81 +£0.04  <0.01

Normality Validation: Shapiro-Wilk tests confirm normality assumptions:
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Training Loss Over Time
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Figure 5: The visualization of self-supervised pre-training results. The left figure illustrates the con-
vergence of structural semantic reconstruction loss. The right figure visualizes the t-SNE embeddings

of node representations before and after pre-training.

Table 7: Hyper-parameters of the knowledge transfer tasks.

Datasets Methods \ num_hops layers hidden_channels Ir epochs «  seed
Cora GCN - 3 256 0.01 400 - 2025
Citeseer GCN - 3 256 0.01 400 - 2025
Pubmed GCN - 3 256 0.01 400 - 2025
ogbn-proteins ~ GraphSAGE - 3 256 0.01 400 - 2025
ogbn-arxiv GCN - 2 512 0.01 400 - 2025
ogbn-mag GraphSAGE - 2 256 0.01 1000 - 2025
ogbn-products SIGN 5 3 256 0.01 200 0.5 2025
ogbl-ddi GraphSAGE - 2 256 0.005 400 - 2025
ogbl-ppa GraphSAGE - 3 256 0.01 100 - 2025
ogbl-citation2 ~ GraphSAINT - 3 256 0.001 400 - 2025
ogbg-molhiv GIN - 5 300 0.001 100 - 2025
ogbg-molpcba GIN - 5 300 0.001 100 - 2025
ogbg-code2 GCN - 5 300 0.001 25 - 2025

* Average degree: W = 0.96, p = 0.85
* Transfer gain: W = 0.94, p = 0.89

G Complexity Analysis

G.1 Pre-training Experiments Overhead

Pre-training G2SN on the large-scale UniKG-STA dataset takes only 5.06 hours using a single
RTX 4090 GPU. This efficiency is attributed to Mamba’s linear complexity when handling long
sequence inputs. This highlights G2SN’s capability to efficiently process both long sequence input
text sequences and quantification distribution scores simultaneously.

H Hyperparameters and Environments

To maintain fairness, the hyperparameter settings are kept consistent for all experiments on each
dataset. In the self-supervised pre-training experiment, we set the bag-of-words length to 66 for
each text sequence and 10 for the motif score sequence. For the bidirectional Mamba model, we
configure dgiqte as 16, deony as 4, and expand as 2. During training, we use the Adam optimizer
with a learning rate of 0.001, training for 10 epochs. Each batch consists of 50,000 pairs of text and
motif score sequences. The overall dropout rate is set to 0.1, and the hidden dimension is fixed at
256. The G2SN model contains 3 blocks, each comprising 3 convolutional layers from the Mamba
architecture. The random seed is fixed at 2024. Among the 13 downstream graph datasets, only
the ogbn-products dataset uses the SIGN method, a decoupled graph neural network that requires a
precomputed 5-hop feature propagation matrix. The depth of these methods varies between 2, 3, and

Table 8: Hyper-parameters for self-supervised pre-training experiment.

Methods \ len_text len_motif d_state d_conv expend Ir batch_size epochs dropout hidden num_layers num_blocks seed
GSN | 85 10 16 4 2 0.001 50000 10 0.1 256 3 3 2024
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5 layers, with hidden feature dimensions of 256, 512, or 300. The learning rates are set to 0.01, 0.005,
or 0.001, and the number of training epochs is set to 400, 1000, 200, 100, or 25. All experiments use
a fixed random seed of 2024 to ensure reproducibility. All experiments were conducted using a single
24GB GeForce RTX 4090 GPU. The hyperparameters of the pre-train experiments and knowledge
transfer experiments can be found in Table [§|and Table[7]

I Limitation

Considering the balance between mapping overhead, current hardware limitations and model perfor-
mance, our topological primitives mainly design substructures within two neighborhoods. Extending

to three-hop or higher neighborhoods may be able to improve the effect of structural knowledge
transfer.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Yes, please refer to Section[I|for the main claims.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, please refer to Appendix |I|for the limitation.
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Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

Justification: Please refer to Appendix [C.I} Appendix [C.2] and Appendix [C.3] for the
theoretical proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to the anonymous link in the abstract to obtain the dataset and
code, and the Section [H]for the hyperparameter of the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Please refer to the anonymous link in the abstract to obtain the dataset and
code.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

23


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Section [6]for the experiment settings, Appendix [H| for hyperpa-
rameters, and anonymous link in abstract for all the training and test details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have provided the 1-sigma error bar, please refer to Table|l} Notably, we
also validated the performance using Pearson correlation coefficient and significance test,
please refer to Appendix [H

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to the Section [6] Table[5] and Appendix [H for the experiments
compute resources.

Guidelines:
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9.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Yes, this paper conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This paper is a foundational research and not tied to particular applications, so
it will not have a broader social impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we referenced existing assets used and adhered to the license and terms of
each asset.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, we have released a new dataset with well documentation. Please refer to
the anonymous link in the abstract.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)

approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We use LLM to generate the topological primitive mapping dictionary, which
were subsequently manually reviewed, please refer to Section[3] The anonymous link in the
abstract provides an LLM Q&A example.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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