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ABSTRACT

The nanoscale complexity of modern integrated circuits (ICs) and the low er-
ror tolerance in segmentation tasks pose significant challenges for automated
quality control. While deep learning–based IC segmentation has advanced, most
approaches still rely on manual inspection due to limited error interpretability.
Existing CNN-based error detectors operate holistically on entire images, making
it difficult to localize specific faults such as open or short circuits. We propose a
novel, explainable error detection framework based on Graph Neural Networks
(GNNs). By converting each connected component of a segmentation mask into a
feature-annotated graph, our method enables localized reasoning and identification
of segmentation errors through graph classification. This formulation allows the
model to detect outlier components and precisely highlight erroneous regions,
offering strong interpretability. Experiments across diverse IC layouts and imag-
ing conditions demonstrate the robustness and generalizability of our approach,
enabling accurate and interpretable error detection at the component level.

1 INTRODUCTION

The rapid advancement of semiconductor technology has led to increasingly complex integrated
circuit (IC) designs with smaller feature sizes and higher integration density (Mack, 2011). Accurate
segmentation of IC structures from scanning electron microscope (SEM) images is essential for
applications such as failure analysis and hardware assurance (Huang & Jing, 2007; Cai et al., 2018;
Wilson et al., 2022).

However, segmentation algorithms often produce errors that can significantly impact downstream
function-level analysis, which relies on accurately segmented circuit structures (Zhang et al., 2016).
The complex structures of modern ICs, including multi-level interconnects, varying material con-
trasts, and noise artifacts during SEM imaging, make accurate segmentation difficult (see Fig. 1 for
examples). Moreover, segmentation errors, such as short and open circuits, can have subtle visual
manifestations that are challenging to detect using conventional image analysis techniques (Doudkin
et al., 2005; Lee & Yoo, 2008; Cheng et al., 2018; 2019a;b; Hong et al., 2019; Wilson et al., 2020; Yu
et al., 2022). Therefore, the detection of such segmentation errors is a crucial task.

Correcting such errors typically requires manual visual inspection by experts. However, a single
IC chip could have millions of SEM images, making manual review impractical, posing a major
bottleneck for large-scale industrial deployment. In this paper, our main objective is to perform:

• Error Detection in (given) IC image segmentation.

In contrast to IC image segmentation, the problem of error detection is less studied. Zhang et al.
(2023) has proposed a CNN-based automatic error detection. Such an approach is holistic in nature,
i.e., full images are used for both training and testing. A decision is made on the feature representation
of the whole image.

However, like the “spot the difference” game,1 segmentation errors in IC images are typically local in
nature (cf. Fig. 1), while holistic approaches offer limited explainability regarding which specific

1https://en.wikipedia.org/wiki/Spot_the_difference
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circuit elements are erroneous. Furthermore, unlike natural images, the foreground components, such
as metal lines (i.e., conductive metal pathways that interconnect transistors and other components on a
chip), exhibit minimal variation in appearance features like color, intensity, texture, or shape. Instead,
they are primarily defined by their structural topology and spatial arrangement. This observation
motivates a graph-based approach to error detection, which naturally aligns with the structural
characteristics of IC images.

(a) Input IC im-
age

(b) Ground-
truth

(c) Predicted
mask

Figure 1: For the IC image (a), its ground-truth
segmentation mask is (b). The segmentation task
is challenging due to noise and imaging artifacts,
which may result in short or open circuits. Notably,
the predicted mask (cf. (c)) often appears visu-
ally coherent, even when errors are present, mak-
ing them difficult to detect through direct visual
means. To address this, we propose a graph-based
approach to identify local topological anomalies.

For the high-level idea, we encode each (metal-
line) component C in an IC image or a binary
mask using a graph G, which is a 1-dimensional
skeleton of the component (see Fig. 2 and Fig. 4
below). The functionality of the component C is
fully determined by its connectivity, and hence
captured by the topology of G. We encode other
information, such as position, thickness, and
orientation, as features of G. Therefore, the er-
ror detection problem can be re-interpreted as
a graph classification or outlier detection prob-
lem, for which we can employ Graph Neural
Network (GNN) models (Defferrard et al., 2016;
Kipf & Welling, 2017).

The proposed graph-based method offers sev-
eral advantages. It provides inherent explainabil-
ity by operating on individual connected com-
ponents, allowing precise localization of seg-
mentation errors. When an error is detected, the
method can identify the specific nodes and edges

in the graph that contribute to the classification decision. Moreover, it demonstrates superior gen-
eralization capability by focusing on topological features rather than image-level characteristics.
This allows the method to handle datasets with varying image complexity and different numbers of
connected components without requiring retraining. The graph-based representation is more robust
(Hamilton et al., 2017) to variations in imaging conditions and noise artifacts that commonly affect
SEM images.

Our contributions can be summarized as follows:

• Our work offers a novel graph-based perspective on IC image analysis, potentially paving
the way for future research in this direction.

• We propose an efficient pipeline for converting a segmentation mask (for an IC) into a set of
graphs. We describe how the mask information can be encoded with node and edge features.

• We design a tailored GNN model for our specific task. In particular, it leverages edge features
for message passing in usual GNN models.

• We discuss why our approach is “explainable” and demonstrate that our approach can be
applied in conjunction with computer vision (CV) models for the detection task.

2 PRELIMINARIES

2.1 PROBLEM: ERROR DETECTION IN IC IMAGE SEGMENTATION

Given an IC image I , a segmentation model generates a binary mask M of the foreground components,
most notably metal lines (see Fig. 4 left panel). For the error detection problem, we want to decide
whether there is an error in the given binary mask M, without accessing I . Moreover, it is preferably
able to pinpoint the error component/location with minimal human intervention.

As we have highlighted in Section 1, unlike natural images, the correctness of structural topology is
a more important aspect for the functionality of an IC. Therefore, we propose to use graph-based
methods, which are well-suited for such a need.

2
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2.2 GRAPH NEURAL NETWORKS

As outlined in Section 1, we shall encode foreground components as graphs with features, which can
be further processed with graph neural networks (GNNs). In this subsection, we give a brief overview
of GNNs.

Graph neural networks (GNNs) have emerged as powerful tools for analyzing structured data with
complex relationships and topological properties (Defferrard et al., 2016; Veličković et al., 2017),
which is particularly helpful for our setting. At the high level, many GNN models consist of layers
of message-passing and feature aggregation (Xu et al., 2019). More specifically, given a graph
G = (V,E) and initial node features represented by x

(0)
v for each v ∈ V , the node features can then

be updated in the l-th layer as follows:

x(l)
v = σ

(
W (l)AGGR({x(l−1)

u | u ∈ N (v)})
)

(1)

where σ is an activation function, W (l) are the learnable weights in the l-th layer and N (v) is the
neighbor set of v. AGGR is a message aggregation function, such as a weighted average (Kipf
& Welling, 2017) or a weighted sum (Xu et al., 2019). The latter is the backbone of the graph
isomorphism network (GIN). For a graph-level task, one may retrieve a graph feature by applying a
global pooling function (e.g., summation, average) to the output node features of the last layer.

As a preview, in the context of IC images, graph edges approximate metal lines and possess inherent
attributes. To accommodate this, we refine the general formulation in (1) by integrating edge features,
thereby constructing a model specifically tailored to the IC image analysis task.

3 METHODOLOGY

3.1 WHY THE GRAPH APPROACH: AN OVERVIEW

In this subsection, we outline the motivation for adopting a graph-based approach and provide a
high-level overview of our model. To maintain clarity and avoid delving into technical concepts from
metric geometry (Bridson & Haefliger, 1999) and algebraic topology (Hatcher, 2001), we keep the
discussion informal here. A detailed and rigorous theoretical treatment is provided in Appendix A.

For a mask M of an IC image, a (metal-line) component C is usually regular in shape. Therefore, many
of its essential functionalities, such as connectivity, can be captured with an embedded 1-dimensional
metrical graph (i.e., a graph with a metric) G ⊂ C. To be more specific, for a small ϵ > 0, we
call G an ϵ-approximation of C if (a) points on C are within ϵ distance to points in G; (b) C can be
continuously deformed to G without breaking (see Fig. 2).

M M′

G1 G2 G′
1

Figure 2: In these examples, we have graphs the
components of the masks. If a short circuit occurs
for the segmentation mask M′, then the graph G′

1
is not comparable to any graph derived from M.

Therefore, if we approximate each component
in ground-truth mask M by a metrical graph,
we obtain an arrangement of a collection of
graphs GM = {Gi | 1 ≤ i ≤ c}, where
c is the number of components of M. Intu-
itively, consider a segmentation mask M′ and
let GM′ = {G′

i | 1 ≤ i ≤ c′} be the collection
of graphs similarly derived from M. If M′ con-
tains errors such as open or short circuits, then
some graph G′

i ∈ GM′ does not have a compa-
rable counterpart in GM (see Fig. 2), i.e., being
outliers in reference to GM.

In other words, suppose M′ is the segmentation
mask and M is the ground-truth mask M. A

graph G′
i in the graph collection GM′ is comparable to Gj in the ground-truth graph collection GM if

the following holds:

(a) G′
i and Gj are located close to each other.

(b) G′
i and Gj are similar as both topological spaces and metric spaces.

3
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If we do not have a one-to-one correspondence between GM and GM′ of comparable graph pairs,
then M′ is likely to have errors such as open or short circuits. A more rigorous formulation and its
proof are provided in Appendix A.

The upshot is that if no errors (e.g., open or short circuits) are present, then the graphs in the mask M′

are likely to have been “seen before”. If, across a dataset, graphs derived from ground-truth masks
of different images follow a similar distribution, error detection can then be framed as identifying
“unseen graphs”, effectively reducing the task to a two-class classification problem.

To encode the “comparability” conditions defined above, the following features of component graphs
are potentially useful for classification:

• locations (for positional proximity),

• lengths of edges and turning angles (for similarity in topology and geometric shape).

Additional visual information can be helpful, and more details are given in the next subsection.

Input Mask

Components Skeletons Graphs/features

GNN

Figure 3: An input mask is converted into graphs
with features, which are fed into a GNN. The figure
summarizes the pipeline. An explicit example is
given in Fig. 4.

The above discussions inspire us to adopt a
graph-based strategy for error detection by fram-
ing the task as a classification problem over
feature-annotated graphs, each derived from a
connected component of the binary mask. It of-
fers explainability by directly indicating anoma-
lous components. This approach naturally de-
composes into two core modules: (a) image-
to-graph conversion, and (b) graph classifica-
tion via GNNs, which we detail in the following
subsections. A visual summary of our model
pipeline is in Fig. 3.

3.2 IMAGE-TO-GRAPH CONVERSION

Suppose I is an IC image of dimension H ×
W . Given a binary segmentation mask M ∈
{0, 1}H×W , we extract individual connected
components using 8-connectivity analysis. This
means that two pixels p1, p2 are adjacent if p2

is one of the 8 neighbors (including 4 diagonal neighbors) of p1. They belong to the same component
if there is a sequential path of pixels from p1 to p2 consisting of adjacent pixels.

Each component C represents a distinct metal-line structure. We apply the morphological thinning
operation with the skeletonization algorithm in Zhang & Suen (1984), to reduce each component C
to single-pixel-width medial axis representations S while preserving topological connectivity (see
Fig. 4).

However, each skeleton S usually consists of a large collection of pixels, which does not represent
a proper graph structure. To better represent the rectilinear nature of integrated circuit layouts, we
convert the skeletons S into a graph G = (V,E) with a small node set V as follows.

The node set V We categorize V into three sub-types:

• End points. These are pixels with exactly one neighbor belonging to the skeleton S (among
8-neighbors). Intuitively, they represent the end points of the graph G.

• Junctions. These are pixels with three or more neighbors belonging to S. Intuitively, they
are connection points for different branches.

• Corners. These are pixels with two neighbors where the path direction makes a significant
turn (see details below). Intuitively, they represent the turning corner locations of the metal
line (see Fig. 4 right panel).

4
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Figure 4: In the example, we are given the binary
segmentation mask M (left panel). Skeletonization
generates the skeletons of the components (middle
panel), each of which contains an excessive num-
ber of nodes. The refinement greatly reduces the
number of nodes and yields the final graph struc-
tures (red nodes, blue edges in the right panel).

More on corners. For a pixel p0 with two neigh-
bors, let N be the g × g neighborhood grid of
p0. The skeleton S intersects the boundary of
N at two pixels p1, p2. We compute the angle θ
between the vectors −−→p0p1 and −−→p0p2. The pixel p0
is a corner if θ is within 90◦ ±∆◦. Large θ in-
dicates that there is no directional change, while
a very small θ is unlikely, as meta-lines rarely
reverse direction abruptly. Our implementation
chooses g = 5 and ∆ = 30.

The edge set E Edges are constructed by trac-
ing paths between nodes in V using breadth-first
search on the skeleton S . This prevents the con-
nection of far-away nodes and thus faithfully
captures the topology of the component.

The edge construction skips many topologically
unimportant pixels. To compensate, we encode
their information as features, which we discuss
next.

Node and edge features For each node v ∈ V ,
we concatenate the following numerical information as a node feature vector h(0)

v = [xv, yv, zv,θv]:

• (xv, yv) is the coordinate of the pixel location, normalized with the image dimension.
• zv is the one-hot encoding of node type: end point, junction, or corner.
• The angles between edges incident at v are recorded in a clockwise direction as a vector
θv of dimension d. Here, d is a prescribed upper bound on the number of incident edges
(usually d = 4 is sufficient). We use 0 padding if the number of incident edges at v is less
than d.

As we have pointed out, it is crucial to use edge features to compensate for the information loss in
graph conversion. For an edge (vi, vj) ∈ E, its feature vector

eij = [ℓij , µij , νij ,Mij ,mij ] (2)

encodes geometric and width information as follows:

• ℓij is the Euclidean distance between the pixels for vi, vj .
• For a number k, we identify equally spaced k-points P = {p1, . . . , pk} on the edge
(vi, vj). The width of the binary mask perpendicular to (vi, vj) and passing through each
p ∈ P is recorded as a vector wij = (w1, . . . , wk) (see Fig. 5 for an example). Then
µij , νij ,Mij ,mij are the average, variance, max and min of wij , respectively.
Intuitively, these features encode visual information of the original binary mask.

Remark 1. The converted graphs may have small artifacts, e.g., small addendum edges, inherited
from skeletonization. However, as such an edge has a short length, its contribution during feature
aggregation almost vanished due to the continuous nature of the GNN. Therefore, such an artifact
does not pose a serious challenge.

In the next subsection, we describe how to incorporate node and edge features into a GNN for the
error detection task.

3.3 EDGE-AWARE GRAPH ISOMORPHISM NETWORK

As in the “overview” subsection, we cast the explainable error detection problem as a classification
problem of feature-annotated graphs with two types, either normal or abnormal. This is slightly
different from the 1-class classification for anomaly detection (Zhao & Akoglu, 2021; Qiu et al.,
2022), as we have both positive and negative training samples.

5
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w1 w2 . . . wk

Figure 5: As shown in the example, the perpendic-
ular width w1, . . . , wk of different locations on the
skeleton (red) are used to form edge features.

The GIN model is proven to be a powerful model
for graph classification with node features. Our
tailor-made model is in the style of GIN. To
highlight the incorporation of edge features, we
call our model Edge-aware Graph Isomorphism
Network (EA-GIN).

An essential design requirement is to incorpo-
rate the edge features eij (2) into the model. A
natural idea is to convert them into attention
weights for node feature aggregation in message

passing. Therefore, the l-th EA-GIN layer performs the following updates for the node vi:

a
(l)
ij = MLP(l)

1 (eij), (3)

â
(l)
ij = D

−1/2
ii · a(l)ij ·D−1/2

jj , (4)

h
(l+1)
i = MLP(l+1)

2

(
(1 + ϵ(l))h

(l)
i +

∑
j∈N (i)

â
(l)
ij h

(l)
j

)
. (5)

In the model, we use two learnable multilayer perceptrons (with ReLU activation): MLP(l)
1 converts

edge features into attention weights a(l)ij , and MLP(l+1)
2 updates node representations. The parameter

ϵ(l) is learnable as in GIN. The weights a(l)ij are normalized by the diagonal entries of the degree
matrix D of the graph. As usual, the aggregation is performed in the 1-hop neighbor N (i) of vi.

For a graph-level downstream task, a READOUT function (e.g., summation or another pooling
function (Ying et al., 2018)) aggregates node features of the last layer {h(L)

i | vi ∈ V } to generate
the graph representation:

hG = READOUT({h(L)
i | vi ∈ V }). (6)

In our case, hG is used for a two-class classification. It is passed through an MLP to generate two
probability weights for the classes. The predictions are further used in the standard cross-entropy loss
or weighted cross-entropy loss (when there is label imbalance) for training.

Although the model is not equipped with a complex mechanism, it seamlessly integrates all key
elements. Its effectiveness is demonstrated through numerical results in the next section.

4 EXPERIMENTAL RESULTS

4.1 DATASETS AND EXPERIMENT OVERVIEW

Our model is evaluated across four IC image datasets: A1, A2, S1, and S2. Each dataset contains
binary segmentation masks, ground-truth masks, and ground-truth labels for error detection. The
datasets exhibit varying design characteristics in terms of circuit topology, feature density, and error
types. In Table 1, we show the size of positive (i.e., with errors) and negative samples in each dataset.
We notice that all datasets are highly class-imbalanced, and we evaluate model performance with the
F1-score.

We perform the following studies in the subsections below:

• We combine graph conversion and EA-GIN as a full-fledged error detection model in IC
image segmentation. We evaluate its performance on error detection by comparing it with
several similarly constructed GNN-based detection models.

• We compare the performance of EA-GIN with CV (Zhang et al., 2023) and dedicated
anomaly detection models (Qiu et al., 2022), and study their ability for cross-data general-
ization (i.e., training and testing performed on different datasets).

• We study the explainability of EA-GIN by analyzing its ability to pinpoint error locations,
and explore the possibility of using EA-GIN to assist a CV-based model.

6
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Table 1: Sizes of positive (i.e., with errors) and negative samples in each IC image dataset (img.) and
the converted graph (graph) dataset.

+ve img. -ve img. +ve graph -ve graph

A1 190 31197 921 170609
A2 102 29277 721 116602
S1 10526 22643 22310 376329
S2 2575 37269 6822 144335

4.2 ERROR DETECTION IN IC IMAGE SEGMENTATION: GNN MODELS

Details for EA-GIN For our model, we use 3 EA-GIN layers (3)-(5) for feature aggregation. In the
edge encoder (3), MLP1 has one hidden layer with 8 hidden units (and ReLU activation). On the other
hand, MLP2 in (5) has one hidden layer with 64 hidden units. The “Summation” function is used as
the READOUT function in (6). Finally, due to label imbalance, we use the weighted cross-entropy
for training (Ling & Sheng, 2011) by assigning a higher weight to positive samples.

Experimental setting and evaluation protocol A dataset consists of multiple images with a
segmented binary mask, and we retrieve multiple graphs from each mask. As described earlier, each
graph is converted from a connected component in the segmentation mask. We obtain the ground-truth
label for the graphs from the ground-truth segmentation mask.

For the downstream error detection task in IC image segmentation, all (component) graphs for a
single image should be collectively used either for training, validation or testing. Therefore, for each
dataset (i.e., A1, A2, S1, S2), we split all images into training/validation/testing sets such that the
corresponding split of graphs is approximately 70%/20%/10%.

We train EA-GIN and tune hyperparameters with the training/validation set. For testing, given a test
image I with segmentation mask M, we apply EA-GIN to the set GM of component graphs of M.
The segmentation is deemed erroneous if there is at least one graph in GM of error type. The resulting
model is also called EA-GIN. The F1-score on the testing set is used as the evaluation metric.

The experiments are performed on a server with GPU: NVIDIA RTX A5000, 24GB memory.

Results We compare EA-GIN with our backbone model GIN (Xu et al., 2019), and GNN models
using edge information: GINE (Brossard et al., 2020), EGAT (Wang et al., 2021), and CensNet (Jiang
et al., 2019). For any benchmark GNN model, the same procedure described above is applied for the
downstream error detection task.

The results are shown in Table 2. We see that the models generally perform better on the A1 and A2
datasets. The IC structures in these two datasets are simpler with less variety. It is observed that our
EA-GIN performs much better than its backbone GIN. Moreover, GINE also has a relatively good
performance. Therefore, it is beneficial to incorporate edge features into the models.

EA-GIN generally outperforms benchmarks by a clear margin, and in the following subsection, we
study other aspects of the model as outlined in Section 4.1.

Table 2: Results (F1-score) on error detection in IC image segmentation. The best performance is
boldfaced and the 2nd best is underlined.

A1 A2 S1 S2

GIN 0.6274 0.8089 0.7316 0.6853
GINE 0.9356 0.9498 0.7825 0.7614
EGAT 0.4316 0.7503 0.4591 0.4401

CensNet 0.6458 0.8551 0.7189 0.6243

EA-GIN 0.9884 0.9953 0.9183 0.8990

7
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Table 3: Comparison of error detection models for IC image segmentation. The performance is
measured by the F1-score. Cross-data generalization results are also reported.

Train. Test. ED-ResNet OCGTL EA-GIN

A1 A1 0.9823 0.9877 0.9884
A2 0.9956 0.9961 0.9962
S1 0.6598 0.8699 0.9070
S2 0.9118 0.8762 0.9369

A2 A1 0.9534 0.8979 0.9827
A2 0.9872 0.9270 0.9953
S1 0.6543 0.8505 0.9396
S2 0.9261 0.8650 0.9385

S1 A1 0.9726 0.9093 0.9580
A2 0.9936 0.9950 0.9775
S1 0.9795 0.8615 0.9183
S2 0.9732 0.8805 0.9155

S2 A1 0.9666 0.7640 0.8951
A2 0.9939 0.9273 0.9887
S1 0.7657 0.8516 0.8230
S2 0.9951 0.8842 0.8990

4.3 CROSS-DATA GENERALIZATION: CV AND ANOMALY DETECTION MODELS

Figure 6: Examples of segmentation missed by ED-
ResNet, while identified by EA-GIN. Left panels:
ground-truth, right panels: segmentation mask, and
error locations detected by EA-GIN are boxed.

Cross-data generalization plays a key role in
hardware assurance, as ground-truth is often ob-
tained from different batches of data in practice.
This underscores the need for robust models.
For the study, we compare with the CV bench-
mark ED-ResNet2 dedicated to the error detec-
tion problem (Zhang et al., 2023). As the prob-
lem is closely related to anomaly detection, we
also compare it with the graph anomaly detec-
tion model OCGTL (Qiu et al., 2022).3 We show
test results and cross-data generalization results
in Table 3.

From the results, we see that the CV-approach
ED-ResNet and our graph approach EA-GIN
have their respective advantages. ED-ResNet
performs well when trained on larger and more
complex datasets, whereas EA-GIN demon-
strates strong generalization even when trained
on smaller datasets, for example, when trained
on A1 or A2 and evaluated on the larger dataset
S1. This may be because the number of metal-
line connection structures/patterns is limited,

and hence, a small dataset may have given enough component graphs to capture feasible metal-
line topologies. On the other hand, a CV model that requires a large amount of visual information
may need more training data to identify essential features for detection.

For EA-GIN, it is interesting to notice that to test on S2, training on A1 or A2 yields a better result
than training on S2 itself. This suggests that sufficiently many positive and negative patterns may be
seen in A1 or A2, while training on the much larger S2 may overfit the model to a certain extent.

2We call it error detection with ResNet, abbreviated ED-ResNet for convenience.
3EA-GIN and ED-ResNet have a slight edge over OCGTL, as anomaly detection is one-class classification

and does not utilize the small set of positive samples.
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For illustration, we show examples of segmentation missed by ED-ResNet, while identified by
EA-GIN in Fig. 6. It is observed that EA-GIN can capture small errors resembling noise, and this
may be due to the local nature of the graph approach. The CV and graph approaches potentially
contribute to the error detection problem in different ways, supplementing each other. Therefore, it
can be beneficial to combine them, which we shall study in the next subsection.

4.4 EXPLAINABILITY

An important feature of the graph-based approach is its inherent explainability. This is particularly
useful in practice to assist manual checking. In this study, we consider the following sequential
merging of the CV and graph-based models. Specifically, for a dataset, we consider the set S+ of all
test images correctly predicted to be erroneous by the CV model ED-ResNet. For each image in S+,
we use EA-GIN to generate the probability score of a component being abnormal. The components
with the top-κ highest scores are flagged for further manual checking.

Table 4: F1-scores for the detection of error components with varying κ.

κ A1 A2 S1 S2

1 1.00 1.00 0.9249 0.9187
2 1.00 1.00 0.9492 0.9774
3 1.00 1.00 0.9724 0.9911

Figure 7: We show error localization of the examples in Fig. 1. The (highlighted) error components in
the segmentation mask can be identified via their converted graphs. Left panels: ground-truth masks,
middle panels: segmentation masks, right panels: skeletons of detected error components.

In Table 4, we show the results, measured by F1-scores, for whether the above procedure can correctly
identify the error components when the budget κ = 1, 2 or 3. We see that for A1 and A2, the graph
approach can always correctly identify the error components, conditioned on knowing that the image
contains errors. While for S1 and S2, increasing κ to 3 yields reasonably good detection performance.

We show examples of the error localization in Fig. 7, in which the error components are correctly
identified. In conclusion, our graph-based approach can be used as a stand-alone model or together
with CV tools for automated error detection.

5 CONCLUSIONS

We propose an explainable graph-based framework for error detection in IC images segmentation,
addressing key limitations of prior methods. Our approach introduces (i) a mask-to-graph conversion
pipeline that encodes topological and geometric information into feature-annotated graphs, and
(ii) a tailored EA-GIN model that incorporates edge features into the powerful GIN model for
accurate graph classification. The method achieves strong cross-dataset performance and precise
component-level error localization, offering scalability, robustness, and interpretability.

Future work includes enhancing graph representations with hierarchical or semantic information,
exploring graph transformers, and integrating spatial cues from raw images. Real-time inference,
uncertainty quantification, and adaptation to domains such as biological or road networks present
promising directions, as does the development of interactive tools for quality assurance in manufac-
turing.
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A THEORETICAL FRAMEWORK

In this appendix, we establish a theoretical framework for the study of IC segmentation masks.
We employ formal mathematical concepts, enabling us to study IC segmentation-related problems
rigorously and systematically.

A.1 GEOMETRY AND TOPOLOGY FOR IC SEGMENTATION MASKS

For an IC image I of size H ×W , we model a segmentation mask M as a binary function (on the
continuous domain):

M : [0, H]× [0,W ] → {0, 1}

such that the following holds: M−1(1) has finitely many compact connected components, each with
continuous boundaries.

We use CM = {C1, . . . , Cm} to denote the set of components of M−1(1). They correspond to the
set of metal-line components of the image.

To proceed, we need a few important concepts from metrical geometry Bridson & Haefliger (1999).

Definition 1. In a metric space (X, d), the Hausdorff distance between two subsets S1, S2 is

dH(S1, S2) = max{ sup
x1∈S1

d(x1, S2), sup
x2∈S2

d(S1, x2)}.

For two metric spaces (X1, d1) and (X2, d2), their Gromov-Hausdorff distance is defined as:

dGH(X1, X2) = inf
f,g,M

dH(f(X1), g(X2)),

where the infimum is taken over isometric embeddings of X1, X2 into the same metric space M as:
f : X1 → M and g : X2 → M .
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For ϵ > 0, we call M or CM ϵ-separated if for i ̸= j ≤ m, dH(Ci, Cj) > ϵ. Intuitively, the conditions
imply that the metal-line components on the segmentation mask are well-separated without ambiguity.

For each component Ci, an embedded subgraph Gi ⊂ Ci (i.e., a subset homeomorphic to a graph) is
an ϵ-approximation for some (small) ϵ > 0 if the following holds:

• Consider Gi, Ci as subsets of [0,W ]× [0, H] with the Euclidean metric:

dH(Gi, Ci) ≤ ϵ;

• Gi is a homotopy retract of Ci (Hatcher, 2001).

Intuitively, the two conditions ensure the metrical and topological fidelity of Gi.

Fix ϵ > 0. For each Ci, let the graph Gi be an ϵ-approximation. We use GM to denote the set
{G1, . . . , Gm}.

We next formalize open and short circuits. For this, we assume M is the ground-truth mask and
M′ is a segmentation mask (to be tested). Accordingly, we have CM′ = {C ′

1, . . . , C
′
m′} and GM′ =

{G′
1, . . . , G

′
m′}, which are defined similarly.

Fix a small threshold ϵ > 0. We say that M′ does not have open or short circuits if the following
holds: for any Ci ∈ CM and C ′

j ∈ CM ′ such that Ci ∩ C ′
j ̸= ∅, then each connected component of

their symmetric difference Ci∆C ′
j = (Ci\C ′

j) ∪ (C ′
j\Ci) has diameter bounded by ϵ.

Notice that for different concepts, the “error parameter ϵ” is used independently in the respective
definition. However, they may be related to each other if we bring all the concepts together.

Regarding open and short circuits, intuitively, as the masks are ϵ-separated, a large component in the
symmetric difference can only occur if there are open or short circuits.

Aside from the above common errors affecting IC functionality, there are other types of errors, likely
to be caused by image artifacts: a component C ′

j ∈ CM ′ is a noise if C ′
j ∩Ci = ∅ for every Cu ∈ CM.

Moreover, C ′
j ∈ CM ′ contains a hole if it contains a component of M′−1(0) within its interior, while

none of Ci ∈ CM does so.

Intuitively, noise corresponds to small additional artifacts in the IC images, e.g., caused by dust.
Holes in the segmentation can result from lighting conditions, where parts of a metal line appear dark
during image capture

In summary, we consider 4 main error types:

• open circuits
• short circuits
• noise
• holes.

For the ground-truth mask M, a graph Gi ∈ GM usually has a tree structure, as it is the homotopy
retract of a metal-line component, which by design, is unlikely to have holes inside. If this is true
for each Gi ∈ GM, we call GM consists of trees. Such a property is topological. In general, the 1st
Betti number (Hatcher, 2001) is sufficient to encode such a property for a graph. For the simplified
definition in the case of graphs, the 1st Betti number b1(G) counts the number of (closed) loops in a
graph G. For example, b1(G) = 0 if G is a tree.

A.2 ANALYSIS OF SEGMENTATION ERRORS

In this subsection, we discuss a result that gives conditions on segmentation errors, using the above
theoretical framework. We keep the notations and assumptions of the previous subsection. For an
error, we assume that it belongs to one of the types described in the previous section, which most
commonly occurs in IC image segmentation.
Theorem 1. If any of the below holds, then there is an error in the segmentation mask M:

(a) The number of components m ̸= m′.
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(b) GM consists of trees and for some Ci ∩ C ′
j ̸= ∅, b1(Gi) ̸= b1(G

′
j).

(c) Let K be an upper bound on the number of components for any symmetric differences, and
assume the largest diameter of any component is bounded by ϵ′ ≤ ϵ. For some Ci ∩ C ′

j ̸= ∅,
there does not exist any construction of G′

j such that dGH(Gi, G
′
j) ≤ Kϵ′/2.

Notice that the three conditions are arranged in order of increasing difficulty of verification. (a) can
be interpreted as matching the 0th Betti number of the segmentation mask, while (b) is the matching
of the 1st Betti number of each graph component. Both of them are topological in nature, which are
coarser. On the other hand, (c) matches the graph components metrically, which is a more refined
condition.

Ci C ′
i

Gi
G′

i

Figure 8: Due to possible small perturbations of C ′
i, we modify Gi accordingly depending on the

perturbation type.

Proof. Suppose m ̸= m′ and there is no noise, then for each C ′
j , there is a Ci such that Ci ∩C ′

j ̸= ∅.
As m ̸= m′, we have either of the following cases:

• For j1 ̸= j2, Ci ∩ C ′
j1

̸= ∅ and Ci ∩ C ′
j2

̸= ∅.

• For i1 ̸= i2, Ci1 ∩ C ′
j ̸= ∅ and Ci2 ∩ C ′

j ̸= ∅.

The former corresponds to an open circuit, as the diameter of some components of Ci\Cj1 is > ϵ
by the ϵ-separability of M′. Similarly, for the latter case, there is a closed circuit, as the diameter of
some components of C ′

J\Ci1 is > ϵ by the ϵ-separability of M′. Hence, there is always an error if
m ̸= m′. This handles (a).

For the rest of the proof, we assume that m = m′. Consider condition (b). Re-order the indices if
necessary, we assume that Ci ∩C ′

i ̸= ∅ for any i ≤ m and for some i ≤ m, b1(Gi) ̸= b1(G
′
i). As Gi

and G′
i are the respective homotopy retracts of Ci and C ′

i, the 1st Betti numbers of b1(Gi) ̸= b1(G
′
i)

by the assumption, so are b1(Ci) and b1(C
′
i) (Hatcher, 2001). Therefore, as Gi is a tree and thus the

b1(Ci) = 0, we have b1(C
′
i) > 0. Hence, there is at least an error type of a hole in C ′

i.

For (c), suppose the condition holds for an index i ≤ m. We assume that there is no noise or holes in
the segmentation mask M′. We claim that there is an open or short circuit. The strategy is to modify
Gi to construct an ϵ-approximation G′

i of C ′
i such that dGH(Gi, G

′
i) ≤ ϵ. This will contradict the

assumption.

For this, we need an equivalent definition of the Gromov-Hausdorff distance (Tuzhilin, 2020). For
two metric spaces, a correspondence is a relation R ⊂ X × Y such that the projections (from R to
X or Y ) pX , pY satisfy: pX(R) = X and pY (R) = Y . The distortion of the correspondence R is
defined as:

δ(R) = sup{|d(x, x′)− d(y, y′) | (x, y), (x′, y′) ∈ R|}. (7)

Then, dGH(X,Y ) = infR δ(R)/2, where the infimum is taken over all correspondences R. In
particular, if for some R, δ(R) ≤ 2ϵ, then dGH(X,Y ) ≤ ϵ.

If there is no open or short circuit, then the symmetric difference Ci∆C ′
i has at most K components,

each with diameter bounded by ϵ′. For each such component, we construct an ϵ-approximation G′
i

of C ′
i by modifying a small segment ℓ of Gi by one of the following two ways (see Fig. 8 for an

illustration):
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• Replace ℓ by a union ℓ′ of small segments whose total length is within ϵ′ of ℓ, and set the
linear correspondence between ℓ and ℓ′.

• Add a small linear segment ℓ′ of length at most ϵ′ to be point u0 on Gi. Let every point ℓ′
correspond to v.

Now, for any pair of corresponding points (u, v) and (u, v′) on Gi×G′
i, the geodesic path (i.e., shortest

path) connecting u, u′ differs from that of v, v′ by crossing at most K modifications. Therefore,
|d(u, u′)− d(v, v′| ≤ Kϵ′. By (7) and its consequence, we have that dGH(Gi, G

′
i) ≤ Kϵ′/2, which

contradicts the assumption.

The practical implication of the result is that errors can be detected if we identify closely located com-
ponents in M and M′, while their corresponding graphs (i.e., approximations) are either topologically
or metrically dissimilar. This prompts the use of GNN for error detection.

B LLM USAGE

We acknowledge the use of large language models (LLMs) as a general-purpose assistive tool in
preparing this manuscript. Specifically, LLMs were employed to aid in polishing the writing, including
refining grammar, improving clarity, and enhancing fluency of expression. LLMs were NOT used for
generating research ideas, conducting analysis, or producing results. All conceptual contributions,
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