
Published as a conference paper at ICLR 2023

THE SURPRISING COMPUTATIONAL POWER OF
NONDETERMINISTIC STACK RNNS

Brian DuSell and David Chiang
Department of Computer Science and Engineering
University of Notre Dame
{bdusell1,dchiang}@nd.edu

ABSTRACT

Traditional recurrent neural networks (RNNs) have a fixed, finite number of mem-
ory cells. In theory (assuming bounded range and precision), this limits their for-
mal language recognition power to regular languages, and in practice, RNNs have
been shown to be unable to learn many context-free languages (CFLs). In order to
expand the class of languages RNNs recognize, prior work has augmented RNNs
with a nondeterministic stack data structure, putting them on par with pushdown
automata and increasing their language recognition power to CFLs. Nondetermin-
ism is needed for recognizing all CFLs (not just deterministic CFLs), but in this
paper, we show that nondeterminism and the neural controller interact to produce
two more unexpected abilities. First, the nondeterministic stack RNN can recog-
nize not only CFLs, but also many non-context-free languages. Second, it can
recognize languages with much larger alphabet sizes than one might expect given
the size of its stack alphabet. Finally, to increase the information capacity in the
stack and allow it to solve more complicated tasks with large alphabet sizes, we
propose a new version of the nondeterministic stack that simulates stacks of vec-
tors rather than discrete symbols. We demonstrate perplexity improvements with
this new model on the Penn Treebank language modeling benchmark.

1 INTRODUCTION

Standard recurrent neural networks (RNNs), including simple RNNs (Elman, 1990), GRUs (Cho
et al., 2014), and LSTMs (Hochreiter & Schmidhuber, 1997), rely on a fixed, finite number of neu-
rons to remember information across timesteps. When implemented with finite precision, they are
theoretically just very large finite automata, restricting the class of formal languages they recognize
to regular languages (Kleene, 1951). In practice, too, LSTMs cannot learn simple non-regular lan-
guages such as {w#wR | w ∈ {0,1}∗} (DuSell & Chiang, 2020). To increase the theoretical and
practical computational power of RNNs, past work has proposed augmenting RNNs with stack data
structures (Sun et al., 1995; Grefenstette et al., 2015; Joulin & Mikolov, 2015; DuSell & Chiang,
2020), inspired by the fact that adding a stack to a finite automaton makes it a pushdown automaton
(PDA), raising its recognition power to context-free languages (CFLs).

Recently, we proposed the nondeterministic stack RNN (NS-RNN) (DuSell & Chiang, 2020) and
renormalizing NS-RNN (RNS-RNN) (DuSell & Chiang, 2022), augmenting an LSTM with a dif-
ferentiable data structure that simulates a real-time nondeterministic PDA. (The PDA is real-time in
that it executes exactly one transition per input symbol scanned, and it is nondeterministic in that it
executes all possible sequences of transitions.) This was in contrast to prior work on stack RNNs,
which exclusively modeled deterministic stacks, theoretically limiting such models to deterministic
CFLs (DCFLs), which are a proper subset of CFLs (Sipser, 2013). The RNS-RNN proved more
effective than deterministic stack RNNs at learning both nondeterministic and deterministic CFLs.

In practical terms, giving RNNs the ability to recognize context-free patterns may be beneficial for
modeling natural language, as syntax exhibits hierarchical structure; nondeterminism in particular is
necessary for handling the very common phenomenon of syntactic ambiguity. However, the RNS-
RNN’s reliance on a PDA may still render it inadequate for practical use. For one, not all phenomena
in human language are context-free, such as cross-serial dependencies. Secondly, the RNS-RNN’s

1



Published as a conference paper at ICLR 2023

· · ·

· · ·

ht−1

xt−1

yt−1

st−1

ht

xt

yt

st

ht+1

xt+1

yt+1

· · ·

· · ·
r t−

2
a
t−

1 r t−
1 a

t r t
a
t+

1

output
{

controller
{

stack
{

input
{

Figure 1: Conceptual diagram of the RNN controller-stack interface, unrolled across a portion of
time. The LSTM memory cell ct is not shown.

computational cost restricts it to small stack alphabet sizes, which is likely insufficient for storing
detailed lexical information. In this paper, we show that the RNS-RNN is surprisingly good at over-
coming both difficulties. Whereas an ordinary weighted PDA must use the same transition weights
for all timesteps, the RNS-RNN can update them based on the status of ongoing nondeterministic
branches of the PDA. This means it can coordinate multiple branches in a way a PDA cannot—for
example, to simulate multiple stacks, or to encode information in the distribution over stacks.

Our contributions in this paper are as follows. We first prove that the RNS-RNN can recognize all
CFLs and intersections of CFLs despite restrictions on its PDA transitions. We show empirically
that the RNS-RNN can model some non-CFLs; in fact it is the only stack RNN able to learn {w#w |
w ∈ {0,1}∗}, whereas a deterministic multi-stack RNN cannot. We then show that, surprisingly,
an RNS-RNN with only 3 stack symbol types can learn to simulate a stack of no fewer than 200
symbol types, by encoding them as points in a vector space related to the distribution over stacks.
Finally, in order to combine the benefits of nondeterminism and vector representations, we propose
a new model that simulates a PDA with a stack of vectors instead of discrete symbols. We show
that the new vector RNS-RNN outperforms the original on the Dyck language and achieves better
perplexity than other stack RNNs on the Penn Treebank. Our code is publicly available.1

2 STACK RNNS

In this paper, we examine two styles of stack-augmented RNN, using the same architectural frame-
work as in our previous work (DuSell & Chiang, 2022) (Fig. 1). In both cases, the model consists
of an LSTM, called the controller, connected to a differentiable stack. At each timestep, the stack
receives actions from the controller (e.g. to push and pop elements). The stack simulates those
actions and produces a reading vector, which represents the updated top element of the stack. The
reading is fed as an extra input to the controller at the next timestep. The actions and reading con-
sist of continuous and differentiable weights so the whole model can be trained end-to-end with
backpropagation; their form and meaning vary depending on the particular style of stack.

We assume the input w = w1 · · ·wn is encoded as a sequence of vectors x1, · · · ,xn. The LSTM’s
memory consists of a hidden state ht and memory cell ct (we set h0 = c0 = 0). The controller
computes the next state (ht, ct) given the previous state, input vector xt, and stack reading rt−1:

(ht, ct) = LSTM

(
(ht−1, ct−1),

[
xt

rt−1

])
.

The hidden state generates the stack actions at and logits yt for predicting the next word wt+1. The
previous stack and new actions generate a new stack st, which produces a new reading rt:

at = ACTIONS(ht) yt = Whyht + bhy st = STACK(st−1, at) rt = READING(st).

Each style of stack differs only in the definitions of ACTIONS, STACK, and READING.

2.1 SUPERPOSITION STACK RNN

We start by describing a stack with deterministic actions—the superposition stack of Joulin &
Mikolov (2015)—which we include because it was one of the best-performing stack RNNs we

1https://github.com/bdusell/nondeterministic-stack-rnn

2

https://github.com/bdusell/nondeterministic-stack-rnn


Published as a conference paper at ICLR 2023

investigated previously (2020; 2022). The superposition stack simulates a combination of partial
stack actions by computing three new, separate stacks: one with all cells shifted down (push), kept
the same (no-op), and shifted up (pop). The new stack is an element-wise interpolation (“superpo-
sition”) of these three stacks. The stack elements are vectors, and at = (at,vt), where the vector
at is a probability distribution over the three stack operations. The push operation pushes vector vt,
which can be learned or set to ht. The stack reading is the top vector element.

2.2 RENORMALIZING NONDETERMINISTIC STACK RNN

The main focus of this paper is the renormalizing nondeterministic stack RNN (RNS-RNN) (DuSell
& Chiang, 2022). The RNS-RNN’s stack module is a simulation of a real-time weighted PDA,
complete with its own finite state machine and stack. Let Q be the set of states and Γ be the stack
alphabet of the PDA. The initial PDA state is q0 ∈ Q, and the initial stack is ⊥ ∈ Γ. The PDA’s
computation is governed by weighted transitions that manipulate its state and stack contents; a valid
sequence of transitions is called a run. The PDA is nondeterministic in that all possible runs are
simulated in parallel. Each run has a weight, which is the product of the weights of its transitions.

The ACTIONS emitted by the controller are the PDA’s transition weights. The weights at t, denoted
∆[t], are computed as ∆[t] = exp(Waht + ba). Let q, r ∈ Q and u, v ∈ Γ∗, and let ∆[t][q, u →
r, v] denote the weight, at timestep t, of popping u from the stack, pushing v, and transitioning to
state r if the previous state was q and the previous stack top was u. Transitions have one of three
forms, where x, y ∈ Γ: ∆[t][q, x → r, xy] (push y), ∆[t][q, x → r, y] (replace x with y), and
∆[t][q, x→ r, ε] (pop x). We say that transitions limited to these three forms are in restricted form.

The READING is the marginal distribution, over all runs, of each pair (r, y) ∈ Q× Γ, where r is the
current PDA state, and y is the top stack symbol. Let τi be a PDA transition, let π = τ1 · · · τt be
a PDA run, and let ψ(π) =

∏t
i=1 ∆[i][τi] be the weight of run π. Let π ⇝ t, r, y mean that run π

ends at timestep t in state r with y on top of the stack. The stack reading rt ∈ R|Q|·|Γ| is defined as

rt[(r, y)] =

∑
π⇝t,r,y ψ(π)∑

r′,y′
∑

π⇝t,r′,y′ ψ(π)
. (1)

Equation (1) is sufficient for describing the RNS-RNN mathematically, but it sums over an expo-
nential number of runs, so the RNS-RNN relies on a dynamic programming algorithm to compute
it in O(n3) time (Lang, 1974). The rest of this section describes this algorithm and may safely be
skipped unless the reader is interested in these implementation details or in Eqs. (9) to (11).

The algorithm uses a tensor of weights called the stack WFA, so named because it can be viewed
as a weighted finite automaton (WFA) that encodes the weighted language of all possible stacks the
PDA can have at time t. Each WFA state is of the form (i, q, x), representing a configuration where
the PDA is in state q with stack top x at time i. For any WFA transition from (i, q, x) to (t, r, y), its
weight is equal to the sum of the weights of all runs that bring the PDA from configuration (i, q, x)
to (t, r, y) (possibly over multiple timesteps) without modifying x, with the net effect of putting a
single y on top of it. The tensor containing the stack WFA’s transition weights, also called inner
weights, is denoted γ, and elements are written as γ[i → t][q, x → r, y]. For 1 ≤ t ≤ n − 1 and
−1 ≤ i ≤ t− 1,

γ[−1 → 0][q, x→ r, y] = I[q = q0 ∧ x = ⊥ ∧ r = q0 ∧ y = ⊥] init. (2)
γ[i→ t][q, x→ r, y] = I[i = t−1] ∆[t][q, x→ r, xy] push (3)

+
∑
s,z

γ[i→ t−1][q, x→ s, z] ∆[t][s, z → r, y] repl.

+

t−2∑
k=i+1

∑
u

γ[i→ k][q, x→ u, y] γ′[k → t][u, y → r] pop

γ′[k → t][u, y → r] =
∑
s,z

γ[k → t−1][u, y → s, z] ∆[t][s, z → r, ε] (0 ≤ k ≤ t− 2). (4)

The RNS-RNN sums over all runs using a tensor of forward weights denoted α, where the element
α[t][r, y] is the total weight of reaching the stack WFA state (t, r, y). These weights are normalized

3



Published as a conference paper at ICLR 2023

to get the final stack reading at t.

α[−1][r, y] = I[r = q0 ∧ y = ⊥] (5)

α[t][r, y] =

t−1∑
i=−1

∑
q,x

α[i][q, x] γ[i→ t][q, x→ r, y] (0 ≤ t ≤ n− 1) (6)

rt[(r, y)] =
α[t][r, y]∑

r′,y′ α[t][r′, y′]
. (7)

We have departed slightly from the original definitions of γ and α (DuSell & Chiang, 2022), for two
reasons: (1) to implement an asymptotic speedup by a factor of |Q| (Butoi et al., 2022), and (2) to
fix a peculiarity with the behavior of the initial ⊥. See Appendix A for details.

3 RECOGNITION POWER

In this section, we investigate the power of RNS-RNNs as language recognition devices, proving
that they can recognize all CFLs and all intersections of CFLs. These results hold true even when
the RNS-RNN is run in real time (one timestep per input, with one extra timestep to read EOS).
Although Siegelmann & Sontag (1992) showed that even simple RNNs are as powerful as Turing
machines, this result relies on assumptions of infinite precision and unlimited extra timesteps, which
generally do not hold true in practice. The same limitation applies to the neural Turing machine
(Graves et al., 2014), which, when implemented with finite precision, is no more powerful than a
finite automaton, as its tape does not grow with input length. Previously, Stogin et al. (2020) showed
that a variant of the superposition stack is at least as powerful as real-time DPDAs. Here we show
that RNS-RNNs recognize a much larger superset of languages.

For this section only, we allow parameters to have values of ±∞, to enable the controller to emit
probabilities of exactly zero. Because we use RNS-RNNs here for accepting or rejecting strings
(whereas in the rest of the paper, we only use them for predicting the next symbol), we start by
providing a formal definition of language recognition for RNNs (cf. Chen et al., 2018).
Definition 1. LetN be an RNN controller, possibly augmented with one of the stack modules above.
Let ht ∈ Rd be the hidden state of N after reading t symbols, and let σ be the logistic sigmoid
function. We say that N recognizes language L if there is an MLP layer y = σ(W2 σ(W1h|w|+1+

b1) + b2) such that, after reading w · EOS, we have y > 1
2 iff w ∈ L.

The question of whether RNS-RNNs can recognize all CFLs can be reduced to the question of
whether real-time PDAs with transitions in restricted form (Section 2.2) can recognize all CFLs.
The real-time requirement does not reduce the power of PDAs (Greibach, 1965), but what about
restricted form? We prove that it does not either, and so RNS-RNNs can recognize all CFLs.
Proposition 1. For every context-free language L, there exists an RNS-RNN that recognizes L.

Proof sketch. We construct a CFG for L and convert it into a modified Greibach normal form, called
2-GNF, which we can convert into a PDA P whose transitions are in restricted form. Then we
construct an RNS-RNN that emits, at every timestep, weight 1 for transitions of P and 0 for all
others. Then y > 1

2 iff the PDA ends in an accept configuration. See Appendix B.1 for details.

Proposition 2. For every finite set of context-free languages L1, . . . , Lk over the same alphabet Σ,
there exists an RNS-RNN that recognizes L1 ∩ · · · ∩ Lk.

Proof sketch. Without loss of generality, assume k = 2. Let P1 and P2 be PDAs recognizing L1

and L2, respectively. We construct a PDA P that uses nondeterminism to simulate P1 or P2, but
the controller can query P1 and P2’s configurations, and it can set y > 1

2 iff P1 and P2 both end in
accept configurations. See Appendix B.2 for details.

Since the class of languages formed by the intersection of k CFLs is a proper superset of the class
formed by the intersection of (k − 1) CFLs (Liu & Weiner, 1973), this means that RNS-RNNs are
considerably more powerful than nondeterministic PDAs.

4



Published as a conference paper at ICLR 2023

4 NON-CONTEXT-FREE LANGUAGES

We now explore the ability of stack RNNs to recognize non-context-free phenomena with a language
modeling task on several non-CFLs. Each non-CFL, which we describe below, can be recognized
by a real-time three-stack automaton (see Appendix C for details). We also include additional non-
CFLs in Appendix C.

w#wR#w The language {w#wR#w | w ∈ {0,1}∗}.

w#w The language {w#w | w ∈ {0,1}∗}.

ww′ The language {ww′ | w ∈ {0,1}∗ and w′ = ϕ(w)}, where ϕ is the homomorphism ϕ(0) =
2, ϕ(1) = 3.

ww The language {ww | w ∈ {0,1}∗}.

The above languages all include patterns like w · · ·w, which are known in linguistics as cross-serial
dependencies. In Swiss German (Shieber, 1985), the two w’s are distinguished by part-of-speech (a
sequence of nouns and verbs, respectively), analogous to ww′. In Bambara (Culy, 1985), the two
w’s are the same, but separated by a morpheme o, analogous to w#w.

We follow our previous experimental framework (DuSell & Chiang, 2022). If L is a language, let
Lℓ be the set of all strings in L of length ℓ. To sample a string w ∈ L, we first uniformly sample a
length ℓ from [40, 80], then sample uniformly from Lℓ (we avoid sampling lengths for which Lℓ is
empty). So, the distribution from which w is sampled is

pL(w) =
1∣∣{ℓ ∈ [40, 80] | Lℓ ̸= ∅}

∣∣ 1

|L|w||
.

We require models to predict an EOS symbol at the end of each string, so each language model
M defines a probability distribution pM (w). Let the per-symbol cross-entropy of a probability
distribution p on a set of strings S, measured in nats, be defined as

H(S, p) =
−
∑

w∈S log p(w)∑
w∈S(|w|+ 1)

.

The +1 in the denominator accounts for the fact that the model must predict EOS. Since we know the
exact distribution from which the data is sampled (for each non-CFL above, |L|w|| can be computed
directly from |w|), we can evaluate modelM by measuring the cross-entropy difference between the
learned and true distributions, or H(S, pM )−H(S, pL). Lower is better, and 0 is optimal.

We compare five architectures, each of which consists of an LSTM controller connected to a different
type of data structure. We include a bare LSTM baseline (“LSTM”). We also include a model that
pushes learned vectors of size 10 to a superposition stack (“Sup. 10”), and another that pushes the
controller’s hidden state (“Sup. h”). Since each of these languages can be recognized by a three-
stack automaton, we also tested a model that is connected to three independent instances of the
superposition stack, each of which has vectors of size 3 (“Sup. 3-3-3”). Finally, we include an RNS-
RNN with |Q| = 3 and |Γ| = 3, where |Q| = 3 is sufficient for the model to be able to simulate at
least three different stacks. In all cases, the LSTM controller has one layer and 20 hidden units. We
encoded all input symbols as one-hot vectors.

Before each training run, we sampled a training set of 10,000 examples and a validation set of 1,000
examples from pL. For each language and architecture, we trained 10 models and report results
for the model with the lowest cross-entropy difference on the validation set. For each language, we
sampled a single test set that was reused across all training runs. Examples in the test set vary in
length from 40 to 100, with 100 examples sampled uniformly from Lℓ for each length ℓ. Additional
training details can be found in Appendix D.

We show the cross-entropy difference on the validation and test sets in Fig. 2. We show results for
additional non-CFLs in Appendix E. Strings in w#wR#w contain two hints to facilitate learning:
explicit boundaries for w, and extra timesteps in the middle, which simplify the task of transferring
symbols between stacks (for details, compare the solutions for w#wR#w and w#w described in
Appendix C). Only models that can simulate multiple stacks, Sup. 3-3-3 and RNS 3-3, achieved

5



Published as a conference paper at ICLR 2023

LSTM Sup. 10 Sup. 3-3-3 Sup. h RNS 3-3

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

C
ro

ss
-e

nt
ro

py
D

iff
.

w#wR#w

40 50 60 70 80 90 100
0

0.5

1

C
ro

ss
-e

nt
ro

py
D

iff
.

w#wR#w

0 50 100 150 200
0

0.2

0.4

C
ro

ss
-e

nt
ro

py
D

iff
.

w#w

40 50 60 70 80 90 100
0

0.2

0.4

0.6

C
ro

ss
-e

nt
ro

py
D

iff
.

w#w

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

C
ro

ss
-e

nt
ro

py
D

iff
.

ww′

40 50 60 70 80 90 100
0

0.2

0.4

C
ro

ss
-e

nt
ro

py
D

iff
.

ww′

0 50 100 150 200
0

0.1

0.2

0.3

Epoch

C
ro

ss
-e

nt
ro

py
D

iff
.

ww

40 50 60 70 80 90 100
0

0.2

0.4

Length

C
ro

ss
-e

nt
ro

py
D

iff
.

ww

Figure 2: Performance on non-context-free languages. Cross-entropy difference in nats, on the
validation set by epoch (left), and on the test set by string length (right). Each line is the best of
10 runs, selected by validation perfomance. On w#wR#w, which has both explicit boundaries and
extra timesteps in the middle, only multi-stack models (Sup. 3-3-3 and RNS 3-3) achieved optimal
cross-entropy. On w#w and ww′, which have no extra timesteps, only RNS 3-3 did.

optimal cross-entropy here, although RNS 3-3 did not generalize well on lengths not seen in training.
Only RNS 3-3 effectively learned w#w and ww′. This suggests that although multiple deterministic
stacks are enough to learn to copy a string given enough hints in the input (explicit boundaries, extra
timesteps for computation), only the nondeterministic stack succeeds when the number of hints is
reduced (no extra timesteps). No stack models learned to copy a string without explicit boundaries
(ww), suggesting a nondeterministic multi-stack model (as opposed to one that uses nondeterminism
to simulate multiple stacks) may be needed for such patterns.

5 CAPACITY

In this section, we examine how much information each model can transmit through its stack. Con-
sider the language {w#wR | w ∈ Σ∗}. It can be recognized by a real-time PDA with |Γ| = 3
when |Σ| = 2, but not when |Σ| > 2, as there is always a sufficiently long w such that there are
more possible w’s than possible PDA configurations upon reading the #. Similarly, because all
the neural stack models we consider here are also real-time, we expect that they will be unable to
model context-free languages with sufficiently large alphabets. This is especially relevant to natural
languages, which have very large vocabulary sizes.

6



Published as a conference paper at ICLR 2023

Neural networks can encode large sets of distinct types in compact vector representations; in fact,
Schwartz et al. (2018) and Peng et al. (2018) showed connections between the vector representations
in RNNs and the states of WFAs. However, since the RNS-RNN simulates a discrete stack, it might
struggle on tasks that require it to store strings over alphabets with sizes greater than |Γ|. On the other
hand, a model that uses a stack of vectors, like the superposition stack, might model such languages
more easily by representing each symbol type as a different cluster of points in a vector space. Here,
we make the surprising finding that the RNS-RNN can vastly outperform the superposition stack
even for large alphabets, though not always. In addition, to see if we can combine the benefits of
nondeterminism with the benefits of vector representations, we propose a new variant of the RNS-
RNN that models a PDA with a stack of discrete symbols augmented with vectors.

5.1 VECTOR RNS-RNN

The RNS-RNN is computationally expensive for large |Γ|. To address this shortcoming, we propose
a new variant, the Vector RNS-RNN (VRNS-RNN), that uses a stack whose elements are symbols
drawn from Γ and augmented with vectors of size m, which it can use to encode large alphabets.
Its time and space complexity scale only linearly with m. Now, each PDA run involves a stack of
elements in Γ×Rm. We assume the initial stack consists of the element (⊥,v0), where v0 = σ(wv),
and wv is a learned parameter. The stack operations now have the following semantics:

Push q, x→ r, y If q is the current state and (x,u) is on top of the stack, go to state r and push
(y,vt) with weight ∆[t][q, x→ r, xy], where vt = σ(Wvht + bv).

Replace q, x→ r, y If q is the current state and (x,u) is on top of the stack, go to state r and
replace (x,u) with (y,u) with weight ∆[t][q, x → r, y]. Note that we do not replace u with vt;
we replace the discrete symbol only and keep the vector the same. When x = y, this is a no-op.

Pop q, x→ r If q is the current state and (x,u) is on top of the stack, go to state r and remove
(x,u) with weight ∆[t][q, x→ r, ε], uncovering the stack element beneath.

Let v(π) denote the top stack vector at the end of run π. The stack reading rt ∈ R|Q|·|Γ|·m now
includes, for each (r, y) ∈ Q× Γ, an interpolation of v(π) for every run π ⇝ t, r, y, normalized by
the weight of all runs.

rt[(r, y, j)] =

∑
π⇝t,r,y ψ(π) v(π)[j]∑
r′,y′

∑
π⇝t,r′,y′ ψ(π)

(8)

We compute the denominator using γ and α as before. To compute the numerator, we compute a
new tensor ζ which stores ψ(π) v(π). For 1 ≤ t ≤ n− 1 and −1 ≤ i ≤ t− 1,

ζ[−1 → 0][q, x→ r, y] = I[q = q0 ∧ x = ⊥ ∧ r = q0 ∧ y = ⊥] v0 init.2 (9)
ζ[i→ t][q, x→ r, y] = I[i = t−1] ∆[t][q, x→ r, xy] vt push (10)

+
∑
s,z

ζ[i→ t−1][q, x→ s, z] ∆[t][s, z → r, y] repl.

+

t−2∑
k=i+1

∑
u

ζ[i→ k][q, x→ u, y] γ′[k → t][u, y → r]. pop

We compute α as before, and we compute the normalized stack reading rt as follows.

rt[(r, y, j)] =
ηt[r, y][j]∑

r′,y′ α[t][r′, y′]
ηt[r, y] =

t−1∑
i=−1

∑
q,x

α[i][q, x] ζ[i→ t][q, x→ r, y] (11)

5.2 EXPERIMENTS

We evaluate models using cross-entropy difference as in Section 4. We express each language L as
a PCFG, using the same PCFG definitions as in prior work (DuSell & Chiang, 2020), but modified

2Our code and experiments implement ζ[−1 → 0][q, x → r, y] = v0 instead due to a mistake found late
in the publication process. Consequently, in Eq. (11), runs can start with any (r, y) ∈ Q× Γ in the numerator,
but only (q0,⊥) in the denominator. Empirically the VRNS-RNN still appears to work as expected.

7



Published as a conference paper at ICLR 2023

LSTM Sup. 3 RNS 1-3 RNS 2-3
VRNS 1-1-3 VRNS 2-1-3 VRNS 2-3-3

2 40 80 120 160 200
0

0.25
0.5
0.75

1
1.25
1.5
1.75

2

Alphabet Size k

C
ro

ss
-e

nt
ro

py
D

iff
.

w#wR

2 40 80 120 160 200
0

0.2

0.4

0.6

0.8

1

Alphabet Size k

C
ro

ss
-e

nt
ro

py
D

iff
.

Dyck

Figure 3: Mean cross-entropy difference on the validation set vs. input alphabet size. Contrary to
expectation, RNS 2-3, which models a discrete stack of only 3 symbol types, learns to solve w#wR

with 200 symbol types more reliably than models with stacks of vectors. On the more complicated
Dyck language, vector stacks perform best, with our newly proposed VRNS-RNN performing best.

−0.4 −0.2 0 0.2 0.4 0.6
−0.4
−0.2

0
0.2
0.4
0.6

Figure 4: When RNS 2-3 is run on w#wR with 40 symbol types, the stack readings are as visualized
above. The readings are 6-dimensional vectors, projected down to 2 dimensions using PCA. The
color of each point represents the top stack symbol. Points corresponding to the same symbol
type cluster together, indicating the RNS-RNN has learned to encode symbols as points in the 5-
dimensional simplex. The disorganized points in the middle are from the first and last timesteps of
the second half of the string, which appear to be irrelevant for prediction.

to include k symbol types. In order to sample from and compute pL(w), we used the same sampling
and parsing techniques as before (DuSell & Chiang, 2020). We tested the information capacity of
each model on two DCFLs, varying their alphabet size k from very small to very large.

w#wR The language {w#wR | w ∈ {0,1, · · · , k − 1}∗}.
Dyck The language of strings over the alphabet {(1,)1,(2,)2, · · · ,(k,)k} where all brackets are

properly balanced and nested in pairs of (i and )i.

We compare four types of architecture, including an LSTM baseline (“LSTM”), and a superposition
stack that pushes learned vectors of size 3 (“Sup. 3”). We use the notation “RNS |Q|-|Γ|” for
RNS-RNNs, and “VRNS |Q|-|Γ|-m” for VRNS-RNNs. All details of the controller and training
procedure are the same as in Section 4. We varied the alphabet size k from 2 to 200 in increments
of 40. For each task, architecture, and alphabet size, we ran 10 random restarts.

In Fig. 3, for each task, we show the mean cross-entropy difference on the validation set as a function
of alphabet size; we provide plots of the best performance in Appendix F. On w#wR, the single-
state RNS 1-3, and even VRNS 1-1-3 and Sup. 3, struggled for large k. Only the multi-state models
RNS 2-3, VRNS 2-1-3, and VRNS 2-3-3 show a clear advantage over the LSTM. Surprisingly, RNS
2-3, which models a discrete stack alphabet of only size 3, attained the best performance on large
alphabets; in Fig. 7, it is the only model capable of achieving optimal cross-entropy on all alphabet
sizes. On the Dyck language, a more complicated DCFL, the model rankings are as expected: vector
stacks (Sup. 3 and VRNS) performed best, with the largest VRNS model performing best. RNS-
RNNs still show a clear advantage over the LSTM, but not as much as vector stack RNNs.

8



Published as a conference paper at ICLR 2023

Table 1: Validation and test perplexity on the Penn Treebank of the best of 10 random restarts for
each architecture. The model with the best test perplexity is our new VRNS-RNN when it combines
a modest amount of nondeterminism (3 states and 3 stack symbols) with vectors of size 5.

Model Val. ↓ Test ↓
LSTM, 256 units 129.99 125.90
Sup. (push hidden), 247 units 124.99 121.05
Sup. (push learned), |vt| = 22 125.68 120.74
RNS 1-29 131.17 128.11
RNS 2-13 128.97 122.76
RNS 4-5 126.06 120.19
VRNS 1-1-256 130.60 126.70
VRNS 1-1-32 124.49 120.45
VRNS 1-5-20 128.35 124.63
VRNS 2-3-10 129.30 124.03
VRNS 3-3-5 124.71 120.12

If RNS 2-3 has only 3 symbol types at its disposal, how can it succeed on w#wR for large k? Recall
that rt is a vector that represents a probability distribution over Q × Γ. Perhaps the RNS-RNN,
via rt, represents symbol types as different clusters of points in R|Q|·|Γ|. To test this hypothesis,
we selected the RNS 2-3 model with the best validation performance on w#wR for k = 40 and
evaluated it on 100 samples drawn from pL. For each symbol between # and EOS, we extracted
the stack reading vector computed just prior to predicting that symbol. Aggregating over all 100
samples, we reduced the stack readings to 2 dimensions using principal component analysis. We
plot them in Fig. 4, labeling each point according to the symbol type to be predicted just after the
corresponding stack reading. Indeed, we see that stack readings corresponding to the same symbol
cluster together, suggesting that the model is orchestrating the weights of different runs in a way that
causes the stack reading to encode different symbol types as points in the 5-dimensional simplex.
We show heatmaps of actual reading vectors in Appendix G.

6 NATURAL LANGUAGE MODELING

We now examine how stack RNNs fare on natural language modeling, as the combination of non-
determinism and vector representations in the VRNS-RNN may prove beneficial. Following our
prior work (DuSell & Chiang, 2022), we report perplexity on the Penn Treebank as preprocessed
by Mikolov et al. (2011). We used the same LSTM and superposition stack baselines, and various
sizes of RNS-RNN and VRNS-RNN. The controller has one layer and, unless otherwise noted, 256
hidden units. For each architecture, we trained 10 random restarts and report results for the model
with the best validation perplexity. Appendix H has additional details.

We show results in Table 1. Most stack RNNs achieved better test perplexity than the LSTM base-
line. The best models are those that simulate more nondeterminism (VRNS when |Q| = 3 and
|Γ| = 3, and RNS when |Q| = 4 and |Γ| = 5). Although the superposition stack RNNs outper-
formed the LSTM baseline, it is the combination of both nondeterminism and vector embeddings
(VRNS 3-3-5) that achieved the best performance, combining the ability to process syntax nonde-
terministically with the ability to pack lexical information into a vector space on the stack.

7 CONCLUSION

We showed that the RNS-RNN (DuSell & Chiang, 2022) can recognize all CFLs and a large class
of non-CFLs, and it can even learn cross-serial dependencies provided the boundary is explicitly
marked, unlike a deterministic multi-stack architecture. We also showed that the RNS-RNN can
far exceed the amount of information it seemingly should be able to encode in its stack given its
finite stack alphabet. Our newly proposed VRNS-RNN combines the benefits of nondeterminism
and vector embeddings, and we showed that it has better performance than other stack RNNs on the
Dyck language and a natural language modeling benchmark.

9



Published as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we have publicly released all code we used to conduct our experiments
and generate the figures and tables in this paper. During both development and experimentation, we
ran our code in containers to simplify reproducing our software environment. Our code includes
the original Docker image definition we used, as well as the exact shell commands we used for
each experiment, figure, and table. We have thoroughly documented our experimental settings in
Sections 4 to 6 and Appendices D and H.

ACKNOWLEDGMENTS

This research was supported in part by a Google Faculty Research Award to Chiang. We would like
to thank Darcey Riley and Stephen Bothwell for their comments on an earlier draft of this paper, and
the Center for Research Computing at the University of Notre Dame for providing the computing
infrastructure for our experiments.

REFERENCES

Jean-Michel Autebert, Jean Berstel, and Luc Boasson. Context-free languages and pushdown au-
tomata. In Grzegorz Rozenberg and Arto Salomaa (eds.), Handbook of Formal Languages, pp.
111–174. Springer, 1997. doi: 10.1007/978-3-642-59136-5 3.

Alexandra Butoi, Brian DuSell, Tim Vieira, Ryan Cotterell, and David Chiang. Algorithms for
weighted pushdown automata. In Proc. EMNLP, 2022.

Yining Chen, Sorcha Gilroy, Andreas Maletti, Jonathan May, and Kevin Knight. Recurrent neural
networks as weighted language recognizers. In Proc. NAACL HLT (Long Papers), pp. 2261–2271,
2018. doi: 10.18653/v1/N18-1205.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the prop-
erties of neural machine translation: Encoder–decoder approaches. In Proc. Workshop on
Syntax, Semantics and Structure in Statistical Translation (SSST), pp. 103–111, 2014. doi:
10.3115/v1/W14-4012.

Christopher Culy. The complexity of the vocabulary of Bambara. Linguistics and Philosophy, 8:
345–351, 1985.

Brian DuSell and David Chiang. Learning context-free languages with nondeterministic stack
RNNs. In Proc. Conference on Computational Natural Language Learning (CoNLL), pp. 507–
519, 2020. doi: 10.18653/v1/2020.conll-1.41.

Brian DuSell and David Chiang. Learning hierarchical structures with differentiable nondetermin-
istic stacks. In Proc. ICLR, 2022. URL https://openreview.net/pdf?id=5LXw_
QplBiF.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990. doi: 10.1016/
0364-0213(90)90002-E.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing machines, 2014. URL http://
arxiv.org/abs/1410.5401. arXiv:1410.5401.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blun-
som. Learning to transduce with unbounded memory. In Proc. NeurIPS, vol-
ume 2, pp. 1828–1836, 2015. URL https://papers.nips.cc/paper/
5648-learning-to-transduce-with-unbounded-memory.pdf.

Sheila A. Greibach. A new normal-form theorem for context-free phrase structure grammars. J.
ACM, 12(1):42–52, 1965. doi: 10.1145/321250.321254.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

10

https://doi.org/10.1007/978-3-642-59136-5_3
https://doi.org/10.18653/v1/N18-1205
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.18653/v1/2020.conll-1.41
https://openreview.net/pdf?id=5LXw_QplBiF
https://openreview.net/pdf?id=5LXw_QplBiF
https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/10.1016/0364-0213(90)90002-E
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1410.5401
https://papers.nips.cc/paper/5648-learning-to-transduce-with-unbounded-memory.pdf
https://papers.nips.cc/paper/5648-learning-to-transduce-with-unbounded-memory.pdf
https://doi.org/10.1145/321250.321254
https://doi.org/10.1162/neco.1997.9.8.1735


Published as a conference paper at ICLR 2023

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-
augmented recurrent nets. In Proc. NeurIPS, volume 1, pp. 190–198,
2015. URL https://proceedings.neurips.cc/paper/2015/hash/
26657d5ff9020d2abefe558796b99584-Abstract.html.

S. C. Kleene. Representation of events in nerve nets and finite automata. Technical Report
RM-704, RAND, 1951. URL https://www.rand.org/content/dam/rand/pubs/
research_memoranda/2008/RM704.pdf.

Bernard Lang. Deterministic techniques for efficient non-deterministic parsers. In Proc. Col-
loquium on Automata, Languages, and Programming (ICALP), pp. 255–269, 1974. doi:
10.1007/978-3-662-21545-6 18.

Leonard Y. Liu and Peter Weiner. An infinite hierarchy of intersections of context-free languages.
Math. Syst. Theory, 7(2):185–192, 1973. doi: 10.1007/BF01762237.

Tomas Mikolov, Anoop Deoras, Stefan Kombrink, L. Burget, and J. Cernocký. Empirical eval-
uation and combination of advanced language modeling techniques. In Proc. INTERSPEECH,
pp. 605–608, 2011. URL https://www.isca-speech.org/archive_v0/archive_
papers/interspeech_2011/i11_0605.pdf.

Hao Peng, Roy Schwartz, Sam Thomson, and Noah A. Smith. Rational recurrences. In Proc.
EMNLP, pp. 1203–1214, 2018. doi: 10.18653/v1/D18-1152.

Roy Schwartz, Sam Thomson, and Noah A. Smith. Bridging CNNs, RNNs, and weighted finite-state
machines. In Proc. ACL (Long Papers), pp. 295–305, 2018. doi: 10.18653/v1/P18-1028.

Stuart M. Shieber. Evidence against the context-freeness of natural language. Linguistics and Phi-
losophy, 8:333–344, 1985.

Hava T. Siegelmann and Eduardo D. Sontag. On the computational power of neural nets. In Proc.
Workshop on Computational Learning Theory (COLT), pp. 440–449, 1992. doi: 10.1145/130385.
130432.

Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 3rd edition, 2013.

John Stogin, Ankur Arjun Mali, and C. Lee Giles. Provably stable interpretable encodings of context
free grammars in RNNs with a differentiable stack, 2020. URL https://arxiv.org/abs/
2006.03651v3. arXiv:2006.03651.

G. Z. Sun, C. Lee Giles, H. H. Chen, and Y. C. Lee. The neural network pushdown automaton:
Model, stack, and learning simulations. Technical Report UMIACS-TR-93-77 and CS-TR-3118,
University of Maryland, 1995. URL https://arxiv.org/abs/1711.05738. Revised
version.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite pre-
cision RNNs for language recognition. In Proc. ACL (Short Papers), pp. 740–745, 2018. doi:
10.18653/v1/P18-2117.

Dani Yogatama, Yishu Miao, Gábor Melis, Wang Ling, Adhiguna Kuncoro, Chris Dyer, and Phil
Blunsom. Memory architectures in recurrent neural network language models. In Proc. ICLR,
2018. URL https://openreview.net/pdf?id=SkFqf0lAZ.

A CHANGES TO THE RNS-RNN

In this section, we describe two minor changes to the original definition of the RNS-RNN that
improve its time complexity and expressivity. We first reiterate the original definitions for γ and α

11

https://proceedings.neurips.cc/paper/2015/hash/26657d5ff9020d2abefe558796b99584-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/26657d5ff9020d2abefe558796b99584-Abstract.html
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
https://doi.org/10.1007/978-3-662-21545-6_18
https://doi.org/10.1007/978-3-662-21545-6_18
https://doi.org/10.1007/BF01762237
https://www.isca-speech.org/archive_v0/archive_papers/interspeech_2011/i11_0605.pdf
https://www.isca-speech.org/archive_v0/archive_papers/interspeech_2011/i11_0605.pdf
https://doi.org/10.18653/v1/D18-1152
https://doi.org/10.18653/v1/P18-1028
https://doi.org/10.1145/130385.130432
https://doi.org/10.1145/130385.130432
https://arxiv.org/abs/2006.03651v3
https://arxiv.org/abs/2006.03651v3
https://arxiv.org/abs/1711.05738
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117
https://openreview.net/pdf?id=SkFqf0lAZ


Published as a conference paper at ICLR 2023

(DuSell & Chiang, 2022). For 0 ≤ i < t ≤ n− 1,

γ[i→ t][q, x→ r, y] =

I[i = t−1] ∆[t][q, x→ r, xy] push

+
∑
s,z

γ[i→ t−1][q, x→ s, z] ∆[t][s, z → r, y] repl.

+

t−2∑
k=i+1

∑
u

∑
s,z

γ[i→ k][q, x→ u, y] γ[k → t−1][u, y → s, z] ∆[t][s, z → r, ε] pop

(12)

α[0][r, y] = I[r = q0 ∧ y = ⊥] (13)

α[t][r, y] =

t−1∑
i=0

∑
q,x

α[i][q, x] γ[i→ t][q, x→ r, y] (1 ≤ t ≤ n). (14)

Note that in an RNN where rt−1 is used to compute ht and yt, the last timestep t = n is not needed,
so ∆[t] is only defined for 1 ≤ t ≤ n− 1, and γ and α only need to be computed for t ≤ n− 1.

Now, we describe the two changes we have made to Eqs. (12) to (14) to arrive at Eqs. (2) to (6).

Asymptotic speedup As can be seen in Eqs. (7) and (12) to (14), the RNS-RNN’s time complexity
is O(|Q|4|Γ|3n3), and its space complexity is O(|Q|2|Γ|2n2). The computational complexity of the
RNS-RNN limits us to relatively small sizes for Q and Γ. However, it is possible to improve its
asymptotic time complexity with respect to |Q| with a simple change: precomputing the product
γ[k → t−1][u, y → s, z] ∆[t][s, z → r, ε] used in the pop rule in Eq. (12), which we store in
a tensor γ′. This reduces the time complexity of the RNS-RNN to O(|Q|3|Γ|3n2 + |Q|3|Γ|2n3),
allowing us to train larger models.

Bottom symbol fix There are some peculiarities of the initial ⊥ marker that are not described
in previous work: (1) the initial instance of ⊥ at the bottom of the stack can never be popped or
replaced, (2) any symbol that sits directly above it cannot be popped (but it can be replaced), and
(3) the ⊥ symbol type can be reused freely elsewhere in the stack. Point (2) is odd because the ⊥
symbol can never be uncovered again after the first timestep, possibly complicating detection of the
bottom of the stack later on. We rectify this by allowing the symbol above the initial ⊥ to be popped,
and allowing the initial ⊥ symbol to be replaced with a different symbol type at any time. We do
this by simulating an extra push action at t = −1.

B PROOFS OF LANGUAGE RECOGNITION RESULTS

B.1 PROOF OF PROPOSITION 1

In this section, we prove that the restricted form of real-time PDA used in the RNS-RNN can recog-
nize all CFLs. We then show how to convert PDAs in this form to RNS-RNN recognizers (assuming
some parameters can have values of ±∞), proving that RNS-RNNs can recognize all CFLs.
Definition 2. A pushdown automaton is a tuple (Q,Σ,Γ, δ, q0, F,⊥), where

• Q is a finite set of states

• Σ is a finite input alphabet

• Γ is a finite stack alphabet

• δ ⊆ Q× Γ× (Σ ∪ ε)×Q× Γ∗ is a set of transitions

• q0 ∈ Q is the start state

• F ⊆ Q is the set of accept states

12



Published as a conference paper at ICLR 2023

• ⊥ ∈ Γ is the bottom stack symbol.

A PDA always starts in state q0 with a stack consisting of ⊥, and it accepts its input iff there is a run
that terminates in an accept state with ⊥ on top of the stack.
Definition 3. A restricted PDA is one whose transitions have one of the following forms, where
q, r ∈ Q, a ∈ Σ, and x, y ∈ Γ:

q, x
a−→ r, xy push y on top of x

q, x
a−→ r, y replace x with y

q, x
a−→ r, ε pop x.

The usual construction for removing non-scanning transitions (Autebert et al., 1997) involves con-
verting to Greibach normal form (GNF) and then converting to a PDA. However, this construction
produces transitions of the form q, x

a−→ r, zy where x ̸= z, which our restricted form does not allow.
Simulating such transitions in a restricted PDA presents a challenge because it requires performing
a replace and then a push while scanning only one symbol. To simulate such transitions, we need to
use a modified GNF, defined below.
Lemma 3. For any CFG G, there is a CFG equivalent to G that has the following form (called
2–Greibach normal form):

• The start symbol S does not appear on any right-hand side.

• Every rule has one of the following forms:

S → ε

A→ a

A→ abB1 · · ·Bp p ≥ 0.

Proof. Convert G to Greibach normal form. Then for every rule A → aA1 · · ·Am and every rule
A1 → bB1 · · ·Bℓ, substitute the second rule into the first to obtain A → abB1 · · ·BℓA2 · · ·Am.
Then discard the first rule.

Lemma 4. For any CFG G in 2-GNF, there is a PDA equivalent to G whose transitions all have
one of the forms:

q, x
a−→ r, xy1 · · · yk

q, x
a−→ r, y

q, x
a−→ r, ε.

(15)

Proof. We split the rules into four cases:

S → ε

A→ a

A→ ab

A→ abB1 · · ·Bp p ≥ 1.

The PDA has an initial state q0 and a main loop state qloop. It works by maintaining all of the
unclosed constituents on the stack, which initially is S. The state qloop is an accept state. For now,
we allow the PDA to have one non-scanning transition, q0,⊥

ε−→ qloop,⊥S.

If G has the rule S → ε, we make state q0 an accept state.

For each rule in G of the form A→ a, we add a pop transition qloop, A
a−→ qloop, ε.

For each rule in G of the form A → ab, we add a new state q, a replace transition qloop, A
a−→ q, A,

and a pop transition q, A b−→ qloop, ε. This simply scans two symbols while popping A.

For each rule in G of the form A→ abB1 · · ·Bp where p ≥ 1, we add a new state q, a replace tran-

sition qloop, A
a−→ q,Bp, and a push transition q,Bp

b−→ qloop, BpBp−1 · · ·B1. These two transitions

13



Published as a conference paper at ICLR 2023

are equivalent to scanning two symbols while replacing A with BpBp−1 · · ·B1 on the stack. Note
that we have taken advantage of the fact that 2-GNF affords us two scanned input symbols to work
around the restriction that push transitions of the form q, x

a−→ r, xy1 · · · yk cannot modify the top
symbol and push new symbols in the same step. We have split this action into a replace transition
followed by a push transition, using the state machine to remember what to scan and push after the
replace transition.

Finally, we remove the non-scanning transition q0,⊥
ε−→ qloop,⊥S, and for every transition

qloop, S
a−→ r, α, we add a push transition q0,⊥

a−→ r,⊥α. Now all transitions are scanning.

Lemma 5. For any PDA P in the form (15), there is a PDA equivalent to P in restricted form.

Proof. At this point, there is a maximum length k such that q, x a−→ r, xα is a transition and k = |α|.
We redefine the stack alphabet of the PDA to be Γ′ = Γ∪Γ2 · · · ∪Γk. Stack symbols now represent
strings of the original stack symbols. Let α denote a single stack symbol for any string α. We
replace every push transition q, x a−→ r, xβ with push transitions q, αx a−→ r, αx β for all α ∈⋃k−1

i=0 Γi. We replace every replace transition q, x a−→ r, y with replace transitions q, αx a−→ r, αy

for all α. And we replace every pop transition q, x a−→ r, ε with replace transitions q, αx a−→ r, α

for all α with |α| ≥ 1, and a pop transition q, x a−→ r, ε.

So for every CFL L, there exists a restricted PDA P that recognizes L. The last step is to construct
an RNS-RNN. As noted in Section 3, here we do allow parameters with values of ±∞.

Lemma 6. For any restricted-form PDA P that recognizes language L, there is an RNS-RNN that
recognizes L.

Proof. Let P = (Q,Σ,Γ, δ, q0, F,⊥).

We write ct(w) for the total number of runs of P that read w and end with ⊥ on top of the stack.
We assume that ct(w) > 0; this can always be ensured by adding to P an extra non-accepting state
qtrap and transitions q0,⊥

a−→ qtrap,⊥ and qtrap,⊥
a−→ qtrap,⊥ for all a ∈ Σ.

For any state set X ⊆ Q, we write ct(w,X) for the total number of runs of P that read w and end
in a state in X with ⊥ on top of the stack. Then for any string w, if w ∈ L, then ct(w,F ) ≥ 1;
otherwise, ct(w,F ) = 0.

We use the following definition for the LSTM controller of the RNS-RNN, where it, ft, and ot are
the input, forget, and output gates, respectively, and gt is the candidate memory cell.

it = σ(Wi

[
xt

ht−1

]
+ bi)

ft = σ(Wf

[
xt

ht−1

]
+ bf)

gt = tanh(Wg

[
xt

ht−1

]
+ bg)

ot = σ(Wo

[
xt

ht−1

]
+ bo)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

Construct an RNS-RNN as follows. At each timestep t, upon reading input embedding xt, make the
controller emit a weight of 1 for all transitions of P that scan input symbol wt, and a weight of 0 for
all other transitions (by setting the corresponding weights of ∆[t] to −∞).

Let n = |w|. After reading w, the stack reading rn is the probability distribution of states and top
stack symbols of P after reading w, which the controller can use to compute hn+1 and the MLP

14



Published as a conference paper at ICLR 2023

output y as follows. Let

p =
∑
f∈F

rn[(f,⊥)] =
ct(w,F )

ct(w)
.

Note that p is positive if w ∈ L, and zero otherwise. An affine layer connects hn, xn+1, and rn to
the candidate memory cell gn+1 (recall that the input at n + 1 is EOS). Designate a unit gacceptn+1 in
gn+1. For each f ∈ F , set the incoming weight from rn[(f,⊥)] to 1 and all other incoming weights
to 0, so that gacceptn+1 = tanh(p). Set this unit’s input gate to 1 and forget gate to 0, so that memory
cell cacceptn+1 = tanh(p). Set its output gate to 1, so that hidden unit hacceptn+1 = tanh(tanh(p)), which
is positive if w ∈ L and zero otherwise.

Finally, to compute y, use one hidden unit y1 in the output MLP layer, and set the incoming weight
from hacceptn+1 to 1, and all other weights to 0. So y1 = σ(tanh(tanh(p))), which is greater than 1

2

if w ∈ L and equal to 1
2 otherwise. Set the weight connecting y1 to y to 1, and set the bias term

to − 1
2 , so that y = σ(σ(tanh(tanh(p))) − 1

2 ), which is greater than 1
2 if w ∈ L, and equal to 1

2
otherwise.

B.2 PROOF OF PROPOSITION 2

Without loss of generality, assume k = 2. Let P1 = (Q1,Σ,Γ1, δ1, s1, F1,⊥) and P2 =
(Q2,Σ,Γ2, δ2, s2, F2,⊥) be restricted-form PDAs recognizing L1 and L2, respectively. We can
construct both so that Q1 ∩ Q2 = ∅, and s1 and s2 each have no incoming transitions. Construct a
new PDA

P = (Q,Σ,Γ1 ∪ Γ2, δ, s, F )

Q = (Q1 \ {s1}) ∪ (Q2 \ {s2}) ∪ {s}

δ(q, x, a) =


δ1(q, x, a) q ∈ Q1 \ {s1}
δ2(q, x, a) q ∈ Q2 \ {s2}
δ1(s1, x, a) ∪ δ2(s2, x, a) q = s

F =

{
(F1 \ {s1}) ∪ (F2 \ {s2}) ∪ {s} s1 ∈ F1 ∧ s2 ∈ F2

(F1 \ {s1}) ∪ (F2 \ {s2}) otherwise.

So far, this is just the standard union construction for PDAs.

Construct an RNS-RNN that sets ∆[t] according to δ, and assume ct(w) > 0, as in Lemma 6. Let

p1 =
∑
f∈F1

rn[(f,⊥)] =
ct(w,F1)

ct(w)

p2 =
∑
f∈F2

rn[(f,⊥)] =
ct(w,F2)

ct(w)
.

Let n = |w|. For each pi, designate a unit gaccepti,n+1 in gn+1 that will be positive if p1 > 0 and
negative if p1 = 0. In order to ensure that gaccepti,n+1 ̸= 0, we subtract a small value from pi that
is smaller than the smallest possible non-zero value of pi. The RNS-RNN computes this value
as follows. Let b = |Q|(2|Γ| + 1), which is the maximum number of choices P can make from
any given configuration. Designate one memory cell coffsett in ct. At the first timestep, coffsett is
initialized to 1

b , and at each subsequent timestep, the forget gate is used to multiply this cell by 1
b

(the input gate is set to 0). So after reading t symbols, coffsett = 1
bt . Set the output gate for that cell

to 1, so there is a hidden unit hoffsetn in hn that contains the value tanh( 1
bn ). The smallest non-zero

value of pi is 1
ct(w) , and since ct(w) ≤ bn and tanh(x) < x when x > 0, hoffsetn is smaller than it.

As for the incoming weights to gaccepti,n+1 , for each f ∈ Fi, set the weight for rn[(f,⊥)] to 1, and set
the weight for hoffsetn to −1; set all other weights to 0. So gaccepti,n+1 = tanh(pi − hoffsetn ), which is
positive if pi > 0 and negative otherwise. Set this unit’s input gate to 1 and forget gate to 0, so that
memory cell caccepti,n+1 = gaccepti,n+1 . Set its output gate to 1, so that hidden unit haccepti,n+1 = tanh(gaccepti,n+1 ),
which is positive if pi > 0 and negative otherwise.

15



Published as a conference paper at ICLR 2023

In the output MLP’s hidden layer, for each haccepti,n+1 , include a unit yi, and set its incoming weight
from haccepti,n+1 to ∞, and all other weights to 0. So yi = σ(∞ · haccepti,n+1 ), which is 1 if pi > 0 and
0 otherwise. Finally, to compute y, set the incoming weights from each yi to 1, and set the bias
term to − 3

2 . So y = σ(y1 + y2 − 3
2 ), which is greater than 1

2 if both p1 > 0 and p2 > 0, meaning
w ∈ L1 ∩ L2, and less than 1

2 otherwise.

C ADDITIONAL DISCUSSION OF NON-CONTEXT-FREE LANGUAGES

Below we discuss each of the non-CFLs of Section 4 in more detail, including details of how a
real-time multi-stack automaton could recognize it. We also describe three non-CFLs not included
in Section 4.

anbncn The language {anbncn | n ≥ 0}, a classic example of a non-CFL (Sipser, 2013). A
two-stack automaton can recognize this language as follows. While reading the a’s, push them
to stack 1. While reading the b’s, match them with a’s popped from stack 1 while pushing b’s
to stack 2. While reading the c’s, match them with b’s popped from stack 2. As the stacks are
only needed to remember the count of each symbol type, this language is also an example of a
counting language; Weiss et al. (2018) showed that LSTMs can learn this language by using their
memory cells as counters.

w#wR#w The language {w#wR#w | w ∈ {0,1}∗}. A two-stack automaton can recognize it as
follows. While reading the first w, push it to stack 1. While reading the middle wR, match it
with symbols popped from stack 1 while pushing wR to stack 2. While reading the last w, match
it with symbols popped from stack 2. The explicit # symbols are meant to make it easier for a
model to learn when to transition between these three phases.

w#nw The language {w#nw | w ∈ {0,1}∗, n ≥ 0, and |w| = n}. A two-stack automaton can
recognize it as follows. While reading the first w, push it to stack 1. While reading #n, move
the symbols from stack 1 to stack 2 in reverse. While reading the final w, match it with symbols
popped from stack 2. Unlike w#wR#w, the middle #n section offers a model few hints that it
should push w to the stack beforehand.

w#w The language {w#w | w ∈ {0,1}∗}. A three-stack automaton can recognize this language
as follows. Let w = uv where |u| = |v| (for simplicity assume |w| is even). While reading the
first u, push it to stack 1. While reading the first v, push it to stack 2, and move the symbols from
stack 1 to stack 3 in reverse. While reading the second u, match it with symbols popped from
stack 3, and move the symbols from stack 2 to stack 1 in reverse. While reading the second v,
match it with symbols popped from stack 1. The explicit # symbol is meant to make learning this
task easier.

ww′ The language {ww′ | w ∈ {0,1}∗ and w′ = ϕ(w)}, where ϕ is the homomorphism ϕ(0) =
2, ϕ(1) = 3. A three-stack automaton can recognize this language using a similar strategy to
w#w. In this case, a switch to a different alphabet, rather than a # symbol, marks the second half
of the string.

wwRw The language {wwRw | w ∈ {0,1}∗}. A two-stack automaton can recognize it using a
similar strategy to w#wR#w, but it must nondeterministicaly guess |w|.

ww The language {ww | w ∈ {0,1}∗}, another classic example of a non-CFL (Sipser, 2013). A
three-stack automaton can recognize it using a similar strategy to w#w, except it must nondeter-
ministically guess |w|.

D ADDITIONAL DETAILS FOR FORMAL LANGUAGE EXPERIMENTS

Here we describe the training procedure used for the non-CFL and capacity experiments in Sec-
tions 4 and 5 in more detail. We trained each model by minimizing its cross-entropy (summed over
the timestep dimension of each batch) on the training set, and we used per-symbol cross-entropy on
the validation set as the early stopping criterion. We optimized the parameters of the model with
Adam. For each training run, we randomly sampled the initial learning rate from a log-uniform dis-
tribution over [5×10−4, 1×10−2], and we used a gradient clipping threshold of 5. We initialized all
fully-connected layers except for those in the LSTM controller with Xavier uniform initialization,

16



Published as a conference paper at ICLR 2023

LSTM Sup. 10 Sup. 3-3-3 Sup. h RNS 3-3

0 10 20 30 40 50 60
0

2

4

·10−2

C
ro

ss
-e

nt
ro

py
D

iff
.

anbncn

40 50 60 70 80 90 100
0

0.1

0.2

0.3

C
ro

ss
-e

nt
ro

py
D

iff
.

anbncn

0 50 100 150 200
0

0.1

0.2

0.3

C
ro

ss
-e

nt
ro

py
D

iff
.

w#nw

40 50 60 70 80 90 100
0

0.2

0.4

0.6

C
ro

ss
-e

nt
ro

py
D

iff
.

w#nw

0 50 100 150 200
0

0.2

0.4

Epoch

C
ro

ss
-e

nt
ro

py
D

iff
.

wwRw

40 50 60 70 80 90 100
0

0.2

0.4

0.6

Length

C
ro

ss
-e

nt
ro

py
D

iff
.

wwRw

Figure 5: Performance on three non-CFLs not included in Section 4. Cross-entropy difference in
nats, on the validation set by epoch (left), and on the test set by string length (right). Each line is
the best of 10 runs, selected by validation perfomance. All models easily solved anbncn. As with
w#nw, only multi-stack models (Sup. 3-3-3 and RNS 3-3) solved w#nw. As with ww, no models
solved wwRw.

and all other parameters uniformly from [−0.1, 0.1]. We used mini-batches of size 10; each batch
always contained examples of equal lengths. We randomly shuffled batches before each epoch. We
multiplied the learning rate by 0.9 after 5 epochs of no improvement on the validation set, and we
stopped early after 10 epochs of no improvement.

E ADDITIONAL RESULTS FOR NON-CFL EXPERIMENTS

In Fig. 5, we show results for three non-CFLs which we did not include in Section 4. The input and
forget gates of the LSTM controller are not tied, so the values of its memory cells are not bounded
to (0, 1) and can be used as counters. All models easily learned anbncn, likely because the LSTM
controller by itself can solve it using a counting mechanism (Weiss et al., 2018). Only the models
capable of simulating multiple stacks, Sup. 3-3-3 and RNS 3-3, achieved optimal cross-entropy
on w#wR#w and w#nw. No models succeeded on the unmarked copying tasks (wwRw and ww),
although Sup. 10 achieved the best performance on the test set for wwRw.

17



Published as a conference paper at ICLR 2023

F ADDITIONAL RESULTS FOR CAPACITY EXPERIMENTS

Here, we describe the languages of Section 5 in more detail, plus an additional language, wwR.

w#wR The language {w#wR | w ∈ {0,1, · · · , k − 1}∗}. This is a simple deterministic CFL.
Dyck The language of strings over the alphabet {(1,)1,(2,)2, · · · ,(k,)k} where all brackets

are properly balanced and nested in pairs of (i and )i. This is a more complicated but still
deterministic CFL.

wwR The language {wwR | w ∈ {0,1, · · · , k − 1}∗}. This is a nondeterministic CFL which
requires a model to guess |w|.

In Fig. 6, we show the results of the same experiments as in Section 5, but with standard deviations
included. We also show results for the language wwR. In Fig. 7, for the same experiments, we show
the minimum cross-entropy difference on the validation set out of all 10 random restarts, rather than
the mean. None of the models performed significantly better than the LSTM on the nondeterministic
wwR language, suggesting that they cannot simultaneously combine the tricks of encoding symbol
types as points in high-dimensional space and nondeterministically guessing |w|. Although the
VRNS-RNN does combine both nondeterminism and vectors, the nondeterminism only applies to
the discrete symbols of Γ, of which there are no more than 3, far fewer than k when k ≥ 40.

G HEATMAPS OF STACK READING VECTORS

In Fig. 8 we show heatmaps of stack reading vectors across time on an example string in w#wR

when k = 40.

H ADDITIONAL DETAILS FOR NATURAL LANGUAGE EXPERIMENTS

Here we describe the Penn Treebank experiments in more detail. For each architecture, we used
a word embedding layer of the same size as the hidden state. In order to preserve context across
batches, we trained all models using truncated backpropagation through time (BPTT), treating each
dataset as one long sequence and limiting batches to a length of 35. As we noted previously (DuSell
& Chiang, 2022), training stack RNNs with truncated BPTT requires bounding the size of the stack
data structure, as having it grow indefinitely from batch to batch would be computationally infea-
sible. We limited the depth of the superposition stack to 10, following Yogatama et al. (2018) and
our previous paper (DuSell & Chiang, 2022). To limit the size of the RNS-RNN, we used the incre-
mental execution technique we devised previously (DuSell & Chiang, 2022), which limits non-zero
entries in γ to those where t − i ≤ D, for some constant window size D. We applied the same
technique to the VRNS-RNN by imposing the same limitation on both γ and ζ, restricting non-zero
entries of ζ to those where t − i ≤ D. In both cases, we set D = 35. We used the standard
train/validation/test splits for the Penn Treebank.

We trained each model by minimizing its cross-entropy (averaged over the timestep dimension of
each batch) on the training set, using per-symbol perplexity on the validation set as the early stopping
criterion. We optimized the parameters of the model with simple SGD. For each training run, we
randomly sampled the initial learning rate from a log-uniform distribution over [1, 100], and the
gradient clipping threshold from a log-uniform distribution over [0.0112, 1.12]. We initialized all
parameters uniformly from [−0.05, 0.05]. We used a mini-batch size of 32. We divided the learning
rate by 1.5 whenever validation perplexity did not improve after an epoch, and we stopped early
after 2 epochs of no improvement.

18



Published as a conference paper at ICLR 2023

LSTM Sup. 3 RNS 1-3 RNS 2-3
VRNS 1-1-3 VRNS 2-1-3 VRNS 2-3-3

2 40 80 120 160 200
0

0.5

1

1.5

2

2.5

C
ro

ss
-e

nt
ro

py
D

iff
.

w#wR

2 40 80 120 160 200
0

0.2

0.4

0.6

0.8

1

C
ro

ss
-e

nt
ro

py
D

iff
.

Dyck

2 40 80 120 160 200
0

0.5

1

1.5

2

2.5

Alphabet Size k

C
ro

ss
-e

nt
ro

py
D

iff
.

wwR

Figure 6: Mean cross-entropy difference on the validation set vs. input alphabet size. The shaded
regions indicate one standard deviation. We include experiments on wwR; no models performed
significantly better on average than the LSTM baseline.

19



Published as a conference paper at ICLR 2023

LSTM Sup. 3 RNS 1-3 RNS 2-3
VRNS 1-1-3 VRNS 2-1-3 VRNS 2-3-3

2 40 80 120 160 200
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2
C

ro
ss

-e
nt

ro
py

D
iff

.
w#wR

2 40 80 120 160 200
0

0.2

0.4

0.6

0.8

C
ro

ss
-e

nt
ro

py
D

iff
.

Dyck

2 40 80 120 160 200
0

0.5

1

1.5

2

2.5

Alphabet Size k

C
ro

ss
-e

nt
ro

py
D

iff
.

wwR

Figure 7: Best cross-entropy difference on the validation set vs. input alphabet size. On w#wR,
surprisingly, only RNS 2-3 achieved optimal cross-entropy for all alphabet sizes. On the more
complicated Dyck language, our new VRNS-RNN (VRNS 2-1-3, VRNS 2-3-3) achieved the best
performance for large alphabet sizes. No models performed much better than the LSTM baseline on
wwR, although RNS 2-3 performed well for k = 40.

20



Published as a conference paper at ICLR 2023

(q
0
,⊥

)

(q
0
, 0
)

(q
0
, 1
)

(q
1
,⊥

)

(q
1
, 0
)

(q
1
, 1
)

0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
#
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0

EOS

Reading Element

In
pu

tS
ym

bo
l

(q
0
,⊥

)

(q
0
, 0
)

(q
0
, 1
)

(q
1
,⊥

)

(q
1
, 0
)

(q
1
, 1
)

0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
#
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0

EOS

Reading Element

(q
0
,⊥

)

(q
0
, 0
)

(q
0
, 1
)

(q
1
,⊥

)

(q
1
, 0
)

(q
1
, 1
)

0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
#
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0

EOS

Reading Element

Figure 8: Heatmaps of rt over time on a string from w#wR when k = 40, generated from the best
RNS 2-3 model (left) and two other random restarts (middle, right). The w string repeats the pattern
0123, which is clearly seen in the reading vectors. Black = 1, and white = 0.

21


	Introduction
	Stack RNNs
	Superposition stack RNN
	Renormalizing nondeterministic stack RNN

	Recognition power
	Non-context-free languages
	Capacity
	Vector RNS-RNN
	Experiments

	Natural language modeling
	Conclusion
	Changes to the RNS-RNN
	Proofs of language recognition results
	Proof of thm:cfl
	Proof of thm:intersect

	Additional discussion of non-context-free languages
	Additional details for formal language experiments
	Additional results for non-CFL experiments
	Additional results for capacity experiments
	Heatmaps of stack reading vectors
	Additional details for natural language experiments

