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ABSTRACT

Inspired by the success of unsupervised pre-training paradigms, researchers have
applied these approaches to DNA pre-training. However, we argue that these ap-
proaches alone yield suboptimal results because pure DNA sequences lack suf-
ficient information, since their functions are regulated by genomic profiles like
chromatin accessibility. Here, we demonstrate that supervised training for ge-
nomic profile prediction serves as a more effective alternative to pure sequence
pre-training. Furthermore, considering the multi-species and multi-profile na-
ture of genomic profile prediction, we introduce our Species-Profile Adaptive
Collaborative Experts (SPACE) that leverages Mixture of Experts (MoE) to bet-
ter capture the relationships between DNA sequences across different species and
genomic profiles, thereby learning more effective DNA representations. Through
extensive experiments across various tasks, our model achieves state-of-the-art
performance, establishing that DNA models trained with supervised genomic pro-
files serve as powerful DNA representation learners.

1 INTRODUCTION

DNA sequences, composed of four nucleotide bases (A, C, G, T), encode biological instructions with
broad applications in precision medicine (Kernohan & Boycott, 2024), drug development (Peterson
& Liu, 2023), and synthetic biology (Gosai et al., 2024). Due to the complexity of DNA sequences,
gaining a clear understanding of DNA is not easy. Inspired by the success of unsupervised pre-
training paradigms in NLP, such as masked language modeling (Devlin et al., 2019) (MLM) and
next-token prediction (Brown et al., 2020) (NTP), several DNA foundation models (DFMs) have re-
cently emerged following similar pre-training approaches to learn sequence representations, achiev-
ing success in regulatory element identification, splice site recognition, and epigenetic modification
prediction (Ji et al., 2021; Dalla-Torre et al., 2024; Nguyen et al., 2024b).

However, pure sequence-based pre-training faces inherent limitations. Unlike natural language
where sequences convey self-contained meaning, DNA function depends on genomic profiles in-
cluding epigenetic marks (Portela & Esteller, 2010), chromatin accessibility (Tan et al., 2023), and
transcription factor binding (Peterson & Liu, 2023). Without integrating these biological contexts,
DFMs struggle to generalize across cellular environments (Tang et al., 2023; Fu et al., 2025).

Given that DNA’s functional roles are regulated by various biological factors beyond sequence alone,
we revisit supervised genomic profile prediction models (GPPMs) as an alternative to unsupervised
DFMs for learning DNA sequence representations. These models (Zhou & Troyanskaya, 2015; Kel-
ley et al., 2018; Zhou et al., 2018; Chen et al., 2022; Avsec et al., 2021) are trained to predict exper-
imentally measurable genomic profiles which directly encode regulatory and functional information
in a cell-type-specific manner. These models intrinsically encode functional relationships between
sequences and their biological roles. While some studies (Dalla-Torre et al., 2024) show GPPMs can
learn effective representations, current architectures employ oversimplified designs, using a shared
encoder for DNA sequences from different species and independent prediction heads for different
genomic profiles. This design has two major limitations. First, the species-shared encoder fails to
capture species-specific characteristics, as regulatory mechanisms and their influences often vary
across species (Karollus et al., 2024). These distinct features are crucial for understanding subtle
genomic variations and context-dependent expression patterns. Second, genomic profile prediction
inherently involves multiple interrelated tasks (Fu et al., 2025), as different profiles influence each
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other and are often regulated by common mechanisms. The independent prediction heads, how-
ever, prevent the model from capturing these cross-profile dependencies and their variations across
species.

To effectively model both cross-species and cross-profile relationships, we introduce our Species-
Profile Adaptive Collaborative Experts (SPACE), which consists of two key components: (1) a
species-aware encoder module and (2) a profile-grouped enhancement decoder module, both built
upon Mixture of Experts (MoE). The species-aware encoder dynamically balances species-specific
and conserved features via sparse routing, while the profile-grouped decoder captures cross-profile
dependencies through dual-gated expert aggregation. This design enables our model to effectively
learn both species-specific patterns and shared regulatory mechanisms across profiles.

The major contributions of this paper include:

• We revisit the supervised pre-training paradigm for DNA sequence foundation mod-
els through genomic profile prediction as the pre-training objective, demonstrating how
function-related biological contextual information can be effectively encoded into the
learned representations.

• We propose SPACE that leverages MoE to better capture the relationships between DNA
sequences across different species and genomic profiles, thereby learning more effective
DNA representations.

• Through extensive experiments across diverse tasks, our SPACE achieves state-of-the-art
(SOTA) performance, demonstrating that supervised pre-training for genomic profile pre-
diction serves as a more effective and powerful alternative to pure sequence pre-training.

2 RELATED WORK

Supervised Genomic Profile Models are trained to predict functional genomic profiles from DNA
sequences (Kathail et al., 2024). Starting with DeepSEA’s CNN-based framework (Zhou & Troy-
anskaya, 2015), subsequent advances introduced architectural improvements and larger training
scales (Kelley et al., 2018; Zhou et al., 2018; Chen et al., 2022). The SOTA Enformer (Avsec et al.,
2021) employs a hybrid Transformer-CNN architecture for enhanced prediction. While these meth-
ods primarily focus on ab initio prediction of genomic profiles from DNA sequences and directly
utilize these profiles for downstream tasks such as variant effect prediction, few studies (Dalla-Torre
et al., 2024) have explored whether their intermediate representations capture meaningful biological
patterns. Moreover, these models, which typically adopt a shared encoder coupled with indepen-
dent profile prediction heads, have not thoroughly explored more effective architectural designs that
could potentially enhance both prediction performance and representation learning.

Unsupervised DNA foundation models draw from the success of unsupervised pre-training in NLP.
DNABERT (Ji et al., 2021) pioneered this approach, maintaining nearly identical training methods
to BERT (Devlin et al., 2019) while adapting the tokenization scheme to 6-mers (Celikkanat et al.,
2024) for DNA sequences. Subsequent works have continued along this direction, employing ei-
ther MLM (Zhou et al., 2024; Dalla-Torre et al., 2024; Li et al., 2024; Sanabria et al., 2024) or
NTP (Nguyen et al., 2024a;b) as unsupervised training objectives. Although these methods have
made effective optimizations in terms of training data, model architectures, and tokenization strate-
gies, they still adhere to the assumption that unsupervised pre-training on pure DNA sequences alone
is sufficient for learning effective representations. Moreover, there has been little systematic com-
parison between these models and genomic profile prediction models in terms of their representation
learning capabilities.

The MoE Framework is a conditional computation technique that selectively activates different ex-
pert networks for different inputs through sparse routing (Jacobs et al., 1991; Shazeer et al., 2017).
In Transformer-based large language models (LLMs), MoE is typically applied to feed-forward
networks (FFNs) to achieve better parameter efficiency while maintaining model capacity (Fedus
et al., 2022; Jiang et al., 2023; Liu et al., 2024). This adaptive routing mechanism is particularly
well-suited for our genomic modeling task, as it enables the model to dynamically balance between
learning species-specific patterns and shared biological features, while also capturing the complex
dependencies between different genomic profiles. Following common practice in Transformer ar-
chitectures, we also implement MoE by replacing the FFNs in our model.
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Figure 1: Overview of our SPACE architecture. It processes the input DNA sequence with three
stages: (1) spatial compression and local context aggregation via a CNN-based aggregation module;
(2) latent representation learning via a species-aware sparse MoE-based encoding module; (3) multi-
profile prediction decoder via the dual-gated expert weighted prediction enhancement module. The
detailed structures of the encoding module and the dual-layer gated prediction enhancement module
are shown in the left and right, respectively.

3.1 OVERVIEW

Consider DNA sequences from M species {S1, . . . , SM}. For each sequence xm from species Sm,
we predict Cm genomic profile values. We train with interleaved batches across all M species to fa-
cilitate cross-species knowledge transfer (Avsec et al., 2021). Through this supervised pre-training,
the learned representations are expected to capture rich biological and regulatory information.

To better capture cross-species and cross-profile representations, we present SPACE. As illustrated
in Figure 1, our architecture consists of three key stages: (1) CNN-based Local Context Aggregation
following Enformer (Avsec et al., 2021); (2) Species-aware Transformer Encoder and (3) Profile-
Grouped Enhancement Decoder for genomic profile prediction.

3.2 LOCAL CONTEXT AGGREGATION

Given an input DNA sequence xm, we first follow Enformer (Avsec et al., 2021) to compress and
aggregate the raw nucleotides through 1D-CNNs, generating hidden states hm ∈ RL×dh at 128bp
resolution, where L denotes the compressed sequence length and dh is the hidden dimension.

3.3 SPECIES-AWARE ENCODER

Previous approaches to cross-species modeling (Kelley, 2020; Avsec et al., 2021) typically employ
a shared encoder for all species, lacking fine-grained modeling of species relationships. To address
this limitation, we propose a novel cross-species modeling framework consisting of Species-specific
Embedding and Cross-species MoE layers.

Species-specific Embedding. We augment the aggregated hidden states hm with a trainable species-
specific embedding em ∈ Rdh by concatenation. The combined representation then passes through
D transformer layers with our Sparse Cross-species MoE for further transformation. This design is
analogous to the source tokens used in recent language models (Jiang et al., 2023), where document-
level embeddings are prepended to provide explicit context about the content source. In our case,
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the species-specific embedding serves as an explicit signal to guide the model in distinguishing and
handling species-specific characteristics.

Cross-species MoE. Furthermore, we introduce a sparse MoE encoding module that enables
adaptive species-aware representation learning through dynamic parameter routing. For the M
species, each MoE layer consists of two core components: (1) a set of N shared expert networks
{E1, ..., EN}, and (2) M species-specific gating networks {G1, ..., GM}, where each Gm is associ-
ated with species Sm to dynamically weight expert contributions based on species-specific patterns.

For an aggregated hidden state hm from species Sm, the output representation ym is computed as:

ĥm = MHAttention([hm, em])

ym =

N∑
k=1

Gm(ĥm)k︸ ︷︷ ︸
the k-th value of Gm(ĥm)

·Ek

(
ĥm

)
,

(1)

where em ∈ Rdh denotes the species embedding vector, and [·] represents concatenation, ĥm is the
hidden state after attention.

Moreover, to guide expert networks in learning both conserved and species-specific patterns, we
introduce an expert-species mutual information loss inspired by Mod-Squad (Chen et al., 2023):

LMI = −MI(S;E) = −H(S)−H(E) +H(S,E), (2)

where detailed derivations are provided in Appendix A.1.

After the encoding stage, we obtain the sequence representation y ∈ RL×dh that captures both
species-specific and shared biological features.

3.4 PROFILE-GROUPED ENHANCEMENT DECODER

Current GPPMs treat profile prediction as independent multi-tasks, ignoring relationships between
genomic profiles. This oversight disregards two biological principles: (1) evolutionary conserva-
tion implies shared regulatory mechanisms across homologous profiles in different species (Schmidt
et al., 2010) and (2) different genomic profiles often share regulatory mechanisms and exhibit mutual
influences (Fu et al., 2025). To leverage these biological insights, we propose a prediction enhance-
ment module that enables systematic knowledge sharing across profiles. For clarity, we present the
formulation for a single species Sm and omit the subscript m in subsequent notation.

Genomic profiles can be categorized based on their experimental assays: for instance, DNase and
ATAC-seq measures chromatin accessibility, while CAGE quantifies gene expression levels. Profiles
from the same experimental type typically share similar functional mechanisms, enabling knowledge
transfer within each category. Given Q distinct profile types {T1, ..., TQ} with specific biological
interpretations, for the DNA sequence representation y ∈ RL×dh and the species embedding e ∈
Rdh , the enhancement module operates through the following sequential steps.

Profile Categorization for Initial Predictions. We first perform a linear projection on y to ob-
tain the initial base prediction obase, which represents the final profile predictions from previous
GPPMs (Kelley, 2020; Avsec et al., 2021) that do not incorporate biological insights. Based on
biological priors, obase is categorized into Q independent parts {o1, . . . , oQ}, as follows.

obase = (Linear(y))T ∈ Rdout×L

{o1, . . . , oQ} = Φ(obase)
(3)

where dout denotes the dimension specifying the total number of genomic profiles (i.e., dout equals
Cm for species Sm). The category operator Φ(·) is constructed based on knowledge, which decom-
poses the base prediction into Q profile types {oq}Qq=1 where oq ∈ Rdq×L corresponds to biological
profile type Tq , with dq indicating the number of profiles categorized to Tq .

Dual-Gated Expert Weighted Aggregation. Each dimension of oq represents the base predicted
sequence for a specific profile track. To capture the basic mapping patterns across tracks, we employ
K cross-profile-type shared experts {Ek}Kk=1, where each expert Ek : Rdq×L → Rdq×L enhances
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all dimensions of the categorized base prediction oq,∀q. For adaptive expert selection, we introduce
profile-type-specific expert-selected groups Gq : Rdq×L → Rdq×L, designed to model evolutionary
relationships through shared and differentiated features of homologous profiles across species, as
well as functional interdependencies between distinct profile types within the same species. Specif-
ically, each profile type Tq is associated with R expert-selected groups that dynamically integrate
these biological constraints. The group weights Ĝq are computed through the coordinated integra-
tion of species-specific and sequence-specific gating networks as follows:

Ĝq = Softmax (Gspecies(e) +Gsequence(Pool(y))) , (4)

where Pool(·) denotes dimension-wise pooling applied along the sequence length L, while Gspecies(·)
and Gsequence(·) defined as mapping: Rdh → RR, weighting the expert-selected groups from the
specie and sequence levels, respectively. The resulting weight Ĝq

r corresponds to the r-th group
Gq

r for profile type Tq . Thus, for profile tracks belonging to the same type, the weights of expert-
selected groups are dynamically conditioned on both the input sequence x and its species embedding
e, while the expert weights are derived from the base prediction oq through their corresponding
expert-selected groups. The enhanced prediction for Tq is formulated as:

oqenhanced =

R∑
r=1

Ĝq
r︸︷︷︸

Group weight

·

 K∑
k=1

Gq
r(o

q)k︸ ︷︷ ︸
Expert weight

·Ek(o
q)

 . (5)

The final predictions are computed through connections between enhanced and base predictions:

ofinal = obase +Ψ
(
{o1enhanced, ..., o

Q
enhanced}

)T

, (6)

where Ψ(·) is the inverse operator of Φ(·), denoting the concatenation of the different profile types.

In this way, the profile-grouped decoder performs multi-profile-type prediction enhancement by
decomposing and compositionally modeling the complex profile type-specific dependencies across
species and profiles.

3.5 TRAINING OBJECTIVE

Following Enformer (Avsec et al., 2021), we adopt the Poisson negative log-likelihood as the pri-
mary loss function. To further refine species-aware expert selection in Section 3.3 by maximizing
mutual information between species proportion and expert activations, we introduce an auxiliary
mutual information loss. The composite loss is defined as:

Ltotal = LPoisson − α

D∑
d=1

MI(S;Ed), (7)

where α = 0.01 controls the mutual information regularization strength, D denotes the number of
transformer layers, S represents the species identifier, and Ed indicates the shared expert pool at
layer d, the Poisson loss LPoisson is mathematically formulated in Appendix A.2.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset. The training datasets aligned with those used in Enformer (Kelley, 2020; Avsec et al.,
2021), containing distinct sequence quantities for human and mouse genomes. Both species shared
four conserved profile types: chromatin accessibility (DNase/ATAC-seq), transcription factor bind-
ing (TF ChIP-seq), histone modifications (Histone ChIP-seq), and transcriptional activity (CAGE).
The number of profiles varies among different profile types in different species, with detailed dataset
specifications provided in Appendix B.
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Implementation Details. Our model was pre-trained using supervised genomic profile prediction,
maintaining the same prediction targets and genomic intervals as implemented in Enformer (Avsec
et al., 2021). For cross-species joint modeling, we implemented an alternating training strategy using
eight NVIDIA A40 GPUs. Training proceeded for 50,000 steps (approximately 8 days) with a global
batch size of 64, achieved through 8 gradient accumulation steps (1 sample per GPU). Optimization
employed AdamW (Loshchilov & Hutter, 2019) with an initial learning rate of 0.0005, linearly
ramped from 0 during the first 5,000 steps followed by cosine decay. Gradient norms were clipped
at 0.2 to maintain stability.

Table 1: MCC performance of Nucleotide Transformer downstream tasks. This benchmark includes
three categories of downstream tasks, comprising a total of 18 datasets derived from human samples.
The term ‘NT downstream tasks’ will be used to refer to these tasks.

Model Chromatin profiles
H2AFZ H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2

DNABERT-2 0.490 ± 0.013 0.491 ± 0.010 0.599 ± 0.010 0.637 ± 0.007 0.490 ± 0.008 0.558 ± 0.013
NT-1000G (2.5B) 0.478 ± 0.012 0.486 ± 0.023 0.603 ± 0.009 0.632 ± 0.008 0.491 ± 0.015 0.569 ± 0.014
NT-Multispecies (2.5B) 0.503 ± 0.010 0.481 ± 0.020 0.593 ± 0.016 0.635 ± 0.016 0.481 ± 0.012 0.552 ± 0.022

Enformer 0.522 ± 0.019 0.520 ± 0.015 0.552 ± 0.007 0.567 ± 0.017 0.504 ± 0.021 0.626 ± 0.015
SPACE 0.548 ± 0.005 0.547 ± 0.007 0.586 ± 0.010 0.602 ± 0.005 0.543 ± 0.009 0.640 ± 0.007

Model Chromatin profiles Regulatory elements
H3K4me3 H3K9ac H3K9me3 H4K20me1 Enhancers Enhancers(types)

DNABERT-2 0.646 ± 0.008 0.564 ± 0.013 0.443 ± 0.025 0.655 ± 0.011 0.517 ± 0.011 0.476 ± 0.009
NT-1000G (2.5B) 0.615 ± 0.017 0.529 ± 0.012 0.483 ± 0.013 0.659 ± 0.008 0.504 ± 0.009 0.469 ± 0.005
NT-Multispecies (2.5B) 0.618 ± 0.015 0.527 ± 0.017 0.447 ± 0.018 0.650 ± 0.014 0.527 ± 0.012 0.484 ± 0.012

Enformer 0.635 ± 0.019 0.593 ± 0.020 0.453 ± 0.016 0.606 ± 0.016 0.614 ± 0.010 0.573 ± 0.013
SPACE 0.661 ± 0.025 0.635 ± 0.016 0.490 ± 0.011 0.650 ± 0.011 0.631 ± 0.007 0.583 ± 0.008

Model Regulatory elements Splicing
All NoTATA TATA Donors Acceptors All

DNABERT-2 0.754 ± 0.009 0.769 ± 0.009 0.784 ± 0.036 0.837 ± 0.006 0.855 ± 0.005 0.861 ± 0.004
NT-1000G (2.5B) 0.708 ± 0.008 0.758 ± 0.007 0.802 ± 0.030 0.952 ± 0.004 0.956 ± 0.004 0.963 ± 0.001
NT-Multispecies (2.5B) 0.761 ± 0.009 0.773 ± 0.010 0.944 ± 0.016 0.958 ± 0.003 0.964 ± 0.003 0.970 ± 0.002
Enformer 0.745 ± 0.012 0.763 ± 0.012 0.793 ± 0.026 0.749 ± 0.007 0.739 ± 0.011 0.780 ± 0.007
SPACE 0.764 ± 0.012 0.776 ± 0.011 0.838 ± 0.028 0.942 ± 0.006 0.902 ± 0.004 0.906 ± 0.003

4.2 NUCLEOTIDE TRANSFORMER DOWNSTREAM TASKS

We conducted rigorous benchmarking against the suite of 18 genomic datasets established in
NT (Dalla-Torre et al., 2024), encompassing three fundamental task categories: (1) histone modifica-
tion marker prediction, (2) cis-regulatory element annotation, and (3) splice site recognition. Follow-
ing the evaluation protocol from NT, we employed Matthews Correlation Coefficient (MCC) as the
primary performance metric across all tasks to ensure methodological consistency. The formal def-
inition of MCC, along with its theoretical properties, is comprehensively detailed in Appendix A.3.
Our comparative analysis includes both unsupervised pre-training approaches (DNABERT (Ji et al.,
2021), DNABERT2 (Zhou et al., 2024), and NT (Dalla-Torre et al., 2024)) and supervised baselines
(Enformer (Avsec et al., 2021)). In alignment with NT’s methodology, we implemented 10-fold
cross-validation with fixed random seeds (0-9) and early stopping based on validation performance.
All benchmark performance metrics for the compared models in downstream tasks were directly
sourced from the original experimental results reported in NT, ensuring consistent evaluation proto-
cols and dataset configurations. As detailed in Table 1, our model achieves SOTA performance on
11 out of 18 prediction tasks. Notably, this superior performance persists even when compared to the
parameter-intensive NT-Multispecies variant (2.5B parameters), demonstrating that our supervised
pre-training paradigm enables acquisition of more robust DNA sequence representations. Moreover,
our architectural improvements consistently outperform Enformer’s original implementation across
all tasks, empirically confirming the effectiveness of our modules. The specific details and complete
results of the tasks are presented in Appendix C.
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Table 2: Comparison Results with Enformer on the GUE Benchmark

Model
Epigenetic Marks Prediction

H3 H3K14ac H3K36me3 H3K4me1 H3K4me2

Enformer 70.65 37.87 42.41 34.00 29.65
SPACE 79.53 (↑ 8.88) 54.12 (↑ 16.25) 54.82 (↑ 12.41) 50.92(↑ 16.92) 43.80 (↑ 14.15)

Model Epigenetic Marks Prediction Virus
H3K4me3 H3K79me3 H3K9ac H4 H4ac Covid

Enformer 22.19 55.69 49.35 76.32 32.90 61.33
SPACE 49.47 (↑ 27.28) 66.93 (↑ 11.24) 59.29 (↑ 9.94) 81.25 (↑ 4.93) 53.09 (↑ 20.19) 70.26 (↑ 8.93)

(a)

(b)
(c)

Figure 2: Expert selection visualizations and prediction results. (a) Visualization of expert selection
in the final cross-species MoE. (b) Expert selection in the profile-grouped enhancement decoder
module. (c) Pearson correlation coefficients across all positions per profile on the test set. Each
point represents the average correlation of predicted genomic profiles across all genomic positions.

4.3 CROSS-SPECIES VALIDATION ON GUE BENCHMARK

To evaluate the cross-species generalization of our refinements to Enformer, we used the Genomic
Universal Embedding (GUE) benchmark (Zhou et al., 2024). While the benchmark covers 7 tasks
across 4 taxonomic groups, we focus on yeast and viral genomes—evolutionarily distant from mam-
malian species used in training. These evaluations include Epigenetic Mark Prediction (EMP) on 10
yeast datasets and COVID Variant Classification (CVC) in viral genomes. We followed the protocol
in DNABERT2 (Zhou et al., 2024), using MCC for EMP and F1-score for CVC.

As shown in Table 2, our architecture significantly outperforms the original Enformer in these
tasks. This evaluation provides evidence that our refinements improve cross-species generaliza-
tion, especially in identifying evolutionarily conserved regulatory features. Benchmarking against
DNABERT2 and other baselines (Appendix D) further confirms these improvements, with non-
Enformer baselines rigorously reproduced from DNABERT2’s protocol to ensure consistency. All
evaluations adhered to benchmark specifications for reproducibility and fairness.

4.4 ANALYSIS OF THE MOE ARCHITECTURE

Species-Aware Encoder. Visualization of expert selection frequencies in the final Transformer
layer from the Enformer test dataset (Figure 2a) reveals biologically interpretable specialization
and cooperation patterns. Our 4-expert architecture with top-3 selection (k=3) exhibits functional
differentiation: Experts 1/3 specialize in species-specific features (human/mouse), while Experts
0/2 capture cross-species conserved features. This spatial decoupling of evolutionary divergence
and conservation provides architectural interpretability for multi-species modeling.

7
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Profile-Grouped Decoder. In our experiments, we employed 8 cross-profile-type shared experts
(K = 8) with 2 expert-selected groups per profile type (R = 2), where each group dynamically
integrated the top 3 most contributory experts through the dual-gated expert weighted aggrega-
tion. Through hierarchical weighting, we derived final expert selection probabilities, demonstrating
profile-specific specialization patterns (Figure 2b). TF binding (TF ChIP-seq) and histone modifi-
cation (histone ChIP-seq) show high expert specialization, reflecting their inherent biological com-
plexity - combinatorial TF interactions and multi-layered epigenetic codes respectively. Conversely,
chromatin accessibility (DNase/ATAC-seq) and transcription initiation (CAGE) profiles exhibit ex-
pert overlap with differential weighting, corresponding to their mechanistic interdependence: Chro-
matin accessibility establishes 3D environments enabling transcription initiation, with TSS regions
spatially overlapping accessible domains. This functional-spatial coupling drives coordinated fea-
ture extraction, confirming our decoder’s capacity to leverage regulatory interconnectivity.

4.5 COMPARATIVE ANALYSIS WITH ENFORMER IN GENE EXPRESSION PREDICTION

We conducted a comparative analysis based on the core task of Enformer, which aims to predict
human and mouse genomic profiles at 128-bp resolution from 200 KB of input DNA sequences. We
computed the average Pearson correlation coefficients across all positions for genomic profiles in the
test set and performed stratified visualization by species and profile types, as illustrated in Figure 2c.
The results demonstrate that our approach significantly enhances the prediction accuracy for mouse
genomic profiles while maintaining the prediction performance for human genomic profiles.

4.6 ABLATION STUDY

We conducted controlled ablation experiments under computational constraints using a half-scale
configuration (hidden dim=768, batch size=32) with 131KB input sequences. Three configurations
were compared: (1) baseline Enformer adaptation, (2) component-ablated variants (sequentially re-
moving cross-species MoE or prediction enhancement modules), and (3) our full architecture. Fol-
lowing Enformer’s evaluation protocol, we measured mean Pearson correlation on test predictions
and using mean MCC for NT downstream tasks (Table 3). The complete results are in Appendix E.

Table 3: Ablation study on Enformer test dateset and NT downstream tasks

model Rhuman Rmouse mccNT

Enformer 0.583 0.704 0.657
SPACE w/o enhancement 0.598 0.708 0.661
SPACE w/o species MoE 0.591 0.705 0.659
SPACE 0.598 0.708 0.663

5 LIMITATIONS AND CONCLUSION

Limitations. This work has limitations in both data coverage and model scale compared to
NT (Dalla-Torre et al., 2024). First, SPACE has only been trained on two species (human and
mouse). While this initial study demonstrates the advantages of our cross-species encoder design,
extending training to more species could yield greater benefits as additional sequencing data be-
comes available (Vandereyken et al., 2023). Second, constrained by computational resources, our
model (588M parameters, sparse-activated) is significantly smaller than the largest variant of NT
(2.5B parameters, dense). The detailed parameter configuration is provided in Appendix F. Given
scaling laws in DFMs (Dalla-Torre et al., 2024; Nguyen et al., 2024a), we anticipate performance
improvements with increased model scale.

Conclusion. Despite these limitations, we demonstrate that supervised pre-training through ge-
nomic profile prediction offers a more targeted and effective approach than pure sequence pre-
training for DNA foundation models. By introducing SPACE—a model architecture biologically
designed to distinguish species/profiles while leveraging transferable knowledge—we provide new
insights into DNA representation learning. Extensive evaluations establish SPACE as a state-of-
the-art framework, advancing the development of DFMs. This work highlights the importance of
integrating domain-specific inductive biases with scalable pre-training paradigms for genomics.
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A DERIVATION OF MATHEMATICAL FORMULATIONS FOR KEY FUNCTIONS

A.1 MUTUAL INFORMATION ANALYSIS

The Mutual Information defined in Equation (2) is:
LMI = −MI(S;E) = −H(S)−H(E) +H(S,E)

=

M∑
i=m

P (Sm) logP (Sm) +

N∑
n=1

P (En) logP (En)

−
M∑

m=1

N∑
n=1

P (Sm, En) logP (Sm, En),

where Sm denotes the species probability and En represents the selection weight of each expert.

We split the formulae to analyse them separately. The mutual information decomposition exhibits
three fundamental components:

Species Entropy:

−
M∑
i=1

P (Si) logP (Si) = H(S).

This term represents the inherent diversity of species distribution in training data. As P (Si) consti-
tutes a fixed prior, H(S) remains constant during optimization.

Expert Diversity Regularization:

−
N∑
j=1

P (Ej) logP (Ej) = H(E).

Maximizing this entropy term encourages balanced utilization of experts, preventing expert collapse
where few experts dominate computations. Formally, this ensures:

lim
H(E)→logN

P (Ej) =
1

N
∀j.

Conditional Specialization Objective:
M∑
i=1

N∑
j=1

P (Si, Ej) logP (Si, Ej) = −H(S,E).

Minimizing this joint entropy (equivalent to maximizing −H(S,E)) sharpens the conditional dis-
tribution P (Ej |Si), thereby promoting:

lim
H(S,E)→0

P (Ej |Si) =

{
1 if j = argmaxk G

Si

k (x)

0 otherwise
.

This objective ensures that, for a given species, the model preferentially activates a fixed subset of k
experts.

In this way, the sparse MoE-based encoding module encourages different expert combinations to
handle different species, while some shared experts in the pool can capture common knowledge
across species.

A.2 POISSON NEGATIVE LOG-LIKELIHOOD

The Poisson negative log-likelihood function is defined as

LPoisson =
1

N

N∑
i=1

(pi − ti ln pi) ,

whree p denotes the prediction vector and t represents the target vector.
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A.3 MATTHEWS CORRELATION COEFFICIENT (MCC)

The Matthews Correlation Coefficient (MCC) is a statistically rigorous metric for evaluating clas-
sification models. Its definition and generalization to multi-class problems are formally outlined
below.

Binary Classification Case For binary classification, let TP , TN , FP , and FN denote the counts
of true positives, true negatives, false positives, and false negatives, respectively. The MCC is
defined as:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

Here, TP , TN , FP , and FN correspond to entries in the confusion matrix for two classes.

Multi-class Classification Case

For K-class classification (K ≥ 2), let C be the K ×K confusion matrix, where Cij represents the
number of samples from class i predicted as class j. The MCC generalizes to:

MCC =

∑K
k=1

∑K
l=1

∑K
m=1 CkkClm − CklCmk√(∑K

k=1

∑K
l=1 Ckl

∑K
m=1
m ̸=k

Cmk

)(∑K
k=1

∑K
l=1 Clk

∑K
m=1
m̸=k

Ckm

) .

This formulation quantifies the covariance between all class pairs, ensuring robustness to imbalanced
data distributions.

The MCC ranges in [−1, 1], where 1, 0, and −1 correspond to perfect prediction, random guessing,
and total disagreement, respectively.

B PRE-TRAINING DATASET

Table 4: Genomic Dataset Statistics

Species Train Val Test Sequence Length

Human 34,021 2,213 1,937 196,608 bp
Mouse 29,295 2,209 2,017 196,608 bp

Our model was pretrained on the same dataset as Enformer (Avsec et al., 2021), with detailed com-
position statistics provided in Table 4. To address the pronounced species imbalance between human
and mouse genomic data, we implemented balanced batch sampling through randomized minority-
class augmentation, ensuring equal representation of both species in every batch. This strategy
mitigates species bias while preserving sequence diversity through stochastic resampling.

The dataset comprises DNA sequences paired with genomic profiles as prediction targets. These
genomic profiles are categorized into four functional classes: chromatin accessibility (DNase/ATAC-
seq), transcription factor binding (TF ChIP-seq), histone modifications (Histone ChIP-seq), and
transcriptional activity (CAGE). The species-specific distribution of profile types is quantified in
Table 5, which details the number of available tracks per category for each organism.
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Table 5: Distribution of Genomics profiles

species DNase/ATA TF ChIP Histone ChIP CAGE Total

Human 684 2131 1860 638 5313
Mouse 228 308 750 357 1643

C NUCLEOTIDE TRANSFORMER DOWNSTREAM TASKS REVISED

C.1 DATASETS

The benchmark dataset comprises 18 downstream tasks originally proposed in NT (Dalla-
Torre et al., 2024), accessible via https://huggingface.co/datasets/InstaDeepAI/
nucleotide_transformer_downstream_tasks_revised. These tasks establish a uni-
fied genomics benchmarking framework encompassing both binary and multi-class classification
challenges. All data is exclusively derived from human samples, organized into three biologically
meaningful categories: Chromatin Profiles, Regulatory Elements and Splicing. The complete dataset
composition, including sequence numbers, class distributions and sequence length statistics, is de-
tailed in Table 6.

Table 6: Details of the NT downstream tasks

Task Number of train sequences Number of test sequences Number of labels Sequence length
promoter all 30,000 1,584 2 300
promoter tata 5,062 212 2 300
promoter no tata 30,000 1,372 2 300
enhancers 30,000 3,000 2 400
enhancers types 30,000 3,000 3 400
splice sites all 30,000 3,000 3 600
splice sites acceptor 30,000 3,000 2 600
splice sites donor 30,000 3,000 2 600
H2AFZ 30,000 3,000 2 1,000
H3K27ac 30,000 1,616 2 1,000
H3K27me3 30,000 3,000 2 1,000
H3K36me3 30,000 3,000 2 1,000
H3K4me1 30,000 3,000 2 1,000
H3K4me2 30,000 2,138 2 1,000
H3K4me3 30,000 776 2 1,000
H3K9ac 23,274 1,004 2 1,000
H3K9me3 27,438 850 2 1,000
H4K20me1 30,000 2,270 2 1,000

C.2 IMPLEMENTATION

We maintained identical hyperparameter configurations across all tasks. Our systematic hyperpa-
rameter search included learning rates of 5× 10−5, 3× 10−5, and 5× 10−4, combined with batch
sizes of 8, 16, and 32. Through empirical validation, we identified the optimal configuration em-
ploying a learning rate of 5 × 10−5 with batch size 8. The training protocol utilized the AdamW
optimizer (Loshchilov & Hutter, 2019) over 3 epochs, while retaining default parameter settings
from the HuggingFace Transformer Trainer implementation (Wolf et al., 2020).

C.3 RESULTS

The complete benchmark results of the downstream tasks for NT are presented in Table 7. All
baseline results are sourced from NT (Dalla-Torre et al., 2024). Performance per task was calculated
as the median of the 10 cross-validation folds (± standard deviation). The best results for each task
are highlighted in bold.
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Table 7: Complete Benchmark Results of Nucleotide Transformer Downstream Tasks

Model Chromatin profiles
H2AFZ H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2

BPNet (original) 0.473 ± 0.009 0.296 ± 0.046 0.543 ± 0.009 0.548 ± 0.009 0.436 ± 0.008 0.427 ± 0.036
BPNet (large) 0.487 ± 0.014 0.214 ± 0.037 0.551 ± 0.009 0.570 ± 0.009 0.459 ± 0.012 0.427 ± 0.025
DNABERT-2 0.490 ± 0.013 0.491 ± 0.010 0.599 ± 0.010 0.637 ± 0.007 0.490 ± 0.008 0.558 ± 0.013
HyenaDNA-1KB 0.455 ± 0.015 0.423 ± 0.017 0.541 ± 0.018 0.543 ± 0.010 0.430 ± 0.014 0.521 ± 0.024
HyenaDNA-32KB 0.467 ± 0.012 0.421 ± 0.010 0.550 ± 0.009 0.553 ± 0.011 0.423 ± 0.016 0.515 ± 0.018
NT-HumanRef (500M) 0.465 ± 0.011 0.457 ± 0.010 0.589 ± 0.009 0.594 ± 0.004 0.468 ± 0.007 0.527 ± 0.011
NT-1000G (500M) 0.464 ± 0.012 0.458 ± 0.012 0.591 ± 0.007 0.581 ± 0.009 0.466 ± 0.006 0.528 ± 0.011
NT-1000G (2.5B) 0.478 ± 0.012 0.486 ± 0.023 0.603 ± 0.009 0.632 ± 0.008 0.491 ± 0.015 0.569 ± 0.014
NT-Multispecies (2.5B) 0.503 ± 0.010 0.481 ± 0.020 0.593 ± 0.016 0.635 ± 0.016 0.481 ± 0.012 0.552 ± 0.022

Enformer 0.522 ± 0.019 0.520 ± 0.015 0.552 ± 0.007 0.567 ± 0.017 0.504 ± 0.021 0.626 ± 0.015
SPACE 0.548 ± 0.005 0.547 ± 0.007 0.586 ± 0.010 0.602 ± 0.005 0.543 ± 0.009 0.640 ± 0.007

Model Chromatin profiles Regulatory elements
H3K4me3 H3K9ac H3K9me3 H4K20me1 Enhancers Enhancers(types)

BPNet (original) 0.445 ± 0.047 0.336 ± 0.034 0.298 ± 0.030 0.531 ± 0.025 0.488 ± 0.009 0.449 ± 0.006
BPNet (large) 0.445 ± 0.049 0.298 ± 0.033 0.234 ± 0.037 0.525 ± 0.038 0.492 ± 0.008 0.454 ± 0.008
DNABERT-2 0.646 ± 0.008 0.564 ± 0.013 0.443 ± 0.025 0.655 ± 0.011 0.517 ± 0.011 0.476 ± 0.009
HyenaDNA-1KB 0.596 ± 0.015 0.484 ± 0.022 0.375 ± 0.026 0.580 ± 0.009 0.475 ± 0.006 0.441 ± 0.010
HyenaDNA-32KB 0.603 ± 0.020 0.487 ± 0.025 0.419 ± 0.030 0.590 ± 0.007 0.476 ± 0.021 0.445 ± 0.009
NT-HumanRef (500M) 0.622 ± 0.013 0.524 ± 0.013 0.433 ± 0.009 0.634 ± 0.013 0.515 ± 0.019 0.477 ± 0.014
NT-1000G (500M) 0.609 ± 0.011 0.515 ± 0.018 0.415 ± 0.019 0.634 ± 0.010 0.505 ± 0.009 0.459 ± 0.011
NT-1000G (2.5B) 0.615 ± 0.017 0.529 ± 0.012 0.483 ± 0.013 0.659 ± 0.008 0.504 ± 0.009 0.469 ± 0.005
NT-Multispecies (2.5B) 0.618 ± 0.015 0.527 ± 0.017 0.447 ± 0.018 0.650 ± 0.014 0.527 ± 0.012 0.484 ± 0.012

Enformer 0.635 ± 0.019 0.593 ± 0.020 0.453 ± 0.016 0.606 ± 0.016 0.614 ± 0.010 0.573 ± 0.013
SPACE 0.661 ± 0.025 0.635 ± 0.016 0.490 ± 0.011 0.650 ± 0.011 0.631 ± 0.007 0.583 ± 0.008

Model Regulatory elements Splicing
All NoTATA TATA Donors Acceptors All

BPNet (original) 0.696 ± 0.026 0.717 ± 0.023 0.848 ± 0.042 0.859 ± 0.038 0.793 ± 0.072 0.920 ± 0.014
BPNet (large) 0.672 ± 0.023 0.672 ± 0.043 0.826 ± 0.017 0.925 ± 0.031 0.865 ± 0.026 0.930 ± 0.021
DNABERT-2 0.754 ± 0.009 0.769 ± 0.009 0.784 ± 0.036 0.837 ± 0.006 0.855 ± 0.005 0.861 ± 0.004
HyenaDNA-1KB 0.693 ± 0.016 0.723 ± 0.013 0.648 ± 0.044 0.815 ± 0.049 0.854 ± 0.053 0.943 ± 0.024
HyenaDNA-32KB 0.698 ± 0.011 0.729 ± 0.009 0.666 ± 0.041 0.808 ± 0.009 0.907 ± 0.018 0.915 ± 0.047
NT-HumanRef (500M) 0.734 ± 0.013 0.738 ± 0.008 0.831 ± 0.022 0.941 ± 0.004 0.939 ± 0.003 0.952 ± 0.003
NT-1000G (500M) 0.727 ± 0.004 0.743 ± 0.012 0.855 ± 0.041 0.933 ± 0.007 0.939 ± 0.004 0.952 ± 0.004
NT-1000G (2.5B) 0.708 ± 0.008 0.758 ± 0.007 0.802 ± 0.030 0.952 ± 0.004 0.956 ± 0.004 0.963 ± 0.001
NT-Multispecies (2.5B) 0.761 ± 0.009 0.773 ± 0.010 0.944 ± 0.016 0.958 ± 0.003 0.964 ± 0.003 0.970 ± 0.002
Enformer 0.745 ± 0.012 0.763 ± 0.012 0.793 ± 0.026 0.749 ± 0.007 0.739 ± 0.011 0.780 ± 0.007
SPACE 0.764 ± 0.012 0.776 ± 0.011 0.838 ± 0.028 0.942 ± 0.006 0.902 ± 0.004 0.906 ± 0.003

D GUE

D.1 DATASET

GUE is a comprehensive benchmark for genome understanding consising of 28 distinct datasets
across 7 tasks and 4 species, downloaded from https://github.com/MAGICS-LAB/
DNABERT_2. The complete dataset composition, including sequence numbers, class distributions
and sequence length statistics, is detailed in Table 8

D.2 IMPLEMENTATION

Building upon DNABERT2’s downstream task hyperparameter framework, we systematically eval-
uated learning rates from 5 × 10−6, 5 × 10−5, 6 × 10−5, 7 × 10−5, 8 × 10−5, 3 × 10−4 while
maintaining a consistent batch size of 32 across all tasks. Task-specific learning rates were em-
pirically determined through validation set performance. The optimization process employed the
AdamW algorithm (Loshchilov & Hutter, 2019) with 10,000 training steps, while retaining default
parameter configurations from the HuggingFace Transformer Trainer implementation (Wolf et al.,
2020).
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Table 8: The Composition of GUE Datasets

Species Task Num. Datasets Num. Classes Sequence Length

Human

Core Promoter Detection 3 2 70
Transcription Factor Prediction 5 2 100
Promoter Detection 3 2 300
Splice Site Detection 1 3 400

Mouse Transcription Factor Prediction 5 2 100

Yeast Epigenetic Marks Prediction 10 2 500

Virus Covid Variant Classification 1 9 1000

D.3 RESULTS

The results on the GUE datasets are presented in Table 9 and Table 10. In accordance with the im-
plementation protocol of DNABERT2 (Zhou et al., 2024), all benchmark tasks utilized the Matthews
Correlation Coefficient (MCC) for performance evaluation, with the singular exception of viral se-
quence analysis where F1-score metrics were employed. The notation DNABERT2 ■ specifically
denotes the model variant that underwent additional masked language modeling (MLM) pre-training
on the training sets of the Genomic Understanding and Evaluation (GUE) benchmark, as detailed in
the DNABERT2 methodology.

Table 9: The results on the GUE datasets

Model Epigenetic Marks Prediction
H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

DNABERT (3-mer) 74.15 42.07 48.49 42.95 31.34 28.92
DNABERT (4-mer) 73.03 41.88 48.03 41.06 30.66 25.31
DNABERT (5-mer) 73.40 40.68 48.29 40.65 30.67 27.10
DNABERT (6-mer) 73.10 40.06 47.25 41.44 32.27 27.81
NT-500M-human 69.67 33.55 44.14 37.15 30.87 24.06
NT-500M-1000g 72.52 39.37 45.58 40.45 31.05 26.16
NT-2500M-1000g 74.61 44.08 50.86 43.10 30.28 30.87
NT-2500M-multi 78.77 56.20 61.99 55.30 36.49 40.34
DNABERT-2 78.27 52.57 56.88 50.52 31.13 36.27
DNABERT-2 ■ 80.17 57.42 61.90 53.00 39.89 41.20

Enformer 70.65 37.87 42.41 34.00 29.65 22.19
SPACE 79.53 54.12 54.82 50.92 43.80 49.47
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Table 10: The results on the GUE datasets.

Model Epigenetic Marks Prediction Promoter Detection
H3K79me3 H3K9ac H4 H4ac all notata tata

DNABERT (3-mer) 60.12 50.48 78.27 38.60 90.44 93.61 69.83
DNABERT (4-mer) 59.77 51.44 78.28 36.40 89.54 92.65 66.78
DNABERT (5-mer) 59.61 51.11 77.27 37.48 90.16 92.45 69.51
DNABERT (6-mer) 61.17 51.22 79.26 37.43 90.48 93.05 61.56
NT-500M-human 58.35 45.81 76.17 33.74 87.71 90.75 78.07
NT-500M-1000g 59.33 49.29 76.29 36.79 89.76 91.75 78.23
NT-2500M-1000g 61.20 52.36 79.76 41.46 90.95 93.07 75.80
NT-2500M-multi 64.70 56.01 81.67 49.13 91.01 94.00 79.43
DNABERT-2 67.39 55.63 80.71 50.43 86.77 94.27 71.59
DNABERT-2 ■ 65.46 57.07 81.86 50.35 88.31 94.34 68.79

Enformer 55.69 49.35 76.32 32.90 85.68 92.92 69.63
SPACE 66.93 59.29 81.25 53.09 91.90 94.23 79.13

Model Transcription Factor Prediction (Human) Core Promoter Detection
0 1 2 3 4 all notata tata

DNABERT(3-mer) 67.95 70.90 60.51 53.03 69.76 70.92 69.82 78.15
DNABERT(4-mer) 67.90 73.05 59.52 50.37 71.23 69.00 70.04 74.25
DNABERT(5-mer) 66.97 69.98 59.03 52.95 69.26 69.48 69.81 76.79
DNABERT(6-mer) 66.84 70.14 61.03 51.89 70.97 68.90 70.47 76.06
NT-500M-human 61.59 66.75 53.58 42.95 60.81 63.45 64.82 71.34
NT-500M-1000g 63.64 70.17 52.73 45.24 62.82 66.70 67.17 73.52
NT-2500M-1000g 66.31 68.30 58.70 49.08 67.59 67.39 67.46 69.66
NT-2500M-multi 66.64 70.28 58.72 51.65 69.34 70.33 71.58 72.97
DNABERT-2 71.99 76.06 66.52 58.54 77.43 69.37 68.04 74.17
DNABERT-2 ■ 69.12 71.87 62.96 55.35 74.94 67.50 69.53 76.18

Enformer 69.42 72.76 77.88 66.41 81.89 60.94 66.46 46.21
SPACE 69.02 76.49 76.45 66.08 82.91 68.18 68.04 79.23

Model Transcription Factor Prediction (Mouse) Virus Splice
0 1 2 3 4 Covid Splice

DNABERT(3-mer) 42.31 79.10 69.90 55.40 41.97 62.23 84.14
DNABERT(4-mer) 49.42 79.95 72.62 51.79 44.13 59.87 84.05
DNABERT(5-mer) 42.45 79.32 62.22 49.92 40.34 50.46 84.02
DNABERT(6-mer) 44.42 78.94 71.44 44.89 42.48 55.50 84.07
NT-500M-human 31.04 75.04 61.67 29.17 29.27 50.82 79.71
NT-500M-1000g 39.26 75.49 64.70 33.07 34.01 52.06 80.97
NT-2500M-1000g 48.31 80.02 70.14 42.25 43.40 66.73 85.78
NT-2500M-multi 63.31 83.76 71.52 69.44 47.07 73.04 89.35
DNABERT-2 56.76 84.77 79.32 66.47 52.66 71.02 84.99
DNABERT-2 ■ 64.23 86.28 81.28 73.49 50.80 68.49 85.93

Enformer 67.15 81.56 85.99 67.88 44.03 61.33 81.55
SPACE 65.94 84.91 90.30 86.72 50.66 70.26 87.48
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E ABLATION STUDY

Table 11: NT (Ablation Study)

Model Chromatin profiles
H2AFZ H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2

Enformer 0.545 0.547 0.573 0.584 0.493 0.624
SPACE w/o enhancement 0.535 0.514 0.567 0.593 0.520 0.604
SPACE w/o species MoE 0.551 0.518 0.566 0.585 0.519 0.622
SPACE 0.556 0.529 0.579 0.593 0.516 0.612

Model Chromatin profiles Regulatory elements
H3K4me3 H3K9ac H3K9me3 H4K20me1 Enhancers Enhancers(types)

Enformer 0.663 0.644 0.448 0.612 0.591 0.571
SPACE w/o enhancement 0.661 0.601 0.452 0.627 0.598 0.563
SPACE w/o species MoE 0.654 0.588 0.454 0.635 0.596 0.563
SPACE 0.637 0.582 0.457 0.644 0.607 0.564

Model Regulatory elements Splicing
All NoTATA TATA Acceptors All Donors

Enformer 0.758 0.747 0.760 0.854 0.878 0.939
SPACE w/o enhancement 0.752 0.773 0.841 0.873 0.884 0.936
SPACE w/o species MoE 0.739 0.767 0.828 0.869 0.876 0.942
SPACE 0.763 0.776 0.802 0.898 0.884 0.941

F MODEL PARAMETER COUNTS

We present the parameter counts of SPACE and its ablation variants in Table 12. The SPACE (large)
configuration represents our primary model with complete architectural components for compara-
tive analysis, while the other variants correspond to reduced-scale models specifically designed for
ablation studies. These smaller models employ 131 KB input sequences with a compressed hidden
dimension of 768 and operate under a batch size of 32.

Table 12: Model Parameter Counts of SPACE and its ablation variants

SPACE (large) SPACE w/o enhancement SPACE w/o species MoE SPACE (small)

param counts 588.75M 150.96M 105.19M 183.19M
hidden dim 1536 768 768 768

It should be particularly noted that, based on the sparse architecture design of the MoE, our model
activates only a partial subset of parameters during a single forward computation. This selective
parameter activation mechanism makes the number of effective parameters actually involved in the
computation significantly lower than the total number of parameters in the model, thus significantly
reducing the computational resource consumption while maintaining the model capacity.
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