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ABSTRACT

This paper introduces w2vec, a method for representing black box policies as
comparable feature vectors. Our method combines the strengths of foundation
models that serve as generic and powerful state representations and successor
features that can model the future occurrence of the states for a policy. m2vec
represents the behaviors of policies by capturing statistics of how the behavior
evolves the features from a pretrained model, using a successor feature framework.
We focus on the offline setting where both policies and their representations are
trained on a fixed dataset of trajectories. Finally, we employ linear regression on
m2vec vector representations to predict the performance of held out policies. The
synergy of these techniques results in a method for efficient policy evaluation in
resource constrained environments.

1 INTRODUCTION

Robot time is an important bottleneck in applying reinforcement learning in real life robotics
applications. Constraints on robot time have driven progress in sim2real, offline reinforcement
learning (offline RL), and data efficient learning. However, these approaches do not address the
problem of policy evaluation which is often time intensive as well. Various proxy metrics were
introduced to eliminate the need for real robots in the evaluation. For example, in sim2real we
measure the performance in simulation (Lee et al.l 2021). In offline RL we rely on Off-policy
Evaluation (OPE) methods (Gulcehre et al., 2020; |[Fu et al.l 2021)). For the purpose of deploying a
policy in the real world, recent works focused on Offline Policy Selection (OPS), where the goal
is to select the best performing policy relying only on offline data. While these methods are useful
for determining coarse relative performance of policies, one still needs time on real robot for more
reliable estimates (Levine et al., [2020).

Our proposed m2vec aims at making efficient use of the evaluation time. Efficient offline policy
evaluation and selection is relevant in reinforcement learning projects, where researchers often
face the challenge of validating improvements. m2vec enables researchers to make more informed
decisions regarding which new policy iterations to prioritize for real-world testing or to identify and
discard less promising options early in the development process. In particular, we predict the values
of unknown policies from a set of policies with known values in an offline setting, where a large
dataset of historical trajectories from other policies and human demonstrations is provided. The last
step requires policies to be represented as vectors which are comparable and thus can serve as an
input to the objective function. Prior work from Konyushova et al.|(2021) represents policies by the
actions that they take on a set of canonical states, under the assumption that similar actions in similar
states imply similar behaviour. However, this assumption is sometimes violated in practice. This
work aims at finding more suitable representation by characterizing the policies based on how they
change the environment.

To represent policies, our method m2vec combines two components: successor features and foundation
models. We adapt the framework of Q-learning of successor features (Barreto et al., |2017) to the
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Figure 1: 72vec method relies on the successor feature framework, that we adopt in combination with
a dataset of offline demonstrations and a visual foundation model ¢. m2vec represents each policy 7;
as a feature vector \I/f: e R™ \Ilﬁm encodes the expected behavior of a policy when deployed on an
agent.

offline setting by applying the Fitted Q evaluation (FQE) algorithm (Le et al., 2019) which is typically
used for off-policy evaluation (OPE). In this work the features for individual states are provided
by a general purpose pretrained visual foundation model (Bommasani et al.,|2021). The resulting
representations can be used as a drop in replacement for the action-based representation used by
Konyushova et al.| (2021)).

Our experiments show that m2vec achieves solid results in different tasks and across different settings.
To summarize, our main contributions are the following:

* We propose m2vec, a novel policy representation of how the policies change the environment,
which combines successor features, foundation models, and offline data;

» We evaluate our proposal through extensive experiments predicting return values of held out policies
in 3 simulated and 2 real environments. Our approach outperforms the baseline and achieves solid
results even in challenging real robotic settings and out-of-distribution scenarios;

* We investigate various feature encoders, ranging from semantic to geometrical visual foundation
models, to show strengths and weaknesses of various representations for the task at hand.

2 RELATED WORK

Representation of black-box policies. In this paper, our objective is to create vector representations
for policies to predict their performance. We treat policies as black-boxes (i.e., no access to internal
state, parameters, or architectures) that yield actions for a given observation. It is important to
emphasize that our objective differs from representation learning for RL (Schwarzer et al., [2020;
Jaderberg et al.| [2016; [Laskin et al.| 2020), as we focus on representing policies rather than training
feature encoders for downstream tasks.

Konyushova et al.| (2021) studied a setting where the goal is to identify the best policy from a set of
policies with a dataset of offline experience and limited access to the environment. Each policy is
represented by a vector of actions at a fixed set of states. While this representation performs well in
certain applications, it may not be the most effective for predicting policy performance. For instance,
consider two policies that generate random actions at each state. These policies do not exhibit
meaningfully different beahviour, so for policy evaluation purposes, we expect them to be similar.
However, the action policy representation categorizes these policies as different. This paper proposes
a method to address this limitation by measuring trajectory-level changes in the environment.

In BCRL (Chang et al.,[2022), a state-action feature representation is proposed for estimating policy
performance. However, the representation of each policy is independent of other policies and thus
cannot be employed to regress the performance of new policies given a set of evaluated policies.

Offline Policy Evaluation. Off-policy Evaluation (OPE) aims to evaluate a policy given access to
trajectories generated by another policy. It has been extensively studied across many domains (L1
et al.,|2010; Theocharous et al.l 2015} [Kalashnikov et al.l 2018; Nie et al.l 2019). Broad categories of
OPE methods include methods that use importance sampling (Precupl 2000), binary classification
(Irpan et al., | 2019), stationary state distribution (Liu et al., | 2018)), value functions (Sutton et al.,|2016;
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Le et al.||2019), and learned transition models (Zhang et al.| 2021)), as well as methods that combine
two or more approaches (Farajtabar et al., |2018). The main focus of the OPEs approaches is on
approximating the return values function for a trained policy, while w2vec goes beyond classical OPE
and focuses on encoding the behavior of the policy as vectors, in such a way that those vectors are
comparable, to fit a performance predictor.

Foundation Models for Robotics. Foundation models are large, self-supervised models (Bom-
masani et al., [ 2021) known for their adaptability in various tasks (Sharma et al., [2023). We compare
three representative foundation models (Radford et al., [2021}; |Dosovitskiy et al., |2021; |Doersch
et al., |2022). Our proposal, m2vec, is independent of the feature encoder of choice. Better or
domain-specific foundation models may improve results but are not the focus of this study.

3 METHODOLOGY

3.1 OVERVIEW

Our setting is the following. We start with a large dataset of historical trajectories D, and a policy-
agnostic state-feature encoder ¢ : S — R™. Given a policy 7, our objective is to use these ingredients
to create a policy embedding ¢ € R¥ that represents the behavior of 7 (and can be used to predict
its performance).

We aim to create this embedding offline, without running the policy 7 in the environment. Although
we can evaluate 7 for any state in our historical dataset D, we emphasize that we do not have access
to any on policy trajectories from 7, which significantly complicates the process of creating an
embedding that captures the behavior of 7.

Our method 72vec has three steps:

1. Choose a policy-agnostic state-feature encoder ¢. We discuss several options for ¢ below
and in the experiments; however, m2vec treats the policy-agnostic state-feature encoder as a
black box, allowing us to leverage generic state-feature representations in our work.

2. Train a policy-specific state-feature encoder ¥¢ : (S,.A) — R¥. In this step we combine
the policy-agnostic state-feature encoder ¢, and the policy 7, to create policy-specific state-
feature encoder by training on the historical dataset D. The policy-specific state features
1% (s) capture statistics of how m would change the environment were it to be run starting
from the state s.

3. Aggregate the policy-specific state-features to create state-agnostic policy features ¥ that
represent the behavior of 7 in a state-independent way.

Using the steps outlined above we can collect a dataset of policy-specific state-independent features
paired with measured policy performance. This dataset can be used to train a model that predicts
the performance of a policy from its features using supervised learning. Because we compute
features for a policy using only offline data, when we receive a new policy we can compute its
policy-specific state-independent features and apply the performance model to predict its performance
before running it in the environment. In the following sections we expand on each step.

3.2 POLICY-AGNOSTIC STATE FEATURES

The role of the state-feature encoder ¢ is to produce an embedding that represents an individual state
of the environment. In this paper we focus on state encoders ¢ : I — RY that consume single images
I. Generically our method is agnostic to the input space of the state-feature encoder, but practically
speaking it is convenient to work with image encoders because that gives us access to a wide range of
pretrained generic image encoders that are available in the literature.

We also consider a few simple ways to construct more complex features from single image features.
When each state provides multiple images we embed each image separately and sum the result to
create a state embedding. We also consider creating embeddings for transitions (s, s’) by computing

Ag¢(s,s") = ¢(s") — ¢(s). Both cases allow us to leverage features from pretrained models.
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Figure 2: Given a trajectory from the dataset of offline demonstrations, we train successor feature
¥2(s¢) to predict the discounted sum of features >, v*¢(s¢4;), where ¢ is a visual feature extractor
and  is a policy. Intuitively, ¢(s;) represents semantic changes in the current state of the environment
s, while successor feature ¥ (s;) summarizes all future features encoded by ¢ if actions came from
policy .

3.3 POLICY-SPECIFIC STATE FEATURES

The next step is to use the policy-agnostic state-feature encoder ¢ that provides a generic represen-
tation for individual states to train a policy-specific state-feature encoder ¥¢ : (S, A) — R¥ that
represents the effect that = would have on the environment if it were run starting from the given state.

The work of [Dayan| (1993)); Barreto et al| (2017) on successor features provides a basis for our
approach to policy representation. We briefly review successor features here, and comment below

on how we make use of them. We refer the reader to recent literature covering successor features
[Cehnert & Littman| (2020); Brantley et al.|(2021); Reinke & Alameda-Pinedal (2021).

Suppose that the reward function for a task can be written as a linear function

T(S,G,SI) = <¢(3aa‘a Sl)awtask>7 (1)

where ¢(s,a,s’) € RY encodes the state-transition as a feature vector and wyg € RY are weights.
Barreto et al.|(2017) observe that if the reward can be factored as above, then the state-action-value
function for a policy 7 can be written as

oo
Qﬁ(& Cl) = E(S"S)ND,GNW(S) [Z ryiitr(sh Qg Si+1)‘| = <¢£(57 a)a Wtask> ) (2)
i=t
where
e .
V2(s,a) = E(s/|s)~D,ann(s) lz 71t¢(5i7ai75i+1)‘| ) 3)
i=t

(s|s’) ~ D is a transition from the environment, and + is the discount factor. The corresponding
state-value function is V™ (s) £ Q™ (s, 7(s)) = (2 (s, 7(s)), Wask) = (¥2(8), Weask). We will use
the notation ¥ (s) = 1 (s, m(s)) frequently throughout the remainder of the paper.

The value of 1)2(s) is known as the successor features of the state s under the policy 7. Successor
features were originally motivated through the above derivation as a way of factoring the value
function of a policy into a task-independent behavior component (the successor features) that is
independent of the task, and a task-dependent reward component that is independent of behavior.

For our purposes we will mostly ignore the reward component (although we return to it in one of
the experiments) and focus on the behavior term shown in Equation 3] This term is interesting to us
for two reasons. First, we can see by inspection of the RHS that the value of ¥ (s) = ¥% (s, 7(s))
represents the behavior of 7 as a future discounted sum of state features along a trajectory obtained
by running 7 beginning from the state s. In other words, ¥ represents the behavior of 7 in terms of
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the features of the states that 7 will encounter, where the state features are themselves given by the
policy-agnostic state-feature encoder from the previous section. Figure 2| summarizes the relationship
between successor features 1) and state encoders ¢.

Second, Equationsatisﬁes the Bellman equation meaning that the function ¢ (s, a) can be estimated
from off-policy data in a task-agnostic way using a modified version of Q-learning, where the scalar
value reward in ordinary Q-learning is replaced with the vector valued transition features ¢(s, a, s').
We rely on Fitted Q Evaluation (FQE, Le et al.|(2019)), an offfine Q-learning based algorithm, and
thus, we obtain a representation of policy behavior purely from data without executing the policy
in the environment. Given a dataset D and a policy m, FQE estimates its state-action-value function
Q7™ (s, a) according to the following bootstrap loss:

L(e) = E(s,a,r,s/)wD,a/Nﬂ(s’) [||1/1(§r(5, a) - (¢(S, a, S/) + ¢g (5/7 a/)) ||2] . (4)

FQE is simple to implement and it performs competitively with other OPE algorithms in a variety
of settings (Fu et all [2021) including simulated and real robotics domains (Paine et al., [2020;
Konyushova et all 2021). We use FQE with our historical dataset D to train a policy-specific
state-action-feature network 1% (s, a), which we then use as the policy-specific state-feature encoder

Y2 (s) = (s, m(s)) by plugging in the policy action.

3.4 STATE-AGNOSTIC POLICY FEATURES

We obtain a single representation ¥¥ of a policy 7 from the state-dependent successor features 12 (s)
for that policy by averaging the successor features over a set of canonical states:

U7 = Eawpa, [V (5)], (5)
where D.,, is a set of states sampled from historical trajectories. We sample the canonical states
set D,y C D uniformly from from our historical dataset, as in Konyushova et al.| (2021)), ensuring
that each canonical state comes from a different trajectory for better coverage. We average successor
features over the same set D.,, for every policy. The intuition behind this representation is that
19 (s) represents the expected change that 7 induces in the environment by starting in the state s; by
averaging over D..,, ¥? represents an aggregated average effect of the behavior of .

3.5 PERFORMANCE PREDICTION

We aim at predicting the performance of novel, unseen policies. We begin with a dataset of his-
torical policies for which we have measured performance IT = {..., (7;, R;),...}. For each pol-
icy in this dataset we create an embedding using the above procedure to obtain a new dataset
{...,(¥2,R;),...} and then train a performance model Ri=f (¥2)) using supervised learning.
Given a new policy m, we can then predict its performance before running it in the environment
by computing the w2vec features for the new policy using the above procedure and applying the
performance model to obtain R, = f (T2).

4 EXPERIMENTAL SETUP

In this section we describe the feature encoders, domains, and evaluation procedures, followed by
details about our baselines. More details about our architecture, domains, and training procedure can
be found in the Appendix.

Feature encoder. Firstly, the Random feature encoder employs a randomly-initialized ResNet-
50 (He et al.l [2016). Random features are trivial to implement, and achieve surprisingly strong
performance in many settings (Rahimi & Recht| [2007). Here they serve as a simple baseline.

Next, we explore with CLIP (Radford et al.,[2021). CLIP-network is trained to match image and text
embeddings on a large-scale dataset of image caption pairs. Intuitively, by aligning image and text
features, CLIP network is trained to encode high-level semantic information.

Visual Transformers (VIT) (Dosovitskiy et all [2021) treat images as a 1D sequence of patches
and learn visual features via an attention mechanism. In our experiments the visual transformer is
pre-trained on imagenet classification.
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Figure 3: We adopt 5 environments. (i) Kitchen: 5 tasks (Knob-on, Left door open, light on,
microwave open, and right door open) and 3 points of views. (ii) Metaworld: 4 tasks (assembly,
button press, bin picking, and drawer open) and 3 points of views. (iii) Insert gear in simulation (iii)
and (iv) on a real robot. (v) RGB stacking on a real robot.

Lastly, we explore Track-any-point (TAP) (Doersch et all, [2022)), a general-purpose network for point
tracking in videos. The network is pre-trained to track arbitrary points over video sequences and as a
result it learns to understand the low-level geometric features in a scene. We use an attention layer
trained to select task-relevant features from the TAP model to reduce dimensionality.

This set of feature encoders spans a spectrum of properties as they are created by optimising different
objectives. At one extreme CLIP features are trained to align image features with a text description,
and encode the semantics of the image. At the other extreme TAP features are trained to track points
in videos, and capture low level geometric and texture information. VIT features are in the middle,
they need to encode both semantics and local texture to accomplish classification tasks. Depending
on the environment and task at hand, better state representation is likely to result in better prediction
properties of m2vec. We leave the question of finding the best representation as future work.

Domains. We present extensive experiments to support w2vec’s capabilities across three simulated
domains—Insert Gear (Sim), Metaworld, and Franka-Kitchen, and two real domains—Insert Gear
(Real) and RGB Stacking (FigureE[). In each domain we use a dataset of offline human demonstrations
(Metaworld and Kitchen) and held out policies trajectories (RGBStacking and Insert Gear) for
training policy representations. Each policy is treated as a black-box where we do not have any prior
knowledge about the architecture or training parameters. We provide further details in Supplementary.

Evaluation. We assess the quality of the policy representations by measuring the ability of the
model f to predict the performance of held out policies (see Section [3.5). We adopt k-fold cross
validation over the set IT and report results averaged over cross validation folds. Following previous
works on offline policy evaluation (Paine et al.,[2020; [Fu et al., 2021)), we adopt the following three
complementary metrics. We report further details in the Supplementary.

* Normalized Mean Absolute Error (NMAE) measures the accuracy of the prediction w.r.t. the
ground-truth. We adopt MAE instead of MSE to be robust to outliers and we normalize the error to
be in range between the return values for each environment. Lower is better.

* Rank Correlation measures how the estimated values correlate with the ground-truth. Correlation
focuses on how many evaluations on the robot are required to find the best policy. Higher is better.

* Regret@1 measures the performance difference between the best policy and the predicted best
policy, normalized w.r.t. the range of returns values for each environment. Lower is better.

Correlation and Regret@ 1 are the most relevant metric for evaluating w2vec on OPS. On the other
hand, NMAE refers to the accuracy of the estimated return value and is suited for OPE.

Baselines. The problem in this paper is to represent policies in such a way that the representations
can be used to predict the performance of other policies given the performance of a subset of policies.
Importantly, to address this problem the representation should 1) encode the behavior of the policy, 2)
in a way that is comparable with the representations of other policies, and 3) does not require online
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Table 1: We compare m2vec and Actions representations for Insert-gear (real) and Insert-gear (sim)
tasks, as well as for the RGB stacking environment. The table shows the performance and confidence
intervals for different feature representations and encoders.

Representation | NMAE ] Correlation T Regret@1 |
RGB Stacking
Actions 0.261 +o0.045 0.785 +0.177  0.074 +0.083
VIT 0.224 +o0.063 0.775 +0.146  0.036 +o0.116
AVIT 0.344 +0.050 0.030 +0.332  0.375 +0.206
CLIP 0.330 +0.042  0.342 +0.293  0.325 +0.180
ACLIP 0.287 +0.048  0.583 +0.126  0.079 +o0.126
Random 0.304 +to.066  0.330 +0.33¢  0.226 +0.177
ARandom 0.325 +0.100  0.352 +0.348  0.190 +0.180
Insert gear (real)
Actions 0.252 +0.028 -0.545 +0.185 0.578 +0.148
Random 0.275 +o0.027  -0.207 +o0.267 0.360 +0.162
CLIP 0.198 +0.030 0.618 +0.136  0.267 +0.131
ACLIP 0.253 +0.228 -0.109 +0.100 0.429 +0.100
Insert gear (sim)
Actions 0.174 +o0.015  0.650 +0.056 0.427 +0.172
Random 0.215 +o0.026  0.555 +0.104  0.422 +0.143
TAP 0.164 +o0.022 0.680 +0.095 0.359 +0.184
VIT 0.224 +0.025 0.402 +0.129  0.448 +0.195
AVIT 0.255 +0.024 0.218 +0.139  0.457 +0.153
CLIP 0.180 +0.031  0.502 +0.068 0.298 +0.126
ACLIP 0.189 +0.020 0.586 +0.077  0.314 +0.147

data. Active Offline Policy Selection (AOPS) (Konyushova et al., 2021} stands alone as a notable
work that delves into policy representation from offline data with the task of deciding which policies
should be evaluated in priority to gain the most information about the system. AOPS showed that
representing policies according to its algorithm leads to faster identification of the best policy. In
AOPS’s representation, which we call “Actions”, policies are represented through the actions that the
policies take on a fixed set of canonical states. We build Actions representation as follows. We run
each policy 7 on the set of states D.,;,, sampled from historical trajectories. Next, we concatenate the
resulting set of actions {7 (s)}sep,,, into a vector.

To the best of our knowledge, the Actions representation is the only applicable baseline in the setting
that we adopt in this paper. Nevertheless, OPE methods that estimate policy performance from a fixed
offline dataset are standard methodology in offline RL literature. Although these methods do not
take the full advantage of the problem setting in this paper (the performance of some of the policies
is known) they can still serve for comparison. In this paper, we compared against FQE which is a
recommended OPE method that strikes a good balance between performance (it is among the top
methods) and complexity (it does not require a world model) (Fu et al.,|[2021)).

5 RESULTS

We report results for various feature encoders for Insert gear (sim and real) and RGBStacking.
Similarly, we report averaged results for over 4 tasks and 3 point of view for Metaworld and over
5 tasks and 3 point of view for Kitchen. Along with results for each feature encoder, we report
the average results of picking the best feature encoder for each task (BEST-¢). Similarly, we
report as BEST-CLIP and BEST-VIT the average results when adopting the best feature encoder
between CLIP/VIT and ACLIP/AVIT. We identify the best feature encoder for a task by conducting
cross-validation on previously evaluated policies and pick the best encoder in terms of regret@]1.

Our results demonstrate that (i) w2vec outperforms the Actions baseline models consistently across
real and simulated robotics environments and multiple tasks, showcasing the framework’s effective-
ness in representing policies. Furthermore, we demonstrate the applicability to real-world robotic
settings, specifically in the challenging Insert Gear (Real) environment, where even underperform-
ing policies contribute to improved policy evaluation. We show that choosing the best model as
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Table 2: We evaluate m2vec on Metaworld and Kitchen. The results are averaged over all settings and
confidence intervals are reported. BEST-¢ is m2vec average performance assuming that we adopt the
best ¢ in terms of regret@ 1 for each task-POV setting. Similarly, BEST-CLIP and BEST-VIT are the
best feature encoder between CLIP/VIT and ACLIP/AVIT.

Representation | NMAE | Correlation T Regret@1 |
Metaworld
Actions 0.424 +0.058  0.347 +o0.152  0.232 +o0.078
CLIP 0.340 +0.035  0.254 +0.143  0.250 +0.076
ACLIP 0.325 +0.092  0.286 +0.154  0.232 +0.086
BEST-CLIP 0.309 +0.027  0.351 +0.130  0.194 +o.076
VIT 0.303 +0.030  0.280 +0.146  0.263 +0.091
AVIT 0.315 +0.026  0.162 +0.169  0.325 +0.084
BEST-VIT 0.298 +0.029  0.300 +0.147  0.244 +0.092
Random 0.366 +0.086  0.043 +o0.150  0.375 +o0.108
BEST-¢ 0.289 +0.018  0.460 +0.099  0.153 +0.060
Kitchen
Actions 0.857 +0.128  0.326 +0.128  0.221 +0.089
CLIP 0.417 +0.032  0.021 +o0.219  0.317 +o0.081
ACLIP 0.352 +0.026  0.260 +0.216  0.244 +0.081
BEST-CLIP 0.333 +0.025 0.346 +0.200 0.197 +0.076
VIT 0.385 +0.030  0.030 +0.244  0.322 +0.095
AVIT 0.344 +o0.025 0.155 +0.234  0.251 +0.082
BEST-VIT 0.321 +0.024 0.412 +0.228 0.151 +0.068
Random 0.382 +0.033  -0.017 +0.225 0.334 +0.080
BEST-¢ 0.392 +0.053  0.591 +0.203  0.070 +0.045

a feature-extractor greatly improves results (ii). Finally, we adopt m2vec to solve Equation [2]and
estimate policies’ return values in the Metaworld’s assembly environment, without relying on any
ground-truth data (iii). Although the successor feature assumption of linearity of rewards is violated,
m2vec still ranks policies competitively in the offline setting when compared to FQE. In the Appendix,
we provide an intuition for choosing the best ¢ based on the correlation between task difficulty (iv),
and we study the effect of different dataset types, such as demonstrations and trajectories from held
out policies (v). We investigate m2vec’s generalization capabilities (vi), including out-of-distribution
scenarios (vii). We also demonstrate that w2vec represents random policies close in the feature space
(viii), and that 7w2vec is robust to canonical state coverage (ix) and effective with online data (x).

(i) m2vec consistently outperforms Actions. We compare w2vec and Actions across all scenarios.
Our method outperforms Actions representation when predicting values of unseen policies in both
real robotics scenarios—RGB stacking and insert-gear (real)-as shown in Table([l} In the former, ¥V'T
achieves regret@1 of 0.036 compared to Actions’ 0.074, with a relative improvement of 51%. In
the latter, WP improves over Actions by achieving regret@1 0.267 compared to Actions’ 0.578
and drastically outperform Actions in terms of correlation by achieving +-0.618 compared to Actions’
—0.545. m2vec performs robustly on insert gear (real) despite policies’ performances for this task
vary greatly (see supplementary for per-task policies performances).

We also evaluate our approach in the simulated counterpart Insert Gear (Sim). In this environment,
WCLIP and WTAP achieve regret@1 of 0.314 and 0.359 respectively, compared to Actions 0.427. We
underline the dichotomy between geometrical and semantic features: WTAP performs best in terms of
NMAE and Correlation, while WP outperforms in Regret@ 1. These results highlight how various
¢ compare depending on setting, type of task, and policy performance.

(ii) When evaluating across multiple settings, selecting ¢ leads to better results. We compare
m2vec with different foundation models across 12 Metaworld settings and 15 Kitchen settings. Table 2]
reports the average results across all settings for Metaworld and Kitchen. In Metaworld, we notice that
Actions performs on par with YOLIP VIT 444 their respective variations ACLIP and AVIT, in terms
of correlation and regret@ 1, while our approach consistently outperforms Actions in terms of NMAE.
As these domains have less state variability, Actions represent policies robustly. We test CLIP/ACLIP
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Table 3: We extend m2vec to the fully-offline setting and test it on Metaworld assembly task (left,
right, and top). We report results and confidence intervals. In this setting, performances of all policies
are unknown.

Representation [ NMAE | Correlation T Regret@1 |
Assembly (left)
FQE 0.338+0.062  0.125 +0.218  0.424+0.260
mw2vec 8.306 +0.155  0.360+0.097)  0.215+0.079
Assembly (right)
FQE 0.270+0.093  -0.029+0.351  0.504+0.071
m2vec 2.116 +0.056  0.154+0.115  0.319+0.080
Assembly (top)
FQE 0.322+0.012  -0.251+0.516  0.609+0.228
m2vec 0.492+0.006  0.555+0.106  0.149-+0.071

and VIT/AVIT on previously evaluated policies for each task through cross-validation to identify
the best feature encoder for the task in terms of regret@ 1. We report WBESTCLIP gpnq yBEST-VIT 54
the average results over the best among CLIP/VIT and ACLIP/AVIT. WBEST-CLIP achieves regret@1
0.194 and correlation 0.351, outperforming Actions representation. We highlight that the choice of ¢
is critical, since ¥™°™__ysing a randomly-initialized ResNet50 as feature extractor—underperforms.
Moreover, m2vec with the best ¢ drastically improves, achieving regret@1 of 0.153 compared to
Actions 0.232. We notice similar improvements when evaluating on Kitchen’s 15 settings. TableE]
compares choosing the BEST ¢ w.r.t. to VIT and CLIP, and against Actions. In Kitchen, ¥V
outperforms WP and Actions, while UBEST—% achieves the overall best results.

(iii) 72vec enables fully-offline policy selection. By directly modelling the relationship between
successor features and returns, we avoid the linear reward assumption of the original successor
features work. This is preferable since rewards are generally not linearly related to state features.
However, this restricts our method to settings where some policies’ performance is known. To evaluate
performance in a fully-offline setting, we fit a linear model the task reward 7 = (¢(s), Wsk) given
the state’s feature representation ¢(s), as in Equation from the original successor features work.
Next we predict policies returns as R = <‘I/f;, , Wisk)- We compare our approach to FQE in Table
and find that while our method’s return predictions are inaccurate (as evidenced by the high NMAE),
it still performs well in ranking policies (higher Correlation and lower Regret@1).

6 CONCLUSION

We presented 72vec, a framework for offline policy representation via successor features. Our method
treats the policy as a black box, and creates a representation that captures statistics of how the policy
changes the environment rather than its idiosyncrasies. The representations can be trained from
offline data, and leverage the pretrained features of visual foundation models to represent individual
states of the environment. In our experiments, we represented policies by relying on visual features
from semantic (CLIP), geometric (TAP), and visual (VIT) foundation models. We showed that 7w2vec
outperforms previously used Actions based representations and generalizes to fully-offline settings.
Overall, our experiments showcase the effectiveness and versatility of w2vec in representing policies
and its potential for various applications in reinforcement learning.

Moving forward, we acknowledge that finding the optimal combination of these elements remains an
ongoing challenge. Future work should explore diverse foundation models, offline learning algorithms
for successor feature training, and dataset choices. Fine-tuning the feature encoder ¢ along with wg
is interesting but pose challenges, as each feature encoder would specialize to predict features for a
specific policy, resulting in policy representations that are independent and not comparable. We leave
end-to-end fine-tuning as future work. Integrating 7w2vec into AOPS framework (Konyushova et al.,
2021) for enhanced offline policy selection is another intriguing avenue. Additionally, extending
m2vec to augment the Generalized Policy Improvement (Barreto et al.l 2017) in offline settings
presents exciting research opportunities.
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7 APPENDIX

7.1 DOMAINS

The Metaworld Yu et al.|(2020) and Kitchen|Gupta et al.|(2019) domains are widely known in the
literature. They contain many tasks from multiple views, however, the variability among tasks is low.
For example, the robotic arm in Metaworld is initialized within a narrow set of positions, while in
Kitchen the object positions are fixed. The task in real robot RGB Stacking [Lee et al.|(2021)); Reed
et al.[(2022) is to stack the red object on top of the blue object with green object as a distractor, where
objects are of various geometric shapes. This task is difficult because the objects have unusual shapes
and may be positioned at any point in the workspace. We also consider a challenging gear insertion
task in sim and real where the objective is to pick up a gear of certain size (from an arbitrary position
in the workspace) in the presence of other gears and insert it onto a specific shaft on the gear assembly
base (arbitrary position in real, fixed in sim). We describe data and policies for each domain below.

Insert Gear (Sim). We use 18 policies for Insert Gear (Sim) task in the simulated environment.
We take an intermediate and the last checkpoint for each policy. We collect trajectories with 7' = 300
steps from a single 7 and train all 1), on those trajectories. The state s consists of two images, one
from a left camera and one from a right camera, and proprioception sensing. All the policies in this
domain have the following architecture. Image observations are encoded using a (shared) ResNet,
and proprioception is embedded using an MLP. Then, two embeddings are concatenated and further
processed by an MLP, followed by an action head.

Insert Gear (Real). The observable state consists of three points of view: a camera on the left
of the basket, a camera on the right of the basket, and an egocentric camera on the gripper. The
state also includes proprioception information about the arm position. The setup corresponds to the
medium gear insertion task described in the work of |Du et al.|(2023). We conduct experiments on
the Insert Gear (Real) task on a real robotic platform by evaluating 18 policies. We collect a dataset
of trajectories with a hold-out policy trained on human demonstrations. Next, we train our set of
policies on this dataset and we evaluate m2vec. The state and he policy architecture are the same as
in Insert Gear (Sim).

RGB stacking. We use 12 policies trained with behavior cloning on a previously collected dataset
of demonstrations for RGB stacking task with a real robotic arm. Each policy is trained with a variety
of hyperparameters. The state s consists of images from the basket cameras, one on the left and one
on the right, and a first person camera mounted on the end-effector, and proprioception sensing. For
training w2vec, we adopted an offline dataset of trajectories. We collected the trajectories by running
a policy trained on human demonstrations. Trajectory length varies between 800 and 1000 steps. We
built the evaluation dataset D.,, by sampling 5, 000 trajectories and then sampling one state from
each of them. Policy architecture follows the description in|Lee et al.|(2021).

Metaworld. For Metaworld, we consider 4 tasks: assembly, button press, bin picking, and drawer
open. We use 3 points of views (left, right, and top), as specified in Sharma et al.| (2023)); Nair et al.
(2022)). For each task-camera pair, we adopt 12 policies as proposed by [Sharma et al.| (2023) for
the particular task and point of view. The policies vary by the hyperparameters used during training
(learning rate, seed, and feature extractor among NFnet, VIT, and ResNet). Next, we train a successor
feature network .. for each policy 7 on a cumulative dataset of demonstrations for all tasks and
views. At evaluation, we build D.,, by uniformly sampling one state from each demonstration.

Franka-Kitchen. For Kitchen, we consider 5 tasks: Knob-on, Left door open, light on, microwave
open, and door open with 3 points of views: left, right, and top, as provided by previous works
(Sharma et al., 2023} Nair et al.,|2022)). For each task and point of view, we use human demonstrations
provided by [Fu et al.|(2020). We also adopt policies {r; } proposed by [Sharma et al.| (2023). Each
policy solves each task using proprioception and image information from a single point of view,
and the policies vary by the hyperparameters used during training (learning rate, seed, and feature
extractor among NFnet, ViT, and ResNet). Additional details can be found in|Sharma et al.| (2023).

Table [ reports mean and standard deviation of the expected return values for the policies under
consideration. We highlight that Metaworld and Insert gear have high standard-deviation (standard
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Table 4: We report the mean return value and its standard-deviation for the policies for each environ-
ment. For Metaworld and Kitchen, we take the average mean and standard-devation across all tasks
and points of views. T Number of policies per task-camera pair.

Environment | N. policies  Return values
Insert-gear (sim) 18 0.60+0.51
Insert-gear (real) 18 2.29+1.71
RGB Stacking 12 179.41+8.21
Metaworld 12t 215.88+164.99
Kitchen 127 —47.86+20.05

<« 1% Il
N
-]

= S

B bins

Figure 4: We implement ¢ as a neural-network. First, we encode state s;—consisting observations
and proprioception—and policy actions 7(s;) into feature vectors. Next, we concatenate the features
and input the resulting vector to a multi-layer perceptron. ¢ outputs a vector of B x N dimensions,
where B number of bins of the distribution and N is the dimension of the feature vector ¢(s;). We
reshape the output into a matrix, where each row ¢ represents a histogram of probabilities of size B
for the successor feature ;.

deviation is 75% or more of the mean return value), as we have extremely good and extremely bad
policies. On the contrary, return values for RGB Stacking and Kitchen vary less, i.e., most of the
policies for these environments achieve similar performance.

7.2 ARCHITECTURE AND TRAINING DETAILS

The architecture of successor features network % (s) for a policy 7 is illustrated in Figure El The
network takes state-action pairs as input; it encodes actions and proprioception with a multi-layer
perceptron, and visual observations using a ResNet50. When the environment observation consists of
multiple images (e.g., multiple camera views of the same scene), we embed each image separately
and average the resulting vectors. We concatenate the state and action encodings and process the
resulting feature vector with a MLP. Finally, the network ¢ (s) outputs a vector of dimension R <5,
where N is the dimension of the feature vector ¢(s) represented as a distribution over B binsﬂ P2 (s)
returns N histograms, where each histogram v); approximates the distribution of the discounted sum
of feature ¢; over policy 7. For each environment, we inspect the range of values assumed by ¢ to
find the min (lower) and max (upper) bound of the histogram. At inference time, we take the expected
value of each histogram to compute the successor features vector.

‘We train wjr’ (s, a) using an FQE with a distributional objective (Le et al.,[2019; Bellemare et al.,[2017).
Training the successor features network only requires offline data (separate for each domain) and
does not require any online interactions. We train the network for 50, 000 steps for Metaworld and
Kitchen and 100, 000 steps for RGB Stacking, Insert Gear (Sim), and Insert Gear (Real). We adopt

"We use B = 51 bins in all experiments.

14



Published as a conference paper at ICLR 2024

Table 5: We conduct additional experiments on Metaworld environment when using a dataset of
trajectories for training w2vec. As expected, enhancing the dataset leads to better performances.We
report as BEST-CLIP and BEST-VIT the average results when adopting the best feature encoder

between CLIP/VIT and ACLIP/AVIT in terms of regret@]1.

Representation Dataset [ NMAE Correlation Regret@1

Actions - 0.424 +o.058 0.347 +0.152  0.232 +0.078
AVIT trajectories | 0.296 +0.024 0.399 +o0.128  0.214+0.064
ACLIP trajectories | 0.278 +0.014  0.469 +0.096  0.189 +0.075
BEST-¢ trajectories | 0.269+0.017  0.507 +0.105  0.187 +0.073
AVIT best 0.322 +0.029 0.447+0.126  0.191+0.074
ACLIP best 0.274 +o.026  0.537 +0.166  0.177 +0.175
BEST-¢ best 0.231 +0.016  0.615+0.086  0.135 +0.052

different training steps because Metaworld and Kitchen are more predictable than RGB Stacking
and Insert gear and less demonstrations are provided. We use the Adam optimizer (Kingma & Ba,
2015) with a learning rate of 3¢~ and a discount factor of v = 0.99. For evaluation, we adopt 3-fold
cross-validation in all experiments.

7.3 METRICS
We adopt three common metrics [Fu et al.| (2021): NMAE, correlation, regret@]1.

¢ Normalized Mean Absolute Error (NMAE) is defined as the difference between the value
and estimated value of a policy:

NMAE = [V™ — V7|, (6)
where V'™ is the true value of the policy, and V™ is the estimated value of the policy.

* Regret@1 is the difference between the value of the best policy in the entire set, and the
value of the best predicted policy. It is defined as:

Regret@1 = V. — V. 7
caret@l = V7 e Vi @
* Rank Correlation (also Spearman’s p) measures the correlation between the estimated
rankings of the policies’ value estimates and their true values. It can be written as:
T = COV(VE—]\W ‘A/lﬂ-N) . (8)
c(Viin)o(Vity)

Correlation and regret@1 are the most relevant metrics for evaluating m2vec on Offline Policy
Selection (OPS), where the focus is on ranking policies based on values and selecting the best policy.

Regret@1 is commonly adopted in assessing performances for Offline Policy Selection, as it directly
measures how far off the best-estimated policy is to the actual best policy.

Correlation is relevant for measuring how the method ranks policies by their expected return value.
By relying on methods that achieve higher correlation and thus are consistent in estimating policy
values, researchers and practitioners can prioritize more promising policies for online evaluation.

On the other hand, NMAE refers to the accuracy of the estimated return value. NMAE is especially
significant when aiming at estimating the true value of a policy and is suited for Offline Policy
Evaluation (OPE), where we are interested to know the values of each policy. We assess w2vec’s
representation in both settings, showing that 7w2vec consistently outperforms the baseline in both
metrics. We improve the discussion on metrics in the Appendix of the manuscript.

7.4 ADDITIONAL EXPERIMENTS

(iv) Correlation between task difficulty and ¢. We notice that policy performance varies widely
in Insert Gear (Sim) and Insert Gear (Real), as most of the policies fail to solve the task (see
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Table 6: We evaluate m2vec and Actions baseline when comparing intermediate checkpoints for a set of
policies for Metaworld assembly task and left point-of-view. We highlight that Actionsrepresentations
are similar in such scenario, leading to poor generalization when evaluating on unseen and potentially
different policies.

Representation | NMAE Correlation Regret@1
Actions 0.724 +0.268 -0.189 +0.137  0.034 +o0.014
ACLIP 0.570 +0.173  0.190 +0.361  0.029 +0.034

Table 7: We conduct an experiment in an out-of-domain setting. We represent a set of policies that
were trained for Metaworld assembly task from right point-of-view with Actions and WACHP_ Next,
we evaluate how those representations predict the return values if policies are fed with images from
a different point-of-view (left camera in our experiment). 2P outperforms Actionsin terms of
regret@ 1 and NMAE, supporting our intuition that m2vec is robust in an out-of-distribution setting.

Representation [ NMAE Regret@1
Actions 0.363 +0.055 0.475 +0.100
ACLIP 0.227 +o.078  0.300 +0.106

Table 8: We intuitively expect that m2vec represents random policies close in feature space w.r.t.
Actions representations, as random policies do not change the environment in any meaningful way.
We conduct an experiment with random policies for Metaworld assembly-left to provide quantitative
evidence supporting our interpretation.

Representation | Average distance Max distance
Actions 0.39 0.62
Random 0.11 0.17
ACLIP 0.03 0.22

supplementary for per-task policies performances). The gap is evident when compared to the average
return value for RGB Stacking, where standard deviation is negligible. Our intuition is that in
hard-to-solve scenarios the actions are often imperfect and noisy. This interpretation would explain
poor performance of the Actions baseline. The comparison of WP and UVIT across environments
suggests a correlation between the choice of ¢ and policies return values. UCP performs better than
UVIT in Insert Gear (Sim), Insert Gear (Real), and Metaworld, where we report the highest standard
deviation among policies performances. WP is robust when the task is hard and most of the policies
fail to solve it. On the other hand, ¥V!T is the best option in Kitchen and RGB stacking, where the
standard deviation of policies returns is low or negligible.

(v) Studying the performance of 72vec with different datasets. We investigate how modifications
of the dataset for training 7w2vec improves performance in Metaworld. Intuitively, if the training set
for m2vec closely resembles the set of reachable states for a policy 7, solving Equation 2 leads to a
more close approximation of the real successor feature of 7 in (s, a). We empirically test this claim as
follows. We collect 1, 000 trajectories for each task-view setting using a pre-trained policy. Next, we
train successor features network /¢ for each policy 7 and feature encoder ¢, and represent each policy
as U2, Tablereports results on Metaworld when training 72vec with the aforementioned dataset
(named trajectory in the Table). In this setting, WP and UVIT outperform both their counterpart
trained on demonstrations and Actions representation, reaching respectively regret@1 of 0.189 and
0.187. These results slightly improve if we assume to opt for the best dataset for each task and take
the average, as reported under best dataset in Table[5| Overall, choosing the best feature encoder ¢
and best dataset for any given task leads to the best performing WBEST—¢ with correlation 0.615 and
regret@1 0.135—improving over Actions by 0.26 and 0.10 respectively.

(vi) m2vec generalizes better while Actions works with policies are very similar. We explore
how Actions and m2vec compare in the special scenario where all policies are similar. We take 4
intermediate checkpoints at the end of the training for each policy as a set of policies to represent.
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Table 9: We evaluate m2vec when trained on online data for Insert Medium (gear). Results for m2vec
from offline data on this task are reported in Table E}

Representation | NMAE Correlation Regret@1
Actions 0.174 0.650 0.427
CLIP 0.158 0.627 0.288
Random 0.348 0.425 0.302
TAP 0.172 0.686 0.205

Our intuition is that intermediate checkpoints for a single policy are similar to each other in how they
behave. Next, we represent each checkpoint with WM and Actions. We compare cross-validating the
results across all checkpoints w.r.t. training on checkpoints for 3 policies and testing on checkpoints
for the holdout policy. Table [6]reports results of this comparison on Metaworld’s assembly-left task.
We notice that Actions representations fail to generalize to policies that greatly differ from the policies
in the training set. Fitting the linear regressor with Actions achieves a negative correlation of —0.189
and regret@1 0.034. On the other hand, WP is robust to unseen policies and outperforms Actions
with positive correlation 0.190 and lower regret of 0.029.

(vii) m2vec performs in out-of-distribution scenarios. We conduct another investigation to explore
m2vec performances in a out-of-distribution setting. We hypothesize that m2vec represents policies in
meaningful ways even when those policies are deployed in settings that differ from the training set,
thanks to the generalisation power of foundation models. Table[7]compares ACLIP and Actions in
evaluating policies trained for Metaworld’s assembly-right and tested in Metaworld’s assembly-left.
m2vec achieves reget@1 of 0.300 and NMAE of 0.227, outperforming Actions by 0.175 and 0.136
respectively. We leave further exploration of 7w2vec in out-of-distribution settings for further works.

(viii) 72vec represents random policies close in the representation space. Intuitively, we expect
that random policies do not modify the environment in a meaningful way. Therefore, their representa-
tions should be closer to each other compared to the similarity between the more meaningful trained
policies. We investigate this claim as follows. We provide a set of 6 trained policies and a set of 6
random policies for Metaworld assembly-left. We compute the average and max distance among
the random policies representations, normalized by the average intraset distance between trained
policies representations. We compare our WP and Wrandom ith Actions. Table reports the results
that clearly support our intuition. Both WACLP and WRandom renresent random policies close to each
other, as the average distance of their representation is respectively 0.03 and 0.11 and the maximum
distance 0.22 and 0.17 respectively. On the other hand, if we represent policies with Actions, the
representations average and maximum distances are 0.39 and 0.62, meaning that random policies are
represented far apart from each other.

(ix) Canonical state coverage. We sample canonical states uniformly from the dataset that was
used for training offline RL policies. Even though there is some intuition that selecting canonical
states to represent the environment better can be beneficial, even simple sampling at random worked
well in our experiments. We conduct further experiments to ablate the state coverage. We adopt
demonstrations from Metaworld Assembly task and adopt the initial state of each trajectory for
m2vec’s and Actions representation. By adopting the initial state of a trajectory, w2vec cannot rely on
the state coverage. We report the results in Table[T0}] We show that w2vec is robust to state coverage,
showing SOTA performances even when the canonical states coverage is limited to the first state of
each demonstration.

(x) m2vec from online data. We ideally want to evaluate policies without deployment on a real
robot, which is often time-consuming and can lead to faults and damages. Nonetheless, we explore
mw2vec capabilities for representing policies from online data. For each policy 7, we collect a dataset
of trajectories by deploying the policy on the agent. Next, we train ¢/, on the dataset of 7’s trajectories
and compute its w2vec’s representation. Table[9]reports results when training w2vec on online data
on Insert Gear (sim) task. We show that w2vec’s performances improve with respect to the offline
counterpart. This result is expected: a better dataset coverage leads to improved results, as we also
showed in (v).
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Table 10: We test m2vec robustness to canonical states coverage. We estimate w2vec’s representations
for Metaworld’s assembly task (left, right, and top point-of-views) by using only the first state of the
demonstrations for each task.

Representation [ NMAE | Correlation T Regret@1 |
Assembly (left)
CLIP 0.381 0.359 0.287
ACLIP 0.260 0.592 0.087
Random 0.422 0.252 0.46
VIT 0.366 0.26 0.347
Actions 0.356 0.503 0.222
Assembly (right)
CLIP 0.363 0.023 0.365
ACLIP 0.242 0.582 0.096
Random 0.334 0.313 0.212
VIT 0.27 0.345 0.304
Actions 0.405 0.369 0.263
Assembly (top)
CLIP 0.463 0.270 0.330
ACLIP 0.305 0.594 0.078
Random 0.394 0.277 0.328
VIT 0.418 0.020 0.417
Actions 0.414 0.554 0.106
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