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Abstract

The discovery of the lazy neuron phenomenon [54], where fewer than 10% of
the feedforward networks (FFN) parameters in trained Transformers are activated
per token, has spurred significant interests in activation sparsity for enhancing
large model efficiency. While notable progress has been made in translating such
sparsity to wall-time benefits across CPUs, GPUs, and TPUs, modern Transformers
have moved away from the ReLU activation function crucial to this phenomenon.
Existing efforts on re-introducing activation sparsity, e.g., by reverting to ReLU,
applying top-k masking or a sparse predictor, often degrade model quality, increase
parameter count, complicate training. Sparse attention, the application of sparse
activation to the attention mechanism, often face similar challenges.
This paper introduces the Spark Transformer, a novel architecture that achieves
high activation sparsity in both FFN and the attention mechanism while maintaining
model quality, parameter count, and standard training procedures. Our method
realizes sparsity via top-k masking for explicit control over sparsity level. Cru-
cially, we introduce statistical top-k, a hardware-accelerator-friendly, linear-time
approximate algorithm that avoids costly sorting and mitigates significant training
slowdown from standard top-k operators. Furthermore, Spark Transformer reallo-
cates existing FFN parameters and attention key embeddings to form a low-cost
predictor for identifying activated entries. This design not only mitigates quality
loss from enforced sparsity, but also enhances wall-time benefit. Pretrained with
the Gemma-2 recipe, Spark Transformer demonstrates competitive performance
on standard benchmarks while exhibiting significant sparsity: only 8% of FFN
neurons are activated, and each token attends to a maximum of 256 tokens. This
translates to a 2.5× reduction in FLOPs, leading to decoding wall-time speedups
of up to 1.79× on CPU and 1.40× on GPU.

1 Introduction

The machine learning field has experienced a rapid expansion in the scale of Transformer models
[4, 3, 27, 1], significantly advancing the state-of-the-art in language understanding and generation.
However, this pursuit of larger models is often constrained not by inherent limitations in model quality
[44], but by the soaring computational costs [76, 68] associated with the number of parameters. This
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Figure 1: Spark Transformer improves inference efficiency via activation sparsity in both FFN and
attention, while being nearly quality neutral. (a) Comparison to prior work in terms of relative
FLOPs per token at 8k sequence length (y-axis) vs relative training loss (x-axis)4. [�] We use standard
Gemma-2 [30] as baseline, which has no activation sparsity. [•] Methods employing activation
sparsity within the FFN layers only. Our Spark FFN achieves the most favorable trade-off compared
to ReLU, ReLU2, and Topk, which refer to standard Gemma-2 with activation function switched
to ReLU [64], ReLU2 [92], and the composition of Topk and GELU, respectively. [N] Combining
Spark FFN (with 8% activated parameters) with Spark Attention (with at most 256 attended tokens),
our Spark Transformer achieves performance comparable to Gemma-2 while reducing FLOPs to
40%. (b) Evaluation on standard downstream tasks confirms near-quality neutrality of Spark
Transformer. (c) Prefill / decode wall time demonstrate a 1.86×/1.64× speedup resulting from
FLOPs reduction. Results are obtained on a 4-Core CPUs for prompts of 4096 tokens. For prefill, the
prompt is chunked into batches of 64 tokens, following a default setup of gemma.cpp [33].

challenge is compounded by the trend towards models capable of processing increasingly longer
input sequences [72], where computational demands scale proportionally with input length.

Activation sparsity has emerged as a prominent technique for mitigating the computational burdens
associated with both large model sizes and long input sequences. For large models, activation sparsity
reduces computational cost by activating only a small fraction of the model’s parameters for each
input. This approach has attracted considerable attention due to the observed lazy-neuron phenomenon
[54] where natural activation sparsity occurs in the feed-forward networks (FFNs) of traditional
Transformer models like T5 [71] and ViT [26], without explicit enforcement [91]. Subsequent work
has successfully demonstrated wall-time benefits from activation sparsity on multiple hardware
platforms, including CPU [90], GPU [82, 58], and TPU [89].

Despite the great success, a fundamental challenge arises in the application of sparse activation to
the latest and state-of-the-art models. That is, the inherent sparsity, which is pivotal for obtaining
efficiency, is largely absent due to the adoption of gated non-ReLU activation functions [19], widely
adopted in, e.g., Mistral [41], Gemma [30], LLAMA [27]. This motivates the following question:

Can we re-introduce a high level of activation sparsity in recent Transformers,
without compromising their quality?

To answer this question, prior work has explored reverting to ReLU variants [64, 92] or incorporating
top-k thresholding [89, 81, 83]. However, (Challenge #1) these methods often lead to a degradation
in model quality (see Figure 1a). Furthermore, (Challenge #2) top-k thresholding based methods
not only introduce non-differentiability that compromises model quality, but also involve sorting to
obtain maximally activated neurons, which is inefficient on ML accelerators, such as TPUs [43], with
possibly a 10× training slowdown (see Figure 6). Finally, a low-cost predictor is often introduced to
identify activated parameters, critical for maximizing efficiency benefits [58, 90, 82, 89]. However,
(Challenge #3) the inclusion of such a predictor increases training pipeline complexity, incurs
additional training costs and parameters, and exacerbates model quality loss.

4All models in Figure 1a were trained with standard Gemma-2 recipe for 1/6 of the full pretraining iterations.
All other results in this paper are obtained for a fully pretrained Spark Transformer.
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Sparse attention, the application of activation sparsity to the attention mechanism, presents similar
challenges. A common strategy is top-k attention [35], which applies a top-k mask to the attention
coefficients. This can be augmented with a low-cost predictor to further enhance efficiency [74, 88,
50]. Nevertheless, achieving both high sparsity and accurate prediction without resorting to complex
procedures, training slowdown from top-k, and compromising quality remains an open problem.

Contributions. This paper introduces the Spark Transformer, a novel architecture that achieves a
strong level of activation sparsity in both FFN and attention mechanism with minimal impact on
quality, providing a positive answer to the question posed above.

Spark Transformer comprises Spark FFN and Spark Attention, both of which exploit the interpretation
of FFNs and attention mechanisms as key-value lookup tables [32] to provide a unified framework for
sparsity and a low-cost predictor (see Figure 2). Our low-cost predictor is constructed by repurposing
a subset of the dimensions of the query and key vectors to compute an importance score for each
key-value pair (see Section 2). This design addresses Challenge #3 by avoiding the introduction of
extra parameters, enabling all model parameters to be trained in a single stage.

Our key technical tool for introducing sparsity is a statistical top-k operator, which is applied to
the predicted scores in Spark FFN and Spark Attention to select the activated keys. In particular,
statistical top-k is a linear-complexity algorithm for approximate nearest neighbor search, which
addresses the issue of high computation cost of standard top-k algorithms (i.e., Challenge #2). As
explained in Section 3, this is achieved by fitting a Gaussian distribution to the activation scores and
estimating a threshold that selects the top entries. Moreover, it enjoys continuously differentiability
almost everywhere by the usage of a soft-thresholding operator, making the network more amenable
to optimization.5

Finally, we demonstrate that Spark Transformer alleviates quality loss (i.e., Challenge #1) by perform-
ing a full pretraining using the Gemma-2 recipe [30]. Comparison with prior work shows that Spark
Transformer exhibits a more favorable trade-off between FLOPs reduction and quality measured
by pretraining loss (Figure 1a). Further evaluation on standard benchmarks confirms that Spark
Transformer closely matches the performance of Gemma-2 (see Figure 1b), despite exhibiting a high
degree of sparsity: only 8% of FFN neurons are activated, and each token attends to at most 256
tokens. Leveraging this sparsity, we assess the model’s inference efficiency on CPUs, demonstrating
wall-time speedups of 1.86× for prefill and 1.64× for decode (see Figure 1c). Furthermore, an up to
1.4× wall-time speedup is obtained on NVIDIA T4 GPU (see Section 4). This enhanced efficiency
broadens access to high-quality models for users with limited access to high-FLOP hardware, such as
high-end GPUs and TPUs.

2 Spark Transformer
This section describes Spark FFN and Spark Attention, the two components of Spark Transformer.

2.1 Spark FFN
FFNs in a standard Transformer are two-layer multi-layer perceptrons that map an input token
q ∈ Rdmodel to an output

Standard-FFN(q;K,V )
def
= V · σ

(
K>q

)
∈ Rdmodel . (1)

In above, {K,V } ⊆ Rdmodel×dff are trainable model parameters, and σ() is a nonlinear activation
function. We ignore the dependency on layer index to simplify the notations.

Each matrix multiplication in eq. (1) has 2dmodel · dff FLOPs hence overall the computation cost
is 4dmodel · dff. Previous work shows that when σ() is ReLU, the activation map σ(K>q) is very
sparse after model training. The sparsity can be used trivially to reduce the computation costs in the
calculation of its product with the second layer weight matrix V [54], reducing the overall FLOPs
count of FFN to 2dmodel · (dff + k), where k � dff is the number of nonzero entries in the activation.
Note that the sparsity cannot be used to reduce the computation costs associated with K, which
constitute half of the total FLOPs in FFN.

5Statistical top-k may also be applicable to Mixture-of-Experts, which face the same non-differentiability
and inefficiency challenges in their routing mechanism. A recent paper [87] also used the soft-thresholding in
MoE but still relies on a costly sorting operator. Hence, the linear complexity of statistical top-k could address a
key computational bottleneck, especially as MoEs trend toward a larger number of experts [18, 36].
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Figure 2: Architecture of Spark FFN and Spark Attention. (Left) Unified illustration of standard FFN
(i.e., eq. (1)) and standard Attention (i.e., eq. (6)). In the case of FFN, q ∈ Rdmodel is the input, K and
V are the first and second layer weights, respectively, and σ() is GELU. In the case of Attention,
q ∈ Rdattn is the query, K and V are key and value matrices, respectively, and σ() is softmax. (Right)
Unified illustration of Spark FFN (i.e., eq. (2)) and Spark Attention (i.e., eq. (7)). In the case of Spark
FFN, σ1() is GELU and σ2() is identity. In the case of Spark Attention, σ1() is softmax and σ2()
is softplus. In both cases, Statistical-Topk (i.e., eq. (10)) is applied to introduce sparsity, which
enables sparse matrix multiplication with K2 and V that reduces FLOPs count.

In order to reduce FLOPs count in the first layer of FFN as well, we introduce Spark FFN as follows:

Spark-FFN(q;K1,K2,V , k, r)
def
= V ·

(
σ
(
Topk(K>1 ·q[:r])

)
�
(
K>2 ·q[r :]

))
. (2)

In above, K1 ⊆ Rr×dff , K2 ⊆ R(dmodel−r)×dff , and V ⊆ Rdmodel×dff are trainable parameters, and the
activation σ() is taken to be GELU [37] following Gemma. Topk is introduced for obtaining sparsity,
with k being a hyper-parameter specifying the sparsity level. Concretely, Topk preserves the largest
k values in the activation vector, while setting other values to 0. In this paper, we use the efficient
statistical top-k presented in Section 3, which avoids sorting activation values. Finally, the input q is
split into q[:r] and q[r :], which contain the first r and the rest of the dimensions, respectively, with r
being a hyper-parameter. It is introduced so that the term K>1 q[:r] serves as a low-rank predictor
of the location of the nonzero entries, which allows us to obtain efficiency benefits in computing
K>2 q[r :] and the multiplication with V . This is discussed in detail below.

FLOPs per Token. Direct implementation of the Spark-FFN without exploiting sparsity has the
same number of FLOPs as the standard FFN in eq. (1), i.e.,

2r · dff + 2(dmodel − r) · dff + 2dmodel · dff = 4dmodel × dff, (3)
where the three terms are from multiplication with K1, K2, and V , respectively. In Spark-FFN,
one may first compute the term K>1 q[:r] as a low-rank predictor. After passing its output through
Topk, which selects approximately the k most important entries, followed by the activation function
σ(), we obtain a sparse output. Importantly, after obtaining the sparse output there is no need to
perform the full computation of the other two matrix multiplications in eq. (2), i.e., K>2 q[r :] and
the multiplication with V . Instead, one can perform a sparse matrix multiplication with a drastically
reduced FLOPs count:

2r · dff + 2(dmodel − r) · k + 2dmodel · k = 2(dff − k) · r + 4dmodel · k, (4)
which is an increasing function of r. In other words, r controls the computation cost. We provide
ablation study in Section C.4 to show that the best model quality is obtained when r ≈ dmodel

2 . In
this case, the total FLOP count of Spark FFN is approximately dmodel · dff + 3 · dmodel · k, which is a
4-times reduction from eq. (3) when k is small.

Relation to gated activation. Many of the most recent Transformers, including Gemma, use a
variant of the standard FFN in eq. (1) where the activation function is replaced with a gated one:

Gated-FFN(q;K1,K2,V ) = V ·
(
σ
(
K>1 q

)
�
(
K>2 q

))
. (5)

In above, {K1,K2,V } ⊆ Rdmodel×d′ff . Note that when compared with the FFN in eq. (1) for quality
studies, d′ff is usually taken to be 2/3 · dff to be iso-parameter count [77].
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Our Spark FFN in eq. (2) bears some resemblance to Gated FFN in that both have two linear maps
in the first layer and one in the second layer. The difference lies in that 1) Spark FFN adds a Topk
to obtain sparsity, and 2) the input to the first layers of Spark FFN are obtained from splitting the
dimensions of the input.

2.2 Spark Attention

In a standard multi-head attention layer, an input x ∈ Rdmodel is mapped to a query, a key, and a value
vector of dimension dattn as q(i) = W

(i)
Q x ∈ Rdattn ,k(i) = W

(i)
K x ∈ Rdattn ,v(i) = W

(i)
V x ∈ Rdattn

for each head i. Here, {W (i)
Q ,W

(i)
K ,W

(i)
V } ⊆ Rdattn×dmodel are trainable weights.

Collecting all the key and value vectors in the context of x into K(i) = [k
(i)
1 , . . . ,k

(i)
nctx ] ∈ Rdattn×nctx

and V (i) = [v
(i)
1 , . . . ,v

(i)
nctx ] ∈ Rdattn×nctx , attention conducts the following computation:

Standard-Attention(q;K,V )
def
= V · softmax

(
K>q

)
∈ Rdattn , (6)

where we omit the dependency on i for simplicity. The computation cost associated with eq. (6) is
4dattn · nctx for each head. Finally, output from all heads are concatenated followed by a linear map to
project to dmodel.

Note that eq. (6) has the same form as FFN in eq. (1) except for the choice of nonlinearity. Hence,
following a similar strategy in obtaining Spark FFN, here we present Spark Attention as

Spark-Attention(q;K,V , k, r)
def
= V ·

(
σ1

(
Top

(−∞)
k (K>1 q[:r])

)
� σ2

(
K>2 q[r :]

))
. (7)

In above, K1 ∈ Rr×nctx and K2 ∈ R(dattn−r)×nctx contain the first r rows and the rest of the rows
from K, respectively, and σ1 and σ2 are nonlinear functions. Empirically, we find that taking
σ1 = softmax and σ2 = softplus gives good results. Finally, Top

(−∞)
k refers to an operator that

keeps the largest k values of the input while setting the rest to −∞. This operator be implemented
using statistical top-k, which we explain in Section 3.

FLOPs per Token. With a direct implementation the number of FLOPs in eq. (7) is given by
4dattn · nctx, which is the same as the FLOPs for eq. (6). However, by noting that the output of
the softmax is expected to be sparse with approximately k nonzero entries, the computation costs
associated with K>1 q[:r] and in the multiplication with V can be drastically reduced. In particular,
if we take r = dattn

2 then the FLOPs per token becomes
dmodelnctx + 3dmodel min{kattn, nctx}, (8)

which is nearly a 4× reduction when kattn � nctx.

3 Statistical Top-k

This section introduces Statistical-Topk, an efficient algorithm for implementing the Topk operators
in Spark FFN (i.e. eq. (2)) and Spark Attention (i.e. eq. (7)).

Recall that the soft-thresholding operator is defined for an arbitrary vector x ∈ Rd and a scalar
threshold θ ∈ R as

Soft-Threshold(x, θ)
def
= max{x− θ · 1, 0} ∈ Rd, (9)

where 1 and 0 are d-dimensional vectors with all entries equal to 1 and 0, respectively. The soft-
thresholding operator shifts each entry of x to the left by θ and then thresholds the result at zero.

We define Statistical-Topk as the following mapping from Rd to Rd:

Statistical-Topk(x)
def
= Soft-Threshold(x, θ(x, k)), (10)

where

θ(x, k)
def
= mean(x) + std(x) ·Q(1− k

d
). (11)

In above, we define mean(x)
def
= 1

d

∑d
i=1 xi and std(x)

def
=
√

1
d−1

∑d
i=1(xi −mean(x))2 , which

compute the sample mean and standard deviation of the entries of the input x, respectively. Q(·) is
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the quantile function (i.e., inverse of the cumulative distribution function) of the standard Gaussian
distribution. In Spark Transformer, eq. (10) is used as the Topk operator in eq. (2). For the operator
Top

(−∞)
k in eq. (7), a slight variant of eq. (10) is used where the entries below the threshold θ(x, k)

are set to −∞ instead of 0.

Statistical-Topk operates by first computing a threshold θ(x, k) such that approximately k entries
of x exceed it, and then applying the soft-thresholding operator with this threshold to x to obtain a
sparse output. We discuss these two components in the next two subsections.

3.1 Threshold Estimation
The threshold θ(x, k) in eq. (10) is designed such that, if the entries of x are drawn from a Gaussian
distribution, approximately k out of the d entries will exceed this threshold. To understand this, let µ
and σ denote the mean and standard deviation of the underlying Gaussian distribution. Its quantile
function is given by µ + σ · Q(p) for p ∈ (0, 1). Consequently, due to the properties of quantile
functions, we expect roughly p · d entries of x to exceed µ+ σ ·Q(1− p). In practice, since µ and σ
are unknown, they are replaced with the sample mean mean(x) and the sample standard deviation
std(x), respectively.

The following theorem formalizes this argument.

Theorem 3.1. Let x ∈ Rd be a vector with entries drawn i.i.d. fromN (µ, σ2). For any 1 ≤ k ≤ d−1,
let θ(x, k) be a scalar defined in eq. (10). Take any δ ∈ (0, 1) and assume d ≥ max{2, log 6

δ }.
With a probability of at least 1 − δ, the number of entries of x that are greater than θ(x, k), i.e.,
card ({i ∈ [d] | xi > θ(x, k)}), satisfies

|card ({i ∈ [d] | xi > θ(x, k)})− k|
d

≤ 4

√
log 6

δ

d

(
1 +

√
−2 log min

{
k

d
, 1− k

d

})
. (12)

Theorem 3.1 provides a relative error bound between k and the true number of entries of x that
exceed k. This bound is maximized when k = 1 or k = d− 1. Consequently, the worst-case bound

is O
(√

log d·log 1
δ

d

)
which vanishes as d increases. Notably, the error bound becomes O

(√
log 1

δ

d

)
when k = Θ(d), demonstrating even faster convergence.

Computation cost. The computation of the threshold θ(x, k) is highly efficient and resembles the
operations used in LayerNorm layers, requiring only 2d FLOPs to compute the mean and standard
deviation of the samples. This contrasts sharply with a naive sorting-based approach, which has
O(d log d) complexity.

While the Gaussian quantile function Q(·) lacks a closed-form solution, high-precision piecewise
approximation algorithms with constant complexity are available in standard software packages like
SciPy [86], readily applicable to our needs.

3.2 Sparsification
Given the threshold θ(x, k), a straightforward approach to obtain a sparse vector is to set all entries
of x below the threshold to zero, preserving the remaining values. This operator, sometimes referred
to as hard thresholding [10], suffers from discontinuity, potentially hindering its suitability for
gradient-descent-based training.

To address this, Statistical-Topk employs the soft-thresholding operator defined in eq. (9) [8]. This
operator first shrinks all entries of x by the threshold θ(x, k) and then sets all entries below 0 to 0.
Soft thresholding offers the advantages of being continuous and differentiable almost everywhere
(except when entries of x coincide with θ(x, k)).

For complete differentiability, one can utilize a smoothing function like the Huber loss [39], defined
element-wise on an input x as:

Huber(x; δ)
def
=

{
1
2x

2 for |x| < δ,

δ · (|x| − 1
2δ) otherwise.

(13)

The continuous differentiability of the mapping x 7→ Huber(Statistical-Topk(x); δ)/δ is estab-
lished below:
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(a) Sparsity level in Spark FFN (b) Sparsity level in Spark Attention

Figure 3: Sparsity in the intermediate activation of Spark FFN and Spark Attention across 26 layers at
selected training steps. For FFN we report the percentage of nonzero entries out of dff = 13824 entries.
For Attention, we report the number of nonzero entries (i.e., attended tokens). Our hyper-parameter
choice is to have 8% nonzeros in Spark FFN and at most 256 nonzeros in Spark Attention.

Theorem 3.2. For any δ > 0, the function Rd → Rd defined as
Huber(Statistical-Topk(x); δ) / δ (14)

is continuously differentiable.

Note that eq. (14) converges to Statistical-Topk(x) as δ → 0, which can be seen as
Huber(x; δ)/δ → |x| and Statistical-Topk(x) is always non-negative. In practice, however, we
find that using a non-zero δ does not improve model quality, and therefore we set δ = 0 for simplicity.

Finally, soft thresholding admits a variational form (see, e.g., [67]):

Soft-Threshold(x, θ) = arg min
z≥0

θ‖z‖1 +
1

2
‖x− z‖22. (15)

This formulation seeks a vector z that minimizes both its squared `2 distance to the input x and its
`1 norm, with the threshold θ balancing these terms. Given the sparsity-promoting nature of the `1
norm, soft thresholding effectively finds a sparse approximation of the input x. This variational form
also connects Statistical-Topk with other top-k algorithms in the literature; see Section D.3.

4 Experiments
In this section, we present an experimental evaluation of Spark Transformer using the Gemma-2 2B
model. Gemma-2 2B is a decoder-only Transformer with 2 billion parameters, pretrained on 2 trillion
tokens of primarily English text data (see [30] for details). To evaluate Spark Transformer, we train a
model by substituting the standard FFN and Attention in Gemma-2 2B with their Spark Transformer
counterparts (Spark FFN and Spark Attention, respectively). This Spark Transformer model is trained
using the same procedure and data as the Gemma-2 2B model.

Implementation details. Gemma-2 uses a model dimension of dmodel = 2304. For FFN, Gemma-2
uses the Gated FFN in eq. (5) with d′ff = 9216. We replace it with Spark FFN in eq. (2) with
dff = 13824 so that the parameter count keeps the same. In addition, we take k to be 1106, which
gives a sparsity level of 8%, and r = 1024 ≈ dmodel/2 (due to sharding constraints, r can only
be a multiple of 256). For Attention, Gemma-2 alternates between a global attention that have a
span of 8192 tokens, and a local attention with a 4096 window size, both with dattn = 256. We
replace both with Spark Attention in eq. (6) where for the latter we use the same 4096 window
size. For hyper-parameters, we use k = 256, i.e. each token attends to at most 256 tokens, and
r = 128 = dattn/2. Gemma-2 uses Rotary Position Embedding [84] which is applied to q and the
columns of K in eq. (6). For Spark Attention in eq. (7), we apply this position encoding to q[: r],
q[r :], the columns of K1, and the columns of K2.

4.1 Quality
We evaluate Spark Transformer on a suite of benchmarks that are used in the Gemma-2 paper [30], and
report the result in Figure 1b. We observe that Spark Transformer matches the quality of Gemma-2
while having a drastically reduced FLOP count per token.

The near-quality neutrality of Spark Transformer distinguishes it from related work on enforcing
activation sparsity in FFN, which often lead to a quality loss. To demonstrate this, we pretrain variants
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Figure 4: Illustration of the matrix multiplication implementation using sparse activation. (a) Vector-
Masked Matrix Multiplication takes a dense vector q[r :], a dense matrix K>2 , and a mask from
statistical top-k on K>1 q[: r] to compute u := (K>2 q[r :])�mask. It skips memory loading and
compute associated with the masked columns. (b) Sparse Vector-Matrix Multiplication takes a sparse
activation vector u to compute weighted sum of rows in the dense matrix V . It skips loading and
computation of rows corresponding to 0’s in u. To optimize performance, we implement Sparse
Vector-Matrix Multiplication using tiling, which helps minimize cross-CPU core synchronization.

of Gemma-2 2B with 1) activation function switched to ReLU [92], 2) activation function switched to
ReLU2 [64], and 3) Top-k thresholding applied before GELU. Due to high training cost, all models
are pretrained for 1/6 of the standard Gemma-2 training iterations. In Figure 1a, we report the training
losses and FLOPs per token relative to those of the standard Gemma-2. It can be seen that these
models either suffer from a large quality loss (i.e., ReLU and Topk), or do not lead to a sufficient
FLOPs reduction (i.e., ReLU2). In contrast, our Spark FFN achieves less quality loss with more
FLOPs reduction.6 Finally, the combination of Spark FFN with Spark Attention introduces additional
FLOPs reduction and quality benefits, enabling an almost neutral quality of Spark Transformer with
a large overall FLOPs reduction.

4.2 Sparsity

To verify the effectiveness of statistical top-k, we report the level of sparsity measured in terms of
percentage of nonzeros in FFN and the number of nonzeros in Attention. At the beginning of model
training, we observe that statistical top-k produces close to 8% nonzeros in FFN (see Figure 3a),
which aligns well with our hyper-parameter choice of using k/dff = 8% in Spark FFN. This is
expected as the model parameters, particularly K in Spark FFN, are randomly initialized, hence the
entries of the activation maps are drawn from a Gaussian distribution which is in accordance with
the assumption of statistical top-k. The Gaussian assumption is no longer guaranteed after training,
but we empirically observe it to hold approximately (see Section C.1) and statistical top-k reliably
produce a sparsity level close to 8% until the end of training at 480k steps. Sparsity in attention is
reported in Figure 3b, which show that the number of attended tokens is below our hyper-parameter
choice of 256 in Spark Attention throughout training. In particular, the numbers are much smaller
because the results are from averaging over all tokens many of which have a context length of less
than 256. Finally, we observe comparable levels of sparsity during evaluation (see Section C.2).

4.3 Inference Efficiency

We evaluate the efficiency benefits of Spark Transformer over standard Gemma-2 on both CPUs and
GPUs. For CPU evaluation, we use gemma.cpp [33], the official C++ inference engine optimized for
CPUs. For GPU evaluation, we use llama.cpp [31], a widely-used LLM inference engine which
supports running a wide selection of LLM models on GPUs. We modify both frameworks to support
sparse matrix multiplication operators, which exploit sparsity in both FFN and Attention layers. Our
implementation leverages vector SIMD operations [80] existing in modern CPU, and customized
CUDA kernel for GPU. In particular, our implementation reduces not only computational FLOPs but
also memory bandwidth requirements, directly accelerating memory-bound scenarios; see Figure 4 for

6Notably, the only difference between Spark FFN and Topk, when both have 8% activated neurons, is in
the introduction of the low-cost predictor. Hence, this predictor not only leads to FLOPs reduction but also
(surprisingly?) improves model quality.
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(a) 16 Core CPU VM. (b) 4 Core CPU VM. (c) NVIDIA T4 GPU.

Figure 5: Spark Transformer decoding speedup from activation sparsity on various hardware platforms.
We report decoding speed of Spark Transformer without handware optimization for sparse activation,
with hardware optimization for sparsity in Spark FFN only, and with hardware optimization for
sparsity in both Spark FFN and Spark Attention. All experiments use a decode batch size of 1.

an illustration and Section B in Appendix for details. We show that Spark Transformer significantly
improves the efficiency of transformer models, even in highly FLOP-constrained environments such
as CPUs.

CPU results. Figure 5a and 5b report the decoding speed under varying prompt lengths on a 4-Core
or a 16-Core CPU. We see that with hardware optimization for sparse activation in both Spark FFN
and Spark Attention, a speedup that ranges from 1.35x to 1.79x can be achieved on a 16-Core CPU
depending on the prompt length. For short prompts (e.g., 256 tokens) and long prompts (e.g. 4096
tokens), the hardware optimization for Spark FFN and Spark Attention provide the most speedup,
respectively.

Figure 1c further highlights the efficiency of Spark Transformer in both prefill and decode phases.
During the prefill, the prompt is usually chunked into batches since the process is bounded by
memory bandwidth. This may reduce the benefit of activation sparsity as different tokens in a chunk
may activate different subsets of parameters (in FFN) and attend to different subsets of tokens (in
Attention). However, Figure 1c shows that Spark Transformer maintains strong performance with a
chunk size of 64 tokens, following the default setup in gemma.cpp. A more detailed performance
analysis of batching/chunking is provided in Section C.3. In addition, Spark Transformer significantly
outperforms Gemma-2 during decoding (with batch size=1).

GPU results. We also evaluate the efficiency gain from sparsity on low-profile GPUs. Figure 5c
reports the decoding speed under varying prompt lengths on an NVIDIA T4 GPU. Similar to the
CPU case, we see Spark Transformer achieves decode speedup ranging from 1.25× to 1.40×.

4.4 Training Efficiency

Figure 6: Comparison of training slowdown
from using our statistical top-k vs the stan-
dard top-k (i.e., jax.lax.approx_max_k
[14]) relative to not using any top-k.

The introduction of a top-k operator is expected to lead
to a training slowdown due to the extra computational
operators. This slowdown can be prohibitively large if
one uses the standard approximate top-k operator pro-
vided in JAX, namely jax.lax.approx_max_k [14].
Specifically, this JAX top-k operator is optimized to
achieve TPU peak performance and has a controllable
recall target, which we vary on the x-axis in Figure 6.
It can be observed that the JAX top-k leads to more
than 10× slowdown even when operating on a small
recall of 50%. In contrast, the slowdown from statisti-
cal top-k is with a very small amount, demonstrating
its efficiency. Finally, we do not provide the quality of
models trained with JAX top-k since such models take
a very long time to train.

5 Discussions

This paper introduces the Spark Transformer architecture to reduce the FLOPs in both the FFN
and Attention of Transformer models. Because the FFN and Attention components dominate the
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computational cost in large Transformers with long contexts, the overall FLOP count for decoding a
token is also drastically reduced (see Table C.1), leading to notable computation efficiency benefits
on appropriate hardwares. Specifically, the benefit is obtained by selectively activating only part
of the model parameters and limiting the attended context for each input. This principle of sparse
activation finds a compelling parallel in neuroscience, where studies reveal sparse activity patterns in
the brain as a key factor in its remarkable efficiency [5, 7, 48]. While hardware limitations currently
hinder the full exploitation of sparse activation, our demonstration of practical wall-time reduction of
Spark Transformer on CPU and GPU, together with prior evidence for related techniques [58, 82]
including TPU [89], highlight its potential. We hope that this work opens avenues for research into
alternative hardware better suited for sparse computations, circumventing the hardware lottery [38]
and potentially leading to greater efficiency gains in the future. Additional discussions on related
work for activation sparsity, including Mixture-of-Experts, are provided in Section D.1.

This work also opens promising avenues for future research on efficient inference of large language
models, particularly in combining Spark Transformer’s architectural efficiency with other leading
optimization techniques. We briefly discuss two key synergies here.

Synergy with Speculative Decoding. Spark Transformer is highly complementary to speculative
decoding. As a target model, its faster inference directly accelerates the primary verification bot-
tleneck. As a draft model, its near-quality neutrality and high speed make it an ideal candidate for
generating high-quality drafts, potentially leading to higher token acceptance rates and greater overall
speedups. A full discussion is provided in Section D.5.

Synergy with Quantization. We also hypothesize a strong synergy with quantization. The benefits
are expected to be multiplicative, as Spark Transformer reduces the number of operations while
quantization reduces their cost. More importantly, unlike standard pruning which preserves high-
magnitude outliers, our statistical top-k operator uses soft-thresholding. This shrinks the dynamic
range of activation distribution, which may reduce sensitivity to activation quantization. A detailed
analysis of this mechanism is available in Appendix section D.6.
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This Appendix is organized as follows. In Section A we provide proofs to theoretical results in
the main paper. Section B contains implementation details of sparse matrix multiplication on
CPU. Section C provides details and additional results on experiments. Finally, Section D presents
additional discussions on comparing with related work on activation sparsity in FFN (in Section D.2)
and on statistical top-k (in Section D.4).

Appendix A Proofs

A.1 Proof to Theorem 3.1

Proof. In this proof we write x̄ def
= mean(x) and s def

= std(x) for brevity.

We first establish the concentration bounds that the empirical mean and standard deviation, i.e., x̄
and s are close to the true mean and true standard deviation, i.e., µ and σ of the underlying Gaussian,
respectively. Recall from the definition of the chi-squared distribution that (d− 1) s

2

σ2 ∼ χ2(d− 1).
Using the Laurent-Massart bound on the tail probability of the chi-squared distribution [47, Corollary
of Lemma 1], we have

Pr

(∣∣∣∣(d− 1)
s2

σ2
− (d− 1)

∣∣∣∣ ≥ 2
√

(d− 1)t+ 2t

)
≤ 2e−t

for every t > 0. We set t = log 6
δ . Then, with a probability of at least 1− δ/3, we have

(d− 1)

∣∣∣∣ s2

σ2
− 1

∣∣∣∣ < 2

√
(d− 1) log

6

δ
+ 2 log

6

δ
,

which implies ∣∣∣∣ s2

σ2
− 1

∣∣∣∣ < 2

√
log 6

δ

d− 1
+ 2

log 6
δ

d− 1
≤ 4

√
log 6

δ

d
+ 4

log 6
δ

d
≤ 8

√
log 6

δ

d
,

where the last inequality uses the assumption that d ≥ max{2, log 6
δ }. By rearranging the terms, we

get
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which simplifies to

|s− σ| ≤ 8σ

√
log 6

δ

d
. (A.1)

eq. (A.1) provides a concentration bound for s. We now proceed to deriving a bound for µ. Towards
that, notice that x̄−µ

σ/
√
d
∼ N (0, 1). By using the Mill’s inequality that upper bounds the tail probability

of a standard normal distribution (i.e., if Z ∼ N (0, 1) and t > 0, then Pr(|Z| > t) ≤ e−t
2/2

t ), we
have
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Therefore, with probability at least 1− δ/3, we have∣∣∣∣ x̄− µσ/
√
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√

2 log
3

δ
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which yields

|x̄− µ| ≤ σ

√
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δ

d
. (A.2)
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Combining eq. (A.1) and eq. (A.2), with probability at least 1− 2δ/3, we have∣∣∣∣θ(x, k)− (µ+ σQ(1− k

d
))

∣∣∣∣ (A.3)

≤ |x̄− µ|+ |s− σ|
∣∣∣∣Q(1− k
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d
)

∣∣∣∣ . (A.5)

We define the empirical cumulative distribution function (ECDF) of x1, x2, . . . , xd as

F̂d(x) =
1

d

∑
i∈[d]

1{xi≤x}.

Then, the number of the entries of x that are greater than θ(x, k) may be written as

card ({i ∈ [d] | xi > θ(x, k)}) =
∑
i∈[d]

1{xi>θ(x,k)} = d
(

1− F̂d(θ(x, k))
)

.

Let F denote the cumulative distribution function (CDF) of N (µ, σ2). By the Dvoretzky-Kiefer-
Wolfowitz inequality [28, 63], we have
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(
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Taking t =
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δ and u = θ(x, k), we obtain
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Applying the union bound on eq. (A.3) and eq. (A.6), we obtain that the following holds with
probability at least 1− δ:∣∣∣∣F̂d(θ(x, k))− (1− k
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In the above expression, the first equality stems directly from the definitions of F (·) and Q(·), which
gives

F (θ(x, k)) = F (µ+ σQ(1− k

d
)) = Φ(Q(1− k

d
)) = 1− k

d
,

where Φ denotes the CDF of the standard normal distribution.

To simplify eq. (A.7), we consider two cases:

• If k ≤ d/2, by Mill’s inequality, we have
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where the last inequality is because 2 log d
k ≥ 1. Therefore
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Combining the two cases, we get∣∣∣∣Q(1− k
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Plugging this into eq. (A.7), we obtain∣∣∣∣F̂d(θ(x, k))− (1− k
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Recall card ({i ∈ [d] | xi > θ(x, k)}) = d
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1− F̂d(θ(x, k))
)
. We conclude that with probability

at least 1− δ, we have
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A.2 Proof to Theorem 3.2

Proof. The Huber statistical top-k in eq. (14) may be written as
Huber(Statistical-Topk(x); δ)/δ = Huber(Soft-Threshold(x, θ(x, k)))/δ, (A.13)

where θ(x, k) is defined in eq. (10). This function is the (multivariate) composition of two functions,
namely, θ = θ(x, k) and Huber(Soft-Threshold(x, θ)). In particular, the former is continuously
differentiable (i.e., C1) in x, since it is simply a linear combination of sample mean and sample
standard deviation both of which are C1 functions. To establish the theorem, we only need to show
that Huber(Soft-Threshold(x, θ)) is also a C1 function in (x, θ).

By definition, Huber(Soft-Threshold(x, θ)) is defined entry-wise on x as

Huber(Soft-Threshold(x, θ)) =


δx− δθ − 1

2δ, if x > θ + δ;
1
2 (x− θ)2, if θ ≤ x ≤ θ + δ;

0, if x < θ.

(A.14)

From here it is easy to check that Huber(Soft-Threshold(x, θ)) is continuous in (x, θ). Its gradient
with respect to (x, θ) is given by

∂Huber(Soft-Threshold(x, θ))

∂(x, θ)
=


(δ,−δ), if x > θ + δ;

(x− θ, θ − x) if θ ≤ x ≤ θ + δ;

(0, 0), if x < θ,

(A.15)

which is also continuous. This concludes the proof.
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Appendix B Implementation Details on Sparse Matrix Multiplications

We describe how we implement sparse matrix multiplications for Spark FFN and Attention in
gemma.cpp for CPU and llama.cpp for GPU. We start by focusing on a batch size of one for
decoding before expanding our discussion to larger batch sizes and prefill.

With batch size of 1, both Spark FFN and Spark Attention utilize two types of sparse vector-
matrix multiplication: vector-masked matrix multiplication and sparse vector-matrix multiplication
(Figure 4). Given a vector q and a matrix w, vector-masked matrix multiplication multiplies q with
the non-masked columns of w based on a masking vector m. Masked columns yield a zero output.
Sparse vector-matrix multiplication, on the other hand, involves a vector that contains many zeroes
being multiplied by a dense matrix.

In Spark FFN, we perform vector-masked matrix multiplication for K>2 q[r :] (Figure 4a). The
masking vector is generated from the output of Statistical-Topk(K>1 q[: r]). Based on the mask,
Spark FFN skips loading the masked columns of w from DRAM (in CPU setup) or HBM (in GPU
setup) and the associated computations. On CPU, Spark FFN utilizes SIMD operations (as in the
original Gemma implementation). To further enhance performance, Spark FFN utilizes software CPU
prefetching (builtin_prefetch) to overlap loading from DRAM to the CPU cache with computations.
On GPU, Spark FFN utilizes customized CUDA kernel.

The same masking vector also identifies the zero entries in the intermediate vector that is multiplied
by matrix V (Figure 4b). For this sparse vector-matrix multiplication, we store the matrix in row
format. Each CPU thread (or GPU warp) processes a tile of the matrix while skipping the loading and
computation of the masked rows. Prefetching and SIMD operations are applied similarly on CPU in
this context.

Spark Attention utilizes these two types of sparse matrix multiplication operators to accelerate qkv
computations for each head.

When extending to decoding with batch sizes greater than one or prefill, we continue to use individual
masks to skip computations while using a union of masks from each vector within the batch to create
unified masks for memory loading. With larger batches, Spark transformer is expected to save less
memory loading (vs. original Gemma), unless there is significant overlap in top-k positions within the
same batch. Nonetheless, the Spark transformer consistently reduces FLOP by skipping computations
based on individual masks within the batch.
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(a) Spark FFN sparsity (b) Spark Attention sparsity

Figure C.1: Sparsity in the intermediate activation of Spark FFN and Spark Attention during
evaluation (see Figure 3 for results during training). For FFN, we use a simple prompt “test” and
report the percentage of nonzero entries in generating the 5th, 10th, and 15th token. For Attention,
we report the nuber of nonzero entries at the 512th, 1024th, and 2048th token during prefill.

Appendix C Additional Experimental Results and Details

C.1 Distribution of Inputs to Statistical Top-k

The underlying assumption for statistical top-k is that the activation vector upon which it is applied
to, namely, the pre-GELU activation in Spark FFN and the pre-softmax activation in Spark Attention,
can be modeled as being drawn from an i.i.d. Gaussian distribution. Here we provide empirical
evaluation on the distribution of these activation vectors for Spark Transformer. Results for Spark
FFN and Spark Attention are provided in Figure C.4 and Figure C.5, respectively. The results show
that the distribution holds close proximity to a Gaussian, hence justifying the use of statistical top-k.

C.2 Sparsity Level During Evaluation

Complementing Figure 3 which reports sparsity level during pretraining, here we report the sparsity
level during evaluation to confirm that statistical top-k produces the same level of sparsity during test
time. The results are presented in Figure C.1 for some arbitrarily selected tokens. For Attention, in
particular, we select tokens at the positions 512, 1024, and 2048 which are all above our choice of
k = 256 for Spark Attention.

C.3 Batching Analysis

Figure C.2: Spark Transformer vs. Gemma-2 Prefill Token/Sec with Varying Chunk Size. We use a
prompt length of 4096 tokens on a 16 core CPU VM.

Figure C.2 provides the performance comparison between Spark Gemma 2 and Gemma 2, measured
in prefill throughput (tokens/sec) across varying chunk sizes. We use a 4096-token prompt on a
16-core CPU VM. A similar trend is expected during the decoding phase with varying batch sizes.

Our analysis shows that Spark Transformer provides the highest speedup at batch size 1, and again at
large batch sizes (e.g. >8), where the compute FLOP becomes the primary bottleneck.
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For Gemma-2, as seen in the figure, increasing batch/chunk size leads to a significant improvement in
prefill throughput until the batch size reaches 8. This improvement occurs because batching reduces
memory access by reusing weights across multiple tokens in the CPU cache. Once the computation
becomes the bottleneck (i.e. batch = 8), further batching provides diminishing returns.

In contrast, Spark Transformer behaves differently. When the batch size increases from 1 to 2, we
observe minimal throughput change. This is due to the lack of overlap in top-k positions between
the tokens, resulting from the high sparsity. However, as the batch size increases beyond 4, Spark
Transformer starts benefiting from weight reuse, similar to Gemma-2. Spark Transformer continues to
show improvements in throughput until the batch size reaches approximately 64, where it eventually
becomes FLOP-bound, much later than Gemma-2 due to the reduced FLOP requirements.

Overall, Spark Gemma demonstrates the most significant gains in two scenarios: when the batch
size is 1, a common setting for desktop or mobile devices decoding, and when the batch size is large
enough that FLOP becomes the dominant bottleneck.

C.4 Effect of r and k in Spark FFN.

Spark FFN comes with two hyper-parameters, namely r which controls the rank hence FLOP count
of the low-cost predictor, and k which controls sparsity of activation hence the FLOP count. In
Figure C.3 we provide an ablation study on the effect of these two hyper-parameters, by reporting
the training loss curves in the first 25,000 training steps (which is around 5% of full training). From
Figure C.3a, the best choice of r is 1024 which is nearly half of dmodel = 2304 (due to model sharding
constraint, r cannot be taken to be exactly a half of dmodel). From Figure C.3b, we see that the model
quality is insensitive to choices of k that gives [5%, 10%] sparsity, but there is quality loss if we go
sparser, e.g. 3% nonzeros.

(a) Effect of r. (b) Effect of k.
Figure C.3: Effect of hyper-parameters r and k in Spark FFN on training loss. A Gaussian filter of
σ = 200 is applied to smooth the loss curves. Models are trained with 1/20 of standard Gemma-2
training iterations.

C.5 Additional Ablation Studies

Figure C.6: Ablation study in terms of
training loss in the first 80k training steps
(out of 500k total steps).

In this section, we provide ablation studies for understand-
ing the effect of the individual components of Spark Trans-
former. Towards that, we plot the training loss curves for
Gemma-2 and Spark Transformer, see Figure C.6. Here,
we restrict to the first 80k training steps out of the 500k to-
tal steps since it is costly to fully train all ablation models,
and that 80k steps is sufficient for seeing the trend. We can
see that Spark Transformer slightly lags behind Gemma-
2. However, as demonstrated in Figure 1b, that small
difference in training loss does not lead to a substantial
difference in evaluation quality.

In our ablation studies below, we add a single component
at a time to Gemma-2 and report the quality impact.

Spark FFN vs Spark Attention. To understand the effect of Spark FFN vs Spark Attention, we
conduct an experiment where only attention is switched from a standard one to Spark Attention,

22



(a) Layer 0 (b) Layer 8 (c) Layer 16 (d) Layer 24

(e) Layer 0 (f) Layer 8 (g) Layer 16 (h) Layer 24

Figure C.4: Distribution of the entries of the input activation to statistical top-k in Spark FFN (see
Figure C.5 for result of Spark Attention). The two rows correspond to activation at two positions
0 and 1000 of an input, and the columns correspond to activation at four different depth levels
{0, 8, 16, 24} of the 26-layer pretrained Spark Transformer. The input is the first 1000 tokens of
the first essay from https://paulgraham.com/articles.html prepended with the BOS token.
We compare the empirical distribution (Empirical) with the Gaussian distribution whose mean and
standard deviation (std) are computed as the sample mean and std of the input (Fitted). We see that
the Gaussian closely approximates the empirical distribution. We also compare the cutoff value
estimated from the Gaussian, i.e., θ(x, k) used in eq. (10) with k/d = 5% (Cutoff for fitted), with the
cutoff value for obtaining 8% nonzeros on the empirical distribution (Cutoff for empirical). It can be
seen that these two cutoff values are close.

whereas the FFN remains the standard one. The result is illustrated as Gemma-2 + Spark Attention
in Figure C.6. It can be seen that Spark Attention provides a minor quality gain over Gemma-2. In
comparing Gemma-2 + Spark Attention with Spark Transformer, this also shows that further adding
Spark FFN slightly hurts model quality. As noted above, such a small difference does not lead to
substantial quality impact on the evaluation tasks. Hence, we conclude here that none of Spark FFN
and Spark Attention has significant quality impact.

Sparsity enforcing vs Low-cost predictor. Sparsity enforcing via statistical top-k and low-cost
activation predictor are two relatively independent components of Spark Transformer. This means
that, upon the standard Gated FFN (see eq. (5)) that is used in Gemma-2, which we rewrite here for
convenience:

Gated-FFN(q;K1,K2,V ) = V ·
(
σ
(
K>1 q

)
�
(
K>2 q

))
, (C.1)

we may choose to only apply statistical top-k for enforcing sparsity, i.e.,

Topk-Gated-FFN(q;K1,K2,V ) = V ·
(
σ
(
Statistical-Topk(K>1 q)

)
�
(
K>2 q

))
. (C.2)

Note that applying a sparsifying function on the input to the nonlinear function σ() as in eq. (C.2)
is a common choice in the literature of sparse activations, e.g., [64, 81, 49]; the main difference
between these works lies in the specific sparsity enforcing technique, see Table D.1 for a summary.
In addition to the sparsifying function, Spark FFN also has another architectural change for the
purpose of introducing a low-cost predictor. Here, we rewrite Spark FFN for ease of comparison with
eq. (C.2):

Spark-FFN(q;K,V , k, r)
def
= V ·

(
σ
(
Statistical-Topk(K>1 q[:r])

)
�
(
K>2 q[r :]

))
. (C.3)

Analogous to FFN, we may also only add statistical top-k to attention without the low-cost predictor,
i.e., by switching from standard Attention in eq. (6) to the following:

Topk-Attention(q;K,V )
def
= V · softmax

(
Statistical-Top

(−∞)
k (K>q)

)
. (C.4)

Here, we aim to understand the effect of introducing statistical top-k without the low-cost predictor.
Towards that, we conduct an experiment where FFN and Attention in Gemma-2 are replaced with
eq. (C.2) and eq. (C.4), respectively. The result is illustrated as Gemma-2 + Top-k in Figure C.6.
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(a) Layer 0 (b) Layer 8 (c) Layer 16 (d) Layer 24

(e) Layer 0 (f) Layer 8 (g) Layer 16 (h) Layer 24

Figure C.5: Distribution of the entries of the input activation to statistical top-k in Spark Attention
(see Figure C.4 for result of Spark FFN). The two rows correspond to activation for two different
attention heads, and the columns correspond to activation at four different depth levels {0, 8, 16, 24}
of the 26-layer pretrained Spark Transformer. Model input is the first 1000 tokens of the first
essay from https://paulgraham.com/articles.html prepended with the BOS token, and we
examine activation of the last token (i.e., inner product between the query embedding of the 1001st
token and all 1001 key embeddings). We compare the empirical distribution (Empirical) with the
Gaussian distribution whose mean and standard deviation (std) are computed as the sample mean and
std of the input (Fitted). We see that the Gaussian closely approximates the empirical distribution. We
also compare the cutoff value estimated from the Gaussian, i.e., θ(x, k) used in eq. (10) with k = 256
(Cutoff for fitted), with the cutoff value for obtaining top 256 entries on the empirical distribution
(Cutoff for empirical). It can be seen that these two cutoff values are close.

Table C.1: FLOPs per token comparison: Spark Transformer vs. standard Transformer. In a
standard Transformer with model dimension dmodel, we assume multi-head attention where the sum
of head dimensions equals dmodel, and an FFN with non-gated activation and width dff. Here, nctx
represents the context length for the target token. The computational cost is primarily determined by
the FFN (assuming dff � dmodel, which is typical) and the attention dot product (assuming a long
context length). Spark Transformers introduce sparsity parameters, kff and kattn, to reduce FLOPs.
Setting kff = 8%× dff and kattn = 256 achieves a 3.2× FLOPs reduction in the FFN, a 4× reduction
in the attention dot product, and a 2.5× reduction overall (assuming nctx = 8k) for Gemma-2B.

Operation FLOPs per Token7

Standard Transformer Spark Transformer (Ours)

FFN 4dmodeldff dmodeldff + 3dmodelkff
Attention dot product 4dmodelnctx dmodelnctx + 3dmodel min{kattn, nctx}
Attention linear projection 8d2model 8d2model

It can be seen that the training loss becomes notably larger and the gap compared to Gemma-2 is
further increasing with more training steps. This result demonstrates that while the low-cost predictor
is introduced to Spark Transformer for reducing the cost in predicting the nonzero entries, it also
helps in bridging the gap from the introduction of statistical top-k. In other words, Transformer
with low-rank predictors in FFN and Attention is more amenable to activation sparsification without
quality loss.

C.6 Computing FLOPs per Token

To understand the FLOPs saving reported in Figure 1a, we provide a comparison between FLOPs
of the major components of a Transformer, including FFN, Attention dot product, and Attention
projections, with that of Spark Transformer. The results are presented in Table C.1.
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Appendix D Additional Discussions

D.1 Additional Related Work

In the following, we review a few lines of work closely related to ours.

Mixture of Experts (MoEs) may be considered as a particular case of sparsely activated models
which group the neurons in FFN and activate all neutrons in selected groups [78, 52]. Neuron
grouping has the benefit of being better suited for training accelerators compared to unstructured
activation sparsity. However, training of MoEs incurs extra complexities in algorithmic design and
requires special hardware support [29]. Moreover, the structured nature of sparsity limits the model’s
flexibility and expressiveness, and recent work advocates the use of a larger number of smaller experts
[18, 36]. On the other hand, the discovery of the naturally emerging unstructured activation sparsity
has motivated the perspective of naturally emerging experts [91, 25, 16, 70, 85, 95].

Sparse activation is common approach to improve the efficiency of large models and many tech-
niques for a low-cost activation prediction have been developed over the years, such as low-rank
factorization [20], quantization [11], product keys [46], hashing [12], etc. With the popularity of
modern Transformer models, these techniques become natural choices [40, 90, 58, 82] for reducing
their high computation costs. In particular, a lot of the excitement comes from the discovery that the
activations in FFNs are naturally sparse [91, 54, 61] and hence efficiency with activation sparsity is
obtained without a quality toll.

Our work falls into the category of the latest work in this direction that aims to bring the benefits to the
latest generation large language models that do not have natural sparsity. Early attempts [64, 69, 92]
seek to bring back sparsity by switching back to ReLU variants, but it usually incurs a quality loss.
The quality gap may be largely bridged by more careful tuning, but the activation becomes less sparse
(e.g. 25% nonzeros in LLAMA 7B [81]). Top-k has become a more popular choice for obtaining
sparsity recently [83] and is able to maintain neutral quality while offering strong sparsity, but only
in selected layers [89]. Moreover, such methods require finetuning to bring sparsity and also obtain
a predictor. Without doing finetuning, [49, 56, 94] obtained at most 50% nonzeros under neutral
quality. In contrast to these works, our work not only obtains 8% nonzeros in activation of all FFN
layers, but also a predictor, all with a single-stage training. We provide a summary of comparison to
these methods in Section D.2.

Finally, the usefulness of activation sparsity goes beyond efficiency. For example, theoretical studies
show its benefits for model generalizability and learnability [65, 6]. Moreover, activated neurons may
be associated with semantic concepts, which offers understanding of the working mechanism and
enables manipulating the output of Transformer models [17, 60].

Sparse attention broadly refers to the approach of attending to a selected subset of tokens in the
context as a means of reducing computation cost [21, 42, 73]. Works on sparse attention include
those that use handcrafted attention patterns [15, 9, 2, 24], which feature simplicity, and learned
attention patterns [45, 75, 66] which feature better modeling capacity. However, learning attention
patterns often involve learning, e.g., a hash table or k-means centers, which significantly complicates
modeling. Closely related to our Spark Attention is the top-k attention [35], which obtains data-
adaptive attention simply from top-k thresholding. Our work improves upon top-k attention by
introducing a low cost predictor which enables an increased computational benefits from sparsity.
Finally, KV pruning approaches drop selected tokens permanently as decoding proceeds [93, 57],
and cannot achieve as high compression ratio as sparse attention based approaches.

D.2 Comparison with Related Work on Activation Sparsity in FFN

In Table D.1, we provide a summary of recent work on enabling FFN activation sparsity in the latest
LLMs, including ReLUification [64], ProSpare [81], HiRE [89], and CATS [49]. Please see Section 5
for a discussion of these methods.

We can see that our Spark Transformer leads to a FLOPs reduction of -72%, which is more than all
the other methods. This comes at the cost of only a -0.9% quality loss, which is lower than most of
the other methods except HiRE. In particular, HiRE is on par with ours in terms of quality loss but
achieves less FLOPs reduction.
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Table D.1: Comparison with related work on enforcing activation sparsity in FFN of LLMs. Spark
Transformer has the largest FLOPs reduction with one of the smallest quality loss.

Main Techniques Main Results

Enforce
sparsity

Predict
support

Base model Training
cost8

Sparsity
(%zeros)

Quality9 FFN
FLOPs

ReLUification10

[64]
ReLU None OPT 1.3B +0% 93% -2% -62%

ReLU None Falcon 7B
Llama 7B

+2%
+3%

94%
62%

-2.5%
-1.9%

-62%
-42%

ProSparse
[81]

ReLU +
‖ · ‖1

None Llama2 7B
Llama2 13B

+1.8%
+6.7%

88%
88%

-1.1%
-1.4%

-59%
-59%

2-layer FFN Llama2 7B
Llama2 13B

NA
NA

75%
78%

NA
NA

NA
NA

HiRE
[89]

Group topk +
commonpath

Low-rank /
quantization

PALM2 1B +100% 80% -0.8% -60%11

CATS
[49]

Thresholding None Mistral 7B
Llama2 7B

+0% 50%
50%

-1.5%
-2.4%

-33%
-33%

Spark
Transformer

Statistical-
topk

Partial
dimensions

Gemma 2B +0% 92% -0.9% -72%

Comparing pretraining, finetuning, and “zero-shot” approaches. Existing approaches on
enforcing activation sparsity in FFNs can be categorised into three groups depending on when the
sparsity is enforced during the training process.

• Pretraining-based approaches are those whose activation sparsity is enforced from the very
beginning of the model pretraining, usually with certain architectural changes upon an established
model. Hence, such methods require pretraining a model from scratch. For example, ReLUification
[64] is the method of switching the activation function in FFN from a commonly used one, e.g.
GELU, back to ReLU. When tested on OPT 1.3B, [64] applied this modification and pretrained a
version of OPT 1.3B with ReLU from scratch (Table D.1 contains a summary of relevant results
for it).

• Finetuning-based approaches refer to those that take an existing pretrained model without activa-
tion sparsity, and perform additional training steps usually with certain architectural changes to
induce sparsity. For example, ReLUification discussed above as a pretraining-based approach can
also be used as a finetuning-based approach by switching the activation function of a pretrained
model to ReLU and performing additional training steps. In [64], this approach is applied to Falcon
7B and Llama 7B, for which the results are summarized in Table D.1. Other methods falling into
this category, which we have summarized in Table D.1, include ProSparse [81] and HiRE [89].

• “Zero-shot” approaches. This refers to methods that enforces activation sparsity upon a pretrained
model, without any additional training. CATS [49] is a method of this kind.

Our Spark Transformer belongs to the category of pretraining-based method, that is, it requires
pre-training a model from scratch. It may not be used directly as a finetuning-based approach, due to
the drastic difference between the architecture of a standard FFN with gated activation, i.e. eq. (5),
and our Spark-FFN. This appears to make Spark Transformer less favorable than finetuning-based
approaches, as the latter requires usually a small fraction of the pretraining steps in the finetuning
process, see Table D.1 for a summary. However, the long-term serving costs of such models usually
dominate overall expenditures, in which case the additional pre-training costs are amortized by the
significant efficiency benefits realized from a higher level of sparsity and FLOPs reduction during
model inference.
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D.3 Comparison of Statistical Top-k with Related Top-k Operators

The variational form in eq. (15) reveals connections of Statistical-Topk with other top-k algorithms
in the literature. Specifically, [51] defines a soft top-k as

arg min
z

− θ ·H(z)− 〈z,x〉, s.t. z>1 = k, 0 ≤ z ≤ 1, (D.1)

where H(z) is the entropy function. Another work [59] defines the SparseK operator

arg min
z

−HG(z)− 〈z,x〉, s.t. z>1 = k, 0 ≤ z ≤ 1, (D.2)

where HG(z) is the generalized Gini entropy.

Statistical-Topk in the form of eq. (15), as well as eq. (D.1) and eq. (D.2), can all be interpreted
as finding an output that is close to the input subject to a sparsifying regularization. Their major
difference lies in the choice of the sparse regularization. That is, soft top-k and SparseK uses
entropy and Gini entropy, respectively, whereas Statistical-Topk uses `1. The choice of `1 makes
Statistical-Topk superior in that it has a closed form solution provided by soft-thresholding, which
only requires d FLOPs. In contrast, soft top-k and SparseK both do not have closed form solutions
and require an iterative algorithm with a FLOP count dependent on the number of iterations. In
addition, there is no guarantee that soft top-k and SparseK can obtain (approximately) k nonzero
entries as output.

Finally, we mention that ideas similar to statistical top-k have been used [79, 62] for the problem of
distributed training [55]. However, we are the first to introduce, adapt, and verify its effectiveness for
activation sparsity. Additional discussions are provided in Section D.4.

D.4 Additional Discussions on Statistical Top-k

Novelty upon existing work. We note that ideas similar to our statistical top-k have appeared in the
literature. In particular, [79] introduced the idea of fitting a Gaussian distribution to the entries of an
input vector and estimating a threshold from quantile functions. Then, [62] extended the approach
to additional distributions. In both cases, the method is used for solving the problem of distributed
training. Here, we summarize our contribution upon these works:

• We are the first to use statistical top-k for enforcing activation sparsity in Transformers. Improving
Transformer efficiency via activation sparsity has become a very popular research topic (see
Section 5), but may have been suffering from a lack of efficient top-k algorithms for enforcing
sparsity. Hence, the introduction of statistical top-k may facilitate the development of this area.

• Synergizing statistical top-k into Transformers is nontrivial. Since the method of statistical top-k
is based on fitting a statistical distribution to the activation vector, there is the need to understand
the distributions of different activations in order to determine which particular activation vector
is suited for the application of statistical top-k and the associated choice of the distribution. In
our case, we decide that statistical top-k should be applied to the activation before the nonlinear
function (for FFN) and before softmax (for Attention) since entries of this vector provably follow a

7Please refer to Section 2.1 and Section 2.2 for the calculation of FLOPs for FFN and Attention, respectively.
We omit non-leading-order terms (e.g., those arising from embedding, normalization, and nonlinear layers) and
exclude the number of layers as a common multiplier.

8Total training cost relative to the base model. For finetuning based approaches, such as ReLUification (on
Falcon and Llama) and ProSparse, the total training cost includes both the pretraining cost and the finetuning
cost.

9Quality loss relative to the base model. Here the numbers are based on the results reported in their respective
papers. Note that a different set of evaluation benchmarks is used in each paper. For ReLUification, this set
contains ARC-Easy, HellaSwag, Lambada (for OPT) and Arc-E, Arc-C, Hellaswag, BoolQ, PIQA, LAMBADA,
TriviaQA, WinoGrande, SciQ (for Falcon and Llama). For ProSparse, this set contains HumanEval, MBPP,
PIQA, SIQA, HellaSwag, WinoGrande, COPA, BoolQ, LAMBADA, and TyDiQA. For HiRE, this set contains
WMT14/WMT22, SuperGLUE, Multiple QA datasets, and multiple discriminative tasks datasets. For CATS,
this set contains OpenBookQA, ARC Easy, Winogrande, HellaSwag, ARC Challenge, PIQA, BoolQ, and SCI-Q.
For Spark Transformer, the datasets are those reported in Figure 1b.

10Results reported here are for the stage 1 training of their paper.
11Specifically, -80% on odd layers only, and -60% on average.
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Gaussian distribution at random initialization. We also verify empirically that statistical top-k is
still reliable even after initialization.

• We extended statistical top-k from using the hard-thresholding operator with the estimated statisti-
cal threshold to the soft-thresholding operator. This leads to a continuous optimization landscape
that may have facilitated the optimization. Empirically, we found this choice to provide quality
benefits for Spark Transformer.

• We provide the first theoretical justification for the correctness of statistical top-k, see Theorem 3.1.

• We reveal the conceptual connection between statistical top-k and several related top-k operators in
the literature, see Section D.3. Such connections may motivate the development of more powerful
top-k algorithms in the future.

Handling cases when the activation is sharded. The training of modern large Transformer models
usually requires sharding certain model weights and activations across multiple computation devices,
due to physical limitations on each device’s memory. In particular, if sharding is used for the
activations upon which the statistical top-k is applied to, i.e., the pre-GELU activation in FFN and
the pre-softmax activation in attention, extra care needs to be taken so that statistical top-k is applied
correctly. While this has not been the case for our experiment on Gemma-2 2B, here we discuss
possible solutions if this case arises, e.g., when training a larger Spark Transformer for which sharding
relevant activations may become necessary.

Assume that an activation vector of length N is sharded over m devices, and we are interested in
finding approximately the top-k entries of N with the largest value. There are two ways of applying
statistical top-k for this purpose.

• Global statistical top-k. Here we require each device to compute the mean and variance for entries
on itself, then communicate them to all other devices. In this case, each device receives m − 1
mean and variance values, which can be combined with mean and variance on its own to obtain
global mean and global variance. Then, the rest of the steps in statistical top-k can be carried out
on individual devices. In this method, the output is exactly the same as if applying statistical top-k
without activation sharding. In terms of cost, there is extra computation coming from aggregating
mean and variance from all devices, but the cost is very low as it requires only O(k) FLOPs. The
method also introduces a communication cost, but the cost is again small as each device only needs
to send / receive 2k − 2 floating point numbers.

• Local statistical top-k. Here we simply apply statistical top-k′ to entries on its own device with
k′ = k/m. The method is sub-optimal in the sense that it does not necessarily produce the same
output as applying the global statistical top-k. However, it has the benefit of not adding any
computation and communication cost.

In cases where k � N , the global statistical top-k above is cheap enough and hence could be a
natural choice.

D.5 Synergy with Speculative Decoding

Speculative decoding is a prominent technique for accelerating the inference of large autoregressive
models [53, 13]. It employs a smaller, faster “draft model” to generate a block of candidate tokens,
which are then verified in a single, parallel forward pass by the larger, more accurate “target model”.
We view Spark Transformer as a highly complementary and synergistic technology, as its architecture
enhances efficiency in both roles within the speculative decoding framework.

Spark Transformer as the target model. The primary computational bottleneck in speculative
decoding is the parallel verification step, where the target model processes multiple tokens simultane-
ously. Spark Transformer is ideally suited to accelerate this step.

As the target model, Spark Transformer directly reduces the latency of this bottleneck, leveraging the
same wall-time speedups demonstrated in single-token decoding. While verifying multiple tokens in
parallel (e.g., k = 2 to k = 4) necessarily activates more neurons than a single-token pass, significant
sparsity is still maintained. This is for two primary reasons:

• Small Draft Size: The number of speculative tokens is typically small, meaning the union of
activated neurons remains a small fraction of the total.
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• Aggregated Sparsity: Consecutive tokens in a natural language sequence often share a substantial
portion of their activated neurons. This phenomenon, termed aggregated sparsity [64], is an
extension of the lazy neuron phenomenon [54] and the observed persistence of activation patterns
for related inputs.

Because the union of activated FFN neurons and attended tokens remains sparse, Spark Transformer
effectively reduces the computational cost of the most expensive part of the speculative decoding
loop.

Spark Transformer as the Draft Model. An effective draft model must satisfy two criteria: it
must be significantly faster than the target model, and it must be accurate (i.e., its predictions must
frequently align with the target model’s). High accuracy is crucial as it dictates the token acceptance
rate, which is the primary driver of the overall speedup.

Spark Transformer is a strong candidate for a high-performance draft model. Our results demonstrate
that it achieves near-quality neutrality with its dense counterpart while operating at a fraction of the
inference cost. Using a Spark Transformer as the draft model — either a smaller version or even
the same model with a lower sparsity budget — could lead to a much higher acceptance rate than a
standard distilled model of equivalent speed. This high fidelity, combined with low latency, makes it
an ideal driver for maximizing the efficiency of the speculative decoding process.

D.6 Synergy with Quantization Techniques

We view Spark Transformer and quantization as two orthogonal and highly synergistic optimization
axes. Quantization, such as conversion to FP8 or INT8, reduces the computational cost and memory
size of each individual operation and parameter. Spark Transformer, in contrast, reduces the total
number of operations and memory accesses by dynamically pruning FFN activations and attention
tokens. Critically, our sparse implementation also reduces the memory bandwidth bottleneck by
skipping the load of masked weights from HBM. The combined benefits are therefore expected to be
multiplicative, leading to significant compounded gains in inference throughput and energy efficiency.

A key question is whether a model that is already sparsely activated is more sensitive to the precision
loss from quantization. We hypothesize that, for activation quantization in particular, Spark Trans-
former may reduce the model’s sensitivity and be less prone to accuracy degradation compared to a
dense model. This is critical, as recent work has shown that standard sparsity and quantization can
be in contradiction: magnitude-based sparsity preserves large-value outliers that are detrimental to
quantization-aware scaling [34]. This hypothesis stems directly from the design of our statistical
top-k operator.

• Dynamic Range Compression: The statistical top-k operator in Spark Transformer employs
soft-thresholding. This function outputs max(x− θ(x, k), 0), effectively subtracting the learned
threshold θ(x, k) from all activated neurons. This operation inherently compresses the dynamic
range of the activation tensor. A primary challenge in LLM activation quantization is the presence of
large-magnitude "outlier" values, which skew the quantization scaling factor and lead to significant
precision loss for the more common, smaller values [22]. By “pre-conditioning” the distribution
and shrinking these outliers, our operator makes the activation tensor significantly more amenable
to accurate low-bit representation.

• Zero-Point Stability: The 92% of FFN neurons that are not in the top-k are set to 0. This large
volume of true zeros is perfectly and losslessly represented in any quantization format, avoiding
the "near-zero" noise that can plague dense models.

For weight quantization, we hypothesize that the sensitivity would be broadly similar to the dense
Gemma-2 counterpart, as Spark Transformer reallocates and reuses the full set of parameters rather
than pruning them.

While a full empirical study of this interaction is a highly promising direction for future work,
we hypothesize that Spark Transformer is not only compatible with quantization but may actively
facilitate it. This positions our work alongside other recent efforts to create novel sparse-quantized
representations [23], offering a robust path to further acceleration."
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the Spark Transformer’s ability to
achieve high activation sparsity in FFN and attention, maintain competitive performance,
preserve parameter count, and use standard training, all supported by results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses limitations such as hardware not being fully optimized for
sparsity, the need for full pretraining rather than finetuning, and specific batching scenarios
where benefits are less pronounced

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Theorem 3.1 and 3.2 are stated with assumptions and their proofs are provided
in Appendix A.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper details the base model (Gemma-2 2B), hyper-parameters, training
procedures, and inference engines (gemma.cpp, llama.cpp) used.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Training data and code for Gemma-2 are proprietary.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed information on model dimensions, hyper-parameters (k, r for FFN
and Attention), activation functions, pretraining recipe, and inference setups (CPU/GPU,
prompt lengths, batch sizes) are provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Extreme high pretraining cost prevents multiple independent trials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper specifies CPU core counts (4-Core, 16-Core CPUs) and GPU type
(NVIDIA T4 GPU) used for inference evaluations, and notes that training was done using
the Gemma-2 recipe.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper does not mention any ethical concerns or deviations from standard
research practices in machine learning.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper highlights positive impacts, such as broadening access to high-
quality models for users with limited access to high-FLOP hardware. No significant negative
societal impacts are discussed.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper focuses on architectural improvements and efficiency, not on
releasing a new model or dataset that poses high risks for misuse.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper explicitly cites and credits Gemma-2 for the base model, and
references gemma.cpp and llama.cpp for inference engines.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper introduces a new architecture ("Spark Transformer") but does not
mention releasing it as a standalone asset with accompanying documentation.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research does not involve crowdsourcing or human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research does not involve human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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