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Abstract
Knowledge graphs are an efficient way to rep-
resent heterogeneous data from multiple sources
or disciplines by utilizing nodes and their rela-
tions. Nevertheless, they are frequently incom-
plete in terms of the subject they represent. Link
prediction methods are used to discover additional
links (or even to create new ones) between enti-
ties present in the Knowledge Graph (KG). In order
to achieve this, multi-hop reasoning models have
demonstrated good predictive performance and the
ability to generate interpretable decisions, thereby
enabling their application in high-stakes domains
such as finance and public health. A multi-hop rea-
soning model usually has two tasks: 1) construct
an accurate representation of the entities and rela-
tionships of the KG; 2) use these representations to
explore the reasoning paths in the KG that support
the newly predicted links. In this paper, we investi-
gate how the performance of a multi-hop reasoning
model changes when using pre-trained embeddings
for the KG’s nodes and relations. The experiments
conducted on three benchmark datasets, respec-
tively WN18RR, NELL-995 and FB15K-237, sug-
gest that using pre-trained embeddings improves:
(i) the predictive performance of multi-hop reason-
ing models for all three datasets, (ii) the number of
newly predicted links, and (iii) the quality of paths
used as explanations.

1 Introduction
A knowledge graph (KG) is a large data structure that use a
graph database to describe real-world entities and their rela-
tionships. KGs represent entities and their relationships in
the form of a schema, allowing entities to be linked together,
and can aggregate information from various data sources and
domains [Paulheim, 2017]. The facts stored in a KG are
in the form of triples, i.e. two nodes connected by a di-
rect and typed link, such as (Tim Berners-Lee →wonAward
→Turing Award). As KGs are highly incomplete [Min et
al., 2013], link prediction methods can be used to infer miss-
ing links between pairs of nodes, creating and updating the
representation of entities and relations as embeddings.

Following the TransE [Bordes et al., 2013] effort, knowl-
edge graph embeddings (KGE) models capable of learning
good representations (or embeddings) of entities and relations
in a KG have been proposed. These embeddings can then be
used to infer new links by evaluating the plausibility of new
triples. Although they have achieved state-of-the-art results
for link prediction, these methods are not transparent in na-
ture and their use is problematic when a clear understanding
of a prediction is required.

Recently, multi-hop reasoning models (referred as MHR
or walk-based methods) [Das et al., 2018; Liu et al., 2021;
Lin et al., 2018; Lei et al., 2020; Safavi et al., 2020] have
proposed to address this issue by searching for reasoning
paths in KGs using reinforcement learning (RL) to learn a
policy, which is then used to predict an answer to a query
(entity1, relation1, ?). As introduced in [Das et al., 2018],
MHR models have the strong advantage of producing directly
interpretable predictions. Indeed, the paths used during infer-
ence are used to understand what are the existing links be-
tween the query and the predicted entity. Interpretability in
machine learning is a growing challenge for high-stakes deci-
sions [Rudin et al., 2022] and in the context of link prediction,
transparency is a desirable attribute as KGs are particularly
good at storing highly symbolic concepts and relationships.

Despite the encouraging results of MHR models recently,
they still struggle with the sparsity and large size of KGs.
Since there is no notion of a correct path to reach a correct
answer, link prediction can be performed by the agent using
an incorrect path but still reach a valid entity in the graph.
Also, due to the incompleteness of KGs, true predictions that
are missing in the training data won’t be rewarded. In both
cases, these predictions will result in the alteration of entities
and relations representations based on the use of false infor-
mation.

In this paper, we investigate and report how using pre-
trained embeddings for nodes and relations can improve the
performances of a multi-hop reasoning model and discuss
our findings. This improvement is analyzed in terms of link
prediction scores as well as the quality of the paths gener-
ated as explanations. The use of high-quality pre-trained
embeddings is intended to facilitate the training process of
MHR models by bringing prior knowledge in the KG repre-
sentations. In contrast to previous work and state-of-the-art
models, we exclude from the MHR model the requirement



to learn entity and relationship representations from scratch.
These representations are first learned by the KGE method
ConvE [Dettmers et al., 2018] and then used as is or fine-
tuned by the MHR model. We conduct our experiments on the
three benchmark datasets WN18RR [Dettmers et al., 2018],
NELL-995 [Das et al., 2018] and FB15K-237 [Toutanova et
al., 2015]. The main contributions of our work are the fol-
lowing: (i) we show experimentally that pre-trained embed-
dings for entities and relations improve the performance of
MHR model for three benchmark datasets WN18RR, NELL-
995 and FB15K-237; (ii) we show that the use of pre-trained
embeddings allows the model to find at least one reasoning
path for more queries, and (iii) pre-trained embeddings in-
creases the overall quality of the reasoning paths used as ex-
planations.

The next section outlines related work in the area of MHR
models for link prediction and KG embedding methods.
Then, in section 3, we describe our proposed approach to
improving multi-hop reasoning1. In section 4, we report its
performance evaluation before discussing and interpreting it
in section 5.

2 Background
In this section, we first define the properties of KGs and jus-
tify their use. Then, we outline how the main KGE models
work. Finally, we outline related work in the area of multi-
hop reasoning.

2.1 Knowledge Graphs
Given a set of entities E and a set of binary relations R,
a KG G ⊂ E ×R× E represents the collection of facts
expressed as triples (h, r, t) with h, t ∈ E and r ∈ R.
All relations r are directed and define the role of entities
in each triple, with the left node h being the head (or
source) and the right node t being the tail (or target) of
the triple. All entities e and relations r belong to specific
categories or types, clearly defining what type of triples can
be found in the KG. For example, if the KG defines that
the relation worksFor should link a node of type person
to a node of type organization, it can then be inferred
from (Tim,worksFor,OxfordUniversity) that Tim is a
person and OxfordUniversity is an organization.

KGs are highly flexible and can be used to represent gen-
eral knowledge, such as that in Wikidata [van Veen, 2019], or
more domain-specific data, such as Hetionet [Himmelstein
et al., 2017] which stores biomedical data or FinKG [Cheng
et al., 2020] which stores financial data. In 2013, Min et al.
pointed out that KGs are mostly incomplete, with some of
the entities in the graph lacking crucial information [Min et
al., 2013]. For example, in the Freebase KG [Bollacker et al.,
2008], 93.8% of the Person nodes are not linked to a node
of type PlaceOfBirth and 78.5% of them are not linked
to a node of type Nationality. From this observation, two
main tasks emerged to discover the missing knowledge in a

1Code to reproduce the experiments is
available at https://gitub.u-bordeaux.fr/mdrance/
pre-trained-embeddings-for-enhancing-multi-hop-reasoning

KG: (i) KG completion, which aims to retrieve the missing
actual facts in the KG, and (ii) link prediction, which aims
to discover the unknown links between the entities. These
tasks have been used for specific uses cases, such as drug
repurposing [Drancé et al., 2021; Edwards et al., 2021] or in
recommendation systems for social networks [Wang et al.,
2015].

2.2 Knowledge Graph Embedding
Knowledge graph embedding methods aim to construct latent
vector representations for each entity and relationship in
the KG. Given these embeddings, each KGE model defines
its own scoring function f to evaluate the correctness of a
given triple (h, r, t). KGE models are trained to distinguish
between true and false triples. Given that, every triple
belonging to the KG is considered true and false triples are
constructed by corrupting either the head or the tail of an
existing triple (h, r, t) → (h′, r, t′). For each triple in
the graph, the model learns to give a better score to the true
triple than to its corresponding negatives. KGE models can
be divided into two different categories [Ali et al., 2021a],
defined by how the model uses embeddings to score each
triple.

Translational Distance Interaction Models. These
models use the notion of distance between embeddings
to compute the plausibility of a triple. For example,
TransE [Bordes et al., 2013] uses the relation embedding as
a translation from head to tail embeddings. This translation
eh + er ≈ et is defined by the scoring function as
f(h, r, t) = − ∥ eh + er − et ∥p, with p ∈ {1, 2}
the lp norm applied to the scoring function. The simplicity
of TransE makes it an efficient KGE model to work with on
large KGs, but its scoring function makes it impossible to
model 1:N, N:1 and N:N relations.
Following TransE, more robust models were designed,
such as RotatE [Sun et al., 2019], aiming at addressing the
limitations of TransE. They allow in particular to model
symmetry, anti-symmetry, inversion and composition using
embeddings laying in complex space C, modeling relations
as rotations from the head to the tail: et = eh ⊙ er
with eh, er, et ∈ Cd and ⊙ being the Hadamard (or
element-wise) product. Thus, the scoring function is defined
as f(h, r, t) = − ∥ eh ⊙ er − et ∥.

Semantic Similarity Matching Models. These models ex-
ploit the similarity of the latent features to compute the plau-
sibility of a triple. RESCAL [Nickel et al., 2011] and Dist-
Mult [Yang et al., 2014] use vectors to model entities and
matrices to model relations. The goal of the relation matri-
ces Wr ∈ Rd×d is to learn the weights wi,j that quantify
the interaction between head entities h ∈ Rd and tail enti-
ties t ∈ Rd. Hence, the RESCAL scoring function is given
by f(h, r, t) = hTWrt =

∑d
i=1

∑d
j=1 w

(r)
ij hitj . The

sole difference between RESCAL and DistMult is that the
latter reduces the scoring function by utilizing only diago-
nal relation matrices: f(h, r, t) = hTWrt =

∑d
i=1 hi ·

https://gitub.u-bordeaux.fr/mdrance/pre-trained-embeddings-for-enhancing-multi-hop-reasoning
https://gitub.u-bordeaux.fr/mdrance/pre-trained-embeddings-for-enhancing-multi-hop-reasoning


diag(Wr)i · ti.
As with RotatE, ComplEx [Trouillon et al., 2016] improves
DistMult by learning representations for entities and rela-
tions in C. The scoring function is defined as f(h, r, t) =
Re(eh ⊙ er ⊙ et) where Re(et) is the real component of
the complex valued vectors representing t.
Finally, ConvE [Dettmers et al., 2018] makes use of a con-
volutional neural network layer to learn interactions between
h and r. ConvE first takes the head and relation of each
triple in the batch and concatenates them to create a matrix
B ∈ Rm×n where the first half m/2 rows represent all
the h and the second half m/2 rows represent their corre-
sponding r. Convolutional filters are then applied on B to
capture interactions between h and r. These interactions
are reshaped in order to obtain a feature vector v, that is
then mapped to the entity space using a linear transforma-
tion W , finally creating conjoint representations of each pair
of (h, r): eh,r = vTW . This representation of the first half
of the triple is then scored against all the potential tails using
the scoring function f(h, r, t) = eh,r · et.

To the best of our knowledge, KGE models are the most
efficient methods for the link prediction task. State-of-the-art
results are obtained by using these models or improving ex-
isting KGE models [Lu et al., 2022; Zhang et al., 2019; Chen
et al., 2021; Pan and Wang, 2021]. The main issue is that
embedding-based methods are not interpretable, although
they can handle uncertainty and noise in the data. This is
because each embedding represents a combination of latent
factors, encoding the meaning of the entity/relation [Bianchi
et al., 2020].

2.3 Related Work
MHR models are neuro-symbolic approaches in that they
combine learning the vector representation of entities and re-
lations with reasoning properties and interpretabilty provided
to the user via the reasoning paths exploited for each pre-
diction. MHR aims to create a new direct link between two
entities using reasoning paths supporting the new direct link.
To do so, a policy network (typically a fully-connected neu-
ral network) is trained to find the next best action for the
agent given its current state. The sequence of successive ac-
tions then forms the reasoning path explaining the prediction.
DeepPath [Xiong et al., 2017] is the first attempt to model
the path finding problem in a KG using the Monte-Carlo Pol-
icy Gradient algorithm, REINFORCE [Williams, 1992]. The
particularity of DeepPath is that the source and target entities
must be known, i.e. DeepPath learns to find correct reasoning
paths between the two entities (esource, etarget), but not to
predict a new link between unconnected nodes in the graph.
MINERVA [Das et al., 2018] is the first MHR model to actu-
ally address the link prediction problem using reinforcement
learning. Indeed, instead of focusing on finding true paths
between two entities, MINERVA trains its policy to reach a
correct answer node given a query (esource, rquery, ?), by
traversing the best sequence of relations and entities support-
ing the choice of the predicted node. PoLo [Liu et al., 2021]
is the first approach that attempts to decrease the effect of
a noisy reward signal received by the agent when spurious

Dataset #Nodes #Relations #Facts Degree
WN18RR 40,945 11 86,835 2
NELL-995 75,492 200 154,213 1
FB15K-237 14,505 237 272,115 14

Table 1: Characteristics of the KGs used in our experiments. Degree
corresponds to the median degree of nodes in the KG.

paths are used but lead to a correct prediction. Since there ex-
ist many paths to connect two nodes, some of them may not
be valid to support the final prediction. However, in MIN-
ERVA the reward is only binary {0, 1}, which allows the
agent to use false paths for valid predictions, i.e. paths that
are meaningless regarding the new predicted link. Based on
the implementation of MINERVA and to help guide the agent
and remove noise from the reward signal, PoLo uses a set of
known and efficient logical rules as a reward shaping mech-
anism: if a prediction uses one of these correct rules, the
reward is increased. MultiHopKG [Lin et al., 2018] takes it
further and proposes two modeling advances for MHR meth-
ods. First, the authors tackle the problem of missing true facts
in the KG by adopting a new reward shaping mechanism. Be-
cause KGs are incomplete [Min et al., 2013], the agent may
arrive at a correct answer that is not present in the training
data, and thus not receive a reward for that prediction. In-
stead of using a binary {0, 1} reward, a trained KGE model
is used to estimate a soft reward for predictions not existing
in the training KG. For each new triple (h, r, t) predicted by
the MHR model, if the triple is not present in the training KG,
the KGE model scoring function f(h, r, t) is used to eval-
uate the plausibility of the prediction and shape the reward
accordingly. Second, they enhance the agent’s exploration
ability by adding an action dropout for each training step. As
REINFORCE is a policy-based learning algorithm, the agent
may be inclined to use spurious but rewarding paths encoun-
tered earlier in the training phase. Action dropout randomly
disconnects some outgoing edges at each step, forcing the ex-
ploration of more diverse paths. RuleGuider [Lei et al., 2020]
proposes another strategy to improve MultiHopKG’s reward
shaping mechanism using high-quality logical rules, also dis-
sociating the walk-based agent between a relation agent and
an entity agent. As with PoLo, a symbolic method first mines
the logical rules, which are then used to modify the agent’s
reward based on the confidence of the type of logical rule
used to make the prediction. In addition, the relation agent
will now select the type of outgoing relation to choose for the
next step, then the entity agent will select the best node to
move to, based on the starting node and the relation selected
by the relation agent. This method significantly prunes the
search space when selecting the next action.

3 Approach of Exploiting Pre-trained
Embeddings

The current work proposes to analyze how pre-trained em-
beddings for entities and relations can be useful to enhance
the performance of the link prediction task with MHR
models. We tested this new approach on the state of the art
model MultiHopKG, introduced in subsection 2.3, which we



call hereafter PT-MultiHopKG. We describe here how MHR
methods, and in particular MultiHopKG, model the problem
of link prediction on a KG, followed by the details of our
contribution based on the use of pre-trained embeddings.

3.1 Problem Definition
Environment and States. The KG G represents the envi-
ronment, such that G ⊂ E ×R× E where E represents
the set of all entities in G and R represents the set of all
relations in G. The link prediction task consists in finding
the set of all possible answers eo ∈ Eo given a query
(es, rq, ?), where es is the source node and rq is the query
relation, such that each (es, rq, eo) is a missing triple in
G. These answer nodes are selected after the agent moves
successively from one node to another until it reaches a
plausible target. The state st of the agent at step t should
encode the source entity, the query relation and the location
of the agent et at step t. Thus, the current state st is defined
by st = (es, rq, et) ∈ S.

Action Space. The action space at step t com-
prises all outgoing edges from the current location et:
At = {(rt′ , et′)|es, rq, et} with rt′ ∈ R and et′ ∈ E .
At each step, the action selection is made by selecting an
outgoing edge, knowing the type of rt′ and the next node et′ .
For each starting node es, the search is limited to a certain
number of steps T. To allow the agent to stay at its current
position if it reaches a plausible answer at step t < T , an
additional action “NO OP” is added, which corresponds to a
self-loop on the current node et.

Rewards. The base reward function defines a reward of 1
if the agent reaches a correct target entity and 0 otherwise:
R = 1{(es, rq, eo) ∈ G}. For MultiHopKG, the reward
is shaped using the scoring function f(es, rq, eo) of a
KGE model. The idea is to give a reward of 1 if the triple
(es, rq, eo) ∈ G, otherwise the reward is only defined by
the KGE scoring function: R′ = R+(1−R)f(es, rq, eo).

Policy Network. As defined in [Das et al., 2018], the policy
network makes use of three pieces of information to choose
the appropriate action: the agent’s current position et, the
query relation rq and the history of all previous actions of
the agent. Each entity and relation in G is respectively as-
signed an embedding e ∈ Rd and r ∈ Rd, all actions At at
step t are represented as at = [rt′ ; et′ ] where [; ] is the vec-
tor concatenation of the chosen relation and its corresponding
destination node. The history ht ∈ R2d, encoded using an
LSTM [Hochreiter and Schmidhuber, 1997], represents the
sequence of past observations and actions performed up to
step t and is defined as follows:

h0 = LSTM(0, [r0; es]) (1)

ht = LSTM(ht−1, at−1) (2)

where equation (1) is used at step t0 to encode the “starting
action” in the history with r0 a special “starting relation”, and

equation (2) is used otherwise. Based on this history ht, the
current state st and the query relation rq , the policy network
π is defined as a two-layers feed-forward network that out-
puts the probability distributions of all possible actions At at
step t:

πθ(at|st) = σ(At ×W2ReLU(W1[ht; et; rq])) (3)

with σ being the softmax function.
Equations (2) and (3) are repeated for each transition step,
until the maximum number of steps T is reached. The learn-
able parameters are the LSTM parameters, the feed-forward
network parameters W1, W2 and the entity and relation em-
beddings e, r.

3.2 Training
To train the policy network and find the best parameters θ,
the REINFORCE algorithm is used to maximize the expected
reward E as follows:

J(θ) = E(es,rq,eo)∈G[Ea1,a2,...,aT ∼πθ [R(ST |es, rq)]]
(4)

using the following stochastic gradient:

∇θJ(θ) ≈ ∇θ

∑
t

R(sT |es, rq)logπθ(at|st) (5)

During training, MultiHopKG proposes to add an action
dropout mechanism to randomly hide some outgoing edges in
the sampling step of REINFORCE. The goal is to encourage
the agent to search for more diverse paths, as exploration in
equation (5) can be biased towards spurious paths leading to
correct answers.

3.3 Pre-trained Embeddings
The purpose of MHR models can be divided into two distinct
parts:

• The learning of the entity and relation embeddings e and
r as latent vector representations, describing the infor-
mation carried by each node and each relation in the KG.
This task is also performed in the KGE models.

• The learning of the LSTM parameters in equation (2)
and the feed-forward parameters W1 and W2 in equa-
tion (3), given the information of the agent history ht,
the current node et and the query relation rq . This task
corresponds specifically to the walk-based method.

During the training process, node and relation representations
e and r are updated using equations (4) and (5), which are
dependent on the rewards obtained at steps T . This training
procedure implies that, in some cases, the representations
will be updated using false information. First, when a false
path is used to reach a good target node, the nodes and
relations embeddings are updated using a positive reward
based on a path that is completely illogical. Secondly, for
correct predictions not present in the training data due to
the incompleteness of the KGs, the representations will
be updated using a wrong reward signal caused by a false
negative.

In this work, we propose to use pre-trained embeddings for



Method / Dataset WN18RR NELL-995 FB15K-237
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

MultiHopKG (ConvE) 41.4 51.7 44.8 65.6 84.4 72.7 32.7 56.4 40.7
MultiHopKG (ComplEx) 42.5 52.6 46.1 64.4 81.6 71.2 32.9 54.4 39.3

PT-MultiHopKG+ 43.0 52.4 46.0 67.3 84.6 74.0 32.7 58.1 41.2
PT-MultiHopKG- 44.1 52.8 46.8 68.1 85.6 74.9 31.1 57.2 39.9

Table 2: Performance comparison on MultiHopKG with and without pre-trained embeddings. PT-MultiHopKG+ corresponds to trainable
pre-trained embeddings, PT-MultiHopKG- corresponds to frozen pre-trained embeddings. Best results in bold.

Unique Paths Diversity Path Recall
Datasets MultiHopKG PT-MultiHopKG MultiHopKG PT-MultiHopKG MultiHopKG PT-MultiHopKG
WN18RR 1918 1790 2.76 2.78 0.62 0.63
NELL-995 29,091 29,396 2.94 2.96 0.66 0.67
FB15K-237 82,426 82,992 2.94 2.95 0.74 0.76

Table 3: Path analysis. The number of unique paths used as explanations, the diversity of these paths and the path recall on the test set are
reported.

entities and relations in the KG, generated by the KGE model
ConvE. Consequently, the e, r embeddings in equations
(1), (3), (4) and (5) are substituted with the corresponding
pre-trained representations e+, r+ corresponding to the
pre-trained learnable parameters, or e−, r− corresponding
to the pre-trained non-learnable parameters. The goal of this
approach is to mitigate the impact of false information on
entities and relations embeddings during the training process.

4 Experiments
4.1 Experimental Setup
Datasets. To compare our approach to other MHR meth-
ods, we evaluated its performance on the following three
benchmark datasets: WN18RR [Dettmers et al., 2018],
Nell-995 [Das et al., 2018] and FB15K-237 [Toutanova et
al., 2015]. Their characteristics are given in Table 1. For each
existing triple (h, r, t) in G, the inverse triple (t, r−1, h)
is added to allow bidirectional movement of the agent. At
each step, the maximum number of outgoing edges is limited
to a number n, to avoid GPU memory overflow. The top-n
neighbors are selected using their PageRank scores [Page et
al., 1999].

Hyperparameters. As previously indicated, we used the
pre-trained embeddings generated by ConvE as defined
in [Lin et al., 2018]. We keep the size of all embeddings
at 200. We performed a grid search on embedding dropout
rate [0, 0.5], feed-forward layers [0, 0.5], action dropout rate
[0.1, 0.9] and learning rate [0.001, 0.003], respectively. We
conducted the experiment using pre-trained embeddings as
learnable parameters e+ or having them frozen e−.

KGE model. Experiments were conducted using the em-
beddings generated by the KGE model used for reward shap-
ing, resulting in no computational overhead. Tests carried
out with the KGE model implemented using the Pykeen li-
brairy [Ali et al., 2021b] showed exactly the same results as

with the KGE model used for reward shaping. The process
of training and testing the KGE model is made on exactly the
same data splits used for training and testing the MHR model.

4.2 Path Analysis
A key feature of MHR models is their ability to provide
reasoning paths to explain each prediction. MHR methods
are expected to be more reliable than KGE methods, as the
reason for each triple prediction can be easily understood.
However, it has been shown that these reasoning paths are
often unreasonable, i.e. paths that do not make sense but lead
to a correct answer, or incomplete [Lv et al., 2021]. We chose
to compare how the addition of pre-trained embeddings on
MultiHopKG changes the reasoning paths supporting each
prediction. We measured: 1) the number of unique paths
used as explanations, 2) the diversity of these paths, and
3) the number of test triples for which the model found an
answer.

Unique Paths. MHR models often give more than one
reasoning path to support each prediction, which leads
to many explanations that decrease the interpretability
of the results. Given two different queries, the same
reasoning paths are often found for both predictions be-
cause, even though the entities present in the paths are
different, the relations used are the same. The goal here
is to abstract the reasoning paths into logical rules using
only the relations, and measure how many unique log-
ical rules are used for the explanations. For each path
p = (h, r, t)← (h, r1, e1) ∧ (e1, r2, e2) ∧ (e2, r3, t),
the corresponding logical rule is l = (r1 ∧ r2 ∧ r3). We
then calculate the number of unique logical rules used on
the set of predictions, which represents the model’s ability
to generalize the paths encountered during training onto the
entities in the test set.

Rule Diversity. The number of unique logical rules pro-
vides a measure of the variety of explanations, but does not
take into account the variety of each reasoning path. Some of



Method / Dataset WN18RR NELL-995 FB15K-237
MultiHopKG -RS 46.2 72.2 32.4
MultiHopKG +RS 44.8 (-3%) 72.7 (+0.5%) 40.7 (+25%)

PT-MultiHopKG+ -RS 48.1 (+4%) 73.3 (+1.5%) 36.2 (+12%)
PT-MultiHopKG- -RS 49.0 (+6%) 71.4(-1%) 35.2 (+9%)

Table 4: Performance comparison (MRR) of the reward shaping and the impact of pre-trained embeddings on the model. MultiHopKG
-RS corresponds to the model without reward shaping, MultiHopKG +RS corresponds to the model with ConvE reward shaping, Ours
PT-MultiHopKG+ -RS and Ours PT-MultiHopKG- -RS correspond respectively to trainable pre-trained embeddings and frozen pre-trained
embeddings without reward shaping. The percentage of improvement for each method is provided in parentheses.

them are highly redundant because they use the same type
of relation for more than one step. Diversity in the num-
ber of relation types employed by each logical rule results
in more informative explanations, as it corresponds to rules
with a greater variety of node types and semantically distinct
relations. We quantify diversity as follows:

d =

∑
l Unique(l)

|l|
(6)

where Unique represents the number of unique relations
r ∈ R found in the logical rules l.

Path Recall. We use the path recall score as defined in [Lv
et al., 2021] to quantify the number of triples in the test set
that can be retrieved by the model. A significant path re-
call indicates that the model accurately predict and explain a
greater proportion of the test triples. The path recall is defined
as follows:

PR =

∑
(h,r,t)∈T test Cnt(h, r, t)

|T test|
(7)

where Cnt(h, r, t) = 1 if the model finds at least one path
from h to t, and 0 otherwise.

5 Results and Discussion
5.1 Model Comparison
Table 2 reports the performance comparison between Multi-
HopKG and PT-MultiHopKG. For all three datasets, the ad-
dition of pre-trained embeddings increases the predictive per-
formance of the model. For NELL-995 and WN18RR, the
use of frozen embeddings provides the best results, indicating
that the ConvE-constructed representations are most efficient
than using embeddings as model parameters. For NELL-995,
using pre-trained embeddings increases the performances on
both setup. For FB15K-237, the best performance is obtained
by fine-tuning the embeddings. FB15K-237 is a more com-
plex KG than both WN18RR and NELL-995 due to the num-
ber of triples it contains. Overall, although the two other
datasets have more unique nodes, FB15K-237 contains more
facts and each entity is much more connected to its neighbors
(median degree of 14), making it a more complex KG to work
with.

Table 3 shows the results of path analysis produced for
MultiHopKG with and without pre-trained embeddings. Ex-
cept for WN18RR, the addition of pre-trained embeddings

increases the number of unique paths that serve as explana-
tions for the model. This suggests that the improvement in
performance is not solely attributable to the model’s ability
to predict more facts using the same rules, but rather to the
model’s use of different rules. The pre-trained embeddings
improve path diversity and recall across all datasets. First,
this indicates that the relationships between the logical rules
employed are generally more diverse, i.e. the model is able
to reuse a larger number of different logical paths seen during
training when predicting new links. Second, the path recall
values indicate that the model is able to identify at least one
path for a greater number of query triples in the test dataset.
In the case of FB15K-237, for instance, our model was able to
provide a prediction and a reasoning path for 409 additional
test queries.

5.2 Ablation Study and Model Variations

Using ComplEx. We conducted the same tests than previ-
ously, with the exception that we replaced ConvE with Com-
plEx to generate the pre-trained embeddings. We used the
best configuration for each dataset: frozen pre-trained embed-
dings for WN18RR and NELL-995 and learnable pre-trained
embeddings for FB15K-237. Our results indicate that using
ConvE is the best option and yields the best results.

Reward Shaping. The purpose of using pre-trained embed-
dings is to have prior information about each node and rela-
tion in the form of its embedding. Reward shaping mecha-
nisms are also a way to use prior or external knowledge to as-
sist the MHR model during training. As pointed out in [Lin et
al., 2018], reward shaping improves performance on FB15K-
237 and NELL-995, but decreases it for WN18RR. We com-
pared the effectiveness of the two approaches by excluding
the reward-shaping mechanism, as their goals are identical.
Table 4 shows the results obtained for MultiHopKG with and
without reward shaping mechanism using or not using pre-
trained embeddings. First, for all three datasets, the use of
pre-trained embeddings increases the performance of the base
model, highlighting that these embeddings fulfil their role in
providing prior knowledge during the MHR training process.
Secondly, reward shaping has a stronger impact on FB15K-
237 but a negative impact on WN18RR, where the use of
trainable pre-trained embeddings still has a positive impact
on the MRR.

A summary of all results and a comparison with other sym-
bolic and MHR methods can be found in Table 5.



Method / Dataset WN18RR NELL-995 FB15K-237
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

AnyBURL† 42.9 53.7 - 44.0 57.0 - 26.9 52.0 -
MINERVA† 41.3 51.3 44.8 66.3 83.1 72.5 21.7 45.6 29.3

MultiHopKG (ConvE) 41.4 51.7 44.8 65.6 84.4 72.7 32.7 56.4 40.7
MultiHopKG (ComplEx) 42.5 52.6 46.1 64.4 81.6 71.2 32.9 54.4 39.3

RuleGuider (ConvE)† 42.2 53.6 46.0 66.0 85.1 73.1 31.6 57.4 40.8
RuleGuider (ComplEx)† 44.3 55.5 48.0 66.4 85.9 73.6 31.3 56.4 39.5

PT-MultiHopKG+ 43.0 52.4 46.0 67.3 84.6 74.0 32.7 58.1 41.2
PT-MultiHopKG- 44.1 52.8 46.8 68.1 85.6 74.9 31.1 57.2 39.9

PT-MultiHopKG+ -RS 44.8 54.4 48.1 66.8 83.5 73.3 28.5 51.6 36.2
PT-MultiHopKG- -RS 45.5 55.8 49.0 63.9 84.6 71.4 27.2 51.2 35.2

Table 5: Summary of our results and comparison with other symbolic and MHR models. Best scores are in bold. † Results taken from [Lei et
al., 2020]

5.3 Discussion
Pre-training has been widely studied in the past few years
as a way to improve the predictive performance of a model.
From image classification, where model pre-training is used
to enhance feature detection [Russakovsky et al., 2015], to
natural language processing, where pre-trained word embed-
dings are fine-tuned to match a specific domain [Lee et al.,
2019], pre-training allows for prior knowledge to be used or
for the model to be tailored to a specific task. We believe
that the experimental evaluation results presented in subsec-
tion 5.1 suggest that pre-trained embeddings have a positive
impact on MultiHopKG. As in other areas of machine learn-
ing, model parameters need to be fine-tuned when applied to
more complex tasks. Consequently, while embeddings can
be used as is for the WN18RR and NELL-995 datasets, they
must be included in the model parameters for the FB15k-237
dataset, which is significantly more complex.
Since the value of MHR models lies in their interpretability,
the analysis of reasoning paths has shown the interest of us-
ing pre-trained embeddings regarding explanations. Possess-
ing more query triples for which a prediction can be made is
a significant characteristic, but having more interpretable rea-
soning routes is even more crucial. Each prediction can be
supported by hundreds of alternative reasoning paths, how-
ever these paths are frequently redundant in the type of rela-
tion they employ, traversing via various nodes while employ-
ing the exact same type of relation. Diverse reasoning paths
enable more sophisticated and exhaustive explanations. Ex-
planations can be more complex and exhaustive when there
are a variety of reasoning paths.
Compared to reward shaping, subsection 5.2 showed that
pre-trained embeddings consistently improve the model per-
formance, while reward shaping hurt performance for the
WN18RR dataset. For FB15K-237, reward shaping has a
greater impact than pre-trained embeddings, confirming the
complexity of the link prediction task on this dataset, as it
benefits the most from the addition of prior knowledge, but
the best results were obtained using both methods simulta-
neously. Finally, when testing with the KGE model Com-
plEx to build the embeddings, we observed inferior results to
those obtained with ConvE. It is important to note that, when

it comes to link prediction, ConvE always produces better re-
sults than ComplEx, as shown in [Ali et al., 2021a].

6 Conclusion
The current study investigates the impact of pre-trained em-
beddings on the state-of-the-art model MultiHopKG for the
link prediction task. We demonstrated that adding pre-trained
embeddings improves the performance of such model on the
three benchmark datasets WN18RR, NELL-995 and FB15K-
237. In addition to improving the results of the link prediction
task, the results demonstrate that the pre-trained embeddings
enable the model to predict new links for a larger number
of queries using a larger number of unique and more diverse
paths. This suggests that the method is ideally suited for use
cases in which explanations are required, such as biomedical
KGs. An ablation study shows that pre-trained embeddings
are a valid method for providing prior knowledge during the
MHR model training process. Furthermore, these results sug-
gest that KGE methods are appropriate for building these pre-
trained embeddings. In future work, we plan to investigate
the use of other methods to construct these pre-trained em-
beddings and validate the lessons learned from this study.

Ethical Statement
This work does not rely on sensitive personal data that could
raise any ethical concern. However, the authors are fully
aware that a great attention should be paid to ensure positive
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