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ABSTRACT

Band selection is crucial in spectral imaging, as it involves choosing the most
relevant bands from large hyperspectral datasets to retain essential information
while reducing the burden of data transmission and analysis. Addressing this need,
we introduce a novel method for band selection that utilizes an Expectation Maxi-
mization algorithm to facilitate selection through the sparsification of spectral band
importance. Our method enhances sparsity effects and effectively delineates the
relationships between spectral bands during the sparsification process. Supported
by thorough theoretical analysis and experimental validation on public datasets,
our approach has proven to be both robust and practical. Compared to other
sparsification methods, it not only excels in achieving significant sparsity effects
but also demonstrates marked advantages in illustrating inter-band relationships.
Our method delivers outstanding performance in band selection tasks and holds
potential for broader applications in other sparsity-oriented contexts in the future.

1 INTRODUCTION

Hyperspectral imaging technologies, extensively employed in areas like remote sensing and agricul-
ture, provide detailed spectral information but encounter challenges such as high operational costs
and complex data processing Mahdianpari et al. (2018); Toker et al. (2022); Zhang et al. (2022); Xiao
& Wei (2023). A fundamental aspect in this domain is the efficient selection of the most informative
spectral bands from the extensive data available. This selection is not only crucial for enhancing
classification performance, as demonstrated by the Hughes phenomenon, but also for reducing data
transmission stress, thereby making the technology more adaptable for various applications.

Recent advancements in band selection, particularly those utilizing deep learning techniques Zhou
et al. (2023); Sun et al. (2021), mark a significant shift away from traditional methods Tang et al.
(2021); Huang & He (2005); Zhang et al. (2007); Fauvel et al. (2015). These modern approaches,
which include reconstruction-based Cai et al. (2019) and classification-based methods Feng et al.
(2020); Jia et al. (2023), are primarily focused on learning the importance of spectral bands. The
central challenge lies in designing mechanisms that effectively represent band importance in alignment
with these specific tasks. The importance extends beyond the contribution of individual bands,
encompassing the significance of various band combinations. For instance, NDVI and NDWI are
commonly used empirical formulas in spectroscopy that assess material properties based on the
interactions among different spectral bands.

However, it has been noted that many existing methods fall short in effectively capturing the im-
portance of relationships between spectral bands. The two most prevalent techniques, clustering
and ranking, both necessitate post-processing, namely the selection of bands based on their relative
importance. These approaches are problematic because the assigned importance is not always precise
and overlooks the interplay between bands, potentially excluding crucial band combinations. To
overcome these limitations, we have adopted a method based on the sparsity of band importance,
leveraging the training process of the network to inherently select bands. This method aims to
enable the network to independently discover the most representative bands, thereby circumventing
the conventional need for post-processing. However, this approach introduces new challenges: 1)
Existing methods of imposing sparsity, such as L1 and L2 losses, do not consistently yield stable
sparsity effects; 2) Current sparsity techniques also fail to depict the inter-band relationships during
the sparsification process.
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To address these challenges, we have developed innovative solutions within our framework. We
introduce a Sparsity Loss based on the Expectation Maximization (EM) algorithm Dempster et al.
(1977), meticulously designed to enhance sparsity in the levels of importance. This method not only
improves sparsity effects but also theoretically facilitates the exploration of relationships between
spectral bands, thereby enabling more stable and reliable band selection. To our knowledge, our
approach is the first to implement a sparsity representation method based on the EM algorithm. We
have conducted comprehensive theoretical analysis and experimental validation to confirm the sparsity
effects and the capability of our proposed method to accurately depict inter-band relationships. Our
approach has undergone rigorous analysis and has been thoroughly validated.

In summary, our main contributions are as follows: 1) We have developed a band selection method
for deep learning that utilizes sparse importance representation, suitable for both supervised and
unsupervised tasks. The integration of Sparsity Loss effectively alleviates the challenge of depicting
the importance among spectral bands. 2) Our methodology introduces an innovative and unique
sparsification technique based on the Expectation-Maximization algorithm, marking a significant
advancement in the field of sparse representation. 3) This paper supports our proposed method with
comprehensive theoretical proofs and analyses, alongside extensive experimental evidence to validate
the efficacy and benefits of our approach. Our method achieves state-of-the-art performance in band
selection methods and, in significance tests, significantly outperforms other sparsity methods.

2 RELATED WORK

The classification of traditional band selection methods for hyperspectral images, as outlined by Sun
et al. Sun & Du (2019), is organized into six categories: Ranking methods (Chang et al. (1999);
Huang & He (2005)) assess band importance based on predefined criteria but ignore correlations
among bands. In contrast, search-based methods (Zhang et al. (2007); Fauvel et al. (2015)) optimize
subsets while considering these correlations, albeit at a higher computational cost. Clustering methods
(Qian et al. (2009); Imbiriba et al. (2015)) reduce redundancy by selecting representative bands from
clusters, though their effectiveness can depend on the chosen algorithm. Sparsity methods (Sun
et al. (2015; 2017)) utilize sparse representation for band selection, facing challenges in parameter
optimization. Embedding learning (Zhang & Ma (2009); Zhan et al. (2017)) combines selection with
classifiers for end-to-end optimization but may lack interpretability. Lastly, hybrid schemes (Datta
et al. (2015); Jiang & Li (2015)) blend various approaches to capitalize on their strengths, resulting in
enhanced effectiveness but increased complexity.

With the rapid development of deep learning Shone et al. (2018); Zhang et al. (2021); Pramanik
et al. (2021), band selection methods based on deep learning Ribalta Lorenzo et al. (2020); Feng
et al. (2020); Pestel-Schiller et al. (2021); Yu et al. (2022) have garnered significant attention in the
academic community. These methods are recognized for their ability to automatically learn complex
features from hyperspectral data and effectively handle high-dimensional, highly correlated, and
noisy data, adapting to various application scenarios. For instance, Cai et al. (2019) introduced
BS-Nets, which use attention mechanisms to assess band importance, while Zhao et al. (2020)
enhanced classification performance through CNN interpretability using 1D GradCAM to visualize
band contributions. Wu & Yan (2021) developed HyperDesc for joint optimization of band selection
and feature extraction via a non-local spectral-spatial attention network. Most recently, Zhou et al.
(2023) proposed IGAEBS, an unsupervised hyperspectral band selection method that uses GCNs
to extract structural features and iteratively refines a band relation graph. While Yao et al. (2024)
designed a novel BS module and cascaded band-specific spatial attention blocks for supervised band
selection. However, these methods do not fundamentally address the issue of spectral band confidence
representation. To tackle these challenges, we introduce a novel sparse learning strategy that achieves
band selection in one step while implicitly representing the relationships between spectral bands.

3 METHOD

3.1 OVERVIEW

In response to the challenge of band selection, we propose a robust and efficient sparse framework.
Our model adopts a task-driven approach to training band selection. The selection process utilizes
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importance levels to identify an optimal subset of bands, with selected bands assigned an importance
level of 1, and unselected bands marked as 0. The training is conducted in an end-to-end manner,
incorporating both task loss and sparsity loss into a deep network that has been randomly initialized
for the specific task. After a set number of training iterations, this method effectively achieves a
sparse distribution of band importance. The loss function is presented as follows:

L = Ltask + αLsp, (1)

where Ltask represents the loss for a subsequent task, which is the classification loss for supervised
image classification tasks, and the reconstruction loss for unsupervised tasks. Lsp denotes the sparsity
loss, and α is a hyperparameter for adjusting the impact of the sparsity loss. In the following sections,
we will elaborate on the principle and the calculation method of Lsp.

3.2 PARAMETER DEFINITION

Let c = {ci} = {c1, c2, . . . , cB} represent the importance weights of each spectral band, where
ci ∈ [0, 1]; B denotes the number of spectral bands, and k indicates the number of bands to be
selected (k ≤ B). The selection status of the i-th band is denoted by bi, where bi = 1 indicates that
the i-th band is selected, and bi = 0 means it is not selected. Each possible selection of spectral
bands is represented by π (e.g., π = [1, 0, 1, 0, 0, 1, 0, ...]), which is a vector of 1/0 values of length
B, indicating whether each band i is selected (bi = 1 or bi = 0) under a particular selection π.
bi = Sign(π, i) (Sign(π, i) ∈ {0, 1}) indicates the selection status bi of band i in a given selection
π. S(k,B) represents the event of sparse selection of k bands from B bands. C(k,B) denotes the set of
all possible selections π for selecting k bands from B bands.

For the raw spectral data input X, we first multiply each spectral band by its corresponding importance
weight ci to obtain X’,

x′
i,h,w = xi,h,w · ci, i = 1, 2, 3, . . . , B, (2)

where x′
i,h,w represents a spectral value in X’ in the i-th channel at the (h,w) location. X’ is used

as the input for the network corresponding to subsequent tasks to compute Ltask. The importance
weights ci are used to calculate Lsp, to achieve sparsification of ci.

3.3 SPARSE LOSS BASED ON THE EM ALGORITHM

We have designed a band importance sparsity method based on the EM algorithm. In the E step,
the probability sum of all selections of k spectral bands from B bands (π ∈ C(k,B)) is calculated to
obtain the expected value E(k,B), which is used to determine Lsp. The M step involves minimizing
Ltask + αLsp through each iteration of gradient backpropagation. This step enables the training of the
subsequent task model while achieving a sparse selection of the spectral bands.

E Step: Calculate the probability sum of all possible selections selecting k spectral bands, which is
E(k,B). The derivation process for E(k,B) is as equation 3,

P (S(k,B)|c) =
∑

π∈C(k,B)

P (S(k,B), π|c)

=
∑

π∈C(k,B)

P (S(k,B)|π, c)P (π|c)

= Eπ∼P (π|c)[P (S(k,B)|π, c)]

=
1

2B
E(k,B)

(3)

where P (S(k,B)|c) is the probability of sparsely selecting k spectral bands from B bands, and P (π|c)
represents the prior distribution of the selection π. We assume that all selections π are equivalent,
that is, P (π|c) = P (π) = 1

2B
, following a uniform distribution; P (S(k,B)|π, c) represents the sparse

probability given a selection π,

P (S(k,B)|π, c) =
B∏
i=1

p(bi = Sign(π, i)|c), (4)

3
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where,

p(bi = 1|c) = ci

p(bi = 0|c) = 1− ci.
(5)

Thus, the calculation of E(k,B) merely involves summing the probabilities of all selections of selecting
k bands. For E(k,B), the following relationship holds:

B∑
k=0

E(k,B) = 1 (6)

The specific calculation process is detailed in the following subsection.

M Step: Combining the loss from subsequent tasks with the expected value obtained, the model’s
loss function is formulated to simultaneously achieve the subsequent tasks and parameter sparsity,

Lsp = − logE(k,B), (7)

L = Ltask + αLsp. (8)

c
(t+1)
i = c

(t)
i −∇(Ltask + αLsp), (9)

where Ltask is the loss associated with the subsequent task, which may either be cross-entropy for
classification tasks or mean squared error for reconstruction tasks. Here, c(t)i denotes the value of ci
following the t-th update iteration in the training process.

3.4 REASONS FOR ACHIEVING SPARSITY

The ability of our method to achieve sparsity can be elucidated through two theorems:

Theorem 1: Within the range of ci ∈ [0, 1], E(k,B) assumes values in [0, 1]. It achieves a value of 1
if and only if, within the set {ci}, k elements are equal to 1 and (B − k) elements are equal to 0.

Theorem 2: Within ci ∈ (0, 1), E(k,B) has no local maxima but only a saddle point at c1 = c2 =

. . . = cB = k
B .

Theorem 1 establishes the upper limit of E(k,B) and demonstrates that it attains its maximum value
exclusively under sparsity conditions. Theorem 2 indicates that during the optimization process,
one does not encounter any local maxima, implying that the initial values of ci will most likely
eventually converge to the maximum value of E(k,B), which corresponds to a sparse configuration.
This theoretically demonstrates the robustness and stability of our method, avoiding convergence to
non-sparse local maxima. For the detailed proof, please refer to the appendix.

3.5 SOLVING E(k,B) USING DYNAMIC PROGRAMMING

We have constructed a computation graph where solid dots represent a spectral band being selected
with a probability p(bi = 1|c), and hollow dots represent a spectral band not being selected, with a
probability p(bi = 0|c). This visualization is depicted in Figure 1(a). The graph is organized into
2k+1 rows and B columns. The sparsification loss Lsp is calculated as the sum of probabilities along
paths (selections) that traverse two specific points, marked in a dashed box at the bottom right corner
of the graph.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Ba
nd

 S
ele

cti
on

 2k
+

1

. . . . . .

All Bands � 

���

(a) Computation graph for E(k,B)

calculation.

�

(b) Representation of p(bi =
1, S|c) in the computation graph.

� �

(c) Representation of p(bj =
1, bi = 1, S|c) in the computation
graph.

Figure 1: Visualizations related to the computation of sparsification loss Lsp and probability representations in
the computation graph.

The recursive formula is defined as follows:

aij =



p(b1 = 0|c) if j = 1 and i = 1,

ai−1
j p(bi = 0|c) if j = 1 and i ̸= 1,

p(b1 = 1|c) if j = 2 and i = 1,

ai−1
j−1p(bi = 1|c) if j = 2 and i ̸= 1,

(ai−1
j + ai−1

j−1)p(bi = 0|c) if j = 3, 5, . . . , 2k + 1 and i ̸= 1,

(ai−1
j−1 + ai−1

j−2)p(bi = 1|c) if j = 4, 6, . . . , 2k and i ̸= 1,

0 else .

(10)

Here, aij represents the cumulative probability of reaching the point (i, j) from the beginning. Upon
completing the iterations of the forward algorithm:

E(k,B) = aB2k + aB2k+1, (11)

Lsp = − log(aB2k + aB2k+1). (12)

3.6 ADVANTAGES IN DEPICTING RELATIONSHIPS BETWEEN SPECTRAL BANDS

Within our framework, it is possible to describe the relationships between spectral bands. Firstly,
unlike other sparsification methods, our approach involves competition among selections π, which
inherently represents the multivariate relationships among spectral bands. Secondly, from the
perspective of individual spectral bands, our method can theoretically describe the relationships
between bands, specifically, P (bj = 1|bi = 1, S(k,B), c). This probability indicates the likelihood
that band j is selected given that the sparse event S(k,B) occurs and band i is selected:

P (bj = 1|bi = 1, S(k,B), c) =
P (bj = 1, bi = 1, S(k,B)|c)

P (bi = 1, S(k,B)|c)
. (13)

Here, P (bj = 1, bi = 1, S(k,B)|c) denotes the sum of probabilities for all selections that select k
spectral bands passing through nodes bj = 1 and bi = 1; P (bi = 1, S|c) represents the sum of
probabilities for all selections that select k spectral bands passing through node bi = 1 (as shown in
Figure 1(b) and 1(c)). Similarly, the expression for P (bj = 1 | bi = 1, bk = 1, bm = 0, . . . , S(k,B), c)
is the same.

Therefore, during the sparsification process, as the importance of a particular band increases, it
influences the probability of selection for all spectral bands globally. This means that bands with
significant local importance may no longer be decisive and could be influenced by the global
distribution of bands, tending towards a relatively optimal global outcome. Our experiments also
demonstrated a sequentially sparsified series of attributes, leading us to believe that our method can.
describe the multivariate relationships between spectral bands. Our future work will continue to focus
on addressing this issue, as we believe our theoretical framework provides a viable solution.
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3.7 ANALYSIS OF p(π|c)

The physical meaning of p(π|c) is that, prior to selecting spectral bands, we assume that all bands or
band selections are equivalent. This assumption is commonly made in the design and comparison of
spectral band selection algorithms. Importantly, our method is also applicable to specific scenarios or
applications with additional requirements for the selected bands. It does not necessitate a globally
uniform distribution, rather, a piecewise locally uniform distribution can also be effectively utilized.
Variants of the method for such cases will be briefly introduced in the appendix.

3.8 GRADIENT CALCULATION

The method for calculating the gradient is given by,

∂Lsp

∂ci
= − 1

E(k,B)

∂E(k,B)

∂ci
= − 1

P (S(k,B)|c)

(
P (bi = 1, S(k,B)|c)

ci
−

P (bi = 0, S(k,B)|c)
1− ci

)
(14)

where P (S(k,B)|c) = P (bi = 1, S(k,B)|c) + P (bi = 0, S(k,B)|c). The backward operation of
dynamic programming is conducted using the same computational graph for P (bi = 1, S(k,B)|c) and
P (bi = 0, S(k,B)|c). Details will be provided in the appendix of the paper.

3.9 COMPUTATIONAL COMPLEXITY

The computation of loss and gradient involves both forward and backward dynamic programming
processes. The theoretical computational complexity of these operations is quantified as 2×O(B ×
(2× b+ 1)). For the band selection task, our computational complexity is minimal, even lower than
the number of floating-point operations required for a 1× 1 convolution. In the future, we plan to
apply this method to larger-scale sparse tasks, such as model compression. For models with hundreds
of millions of parameters, we aim to explore alternative approximate methods, such as Monte Carlo
sampling or hybrid sparsification techniques, to enhance computational efficiency and broaden the
applicability of our approach.

4 EXPERIMENTS

In our paper, we conducted extensive experiments to validate our spectral band selection methodology
using hyperspectral data from various public datasets. Our experimental design included: the
comparison with alternative spectral band selection methods, the demonstration of the sparsity effects,
the evaluation against other sparsification techniques, and discussions on the hyperparameters. The
primary objectives of our experiments were to demonstrate that: 1) our method is highly effective in
selecting spectral bands; 2) it achieves notable sparsity; 3) it offers superior capabilities in depicting
the relationships between spectral bands. Additional experimental results are presented in the
appendix, including analyses of performance across more classifiers, performance variation with
different numbers of selected spectral bands, and experiments evaluating performance on other tasks.

4.1 DATASETS

In this study, we utilize three distinct and multifaceted datasets for comprehensive analyses and
experiments: the KSC hyperspectral dataset Green et al. (1998), the 2013 Houston University dataset
(HT2013) GRS (2013) and the 2018 Houston University dataset (HT2018) Prasad et al. (2020).
The KSC dataset, captured by the AVIRIS sensor over the Kennedy Space Center, Florida, on
March 23, 1996, includes a hyperspectral image with 176 of the original 224 spectral bands, after
removing 48 bands affected by water vapor noise. This image features a spatial resolution of 18
meters and dimensions of 512×614 pixels, supporting diverse applications such as hyperspectral
image classification and mixed pixel decomposition across 13 land cover types. The HT2013 dataset,
provided by the IEEE GRSS Data Fusion Technical Committee, combines hyperspectral and LiDAR
data, including a hyperspectral image with 144 bands covering 380 nm to 1050 nm and a LiDAR-
derived Digital Surface Model, both at a spatial resolution of 2.5 meters, and introduces 15 land cover
types. The HT2018 dataset consists of a hyperspectral image and a LiDAR-derived DSM, both
with a spatial resolution of 2.5 meters. It includes 144 spectral bands, ranging from 380 nm to 1050

6
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Methods Ground Truth
5 Selected Bands 10 Selected Bands

SSDGL(2022) DBDA(2020) SSDGL(2022) DBDA(2020)

OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa

All bands - 93.9% 92.1% 0.929 84.2% 83.0% 0.837 93.9% 92.1% 0.929 84.2% 83.0% 0.837
Cai et al. (2019) - 93.1% 92.0% 0.921 75.9% 65.8% 0.728 93.7% 90.2% 0.929 79.9% 64.2% 0.771
Li et al. (2021) - 93.3% 91.3% 0.926 74.8% 71.6% 0.721 93.6% 91.1% 0.923 75.4% 70.2% 0.702
Wu & Yan (2021) ✓ 87.9% 86.8% 0.862 70.0% 65.1% 0.677 83.3% 80.8% 0.810 67.5% 60.0% 0.574
Li et al. (2023) - 91.0% 88.9% 0.897 72.6% 66.4% 0.689 93.7% 90.3% 0.928 74.1% 70.3% 0.693
Jia et al. (2023) ✓ 93.9% 91.8% 0.925 83.8% 82.6% 0.826 93.1% 91.3% 0.926 81.1% 79.6% 0.804
Zhou et al. (2023) - 93.9% 91.6% 0.932 74.8% 70.1% 0.714 94.2% 90.9% 0.934 81.4% 71.0% 0.788
Yao et al. (2024) ✓ 95.3% 93.9% 0.954 86.2% 85.0% 0.854 95.5% 92.6% 0.950 83.3% 82.5% 0.805

Ours(CLS) ✓ 96.1% 94.5% 0.959 87.4% 86.4% 0.861 95.9% 93.3% 0.953 84.2% 83.2% 0.820
Ours(REC) - 94.8% 92.0% 0.940 77.7% 68.3% 0.745 94.6% 91.3% 0.939 83.6% 78.7% 0.815

Table 1: Comparison of classification accuracy on the KSC dataset using 5 and 10 selected bands.

Methods Ground Truth
5 Selected Bands 10 Selected Bands

SSDGL(2022) DBDA(2020) SSDGL(2022) DBDA(2020)

OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa

All bands - 94.7% 95.2% 0.943 88.5% 87.7% 0.876 94.7% 95.2% 0.943 88.5% 87.7% 0.876
Cai et al. (2019) - 92.9% 92.4% 0.924 77.5% 78.1% 0.757 95.1% 94.8% 0.948 86.3% 86.6% 0.853
Li et al. (2021) - 92.9% 92.3% 0.924 67.6% 68.9% 0.650 94.4% 94.2% 0.940 75.9% 77.3% 0.740
Wu & Yan (2021) ✓ 93.4% 93.0% 0.929 75.9% 76.0% 0.740 95.3% 94.4% 0.950 85.6% 86.6% 0.844
Li et al. (2023) - 93.6% 92.5% 0.931 79.5% 72.2% 0.778 95.1% 93.9% 0.947 85.3% 86.0% 0.842
Jia et al. (2023) ✓ 94.7% 94.4% 0.943 77.8% 78.8% 0.760 96.0% 95.1% 0.952 83.9% 83.5% 0.827
Zhou et al. (2023) - 92.4% 92.0% 0.916 75.9% 75.5% 0.748 94.9% 94.3% 0.941 84.3% 85.0% 0.836
Yao et al. (2024) ✓ 95.1% 95.1% 0.945 80.5% 80.0% 0.788 95.8% 95.6% 0.954 86.3% 85.1% 0.852

Ours(CLS) ✓ 95.6% 95.4% 0.952 81.0% 80.1% 0.795 96.3% 96.2% 0.960 87.1% 86.6% 0.861
Ours(REC) - 93.7% 93.1% 0.932 79.9% 78.1% 0.784 95.7% 95.1% 0.953 88.9% 88.7% 0.880

Table 2: Comparison of classification accuracy on the HT2013 dataset using 5 and 10 selected bands.

nm, and covers an area of 349×1905 pixels around the University of Houston campus. The dataset
features 15 categories of ground objects, including water bodies, grasslands, trees, buildings, roads,
and cars.

4.2 IMPLEMENTATION DETAILS

For experiments conducted on public datasets, we followed the partitioning scheme proposed by Li
et al. (2020), allocating 5% of the samples for training and band selection, while the remainder were
set aside as a test set, aimed at validating the effectiveness of our chosen bands in image classification
tasks. The input to the image was a 64x64 patch, the chosen optimizer was Adam, and a batch size of
4 was employed. A single V100 was used for both training and inference. For testing, the raw data
was sampled according to the chosen bands, then the corresponding classifier was used for training
and testing with a batch size of 16. All other settings remained consistent. In our experiments, we set
α to 0.1.The ci is initially set to 0.5.

4.3 PERFORMANCE OF BAND SELECTION ON PUBLIC DATASETS

In this section, we assess the performance of our band selection methodology on various public
hyperspectral datasets, and provide a comparative analysis with other state-of-the-art techniques, for
example, Yao et al. (2024), Zhou et al. (2023), Jia et al. (2023), Wu & Yan (2021), Li et al. (2021), Li
et al. (2023) and Cai et al. (2019). The fewer the selected spectral bands, the greater the challenge for
the algorithm. Therefore, following the experimental setup by Zhou et al. (2023), we compare the
top 10 and top 5 bands chosen by each method. The network is retrained using the training set data
of the selected spectral bands, and the effectiveness of the band selection is evaluated based on the
classification performance on its test set. We measure classification accuracy using Overall Accuracy
(OA), Average Accuracy (AA), and Kappa coefficient. For this experiment, we employ two deep
learning image classification methods SSDGL Zhu et al. (2022) and DBDA Li et al. (2020). The
detailed results are presented in Table 1, 2, 4, and 3, where our methods, Ours(CLS) and Ours(REC),
are driven by classification and reconstruction tasks, respectively.

Taking into account all experimental indicators, the method proposed in this paper stands out in
extracting characteristic spectral bands. This leads to a significant enhancement in both accuracy and
efficiency compared to other cutting-edge methods. Our method notably diverges from importance
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Methods KSC Dataset HT2013 Dataset

5 Bands 10 Bands 5 Bands 10 Bands

Cai et al. (2019) [55, 63, 70, 85, 86] [42, 55, 63, 70, 74, 75, 85, 86, 88, 118] [24, 26, 27, 28, 96] [24, 26, 27, 28, 31, 42, 96, 98, 136, 142]
Li et al. (2021) [33, 115, 117, 119, 120] [33, 34, 114, 115, 116, 117, 119, 120, 121, 122] [64, 65, 114, 142, 143] [63, 64, 65, 66, 82, 114, 140, 141, 142, 143]
Wu & Yan (2021) [37, 67, 131, 173, 175] [0, 131, 132, 167, 169, 171, 172, 173, 175, 176] [49, 50, 52, 55, 143] [8, 36, 40, 45, 47, 49, 50, 52, 55, 143]
Li et al. (2023) [1, 28, 59, 109, 128] [1, 28, 59, 84, 88, 96, 109, 128, 134, 175] [38, 48, 63, 118, 135] [14, 38, 48, 52, 63, 73, 95, 118, 135, 143]
Jia et al. (2023) [0, 40, 54, 65, 166] [0, 8, 10, 40, 54, 55, 65, 95, 143, 166] [27, 64, 65, 89, 107] [22, 25, 26, 27, 64, 65, 89, 105, 107, 108]
Zhou et al. (2023) [32, 73, 125, 170, 174] [0, 32, 73, 125, 167, 169, 170, 171, 172, 174] [0, 1, 121, 122, 123] [0, 1, 2, 3, 120, 121, 122, 123, 124, 125]
Yao et al. (2024) [13, 34, 55, 76, 93] [13, 30, 34, 43, 55, 76, 91, 93, 105, 117] [6, 29, 51, 67, 90] [6, 28, 29, 50, 51, 67, 79, 90, 109, 137]

Ours(CLS) [25, 26, 28, 29, 96] [24, 25, 26, 30, 31, 32, 37, 95, 96, 118] [4, 6, 8, 68, 142] [3, 4, 5, 36, 63, 64, 73, 87, 88, 143]
Ours(REC) [13, 32, 35, 37, 173] [13, 17, 19, 21, 26, 32, 37, 63, 96, 120, 173] [12, 80, 81, 130, 131] [11, 12, 19, 46, 73, 80, 81, 82, 130, 131]

Table 3: Detailed selected bands for each method across the KSC and HT2013 datasets, organized by the number
of selected bands, sorted in ascending order.

Methods Ground Truth
5 Selected Bands 10 Selected Bands

SSDGL(2022) DBDA(2020) SSDGL(2022) DBDA(2020)

OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa

All bands - 98.0% 95.4% 0.975 89.4% 85.5% 0.862 98.0% 95.4% 0.975 89.4% 85.5% 0.862
Li et al. (2021) - 96.2% 89.7% 0.950 80.4% 70.8% 0.770 96.9% 91.2% 0.956 83.7% 77.6% 0.798
Wu & Yan (2021) ✓ 96.0% 91.6% 0.948 82.3% 72.2% 0.771 96.4% 89.3% 0.953 84.9% 79.7% 0.803
Li et al. (2023) - 95.9% 88.4% 0.943 79.2% 68.9% 0.760 97.1% 90.8% 0.957 83.9% 78.5% 0.805
Jia et al. (2023) ✓ 96.8% 92.2% 0.943 77.2% 62.5% 0.699 97.4% 93.7% 0.966 85.1% 76.4% 0.807
Zhou et al. (2023) - 96.7% 91.0% 0.952 82.5% 75.2% 0.780 97.3% 92.6% 0.959 84.2% 79.4% 0.814
Yao et al. (2024) ✓ 97.5% 93.5% 0.965 85.2% 78.0% 0.805 97.9% 93.1% 0.970 87.0% 82.0% 0.835

Ours(CLS) ✓ 98.2% 94.3% 0.977 85.6% 80.0% 0.811 98.3% 94.9% 0.978 88.1% 84.4% 0.845
Ours(REC) - 97.3% 92.5% 0.958 84.9% 79.5% 0.805 97.9% 93.3% 0.970 86.5% 80.5% 0.828

Table 4: Comparison of classification accuracy on the HT2018 dataset using 5 and 10 selected bands.

ranking approaches because it is associated with the number of spectral segments selected. The
optimal results obtained with 10 spectral segments are not necessarily equivalent to those with 5, an
intuitively reasonable notion. Furthermore, there are cases where choosing 5 spectral segments results
in greater accuracy than opting for 10, indicating that a higher number of spectral segments doesn’t
always correspond with better classification performance. This is in line with the insights provided
by Morales et al. (2021), who highlight that an increase in spectral bands can lead to excessive
redundancy and may not improve classification efficacy. The high-dimensional nature of data further
complicates model convergence and generalization. The current experimental outcomes also adhere
to the Hughes phenomenon, whereby the classification accuracy first improves and then diminishes
as the number of spectral bands grows.

4.4 SPARSITY OF IMPORTANCE LEVELS

Fig. 3 presents the evolution of importance levels for different bands throughout the training process.
Primarily, these can be grouped into two categories: selected bands and non-selected ones. The
importance levels for the selected bands display an initial decrease followed by a subsequent increase,
while those for the non-selected bands show a consistent decline. the turning point of this decline
corresponds to the saddle point identified in Theorem 2 of Section 3.4, indicative of typical behavior in
the optimization process. Furthermore, the band sparsification process exhibits a feature of sparsity in
sequence. We infer that, during the learning process, bands with significant importance are sparsified
first, which subsequently influences the model’s evaluation of the importance of later bands, thereby
creating a sequential sparsification trend.

4.5 COMPARISON WITH OTHER SPARSITY STRATEGIES

We will compare our sparsity technique with other commonly used sparsity strategies. Our comparison
encompasses two aspects: the degree of sparsity and the classification performance of selected bands.
Fig. 2 compares the distribution of band importance levels after 300 training epochs for various
sparsity losses such as L1 and L2 norm. As shown in the figure, our proposed method exhibits a
superior degree of sparsity. Furthermore, Table 5 presents the selected bands and their respective
classification results. The Gumbel-Sigmoid method, proposed by Zhou et al. (2021), achieves
enforced sparsity by continuously tightening the temperature coefficient T . In contrast, our method is
not constrained by such a parameter, offering greater flexibility The loss function proposed in this
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Figure 2: Sparsity of importance levels compared with other sparse loss.

Methods Selected Bands SSDGL DBDA

OA AA Kappa OA AA Kappa

L1 [143, 18, 72, 82, 35] 94.5% 94.2% 0.940 78.6% 79.3% 0.769
L2 [72, 73, 64, 34, 65] 94.3% 94.0% 0.938 76.4% 76.4% 0.745
Gumbel [36, 66, 82, 63, 92] 94.7% 94.8% 0.941 80.4% 79.4% 0.789

Lsp [4, 6, 8, 68, 142] 95.6% 95.4% 0.952 81.0% 80.1% 0.795

Table 5: Comparison of classification accuracy when selecting 5 bands on the HT2013 dataset using different
sparsification losses.

paper allows for the learning of more representative bands and achieves superior performance in the
classification task.

4.6 EXPLORING THE EFFECTIVENESS OF Lsp IN MINING RELATIONSHIPS

In this experiment, we established a scenario containing K (K ∈ {50, 100}) spectral bands (c, where
ci ∈ [0, 1]), and constructed a K × K binary weight matrix (A, where ai,j > 0) to describe the
relationships among these bands. The goal was to maximize the sum of binary weights by selecting
5 and 10 bands (|cA ∗ c|1). To achieve this, we applied four different methods: L1, L2, Gumbel,
and EM, each run 40 times under various random seed settings to select the band combination that
maximized the weight sum. By comparing the results generated by these methods, we utilized
statistical tests (T-tests) to assess and demonstrate the superiority of the EM method in mining and
utilizing the relationships between spectral bands. The experiment results indicated that the EM
method showed a statistically significant advantage (p < 0.05) in depicting the relationships between
bands compared to the L1, L2, and Gumbel methods, thereby proving its potential and effectiveness
in solving such problems (see Table 6).

4.7 HYPERPARAMETER ANALYSIS

In this section, we delve into the determination of optimal hyperparameters for the sparsity loss func-
tion, mainly examining the degree of sparsity and classification accuracy. Through our experiments,
we found that a hyperparameter of 0.05 produced the best results. As shown in Table 7, when the

Comparison 5 from 50 bands 10 from 50 bands 5 from 100 bands 10 from 100 bands
t-value p-value t-value p-value t-value p-value t-value p-value

Lsp vs L1 5.224 < 0.001 4.989 < 0.001 4.732 < 0.001 7.658 < 0.001
Lsp vs L2 12.048 < 0.001 9.930 < 0.001 4.425 < 0.001 7.727 < 0.001
Lsp vs Gumbel 9.173 < 0.001 6.543 < 0.001 2.207 0.036 13.549 < 0.001

Table 6: Statistical comparison using different sparsification losses for selecting 5 and 10 spectral bands from 50
and 100 bands.
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α Selected Bands Sparsity Status OA

0.1 [25, 26, 28, 29, 96] True 96.1%
0.05 [42, 43, 95, 96, 118] True 96.4%
0.03 [42, 43, 95, 96, 118] True 96.4%
0.02 [40, 41, 42, 43, 96] False 95.6%

Table 7: Classification accuracy on the KSC dataset using 5 selected bands with varying hyperparameters of
sparsity loss.

hyperparameter is below 0.02, the parameters of the band importance fail to converge and to achieve
sparsity (see Fig. 4). While the bands selected at 0.05 and 0.03 are the same, the convergence speed is
faster at 0.05. Regarding the performance of the sparsity loss hyperparameter in image classification
tasks, it shows an initial increase followed by a decrease as the hyperparameter decreases. We believe
the reason for this trend is that during the band selection process, the classification gradient and the
sparsity gradient are balanced and antagonized. The larger the hyperparameter for sparsity loss, the
stronger the sparsity gradient and the most important information transmitted by the classification
gradient is more likely to be masked. As the sparsity gradient is minimized, a sufficient interplay
between the two is allowed, hence selecting the most representative bands.

However, when the hyperparameter for sparsity loss is less than 0.03, it means that the sparsity
gradient is not strong enough to compete with the classification gradient to make the parameters as
sparse as possible. After all, the classification task hopes to use as many features as possible, while the
sparsity task hopes to ignore as many bands as possible, creating a certain degree of contradiction. In
addition, the decline in classification accuracy at 0.02 further confirms our assumption, i.e., importance
sparsity helps alleviate issues brought about by inaccurate importance levels, thus learning more
representative bands.
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Figure 3: Changes in spectral band importance over
training epochs. As illustrated, the sparsification pro-
cess exhibits certain sequential characteristics, that is,
bands selected earlier may influence the selection of
subsequent bands.
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Figure 4: Sparsity process of 0.002. At 0.02, the gra-
dient brought about by the sparsity loss is insufficient
to counterbalance the classification gradient, thus cre-
ating a watershed at 0.02 that makes it difficult for the
model to be sparse.

5 CONCLUSION

This research has made significant contributions to overcoming the limitations of existing band
selection methods in hyperspectral imaging technologies. We have proposed a novel deep-learning
band selection method based on importance sparsity to address the issue of depicting the relationships
between spectral bands. The introduction of Sparsity Loss has markedly improved band selection
performance and convergence. Our method’s validation on public datasets demonstrates its robustness
and practical applicability. In the future, we aim to further investigate the relationship between the
representation of importance in band selection, subsequent models, and input data. Additionally, we
plan to explore the effectiveness of our proposed sparsification method in other diverse fields.
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APPENDIX

The appendix includes the following sections:

1. Disclosure of the code used in the research;

2. Detailed proofs of the two theorems presented in Section 3.4;

3. The application of dynamic programming for solving P (bi = 1, S(k,B)|c) and P (bi =
0, S(k,B)|c), along with the computation of gradients;

4. Additional experimental results.

5. Analysis and Interpretation of Sparse Loss from an another perspective;

6. Design considerations regarding ci being within the interval [0,1];

7. Variants of the method under a locally uniform distribution;

8. Additional Thoughts on Sparsification and Spectral Band Selection.

A CODE DISCLOSURE

Our code is currently available at https://anonymous.4open.science/r/
Sparse-Hyperspectral-Band-Selection-Based-on-Expectation-Maximization-4EEC and will
be made public on GitHub after the article is published. Should the link fail to open, the code has
been provided in a zip file within the Supplementary Material.

B PROOFS OF THEOREMS IN SECTION 3.4

Theorem 1: Within the range of ci ∈ [0, 1], E(k,B) assumes values in [0, 1]. It achieves a value of 1
if and only if, within the set {ci}, k elements are equal to 1 and (B − k) elements are equal to 0.

Proof:

∵ E(k,B) =
∑

π∈C(k,B)

P (S(k,B)|π, c)

∵ P (S(k,B)|π, c) ≥ 0

∴ E(k,B) ≥ 0

∵
B∑
i=0

E(i,B) =

B∏
j=0

[P (bj = 0|C) + P (bj = 1|C)] = 1

∴ E(k,B) ≤
B∑
i=0

E(i,B) = 1

∴
B∑
i=0

E(i,B) − E(k,B) =

B∑
i=0,i̸=k

E(i,B)

When E(k,B) = 1, then
∑B

i=0,i̸=k E(i,B) = 0, it follows that in the set {ci}, there are k elements
equal to 1 and the rest are 0.

Theorem 2: Within ci ∈ (0, 1), E(k,B) has no local maxima but only a saddle point at c1 = c2 =

. . . = cB = k
B .
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Proof:

∵ E(k,B) =
∑

π∈C(k,B)

P (S(k,B)|π, c)

∴ E(k,B) = ciE(k−1,B−1) + (1− ci)E(k,B−1)

∴ E(k,B) = (ci(1− cj) + cj(1− ci))E(k−1,B−2) + cicjE(k−2,B−2)

∴
∂E(k,B)

∂ci
= (1− 2cj)E(k−1,B−2) + cjE(k−2,B−2)

∴
∂E(k,B)

∂ci
−

∂E(k,B)

∂cj
= 2(ci − cj)E(k−1,B−2) − (ci − cj)E(k−2,B−2)

∴
∂E(k,B)

∂ci
−

∂E(k,B)

∂cj
= (ci − cj)(2E(k−1,B−2) − E(k−2,B−2))

Substituting 2E(k−1,B−2) = E(k−2,B−2) into ∂E(k,B)

∂ci
= 0, we get E(k−1,B−2) = E(k−2,B−2) = 0,

which are discarded.

∵ ci = cj

∴ c1 = c2 = ... = cB

Substituting into ∂E(k,B)

∂ci
= 0, we obtain,

Ck−1
B−1c

k−1
i (1− ci)

B−k − Ck
B−1c

k
i (1− ci)

B−1−k = 0

∴ ci =
k

B
∂E(k,B)

∂ci∂ci
= 0

∂E(k,B)

∂ci∂cj
=

1

B − 1
− 2

k − 1
− 2E(k−1,B−2) + E(k−2,B−2)

Substituting c1 = c2 = ... = cB = k
B , we get,

∂E(k,B)

∂ci∂cj
=

1

B − 1
−
(

2

k − 1
+

1

B − k

)
k

B
= δ

∴ H =


0 δ · · · δ
δ 0 · · · δ
...

...
. . .

...
δ δ · · · 0


∴ eig(H) = eig(δ(J − I))

∵ J =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


The matrix J has eigenvalues [B, 0, . . . , 0, 0]. Therefore, the eigenvalues of H are [δ(B −
1),−δ, . . . ,−δ,−δ]. Given that δ(B − 1) and −δ have opposite signs, it follows that the solu-
tion c0 = c1 = . . . = cB = k

B represents a saddle point.
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C GRADIENT CALCULATION USING DYNAMIC PROGRAMMING

The recursive formula for the backward algorithm is defined as follows,

zij =



p(bB = 0|c) if j = 2k + 1 and i = B,

zi+1
j p(bi = 0|c) if j = 2k + 1 and i ̸= B,

p(bB = 1|c) if j = 2k and i = B,

zi+1
j+1p(bi = 1|c) if j = 2k and i ̸= B,

(zi+1
j + zi+1

j+1)p(bi = 0|c) if j = 1, 3, . . . , 2k − 1 and i ̸= B,

(zi+1
j+1 + zi+1

j+2)p(bi = 1|c) if j = 2, 4, . . . , 2k − 2 and i ̸= B,

0 else .

(15)

Combine the forward algorithm and backward algorithm to calculate P (bi = 1, S(k,B)|c) and
P (bi = 0, S(k,B)|c),

qij =


ai
jz

i
j

p(bi=0|c) if j = 1, 3, . . . , 2k + 1
ai
jz

i
j

p(bi=1|c) if j = 2, 4, . . . , 2k.
(16)

The term qij represents the sum of probabilities for all selections passing through node (i, j). Since
aij and zij involve multiplying p(bi = 0|c) or p(bi = 1|c) twice, the product needs to be divided by
one. Therefore, the method to calculate P (bi = 1, S(k,B)|c) and P (bi = 0, S(k,B)|c) is,

P (bi = 0, S(k,B)|c) =
k+1∑
j=1

qi2j−1, (17)

P (bi = 1, S(k,B)|c) =
k∑

j=1

qi2j . (18)

Therefore, the gradient of the sparse loss can be represented as,

∂Lsp

∂ci
= − 1

E(k,B)

∂E(k,B)

∂ci
(19)

= − 1

P (S(k,B)|c)

(
P (bi = 1, S(k,B)|c)

ci
−

P (bi = 0, S(k,B)|c)
1− ci

)
(20)

= − 1

aB2k + aB2k+1

(

∑k
j=1 q

i
2j

ci
−
∑k+1

j=1 q
i
2j−1

1− ci
) (21)

(22)

D ADDITIONAL EXPERIMENTAL RESULTS.

In this section, we performed additional experimental analyses, focusing on three main aspects: the
performance of the experimental results when tested with an alternative classification network, the
accuracy variation across different spectral band selections, and the performance of the band selection
method in other tasks.

D.1 EXPERIMENTS ON DIFFERENT CLASSIFIERS

To further evaluate performance across a broader range of classifiers, we selected two additional
classifiers (Two-CNN Yang et al. (2017) and CDSFT Qiu et al. (2023)) and compared the results
across four classifiers in total. Table 8 presents the experimental results.

D.2 ACCURACY VARIATION IN DIFFERENT SPECTRAL BANDS

In our experiments, we observed that fewer spectral bands often led to higher accuracy. While this
aligns with the Hughes phenomenon, the underlying principles and explanations specific to neural
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Methods Ground Truth Two-CNN(2018) DBDA(2020) SSDGL(2022) CDSFT(2023)

OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa

All bands ✓ 81.2% 75.0% 0.785 84.2% 83.0% 0.837 93.9% 92.1% 0.929 98.2% 97.2% 0.978
Wu & Yan (2021) ✓ 74.7% 64.3% 0.711 70.0% 65.1% 0.677 87.9% 86.8% 0.862 93.4% 90.0% 0.925
Jia et al. (2023) ✓ 77.2% 71.5% 0.758 83.8% 82.6% 0.826 93.9% 91.8% 0.925 96.0% 93.1% 0.955

Ours(CLS) ✓ 82.2% 74.8% 0.792 87.4% 86.4% 0.861 96.1% 94.5% 0.959 98.0% 95.6% 0.968

Table 8: Comparison of classification accuracy on the KSC dataset using different classifiers.

3 bands 4 bands 5 bands 7 bands 10 bands 20 bands All Bands

OA 91.0% 95.1% 96.1% 96.5% 95.9% 94.8% 93.9%
AA 90.7% 92.2% 94.5% 94.4% 93.3% 92.7% 92.1%
Kappa 0.895 0.938% 0.959 0.956 0.953 0.941 0.929

Table 9: Accuracy variation under SSDGL in different spectral bands.

networks are not entirely clear. We found this effect to be influenced by the experimental dataset
and the classification methods used for validation, with some methods on certain datasets showing a
particularly pronounced effect (e.g., accuracy with 5 bands > 10 bands > full spectrum). We suspect
this may be due to the increased number of spectral bands without a corresponding increase in
data volume, which makes the model more prone to overfitting during optimization, thus impacting
generalization. Table 9 provides additional experimental results that illustrate these accuracy changes.

D.3 EXPERIMENTS IN DIFFERENT TASKS

We included anomaly detection and target detection experiments in Tables 10 and 11. Target detection
was conducted on the Viareggio 2013 dataset Acito et al. (2016) using the ACDA Hu et al. (2021)
testing method, while anomaly detection was performed on the San Diego II dataset with the testing
method HTD-IRN Shen et al. (2023).

Methods AUC

All bands 0.801
Cai et al. (2019) 0.808
Li et al. (2021) 0.757
Zhou et al. (2023) 0.821

Ours(REC) 0.839

Table 10: Comparison of AUC on the Viareggio
2013 dataset (anomaly detection).

Methods AUC

All bands 0.998
Cai et al. (2019) 0.706
Li et al. (2021) 0.864
Zhou et al. (2023) 0.753

Ours(REC) 0.914

Table 11: Comparison of AUC on the San Diego
II dataset (target detection).

E ANALYSIS AND INTERPRETATION OF SPARSE LOSS

In order to explore the operational principles behind the sparsity loss function Lsp, we derive the
following insights: The sparsity loss Lsp can be conceptualized as a two-step process. Initially,
each band is assigned a pseudo label based on its context. Following this, the pseudo label and its
associated confidence level are subjected to cross-entropy training. This method aims to train the
importance of bands to achieve maximal sparsity.

To prove this, we first derive its gradient,

∂Lsp

∂ci
= − 1

P (S(k,B)|c)

(
P (bi = 1, S(k,B)|c)

ci
−

P (bi = 0, S(k,B)|c)
1− ci

)
(23)

= −
P (bi = 1, S(k,B)|c)

P (S(k,B)|c)
1

ci
+

P (bi = 0, S(k,B)|c)
P (S(k,B)|c)

1

1− ci
. (24)
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In the equation,

P (bi = 1, S(k,B)|c)
P (S(k,B)|c)

+
P (bi = 0, S(k,B)|c)

P (S(k,B)|c)
= 1. (25)

Let,

p̂i =
P (bi = 1, S(k,B)|c)

P (S(k,B)|c)
, (26)

1− p̂i =
P (bi = 0, S(k,B)|c)

P (S(k,B)|c)
, (27)

we obtain,

∂Lsp

∂ci
= − p̂i

ci
+

1− p̂i
1− ci

(28)

= −∂p̂i log ci
∂ci

− ∂(1− p̂i) log(1− ci)

∂ci
(29)

= −∂(p̂i log ci + (1− p̂i) log(1− ci))

∂ci
(30)

where p̂i can be viewed as a constant. It is an estimate of the probability for selecting the ith band.
This gradient is equivalent to the cross-entropy gradient of the label p̂i and probability value ci,

argmin
C

Lsp = argmin
C

−
B∑
i=1

(p̂i log ci + (1− p̂i) log(1− ci)). (31)

In this equation, p̂i can be interpreted as the pseudo labels. These pseudo labels are calculated as the
ratio of the sum of the probabilities of all selections passing through the filled (or hollow) nodes to
the sum of the probabilities of all selections. This aids in understanding the operational principle
of Sparse Loss. We also analyze its convergence process in the experimental section. The original
pseudocode is outlined in Algorithm 1, and the version using pseudo labels is presented in Algorithm
2. These two are equivalent in function.

Algorithm 1 Sparse Loss Based on Expectation-Maximization Algorithm

1: Initialize band selection weights C(0) with 0.5, maximum training epochs T ,
2: t = 0
3: repeat
4: E Step: Calculating probability p(bi = 1|c) and p(bi = 0|c) based on importance c, and Lsp

can be obtained by dynamic programming.
5: M Step: Updating band selection weights C with Lsp and Ltask,

c
(t+1)
i = c

(t)
i −∇(Ltask + αLsp)

6: t = t+ 1
7: until t > T

18
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Algorithm 2 Sparse Loss in a Pseudo Label Version

1: Initialize band selection weights C(0)with 0.5, maximum training epochs T ,
2: t = 0
3: repeat
4: Pseudo Label Calculation: Calculating p̂i according to Equation 26 and 27 based on p(bi =

1|c) and p(bi = 0|c) for each band.
5: Cross Entropy Training: Updating band selection weights C with Lsp and Ltask,

c
(t+1)
i = c

(t)
i −∇(Ltask − α

B∑
i=1

(p̂i log ci + (1− p̂i) log(1− ci)))

6: t = t+ 1
7: until t > T

F MODEL DESIGN CONCERNING ci WITHIN [0,1]

To ensure that ci remains within the range [0,1] during the training process, we adopted the following
strategy,

ci = min{max{wi, 0}, 1}. (32)

The weight W = {w0, w1, . . . , wB} associated with each band reflects its likelihood of selection.

Comparison of Normalization Methods: This part compares various normalization techniques, with
our normalization method showing notable convergence speed advantages. Our method maintains
classification accuracy despite faster speeds, leading to more distinct band selection and better
accuracy. Fig. 6 contrasts the convergence of the sigmoid function and our method, underscoring
the struggle of other methods to converge. We assess accuracies with 30 spectral bands (TABLE 5),
chosen to ensure fairness, as non-linear methods falter at higher sparsity levels (e.g., 5 or 10 bands).
Our method demonstrates a clear advantage in these experiments.

Methods OA AA Kappa

Exp 92.5% 91.2% 0.916
Softmax 92.0% 90.9% 0.914
Sigmoid 94.0% 92.1% 0.919

Ours 94.2% 92.6% 0.930

Figure 5: Classification accuracy on the KSC dataset
using 30 selected bands with various normalization
methods.

Figure 6: Convergence speed with sigmoid. It is still
converging slowly at 200 epochs, and its rate of change
is significantly lower than our method. The conver-
gence speed of our method is shown in Fig. 3.

G VARIANTS UNDER A LOCALLY UNIFORM DISTRIBUTION

In certain specific application scenarios, the assumption of a uniform distribution may not be
applicable. Practical needs may require selecting a specific number of bands within different spectral
ranges. For instance, for color imaging, we might need to choose several bands in the red, green,
and blue spectral regions, while for nighttime imaging, bands in the near-infrared region are more
relevant. These practical considerations are important and must be addressed.

As long as a local uniform distribution is maintained, our method remains applicable. In the example
above, a specific spectral range, such as the near-infrared region, follows a uniform distribution within
that region. Each local region can use dynamic programming to compute the path probability sum
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Figure 7: Schematic diagram of the method extension under the local uniform distribution prior.

within the region, and the probability sums from all regions can then be combined to calculate the
overall probability (see Figure 7). This does not increase computational complexity. Assuming one
band is selected from each spectral region, with N spectral regions and b bands to be selected, the
computational complexity is O(B×3+N × (2× b+1)). Since each spectral region contains at least
two bands, 2×N ≤ B, the complexity is O(B×3+N×(2×b+1)) ≤ O(B×3+B×(b+0.5)) =
O(B × (b+ 3.5)), which is on the same order of magnitude as the original algorithm and, in most
cases, even smaller.

For clustering methods, which aim to reduce redundancy by grouping bands into clusters, selecting
one band from each cluster also involves modeling the relationships between bands and addressing
inaccuracies in band confidence. The method shown in Figure 7 can effectively solve these problems,
and this will be a focus of our future research.

H ADDITIONAL THOUGHTS ON SPARSIFICATION AND SPECTRAL BAND
SELECTION

H.1 THEOREM 3

Let f be a function representing a neural network with L layers, each employing the Rectified Linear
Unit (ReLU) activation function. Let x ∈ RB be the input vector to the network, where each element
xi corresponds to a spectral band. Then, under the assumption that each layer of the network
performs a linear transformation followed by the ReLU activation, the output of the network, f(x),
can be represented as a piecewise linear function of the input vector x. Specifically, there exists a set
of coefficients {vi} and biases {ai} such that the network output is given by:

f(x) =

B∑
i=1

vixi + ai, (33)

where the sum is over the spectral bands indexed by i.

H.2 PROOF OF THEOREM 3

Based on the derivation by Hein et al. Hein et al. (2019), taking a fully connected layer as an example,
the output features of each layer of the neural network can be expressed as follows:

f (k)(x) = W (k)g(k−1)(x) + b(k), (34)
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g(k)(x) = σ(f (k)(x)), k = 1, . . . , L. (35)

Here, g(k)epresents the output of the k-th layer, with g(0)(x) = x denoting the input
data.f (L+1)(x) = W (L+1)g(L)(x) + b(L+1)represents the final classifier output. W (k) and b(k)

are the weight and bias of the k-th layer, respectively, and σ(x) represents the ReLU activation
function.

Define diagonal matrices ∆(l),Σ(l) ∈ Rnl×nl , l = 1, . . . , L to represent the ReLU function,

Σ(l)(x)ij =

{
1 if i = j and f

(l)
i (x) > 0,

0 else.
(36)

The expression for f (k)(x) can then be represented as,

f (k)(x) = W (k)Σ(k−1)(x)
(
W (k−1)Σ(k−2)(x)

×
(
. . .
(
W (1)x+ b(1)

)
. . .
)
+ b(k−1)

)
+ b(k).

(37)

Combining these, we can obtain the final linear function,

f (k)(x) = V (k)x+ a(k), (38)

where V (k) and a(k) can be respectively expressed as,

V (k) = W (k)

(
k−1∏
l=1

Σ(k−l)(x)W (k−l)

)
, (39)

a(k) = b(k) +

k−1∑
l=1

(
k−l∏
m=1

W (k+1−m)Σ(k−m)(x)

)
b(l). (40)

The final classifier output f (L+1) can be viewed in the following form,

f (L+1) =

B∑
i=1

v
(L+1)
i xi + a(L+1), (41)

where xirepresents the input value of the i-th spectral band, and V (L+1) =

[v
(L+1)
1 , v

(L+1)
2 , . . . , v

(L+1)
B ]. From this, the output of the neural network can be seen as a

linear combination of the values across different spectral bands, thus proving Theorem 1.

H.3 THEOREM 4

Let Sk be the subset of spectral bands selected based on the highest importance scores, and let Tk

be the subset of the actual top k most important bands. We assert that Sk = Tk if the selection
mechanism for importance scores satisfies the following condition: for any spectral band i not in Tk,
and any spectral band j in Tk, the importance scores are respectively 0 and 1. In other words, the
sparse importance score preserves the ordering of the actual importance scores for the top k bands.

H.4 PROOF OF THEOREM 4

First, we need to define the method for calculating the actual contribution of different spectral bands
in a classification task. We can consider the actual contribution as a distance metric function related
to v

(L+1)
i xi, such as L2, L1, and others.

Given the L2 norm, the actual importance of spectral band i, denoted by Ii, can be expressed as,

Ii =
∥∥∥v(L+1)

i xi

∥∥∥ = xi

∥∥∥v(L+1)
i

∥∥∥ . (42)

Consider the task of spectral band selection characterized by the relationship xi = cix
′
i, where xi

represents the input of the i-th band, ci is a selection coefficient, and x′
i denotes the original value
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of the i-th spectral band. Let the importance measure Ii be defined such that when ci is sparse and
taking values in {0, 1}, Ii corresponds to ci and thus can only take the values 0 or 1.

It follows that the subset Sk, comprising bands selected by the first k ci coefficients, will be equivalent
to the subset Tk, which is composed of the bands with the highest actual importance, Sk = Tk. Here,
k is the count of ones in the selection vector c.

H.5 CONCLUSION

Based on Theorem 3, we understand that for any input of hyperspectral data x in a neural network,
its output f(x) can be transformed into a weighted sum of each spectral band (Equation 33). This
weighting, representing the network’s implicit importance adjustment (or the implicit importance
of spectral bands), is precisely what we aim to align with our importance module. According to
Theorem 4, we know that sparsification is an effective way to align the band selection layer with the
network’s implicit importance. This theoretical understanding lends support to our method.
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