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Abstract— Despite its success in controlling robotic systems,
reinforcement learning (RL) suffers from several issues that hin-
der its widespread adoption in real-world scenarios. Recently,
diffusion models have emerged as a powerful tool to address
some of the longstanding challenges in offline and model-based
RL, improving long-horizon planning and facilitating multitask
generalization. However, these algorithms are unsuitable for
operating in unseen and dynamic environments where novel and
time-varying constraints not represented in the training data
may arise. To address this issue, we propose incorporating a
projection scheme into diffusion-based trajectory generation.
Our approach uses the iterative nature of diffusion models
and alternates the conditional backward diffusion process with
a projection of the noisy trajectory onto the constraint set.
As a result, we can generate trajectories that are both safe
and dynamically feasible while still achieving high reward.
We evaluate our approach for goal-conditioned offline RL
for two simulated robotic systems navigating in environments
with static and dynamic obstacles, representing novel test-
time constraints. We show that our method can satisfy these
constraints in closed loop, greatly increasing the success rate
of reaching the goal.

I. INTRODUCTION

Reinforcement learning (RL) [1] has been successful in
controlling robotic systems directly using sensory inputs [2],
[3]. However, RL algorithms still perform poorly in terms
of sample efficiency, multitask generalization, and long-
horizon planning. Another obstacle to widely deploying RL
algorithms on real-world robotic systems is the concern of
safety [4], e.g., a self-driving car adhering to lane boundaries.
Since RL algorithms rely on gathering data by applying po-
tentially unsafe explorative actions, the community has made
an effort to augment existing RL methods to account for
safety [5]. Despite this effort, safe RL algorithms typically
do not provide safety guarantees but only encourage safety.

A promising approach to increase sample efficiency is
leveraging model-based RL [6], which explicitly models the
transition probabilities of the system. While model-based RL
requires fewer samples, it often converges to subpar policies
compared to model-free RL and suffers from accumulating
prediction errors in learned models for long-horizon tasks.
Another technique that aims at the applicability of RL in the
real world is offline RL [7]. Instead of directly interacting
with a system during training, the RL algorithm only has
access to an offline-collected dataset of interactions. This
also increases the reusability of data as different policies can
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be trained on the same dataset. However, safely transferring
offline learned policies to the real world remains challenging.

Generative models have recently gained much attention for
tasks such as image [8], [9] or video generation [10]. Earlier
approaches, such as variational autoencoders (VAEs) [11]
or generative adversarial networks (GANs) [12], use a sin-
gle step to transform random noise into a sample from
the learned distribution. In contrast, diffusion models [13],
[14] perform this transformation iteratively through sev-
eral denoising steps. Due to their ability to capture high-
dimensional multi-modal distributions, they have been the
backbone for many recent state-of-the-art generative models.
Due to these advances and properties, diffusion models have
recently been employed in offline RL [15], [16]. Notably,
the authors in [15] propose to learn a diffusion model over
trajectories and show that it can outperform other offline RL
algorithms. The approach merges system dynamics modeling
and trajectory optimization by directly modeling the trajec-
tory distribution, thereby avoiding accumulating single-step
errors. While this approach allows generating trajectories
satisfying constraints from the training data [17], it cannot
handle novel or time-varying constraints, which often arise in
real-world robotics applications, e.g., in the form of moving
obstacles. Hence, guaranteeing the safety of the sampled
trajectories remains an open challenge, hindering the appli-
cation of diffusion models for robot decision-making.

Previous work [18] has aimed to incorporate safety into the
diffusion process by leveraging control-barrier functions as
safety filters. However, this approach is limited to state con-
straints expressed by continuously differentiable functions
and significantly increases the computation time to gener-
ate new samples. In contrast, our work proposes a novel,
computationally efficient, safe trajectory generation method
for diffusion-based offline RL. Our main contributions are:

• We formulate goal-conditioned offline RL with state and
action constraints as a conditional generative modeling
problem and address it by combining diffusion mod-
els for learning trajectory distributions with classifier-
guided sampling [19].

• We incorporate an efficient projection method into the
backward diffusion process, allowing the generation
of safe trajectories while being computationally cheap.
Moreover, we use a receding-horizon control approach
and adopt a warm-starting strategy to improve the
consistency of the generated trajectories and reduce the
computational demand.

• We demonstrate in simulation of two robotic systems
that our method can satisfy novel constraints, increasing



the success rate of reaching a goal in environments with
static and dynamic obstacles.

II. RELATED WORK

Diffusion Models in Robotics: Following their success in
text-to-image [8], [9] and text-to-video generation [10], diffu-
sion models [13], [14] have recently been applied to various
robotics-related tasks. Motion planning diffusion (MPD),
proposed in [20], trains a diffusion model on expert state-
trajectories and uses the diffusion model as prior for boot-
strapping an optimization-based motion planning algorithm.
In [21], cost functions are learned using diffusion models
to facilitate a joint optimization of grasp poses and motions
instead of the traditional modular approach. Diffusion models
have also been employed for imitating expert behaviors, both
as planner [18], [22] and policy [23]. DALL-E-Bot [24]
performs task planning by generating desired poses with
a diffusion-based text-to-image generator. Diffusion models
have also been used to accelerate the robot learning process
by generating synthetic training data [25].

Offline RL The broader field of offline RL has gained
considerable attention in recent years due to its promise
to leveraging large, existing datasets for decision-making
problems without the need for online data collection [7].
To overcome the overestimation of values caused by the
distributional shift between the dataset and the learned policy,
[26] learn a lower-bound estimate of the Q-function and
demonstrate the effectiveness of the approach in several robot
manipulation environments on a limited dataset of human
examples. Several works [27]–[29] have also proposed to
model offline RL as a sequence modeling problem that can
be learned by modified transformer architectures.

Diffusion Models for Offline RL: In the seminal
work [15], an unconditional diffusion model is trained
on an offline dataset of state-action trajectories. Online,
new plans are generated via classifier-guided sampling [19]
using a separately trained reward prediction model. Sev-
eral modifications to this approach have been proposed.
Notably, [17] generate state-only trajectories and learn an
inverse dynamics model to compute the corresponding ac-
tions. Some works [17], [30] have adopted a classifier-
free guidance scheme [31] and directly train a conditional
diffusion model. The main drawback of this approach is that
integrating new conditioning variables requires retraining the
model from scratch. Guided sampling schemes can satisfy
constraints seen in the training data or novel combinations
of those constraints [17]. However, integrating explicit and
previously unseen constraints into diffusion-based trajectory
generation has hardly been addressed so far. As the only
representative work in this direction, [18] uses control barrier
functions (CBFs) to specify constraints and re-optimizes the
dynamics of the backward diffusion process to generate safe
trajectories with probability almost 1. However, this method
can only handle continuously differentiable constraints and
requires the construction of suitable CBFs, which can be
challenging in practice.

III. BACKGROUND ON DIFFUSION MODELS

Diffusion models are a class of generative models that aim
to learn an unknown target distribution q(x), where x ∈ X ,
from samples x ∼ q(·). This is done by constructing a
forward diffusion process that gradually transforms the data
into noise and learning a reverse denoising process to
reconstruct the data. There are two popular formulations
of diffusion models: Denoising diffusion probabilistic mod-
els (DDPM) [14] and score-based generative models [32].
We focus on DDPMs due to their simplicity and since we
do not use the score-based formulation’s continuous-time
perspective on the diffusion process. DDPMs are based on
introducing latent variables x1, . . . ,xk ∈ X . They construct
a forward diffusion Markov process

q
(
xk|xk−1

)
= N

(√
1− βkx

k, βkI
)
, (1)

where x0 = x , k = 1, . . . ,K, is the diffusion time
step and βk ∈ (0, 1) is a noise schedule. Since the tran-
sition dynamics (1) are Gaussian, we can directly sam-
ple xk from x0 via q

(
xk|x0

)
= N

(√
αkx

0, (1− αk)I
)
,

where αk =
∏k

i=1(1− βi), bypassing the iterative sampling
from (1). The noise schedule and the number of diffusion
steps K ∈ N are chosen such that q

(
xK |x0

)
≈ N (0, I),

i.e., the forward process gradually transforms the data into
Gaussian noise. This process is reversed by the learnable
backward diffusion process

pθ
(
xk−1|xk, k

)
= N

(
µθ

(
xk, k

)
,Σθ

(
xk, k

))
, (2)

where µθ and Σθ can be parameterized by neural networks.
The objective for learning the parameters θ is to match
the joint distributions in the forward and backward process,
i.e., q

(
x0, . . . ,xk

)
and pθ

(
x0, . . . ,xk

)
, by minimizing their

KL divergence. As shown in [14], for the fixed variance
schedule Σθ

(
xk, k

)
= Σk = βkI , this can be achieved by

minimizing the surrogate loss

min
θ

Ek,x0,ϵ

[∥∥ϵ− ϵθ(√αkx
0 +
√
1− αkϵ, k

)∥∥
2

]
, (3)

where k ∼ U([1,K]), x0 ∼ q(·) and ϵ ∼ N (0, I). Here,
ϵθ can be expressed as a function of µθ; see [14]. New
samples from q(x) can be generated by drawing a noisy
sample xk ∼ N (0, I) and then iteratively sampling from (2)
with the learned mean

µθ
(
xk, k

)
=

1√
1− βk

(
xk − βk√

1− αk
ϵθ(x

k, k)

)
. (4)

IV. PROBLEM SETUP

We consider a robotic system with state st ∈ S ⊂ Rn and
action at ∈ A ⊂ Rm at timestep t ∈ N0. The state space S
and action space A are continuous. The system is governed
by the unknown discrete-time dynamics

st+1 = f(st,at). (5)

We aim to achieve a task-specific goal g ∈ G, which
could, for example, correspond to reaching a certain region
of the state space. A binary function φ : S × G → {0, 1}
indicates whether the goal is achieved at a particular state,



in which case φ(st, g) = 1. The actions are chosen by a
stochastic policy π, i.e., at ∼ π(·|st, g). The quality of
a state-action pair with respect to the goal is measured
by a reward function r : S ×A× G → R, and we aim to
maximize the expected value of the discounted sum of
rewards

∑
t=0 γ

tr(st,at, g), where γ ∈ (0, 1). In contrast
to the standard RL setting, we additionally aim to satisfy
time-dependent state and input constraints

st ∈ St ⊆ S, at ∈ At ⊆ A, (6)

∀t = 0, 1, . . . , that are only available at test-time, i.e.,
not during training. Such constraints are very common in
robotics, for example, in the form of collision constraints
when operating in dynamic environments. Our objective can
be formulated as solving the constrained stochastic optimal
control problem

π∗ = argmax
π

Eat∼π(·|st,g)

[∑
t=0

γtr(st,at, g)

]
s.t. (6), ∀t,

(7)

to obtain a constraint-satisfying return-maximizing policy.

V. METHODOLOGY

In this section, we propose a tractable way to ap-
proximately solve (7) using trajectory-level diffusion mod-
els. First, we simplify (7) by considering a fixed finite
horizon T ∈ N. We define a trajectory of system (5)
as Z = (s0,a0, . . . , sT ,aT ) and the corresponding cumula-
tive reward as Rg(Z) =

∑T
t=0 r(st,at, g). Then, the finite-

horizon version of (7) can be written as

π∗ = argmax
π

Eat∼π(·|st,g) [Rg(Z)]

s.t. (6), ∀t ∈ {0, . . . , T}.
(8)

Common approaches to solving (8) such as learning-based
model predictive control (MPC) [33] or safe model-based
RL [34] first learn an approximation of the one-step dy-
namics model (5) and then optimize by rolling out the
model. A drawback of this approach is that it suffers from
the compounding error problem, which is exacerbated by
considering a longer horizon.

In this paper, we take a conceptually different approach
and address (8) via conditional generative modeling. The key
idea is to learn a distribution over system trajectories from
collected data and perform decision-making via conditional
sampling from this distribution. For this, a trajectory Z is
represented by a random variable

τ (Z) = (z0, . . . ,zT ), (9)

where we consider two different formulations: z = (st,at)
for learning state-action [15] and zt = st for learning state-
only trajectories [17], [21]. We label these as w/o ID and
w/ ID, respectively, throughout this paper, since the second
formulation requires learning an additional inverse dynam-
ics (ID) control law at = hϕ(st, st+1). The ID controller

should ideally satisfy the condition

f(st,hϕ(st, st+1)) = st+1, ∀st, st+1 ∈ S, (10)

and the parameters ϕ can be learned via standard supervised
learning techniques [35].

In the following, we mostly write τ instead of τ (Z) for
brevity. We introduce two binary variables corresponding
to our main objectives: O indicates whether τ is optimal
with respect to Rg(τ ) (O = 1) and H indicates whether τ
satisfies the constraints (6) (H = 1). Then, our objective
can be formulated as learning the conditional trajectory
distribution

p(τ |O,H) = p(τ |O)p(H|τ )
p(H|O)

∝ p(τ |O)p(H|τ ).
(11)

Here, we have used that p(H|τ ,O) = p(H|τ ) as the safety
of τ with respect to (6) is independent of whether τ
is optimal. If (11) is known, then safe goal-conditioned
decision-making can simply be achieved by sampling from
p(τ |O = 1,H = 1). In the following, we present a compu-
tationally tractable way to approximate (11).

A. Sampling Feasible Trajectories

Trajectories (9) of the system (5) follow the distribution

q(τ ) =

{
q(A)

∏T
t=1 δ (st − ŝt) , if zt = (st,at),∏T

t=1 δ (st − ŝt) , if zt = st,
(12)

where A = (a0, . . . ,aT ) ∼ q(·) is an action sequence, δ(·)
is the dirac delta function and ŝt = f(st−1,at−1). This
unconditional (prior) distribution depends on a prior action
distribution q(a), i.e., on the behavior policy used for data
collection.

To approximate (12), we train an unconditional diffusion
model ϵθ, as explained in Section III. For this, we collect
a dataset D of dynamically feasible trajectories by applying
a sequence of actions A = (a0, . . . ,aT ) ∼ q(·) to (5). In
contrast to imitation learning [36], we do not aim to mimic
a behavior or expert policy but aim to learn the best policy.
Therefore, we do not bias the trajectory prior towards a
certain control behavior by choosing q(a) to be the uniform
distribution over A, i.e., trajectories are generated by ap-
plying a random sequence of actions. We can sample from
the learned trajectory distribution pθ(τ ) via the backward
diffusion process

pθ
(
τ k−1|τ k, k

)
= N

(
µθ

(
τ k, k

)
,Σk

)
, (13)

k = K, . . . , 1, where τK ∼ N (0, I). The trajectories
generated in this way obey the system dynamics (5), but
in general, they are neither optimal with respect to Rg(τ )
nor do they satisfy the constraints (6). We discuss optimality
next and later address constraint satisfaction.

B. Incorporating Optimality

We not only wish to obtain dynamically feasible trajec-
tories but also to maximize the reward Rg(τ ) to achieve
the goal. In the generative modeling framework, this can be



formulated as learning the conditional distribution p(τ |O),
where O denotes the optimality of τ with respect to Rg(τ ).
From Bayes rule, we have

p(τ |O) ∝ p(τ )p(O|τ ). (14)

Consequently, to sample from p(τ |O) using a diffusion
model, we can iteratively sample from the conditional back-
ward diffusion process

pθ
(
τ k−1|τ k, k,O

)
∝ pθ

(
τ k−1|τ k, k

)
p
(
O|τ k−1

)
, (15)

where pθ
(
τ k−1|τ k, k

)
is given by (13). Sampling from

this distribution exactly is intractable. However, if p (O|τ )
is sufficiently smooth, the log-likelihood at τ = τ k−1

can be represented with a first-order Taylor expansion
around µθ,k = µθ

(
τ k, k

)
as

log p
(
O|τ k−1

)
≈ log p

(
O|µθ,k

)
+
(
τ k−1 − µθ,k

)
v,

where v = ∇τ log p (O|τ )|τ=µθ,k
. We can then approxi-

mate the conditional probability (15) by

p
(
τ k−1|τ k, k,O

)
≈ N

(
µθ,k +Σkv,Σk

)
, (16)

as shown in [19]. To make the gradient com-
putation tractable, we can define the optimality
indicator by p(O|τ ) = exp(Rg(τ )), which
implies v = ∇τRg(τ )|τ=µθ,k

. If the cumulative Rg(τ ) is
differentiable, the analytical gradient can be directly plugged
into (16), as in [20]. We do not make this assumption and
instead train a value diffusion model Vψ(τ , g) parameterized
by ψ to predict the cumulative reward Rg(τ ). This is done
by minimizing the loss

L(ψ) = Eτ∼D
[
|Vψ(τ , g)−Rg(τ )|2

]
. (17)

We replace the log-likelihood gradient
by v = ∇τVψ(τ , g)|τ=µθ,k

and scale the gradient by
a scalar s > 0 to adjust the influence of the optimality
conditioning. This results in the modified conditional
backward diffusion process

pθ
(
τ k−1|τ k, k,O

)
≈ N

(
µθ

(
τ k, k

)
+ sΣkv,Σk

)
, (18)

from which we can iteratively sample to generate optimal
trajectories τ 0 ∼ p(·|O).

C. Incorporating Safety

We now address the satisfaction of the test-time con-
straints (6). Analogously to (14), generating safe trajectories
can be formulated as sampling from

p(τ |H) ∝ p(τ )p(H|τ ). (19)

In principle, we could follow a similar approach to Section V-
B, i.e., learn a safety classifier and add its log-likelihood gra-
dient as a second guidance term into the backward diffusion
process (18). This method, however, is unsuitable for several
reasons. First, it requires to trade-off safety and optimality
via different scaling variables [37]. Second, it cannot gen-
erate trajectories satisfying constraints that are unknown a
priori and potentially time-varying. We propose to achieve
this flexible type of constraint satisfaction by modifying the

sampling from pθ(τ |O) such that we approximately sample
from pθ(τ |O,H) instead.

We assume that at each timestep t ∈ {0, . . . , T} along the
horizon, there are Mt ∈ N0 unsafe regions S̄t,1, . . . , S̄t,Mt

in
the state space and Nt ∈ N0 unsafe regions Āt,1, . . . , Āt,Nt

in the action space. Note that Mt and Nt can also be zero, in
which case the safe sets correspond to the whole state and ac-
tion space, respectively. We assume the unsafe regions to be
disjoint, i.e., S̄t,i ∩ S̄t,j = ∅ and Āt,i ∩ Āt,j = ∅, ∀t, i ̸= j.
The constraint sets in (6) are given by

St = S \
Mt⋃
i=0

S̄t,i, At = A \
Nt⋃
j=0

Āt,j , (20)

but we do not need to represent them explicitly with our
method. It follows from (20) and the definition of the safety
indicator H that

p(H|τ ) =

{
1, if st /∈ S̄t,i and at /∈ Āt,j , ∀t, i, j
0, else.

(21)

Consequently, we can enforceH = 1 by ensuring that at each
planning timestep t, the state st (and action at for the w/o
ID case) are not contained in any of the unsafe regions.

To integrate this into our generative modeling framework,
we use the unique iterative nature of diffusion models.
After each backward diffusion step (18), we project the
denoised trajectory τ k−1 into the safe set as follows: For
each unsafe region S̄t,i in the state space at timestep t, we
check whether the t-th state st in the trajectory is contained
in S̄t,i. If st ∈ S̄t,i, we modify st by projecting it out
of S̄t,i. The same is done for the t-th action if zt = (st,at).
This procedure is described in detail in Algorithm 1 for the
case zt = (st,at) (w/o ID). Due to the assumption that the
unsafe regions are disjoint, Algorithm 1 is guaranteed to
yield a trajectory satisfying the constraints (6).

Algorithm 1: Algorithm for projecting a state-action
trajectory into the safe set (20).

1 Input: Trajectory τ k−1 = (s0,a0, . . . , sT ,aT ),
unsafe regions S̄t,i, Āt,j .

2 for t = 0, . . . , T do
3 ŝt = st, ât = at

4 for i = 0, . . . ,Mt do
5 if ŝt ∈ S̄t,i then
6 ŝt ← projS\S̄t,i

(ŝt)

7 end
8 end
9 for j = 0, . . . , Nt do

10 if ât ∈ Āt,j then
11 ât ← projA\Āt,j

(ât)

12 end
13 end
14 end
15 Output: Constraint-satisfying safe

trajectory τ k−1 ←
(
ŝ0, â0, . . . , ŝT , âT

)
.



In principle, Algorithm 1 can be applied regardless of
the shape of the unsafe regions as long as the projections
in lines 6 and 11 can be computed. While this may be
computationally demanding for complex set representations,
projections out of simple geometries, such as spheres or hy-
perrectangles, can be calculated in a computationally efficient
way. In practice, we can project out of the unsafe regions by
slightly enlarging them and projecting onto the boundary of
the resulting set.

We have modified the sampling process to alternate be-
tween guiding toward optimal trajectories and enforcing
safety, allowing us to approximately sample from p(τ |O,H).
Note that this approach is not directly applicable to other
types of generative models, such as VAEs or GANs, that
generate samples in one step instead of iteratively. For those
methods, projecting a trajectory sample out of the unsafe set
can easily destroy the dynamic feasibility of the trajectory.

Algorithm 2: Our proposed algorithm for safe goal-
conditioned diffusion-based receding horizon control
with warm-starting.

1 Input: Trajectory diffusion model ϵθ, value
model Vψ , goal g, inverse dynamics hϕ (for w/ ID).

2 Set t = 0.
3 while goal g not reached do
4 if t = 0 then
5 Sample from noise τK

1:B ∼ N (0, I).
6 else
7 τ 0,1:B

t ← Shift and Pad
(
τ 0,1:B
t−1

)
.

8 Add noise:

τ K̃,1:B
t ∼ N

(√
αkτ

0,1:B
t , (1− αk)I

)
.

9 end
10 for k = K̃, . . . , 1 do
11 Compute gradient v = ∇τVψ(τ , g)|τ=τk,1:B

t
.

12 Denoising step: Sample τ k−1,1:B
t ∼

N
(
µθ

(
τ k,1:B
t , k

)
+ sΣk−1v,Σk−1

)
13 Set first state in τ k−1,1:B

t to the current state.
14 Project τ k−1,1:B

t into the constraint set
via Algorithm 1.

15 end
16 Select best trajectory τ ∗ = argmaxτ0,i

t
Vψ(τ

0,i
t ).

17 if w/ ID then
18 Apply action a∗

0 = hϕ(s
∗
0, s

∗
1).

19 else
20 Apply first action a∗

0 in τ ∗.
21 end
22 t← t+ 1.
23 end

D. Receding-Horizon Solution and Warm-Starting

To close the control loop, we adopt a receding horizon
control approach [38]. If (zt = (st,at)), the first action a0

in τ is applied to the system, and if (zt = st), then a0

is calculated from s0 and s1 via the inverse dynamics
controller (10). For consistency, the first state s0 in the sam-
pled trajectory should correspond to the current state s. We
enforce this condition by modifying the first state accordingly
after each backward diffusion step.

Our online algorithm is summarized in Algorithm 2. The
generative modeling framework allows sampling a whole
batch of B trajectories without significantly increasing com-
putation time. We choose the trajectory with the largest
predicted reward Vψ(τ , g); see line 16. Alternative selection
criteria, such as the distance to the unsafe regions, can also
be adopted.

So far, we have considered the standard formulation of dif-
fusion models that starts from Gaussian noise τK ∼ N (0, I)
to generate a new sample. The receding horizon control
execution enables us to deviate from this formulation. We
adopt a warm-starting strategy and apply K̃ < K forward
and backward diffusion steps to the previous batch of trajec-
tories shifted by one timestep. In this way, some information
about the previous plan is kept, leading to more consis-
tency between trajectories sampled at consecutive timesteps.
Moreover, the warm-starting approach reduces the online
computation time.

VI. EXPERIMENTS

Our evaluation primarily aims to answer the following
questions:

• Q1: How do the hyperparameters of Algorithm 2 affect
its performance?

• Q2: Does the proposed projection method improve con-
straint satisfaction, and how does it affect performance?

• Q3: How does sampling state-action trajectories (w/o
ID) compare to sampling state trajectories and using an
inverse dynamics model for control (w/ ID)?

We subsequently describe our simulation environment, model
architecture and training process before presenting and dis-
cussing our results.

A. Simulation Environment

We consider two robotic systems: A mobile robot with
acceleration commands and a quadrotor with thrust com-
mands. Both simulation environments are implemented using
OpenAI Gym [39]1.

Mobile robot: The state is defined as s =
(
x, ẋ, y, ẏ

)
,

where (x, y) is the robot’s position in the horizontal plane,
and we command the accelerations, i.e., a =

(
ẍ, ÿ

)
. We use

a simulation timestep of 0.1 s.
2D quadrotor: As a more challenging system, we consider

a quadrotor flying in the vertical plane with position (x, z)
and pitch angle θ. The system is simulated by discretizing
the continuous-time dynamics [40]

mẍ = −(T1 + T2) sin (θ)

mz̈ = (T1 + T2) cos (θ)−mg

Iyy θ̈ = (T1 − T2)d,

(22)

1Code is available at github.com/ralfroemer99.

https://github.com/ralfroemer99/diffusion_planning


State/action component Bounds
Position ±5m

Linear velocity ±5 m
s

Angular velocity (quadrotor) ±5 rad
s

Acceleration (mobile robot) ±5 m
s2

Total thrust (quadrotor) [0.75, 1.25]mg

TABLE I: State and action space for the two simulated systems.

where m = 0.1 kg is the mass, (T1, T2) are the motor
thrusts, g = 9.81 m

s2 , d = 0.1m is the length of the
effective moment arm of the propellers, and Iyy = 1

12md2

is the inertia about the y-axis. We define the state
as s =

(
x, ẋ, z, ż, sin θ, cos θ, θ̇

)
and the action

as a =
(
T1, T2

)
. As the quadrotor is challenging to

stabilize, we use a smaller simulation timestep of 0.05 s.
Both systems’ state and action spaces are provided in Ta-

ble I. In addition, we constrain the absolute thrust difference
in (22) to |T1−T2| ≤ 0.01mg, which implies

∣∣θ̈∣∣ ≤ 11.8 rad
s2 .

The state and action values are normalized to [−1, 1]. For
both systems, the objective is to reach a circle with ra-
dius 0.2m centered at a randomly selected goal position g.
We use a simple quadratic reward r(st,at, g) = −d(st, g)2,
where d(·, ·) calculates the Euclidean distance between the
current position and goal.

We consider rectangular and circular obstacles as the test-
time state constraints in (6). The obstacles are either static or
moving with a constant velocity, representing time-invariant
or time-varying constraints.

B. Data Generation and Training

The offline dataset D is generated by applying randomly
uniformly selected actions from A. Whenever the distance
to the goal position is less than 0.2m, or the state leaves the
set S, the simulation is reset with a random initial state and
goal, and the trajectory is added to the dataset if its length is
at least T . In this way, we generate 105 trajectories, of which
we use 10% for testing and the rest for training the diffusion
models ϵθ and Vψ and the inverse dynamics controller.
Note that our training data does not contain any constraints
aside from st ∈ S and at ∈ A. We set the horizon length
to T = 20 for the mobile robot and T = 40 for the quadrotor,
corresponding to a prediction horizon of 2 s.

The trajectory diffusion model ϵθ is implemented as a
temporal U-Net [15], which consists of six repeated residual
blocks. Each block contains two temporal convolutions with
group normalization and Mish nonlinearity, along with sep-
arate 2-layered MLPs producing timestep and condition em-
beddings that are concatenated and added to the activations
of the first temporal convolution in each block. The same
architecture is chosen for the value model Vψ but with an
additional fully connected output layer. The training hyperpa-
rameters for both diffusion models are listed in Table II. The
inverse dynamics function hϕ is implemented as a multilayer
perception (MLP) with two hidden layers, 512 hidden units
per layer and ReLU activations, and we train it with the same
data as the diffusion models. In all experiments, we evaluate
using the models performing best on the test set.

Hyperparameter Value
Optimizer Adam [41]
Batch size 32

Learning rate 2× 10−5

Training steps 106

Epochs 100
Diffusion steps K 20

TABLE II: Hyperparameters for training the diffusion models.
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Fig. 1: Impact of the guidance scale s and the batch size B in Algorithm 2
on the success rate and the number of timesteps to reach the goal for sam-
pling state trajectories and using an inverse dynamics controller (w/ ID).

C. Results

We use two evaluation metrics: The success rate and the
average number of timesteps until reaching the goal, both
calculated from 100 different environment initializations.

Q1: We evaluate the impact of two key hyperparameters
of Algorithm 2: The guidance scale s in (18) and the batch
size B. For each pair (s,B), we simulate the systems 100
times with random goal positions and without obstacles.
Unlike for data generation, we initialize both systems with
zero velocity and the quadrotor in a hovering state for
testing. The results are shown in Fig. 1 for the case of
sampling state trajectories and using an inverse dynamics
controller (w/ ID). Sampling a larger batch consistently
improves the performance since generating more trajectories
increases the likelihood of obtaining one with high predicted
reward Vψ(τ , g). The batch size has a stronger impact on
controlling the quadrotor system, likely due to its higher state
dimension and inherent instability. We also observe that for
small batch sizes, the guidance scale has a large impact on
performance, but this impact strongly decreases for larger
batches. The ablation study for sampling state-action trajec-
tories yields qualitatively similar results and is provided in
the Appendix. In the following, we use B = 16 and s = 100,
which we found to perform better than s = 1000 in scenarios
with test-time constraints where we alternate guidance and
projection.

Q2: We evaluate the impact of our proposed projec-
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Fig. 2: Our proposed projection method reduces the number of constraint
violations, resulting in a higher success rate of reaching the goal.

Mobile Robot Quadrotor
Success rate ↑ Timesteps ↓ Success rate ↑ Timesteps ↓

w/ ID 0.99 / 0.89 20.4 / 31.8 0.90 / 0.63 71.5 / 105.6
w/o ID 0.99 / 0.79 18.4 / 36.6 0.87 / 0.61 71.0 / 114.0

TABLE III: Comparison of calculating the actions from a state trajectory
with a separate inverse dynamics controller (w ID) against directly sampling
state-action trajectories. We report the values for the obstacle-free environ-
ment and the dynamic environment.

tion scheme on avoiding constraint violations in closed-
loop operation. To this end, we consider two scenarios: A
static environment with ten randomly placed obstacles and
a dynamic environment with an additional four dynamic
obstacles. We use the popular Diffuser [15] as a baseline. The
results are provided in Fig. 2. Our method can avoid most
of the collisions with obstacles, demonstrating its ability
to improve constraint satisfaction. Also, the performance is
not negatively affected by our projection method, demon-
strated by a decrease in the number of timesteps across
most of our experiments. Fig. 3 shows a simulation of the
mobile robot with (top) and without (bottom) our projection
method. In each timestep, the agent executes the first action
corresponding to the red trajectory. With the projection
method, trajectories going either way around the obstacle
are sampled initially. When approaching the obstacle, all
sampled trajectories are eventually projected to the same
side of the obstacle. With the projection method, the agent
satisfies the collision constraint and reaches the goal.

Q3: Finally, we compare directly sampling state-action
trajectories (w/o ID) to sampling state trajectories and using
an ID controller (w/ ID) in Table III. The second approach
performs better in most cases. This is likely due to the
fact that CNNs, such as the employed temporal U-Net, tend
to struggle at capturing rapidly changing action sequences
like the acceleration and thrust commands considered in this
work. Using a transformer backbone can be beneficial for
directly generating action sequences, however at the cost of
additional tuning [22].

VII. CONCLUSION

This paper addresses offline RL with constraints by
learning conditional trajectory distributions using diffusion
models. In particular, we consider the satisfaction of unseen
test-time constraints while ensuring dynamic feasibility and
optimality of the generated trajectories. To achieve this, we
propose to alternate the backward diffusion process with
a projection into the constraint set, exploiting the iterative
nature of diffusion models. We demonstrate in simulation
that our proposed scheme can significantly reduce the num-
ber of constraint violations, thereby improving the goal-
reaching performance. Possible avenues for future work
include employing a different model architecture than U-Net
and conducting hardware experiments, potentially using re-
cently proposed fast sampling methods for diffusion models.
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APPENDIX

We provide the ablation study for directly sampling actions
from the diffusion model (w/o ID) in Fig. 4. The results are
very similar to the w/ID formulation; see Fig. 1. The only
notable difference is the very strong performance drop when



increasing the scale from 103 to 104, indicating a higher
sensitivity of the algorithm to the hyperparameter choice
when directly generating actions.
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Fig. 4: Impact of the guidance scale s and the batch size B in Algorithm 2
on the success rate and the number of timesteps to reach the goal for the
case of sampling state-action trajectories (w/o ID).
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