
Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

Gen Li 1 Yao Wan 1 Hongyu Zhang 2 Zhou Zhao 3 Wenbin Jiang 1 Xuanhua Shi 1 Hai Jin 1 Zheng Wang 4

Abstract
Language Models (LMs) are increasingly used for
type inference, aiding in error detection and soft-
ware development. Some real-world deployments
of LMs require the model to run on local machines
to safeguard the intellectual property of the source
code. This setting often limits the size of the LMs
that can be used. We present NESTER, the first
neuro-symbolic approach that enhances LMs for
type inference by integrating symbolic learning
without increasing model size. NESTER breaks
type inference into sub-tasks based on the data
and control flow of the input code, encoding them
as a modular high-level program. This program
executes multi-step actions, such as evaluating ex-
pressions and analyzing conditional branches of
the target code, combining static typing with LMs
to infer potential types. Evaluated on the Many-
Types4Py dataset in Python, NESTER outperforms
two state-of-the-art type inference methods (Hi-
Typer and TypeGen), achieving 70.7% Top-1 Ex-
act Match, which is 18.3% and 3.6% higher than
HiTyper and TypeGen, respectively. For com-
plex type annotations like “typing.Optional” and
“typing.Union”, NESTER achieves 51.0% and
16.7%, surpassing TypeGen by 28.3% and 5.8%.

1. Introduction
Dynamically typed languages like Python and JavaScript
are popular for rapid prototyping and have the flexibility
of not requiring explicit type declarations (Mir et al., 2022;
Srinath, 2017). However, this flexibility can compromise
reliability, often leading to runtime type errors that are diffi-

1National Engineering Research Center for Big Data Tech-
nology and Systems, Services Computing Technology and Sys-
tem Lab, Cluster and Grid Computing Lab, School of Computer
Science and Technology, Huazhong University of Science and
Technology, Wuhan, China 2Chongqing University 3Zhejiang
University 4University of Leeds. Correspondence to: Yao Wan
<wanyao@hust.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

cult to debug (Oh & Oh, 2022). Therefore, automated type
inference, which infers the type of a variable automatically,
is attractive. Recently, there has been growing interest in
using Language Models (LMs) for type inference to reduce
the manual effort in developing type inference systems.

Large Language Models (LLMs), such as GPT-4 (Koubaa,
2023) and OpenAI-o1 (Temsah et al., 2024), have shown
impressive results in type inference. However, these mod-
els typically rely on cloud-based infrastructure with sub-
stantial computational resources, raising privacy concerns
when user data is sent to untrusted providers (Ray, 2023).
This is especially problematic for organizations that treat
their source code as valuable intellectual property. To mit-
igate risks, many prefer deploying smaller models locally
on developer machines or private clusters due to hardware
resource constraints.

Running moderately sized LMs, like Code Llama with 7B
parameters (Lu et al., 2023), locally can address privacy
and confidentiality concerns. It also delivers faster response
times compared to cloud solutions employing fully homo-
morphic encryption (Chen et al., 2022) or multi-party com-
munication techniques (Yao, 1986; Rathee et al., 2024).
However, downsizing LMs from hundreds of billions to tens
of billions of parameters significantly reduces their ability
to model and reason about complex program structures. As
a result, there is a need to improve the capability of LMs
in reasoning code for type inference without relying on
cloud-based solutions.

A Motivation Example Figure 1 illustrates a motivating
example for inferring the return type of the Python func-
tion learning rate. As shown in Figure 1(a), mypy1,
a rule-based tool, fails to infer the type correctly due to
its lack of knowledge of custom functions or third-party
libraries (e.g., normalize lr in line 7). Similarly, a pre-
trained CodeLlama 7B (Lu et al., 2023) predicts the type as
bool—float—none, while the correct type is float—none,
as seen in Figure 1(b). This error stems from the LM relying
on the textual structure of the code rather than its underly-
ing semantics, such as control and data flow. Additionally,
LMs can be misled by irrelevant nearby information (e.g.,
return False in line 3). Specifically, since lr never
exceeds 1.0 and line 1 is unreachable, the return type cannot

1https://mypy-lang.org/

1

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

def learning_rate(opt, base_lr, f):

 lr = min(base_lr, 0.5)

 if lr > 1.0:

 return False

 if lr <= 0.5:

 tgt_lr = base_lr * f

 tgt_lr = tgt_lr + 10

 lr = _normalize_lr(tgt_lr, 20)

 opt.params[0]['lr'] = lr

 return lr

 return None

Control Flow
Graph

Data Flow Graph

9

8

7

2

1

4 Typing.Optional[float]

1 32

54

8 69

LMs (Neural)

Nester (Neuro-Symbolic)

Data Flow

Prompt Code Llama

Program
Interpreter

0

1

2

3

4

5

6

7

8

9

10

Static Analyzer (Symbolic)
1 32

5410
none

bool

Static Analyzer

The return type of learning_
rate is bool l none.

6

The return type of learning_
rate is bool | float | none.

7

10

High-Level Program

Type Recognizer

(a)

(b)

(c)

Figure 1. Example showing the 7B CodeLlama LM and static analyzer (mypy) fail to infer the return type of learning rate.

be boolean. This issue can be addressed by incorporating
control flow analysis via static techniques.

Our Solution: A Neuro-Symbolic Approach Our work
aims to enhance LMs’ ability to reason about program con-
trol and data flow, essential for accurate type inference,
without relying on larger models. We propose a novel neuro-
symbolic framework, NESTER, which decomposes type
inference into simpler symbolic steps encoded as a Python-
like high-level program. This high-level program is then
processed by a program interpreter by leveraging static type
inference and LMs. As shown in Figure 1(c), we first break
down type inference into a number of sub-tasks according to
control flow, where each sub-task corresponds to a potential
type of the execution path. The analysis of the sub-task is
realized through a number of API calls like if analysis
(inputs, conditions, ...). Then, a program in-
terpreter processes each line of the high-level program to
combine static type inference and LMs to infer the type
at each step. Our neuro-symbolic approach also enhances
interpretability by embedding reasoning rules into LMs,
improving decision-making transparency.

Key Results and Contributions We evaluate NESTER by
applying it to the widely-used ManyTypes4Py dataset (Mir
et al., 2021). Experimental results show that NESTER outper-
forms the advanced Type4Py baseline by 3.8% for argument
types and 3.9% for return types in Top-1 Exact Match ac-
curacy, using an LM with just 7B parameters. Additionally,
NESTER surpasses the state-of-the-art TypeGen baseline by
3.6% across all categories. This demonstrates NESTER’s ef-
ficiency, achieving strong performance using a small LM by
today’s standards. Case studies on real-world code snippets
further highlight NESTER ’s ability to accurately infer types
with natural-language explanations.

The key contributions of this paper are as follows:

• We propose NESTER, the first neuro-symbolic framework
for type inference using LMs, which enhances reasoning

and explainability by incorporating symbolic rules.
• We introduce data flow analysis of the target program to

guide LMs in inferring types more precisely.
• Extensive experiments on ManyTypes4Py demonstrate

the effectiveness of NESTER, and a VSCode plugin is
developed to showcase its enhanced interpretability.

Online Materials The source code and data as-
sociated with this work are available at: https:
//github.com/CGCL-codes/naturalcc/tree/
main/examples/nester.

2. Preliminaries
2.1. Type Inference

This work focuses on the type inference task, which pre-
dicts an identifier’s type based on its context in a code snip-
pet. Given a code snippet c, let {xv | v ∈ 1 . . . V } repre-
sent the V distinct identifiers needing type assignment. Let
p(τi | ctx) denote the type distribution for identifier xv , de-
termined by its context ctx. Our goal is to develop a model
that, given an unannotated or partially annotated code snip-
pet c, outputs a type distribution for each missing annotation.
Recent studies have used LLMs for type inference (Siddiqui
& Kellogg, 2024; Peng et al., 2023). These approaches
frame the task as a generative one through natural language
prompts, which describe the code and identify relevant iden-
tifiers for type prediction. TypeGen (Peng et al., 2023) is the
state-of-the-art in LM-based type inference, using a specific
prompt based on In-Context Learning (ICL). The prompt
structure is [Code, ICL EXAMPLES, TYPEHINTS], where
ICL EXAMPLES provide demonstrations, and TYPEHINTS
are derived from static analysis. TypeGen also uses CoT
reasoning to improve accuracy, with the prompt structured
as follows: “First, the variable error message is as-
signed from a string. Therefore, the type of the variable
error message is “str”.”

2

https://github.com/CGCL-codes/naturalcc/tree/main/examples/nester
https://github.com/CGCL-codes/naturalcc/tree/main/examples/nester
https://github.com/CGCL-codes/naturalcc/tree/main/examples/nester

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

Typegen Similar Examples No Examples0.0

0.2

0.4

0.6

0.8

1.0
Ac

c

0.72
0.64

0.57

Typegen
Similar Examples
No Examples

Figure 2. The reasoning ability study on TypeGen.

2.2. Neuro-Symbolic Reasoning

Neuro-symbolic reasoning enhances interpretability by
breaking tasks into subtasks (Gupta & Kembhavi, 2023;
Cunnington et al., 2022; Nye et al., 2021; Zhang et al.,
2021). It divides the solution function f into two phases:

f = h ◦ g .

Here, g is a perception network that processes raw data,
imposing human-like constraints to define conditions for
the problem, while h is a reasoning model that analyzes the
data to infer the solution.

Consider Visual Question Answering (VQA) as an exam-
ple, where the goal is to answer a question based on an
image (Gupta & Kembhavi, 2023). The image is processed
into a structured format by the visual perception network g,
serving as static information for the question. For example,
given the query “How many cubes behind the cylinder are
large?”, the context-aware model h parses the question into
a high-level program. Key terms like cube, cylinder, and
large are extracted as parameters. The program then uses
APIs such as filter shape and count to generate a solution.
Finally, the program is executed using the database from the
visual perception network.

2.3. Do LMs Demonstrate Reasoning Ability in Type
Inference?

Before introducing NESTER, we first conduct a prelimi-
nary study to explore whether LMs demonstrate reasoning
ability in type inference. While LMs have shown promis-
ing results in type inference, we attribute their successful
type predictions primarily to the examples provided in ICL
demonstrations, rather than to the reasoning over symbolic
type rules. To verify our suspicion, we select TypeGen, a
state-of-the-art LM-based type inference approach, as our
target for analysis, over the widely utilized ManyTypes4Py
dataset (Mir et al., 2021). In implementation, we select Code
Llama 7B as the LM backbone, and design two settings: (1)
No Examples: We remove all demonstration examples, keep-
ing only the query code and the question asking for the type
of code. (2) Similar Examples Replacement: We replace the

demonstration examples, whose type answers are identical
to those in the test set, with examples from a pool of can-
didate inference examples that have differing type answers
from the test set. These new demonstration examples, like
those selected by TypeGen, exhibit high code similarity to
the training set.

Figure 2 shows the performance of TypeGen in type in-
ference over the aforementioned two settings. From this
figure, we can observe that incorporating examples with
identical result types into TypeGen surely enhanced ac-
curacy, reaching 72.5% compared to 57.2% without any
examples, marking an increase of 15.3%. However, after
replacing with similar examples, the accuracy of examples
provided to LMs decreased to 64%. This marks a reduction
of 8.5% from the original TypeGen scenario, effectively
halving the initial improvement. The experimental results
indicate that LMs do not truly understand the problem; they
merely generate text and append the type result at the end,
resulting in misleadingly high accuracy. However, when
replaced with similar examples, LMs become confused by
out-of-distribution test sets, which hampers their ability to
perform generalization reasoning and ultimately leads to a
halving of accuracy. Consequently, while TypeGen’s infer-
ence examples misleadingly improve accuracy, they lack
reasonableness in the LM type inference process.

3. NESTER: Our Approach
Figure 3 provides an overview of our proposed system,
NESTER, which comprises two main components: (a) high-
level program generation and (b) program interpreter. The
high-level program generation component involves crafting
a prompt (e.g., “Convert the code into a high-level pro-
gram”) along with several demonstration examples to guide
the LMs in generating high-level programs composed of
predefined APIs. In the program interpreter component, we
sequentially implement each API derived from the high-
level programs. Each API utilizes a tandem of the type
recognizer and LMs to perform type inference by traversing
the dataflow starting from the API’s parameter.

3.1. High-Level Program Generation

NESTER first decomposes the code snippet c into a high-
level program, which represents reasoning substeps in the
structure of the code. Each line of the high-level program
is an API call to a function supported by NESTER, which
is then processed by our program interpreter. The main
function of the high-level program is guiding the program
interpreter to focus on specific variables and execution paths,
while the API performs detailed analysis on a variable, con-
ditions, or a string. It is noteworthy that we preserve the
original program’s control flow information based on the
high-level program. On the one hand, the high-level pro-

3

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

Optional[float]

def learning_rate(opt, base_lr, f):

 lr = min(base_lr, 0.5)

 if lr > 1.0:

 return False

 if lr <= 0.5:

 tgt_lr = base_lr * f

 tgt = tgt_lr + 10

 lr = _normalize_lr(tgt_lr, 20)

 opt.params[0]['lr'] = lr

 return lr

 return None

0

1

2

3

4

5

6

7

8

9

10

 Target Program

Executor CodeLlama

Llama3

Type
Recognizer

lr = min(base_lr, 0.5)

 if lr > 1.0:

if lr <= 0.5:

 tgt_lr = base_lr * f

 tgt = tgt_lar + 10

 lr = _normalize_lr(tgt_lr, 20)

 opt.params[0]['lr'] = lr

 return lr

return None

float

none

Dataflow Graph LMs

 (a) High-level Program Generation (b) Program Interpreter

lr<=12
3
4

1

5
6

lr = min(base_lr, 0.5)

 if lr <= 0.5:
lr<=1

Condition
Evaluation

API

1

if_analysis(lr, 1,0, >):
 T1 = return_analysis("False")
if_analysis(lr, 0.5, <=):
 T2 = return_analysis(lr)
T3 = return_analysis(None)
combine(T2,T3)

High-Level Program

3

4

5

Type
Inference

API

Figure 3. Neuro-symbolic type inference pipeline. blue highlights the target program, purple highlights the high-level program
generated by LMs, and green highlights the output by our program interpreter. ① to ⑥ are the line numbers of the high-level program. ➊,
➌ are executed by the condition evaluation API. ➍, ➎ are executed by the type inference API.

gram can utilize the type information implicitly contained in
the control flow; on the other hand, it contributes to the final
type inference results combination. A running example of
the high-level program is given in Figure 3. Moreover, we
also provide a concrete definition of the high-level program,
as detailed in Appendix B.1.

A Running Example Figure 3(a) shows an example high-
level program generated by NESTER for the target program
in Figure 1. Here, we generate the high-level program by
prompting an LM (e.g., Code Llama 7B), although this can
also be done through a traditional parser. We use LMs be-
cause a general-purpose LM can adapt to multiple program-
ming languages, reducing the manual efforts in building a
language-specific parser. We use a prompt consisting of
code and high-level program pairs to enable LMs to under-
stand the translation task. For details on the specific prompt,
please refer to Appendix B.2.

NESTER generates the high-level program by translating
each conditional branch of the input code into an analy-
sis unit in the high-level program, realized through API
calls. We do so by providing examples in the LM prompt to
ask it to generate API calls for a given code input. For
the example given in Figure 3(a), we start by feeding
if lr > 1.0 at line 2 to an LM to generate an API

call, if analysis . The source if expression is bro-
ken down into identifiers, operators, and literal values: lr ,
1.0 , and > . Similarly, if lr <= 0.5 is also parsed

by the LM to lr , 0.5 , and <= . For the code in lines 3,
9, and 10, the LM parses this code as return False to
T2 = return analysis(False) , return lr

can transform to T2 = return analysis(lr) and

return None to return analysis(None) , re-
spectively. The API calls in the high-level program guide
NESTER for type inference, where each analysis unit essen-

tially corresponds to a type inference sub-task.

Supported APIs NESTER offers two types of APIs to be
used in the high-level programs: (i) Condition evaluation
APIs to evaluate if a condition in the input program can
be satisfied to determine the reachable execution paths; (ii)
Type inference entry-point APIs to retain identifiers (e.g.,
lr in Figure 1) that guard the evaluation outcomes of a
condition. NESTER is extensible - new APIs can be added by
creating and registering a class. The current implementation
of NESTER provides four APIs, detailed in Appendix B.3.

3.2. Program Interpreter

The high-level program is interpreted and executed by a
NESTER program interpreter, which takes two inputs: (1)
the target program for type inferencing and (2) a high-level
program generated from the target program. The program
interpreter first performs data flow analysis on the target
program to construct a data flow graph. Then, we traverse
the dataflow graph, beginning at the entry point of each API
call of the high-level program.

Dataflow Graph Figure 4 illustrates an example of
constructing the dataflow graph for the target pro-
gram. Specifically, for the identifier lr, we first lo-
cate the initial definition in the code snippet, namely
lr = min(base lr, 0.5) on line 1. Consequently,

we add the line as a node to Def(lr), denoted as Def(lr) =
{Line 1}. After defining Def(lr), We proceed to identify
the lines of code that directly use each member belonging to
Def(lr). These are the User(lr) nodes, explicitly denoted as
{Lines 2, 4, 7, 8 and 9}. After identifying all the User(lr)
nodes, we apply the same method to find the Usee(lr) nodes,
which capture the lines of code that utilize the users from
both User(lr) and Def(lr), denoted as {Lines 0, 5}. We
use the Coarse-Grained Dataflow Graph (CGDG) as the
implementation of this data flow graph. For details of the

4

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

def learning_rate(opt, base_lr, factor):

 lr = min(base_lr, 0.5)

 if lr > 1.0:

 return False

 if lr <= 0.5:

 tgt_lr = base_lr * factor

 tgt = tgt_lr + 10

 lr = _normalize_lr(tgt_lr, 0.01)

 opt.params[0]['lr'] = lr

 return lr

 return None

Def
User

Usee

0

1

2

3

4

5

6

7

8

9

10

lr line 1 line 2,4,7,8,9 line 0,5

base_lr line 0 line 1,5 -
factor line 0 line 5 -

opt line 0 line 1,5 -

tgt_lr line 5 line 6,7 line0

Identifier Def User Usee

T2 = return_analysis(lr)

query
:float

Figure 4. The construction of a dataflow graph for a code snippet.

CGDG construction, please refer to Appendix C.2.

Type Recognizer NESTER uses the type recognizer to
identify the types of a specific node (which include multiple
code lines) in dataflow graph, including Def(xv), User(xv),
and Usee(xv). If a line of code contains type information,
the type recognizer uses regular expressions to recognize
and return the corresponding type. These types include basic
types such as “int”, “float”, “bool”, “str”, and “bytes”,
as well as more complex generic types such as “tuple”,
“list”, and “dict”. Appendix C.1 presents the denotational
semantics of the regular expressions, which is used by the
type recognizer in NESTER.

LMs System NESTER employs two LMs for program in-
terpretation: the Condition Eval LM and the Type Infer LM.
The Condition Eval LM assesses the possible value ranges
for specified identifiers, while the Type Infer LM identifies
the type of given code snippets, as a supplement for the type
recognizer. We utilize prompts to elicit responses from the
LLM as follows: [Def(xv) ∪ User(xv)∪ Usee(xv)(Code),
QUESTION CONDITION] and [Def(xv) ∪ User(xv)∪
Usee(xv)(Code), TYPEHINTS, QUESTION TYPE], re-
spectively.

Figure 3(b) shows an example of a program inter-
preter. In terms of condition evaluation, API execu-
tion. ➊It looks for identifiers in the API call of
the high-level program and uses data flow analysis on
the target program to locate relevant code segments

learning rate = min(base lr, 0.5) and con-
sults an LM to determine the range of values for lr . In
this case, the LM returns the range lr <= 0.5, which is
a correct return result. Then we utilize the results to evalu-
ate the condition lr > 1.0, which is not satisfied, so we
jump over ② to execute ③ in the high-level program. ➌
The code if lr <= 0.5 is also parsed by the LM into
if analysis(lr, 0.5, <=) . Using the result lr
<= 0.5, we evaluate that lr ≤ 0.5 holds true. ➍ We
utilize a dataflow graph to identify code lines in the target
program, which are related to lr . These lines are initially
sent to a type recognizer. Upon failure, the lines are for-
warded to LMs, which then return the type “float”. ➎ The
type recognizer directly returns the type “none” to our API.
⑥ Finally, the API Combine integrates the two types,
“float” and “none”, based on the return values provided by
return analysis . Consequently, it derives the final

correct type “Optional[float]”.

Note: When handling multiple if analysis APIs, the
combine() module detects and discards unreturned type
T before merging the remaining types.

4. Experiments
4.1. Evaluation Setup

Dataset We follow the methodology from previous stud-
ies (Allamanis et al., 2020; Peng et al., 2023; Lukasczyk
et al., 2023; Zhang et al., 2023) and evaluate our approach
using the widely-used ManyTypes4Py dataset (Mir et al.,
2021), which contains around 5,500 Python projects with
over 870,000 type annotations. The dataset includes over
880,000 functions (return types), 1.5 million arguments (ar-
gument types), and 2.1 million variable declarations (local
types). To ensure fairness in comparison, we normalize
outputs by treating similar terms, such as “int” and “integer”
or “bool” and “boolean” as equivalent.

LM Backbones We select two LMs as backbones.

▷ Code Llama 7B (Lu et al., 2023) is an LLM specifically
designed for code-related tasks. This variant, with 7 billion
parameters, is pre-trained on a diverse set of code and natu-
ral language data, enabling it to effectively understand and
generate code across multiple programming languages. The
pre-training process includes extensive datasets from open-
source repositories, which helps Code Llama 7B develop
a robust understanding of syntax, structure, and various
programming paradigms.

▷ Llama 3 8B (Das et al., 2025b) is a versatile foundation
model designed for multilinguality, coding, reasoning, and
tool usage. This variant, with 8 billion parameters, leverages
a dense Transformer architecture, enabling it to handle com-

5

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

plex tasks across different languages and domains. Llama
3 8B is pre-trained on diverse data sources, including text,
code, and structured information, which enhances its capa-
bility to perform well in various applications, from language
understanding to code generation.

Baselines We compare NESTER with eight baselines.

▷ Hityper (Peng et al., 2022) combines static analysis and
well-designed static rules for type inference.

▷ TypeBERT (Jesse et al., 2021) treats type inference as a
fill-in-the-blank task, pre-training a BERT-style model on a
large-scale code corpus for this purpose.

▷ TypeWriter (Pradel et al., 2020) applies a classification
method for type inference. It segments code into identi-
fiers, tokens, comments, and types, then uses a sequence-to-
sequence RNN model (Hochreiter & Schmidhuber, 1997)
for classification.

▷ UniXcoder (Guo et al., 2022) is a pre-trained model for
both code understanding and generation, applied to type
inference tasks.

▷ Type4Py (Mir et al., 2021) employs clustering for type
inference by mapping types into continuous space, allowing
rare types to be predicted by analyzing cluster distances.

▷ InCoder (Fried et al., 2022) is a code generation LM that
treats type inference as a cloze-style task, completing type
annotations within code segments.

▷ CodeT5 (Wang et al., 2021) is an LM for type inference,
using the T5 architecture and fine-tuned on code datasets to
generate type annotations with improved accuracy.

▷ TypeGen (Peng et al., 2023) uses a generative approach
for type inference via the chain-of-thought method. It struc-
tures the prompt into code snippets, type hints, questions,
and answers to guide LMs in generating type inference
responses.

Evaluation Metrics Following previous studies (Allama-
nis et al., 2020; Mir et al., 2021; Peng et al., 2023), we adopt
two evaluation metrics: Exact Match and Match to Paramet-
ric. These metrics assess the proportion of outcomes that:
1) Exact Match: fully correspond to human annotations, for
example, “Dict{int: int}” matches exactly with “Dict{int:
int}” and “Dict{str: str}” with “Dict{str: str}”; and 2)
Match to Parametric: meet the criteria of an exact match,
excluding type parameters, thus treating types like “Dict{int:
int}” and “Dict{str: str}” as equivalent to a generic “dict”
under this metric. The experiment utilizes Top-1, Top-3,
and Top-5 accuracy metrics to assess the performance com-
prehensively.

Implementation Details The model is configured with a
4,096-token context window and a maximum batch size of
8, which is adequate for most dynamic type inference tasks.
To improve accuracy while keeping computational demands
manageable, we set the temperature to 0.2. This configura-
tion minimizes output randomness, enabling consistent and
reliable type inference across diverse coding scenarios. All
experimental tasks are carried out on one Linux platform,
running an Ubuntu 22.04 system, powered by an Intel Xeon
112-core CPU running at 2.40GHz, coupled with an RTX
4090 GPU, and equipped with 1 TB of RAM.

4.2. Overall Performance

To evaluate NESTER ’s performance, we compare it against
several baselines: a symbolic method (HiTyper), four
deep learning models (TypeBERT, TypeWriter, UniXcoder,
Type4Py), and eight LM-based methods (InCoder [1.3B,
6.7B], CodeT5 [base, large], Code Llama, Llama3, Type-
Gen). Table 1 presents the results based on Exact Match
and Match to Parametric metrics. NESTER is competitive
with the top-performing deep-learning method, Type4Py,
across nearly all Match to Parametric categories (Top-1
to Top-5). Specifically, NESTER scores 81.5% for Top-1,
surpassing Type4Py’s 80.2%. In Exact Match, NESTER
exceeds Type4Py by 3.8% and 3.9% for arguments and
returns, respectively. In Match to Parametric, NESTER
outperforms Type4Py by 7.7% and 5.1%. Interestingly,
NESTER lags behind Type4Py in Exact Match for both lo-
cal and overall evaluations, due to Type4Py’s strength in
handling short code segments, despite its limited reason-
ing ability. However, NESTER ’s performance is based on
7B-parameter LMs, and we expect further improvements
with larger models. We also compare NESTER with several
LM-based approaches, including TypeGen, InCoder (1.3B,
6.7B), UniXcoder, CodeT5 (base, large), Code Llama (7B),
and Llama3 (8B). NESTER generally outperforms these
methods, achieving 70.7% accuracy for Top-1 Exact Match,
surpassing TypeGen by 3.6%. It also exceeds TypeGen
across all metrics, with a 5.3% improvement in Match to
Parametric. This highlights the benefit of combining LM
generative capabilities with the reasoning strengths of static
rules for type inference.

4.3. Effectiveness of Neural Understanding

To explore how NESTER learns control flow via neural un-
derstanding, we compare it with TypeGen, focusing on
the typing module, which humans use for optional typ-
ing. Figure 5 shows the precision of NESTER and TypeGen
across different typing categories: “Optional”, “Union”,
“Pattern”, “Match”, “Defaultdict”, “Type”, “Deque”,
“IO”. In common categories like “typing.Optional” and
“typing.Union”, NESTER achieves precision scores of 51.0%
and 16.7%, significantly outperforming TypeGen (22.7%

6

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

Table 1. The performance of NESTER along with the baselines under four types of variables in terms of Top-1,3,5 Exact Match (%) and
Match to Parametric (%).

Metric Cat. Approach Top-1 (%) Top-3 (%) Top-5 (%)

Arg. Ret. Var. All Arg. Ret. Var. All Arg. Ret. Var. All

ST Hityper 8.0 43.5 65.7 52.4 8.0 43.5 65.7 52.4 8.0 43.5 65.7 52.4

TypeBERT 28.0 38.5 51.1 45.4 34.8 52.6 55.8 51.4 36.5 57.1 58.6 54.1
TypeWriter 53.3 52.8 - - 61.1 60.7 - - 65.8 65.3 - -

DL UniXcoder 55.0 49.2 35.9 40.9 66.9 64.6 42.1 49.0 70.6 69.8 45.2 52.4
Type4Py 66.5 56.1 82.0 76.6 72.0 59.2 83.8 79.3 73.8 60.7 84.3 80.1

InCoder-1.3B 20.9 20.5 15.1 16.7 21.3 20.8 15.5 17.1 21.3 21.0 15.6 17.2
Exact InCoder-6.7B 24.1 42.0 18.7 21.9 24.6 42.7 19.1 22.3 24.7 43.1 19.2 22.4
Match CodeT5-base 51.1 57.6 21.7 30.7 59.3 64.4 28.0 37.4 62.0 66.9 30.7 40.1
(%) CodeT5-large 56.2 60.2 44.7 48.4 61.6 64.5 50.4 53.9 63.9 66.3 53.4 56.6

Naive-CL 33.5 22.1 32.2 31.7 48.9 35.1 46.2 46.0 52.8 36.4 49.8 49.5
LMs Naive-L3 31.3 41.6 40.2 38.3 45.9 49.4 55.0 52.3 46.0 49.4 56.3 53.4

TypeGen-CL 61.8 58.0 69.7 67.1 71.5 61.0 76.6 74.5 75.9 65.3 77.4 76.3
TypeGen-L3 56.9 52.2 60.5 59.0 69.8 65.6 73.6 72.4 71.5 68.2 75.3 74.2

NESTER-CL 70.3 60.0 72.2 70.7 75.6 67.7 77.5 76.3 76.5 69.5 78.5 77.3
NESTER-L3 58.7 55.7 71.9 67.8 66.2 65.9 78.4 74.9 66.7 67.7 79.5 75.9

ST Hityper 8.4 52.7 70.2 56.5 8.4 52.7 70.2 56.5 8.4 52.7 70.2 56.5

TypeBERT 29.8 41.4 54.0 48.1 36.0 55.9 58.0 53.5 37.7 60.8 61.2 56.5
TypeWriter 54.4 54.1 - - 63.4 63.5 - - 68.8 69.3 - -

DL UniXcoder 61.9 61.8 44.3 49.3 72.3 76.0 51.2 57.6 75.0 80.1 53.8 60.4
Type4Py 68.0 59.0 86.2 80.2 74.1 64.1 88.3 83.3 75.9 66.3 88.8 84.3

InCoder-1.3B 22.9 22.8 18.7 19.9 23.3 23.1 19.1 20.3 23.4 23.3 19.2 20.4
Para- InCoder-6.7B 28.8 51.6 25.0 28.1 29.3 52.1 25.3 28.5 29.4 52.5 25.3 28.6
metric CodeT5-base 54.8 66.7 27.7 36.6 62.9 74.2 34.4 43.6 65.6 76.4 37.1 46.3
(%) CodeT5-large 61.4 69.4 55.7 58.0 66.8 74.3 61.2 63.5 68.9 76.2 63.7 65.9

Naive-CL 33.9 26.0 33.3 32.9 51.5 45.5 50.1 50.1 56.2 48.1 54.7 54.6
LMs Naive-L3 32.6 44.2 43.9 41.3 46.4 53.2 59.9 56.3 47.2 54.5 61.0 57.4

TypeGen-CL 68.4 62.0 80.1 79.0 78.0 66.4 85.5 82.4 81.9 70.7 86.2 84.1
TypeGen-L3 64.9 59.5 68.9 67.2 78.5 74.5 83.1 81.6 80.3 77.5 85.1 83.6

NESTER-CL 75.7 64.1 85.3 81.5 80.0 73.8 90.5 87.2 81.7 75.8 91.5 88.2
NESTER-L3 65.5 63.8 84.6 79.0 74.9 76.4 91.0 86.6 76.3 78.3 91.9 87.8

Optional Union Pattern Mat Defdict Type Deque IO0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0.51

0.17

0.99
0.91

0.64

0.83
0.90

1.00

0.23

0.11

0.69

0.04
0.00

0.36

0.00

0.29

Nester
TypeGen

Figure 5. Comparison between NESTER and TypeGen.

and 10.9%). This demonstrates NESTER’s ability to synthe-
size control flow. In rarer categories like “typing.Pattern”
and “typing.Type”, NESTER also excels with scores of
99.4% and 90.0%, compared to TypeGen’s 92.0% and
36.4%. These results highlight NESTER’s program syn-
thesis capabilities and its ability to extract type information
from control flow.

4.4. Performance of High-Level Program Generation

To evaluate the accuracy of high-level programs generated
by LMs, and to assess the potential of larger LMs for this
task, we employ five widely-used models: Code Llama 7B,
Llama 3 8B, GPT-3.5, ChatGPT-4, and GPT-4 on 100 Many-
Types4Py samples. Three master’s students specializing
in Computer Science, each with five years of Python pro-
gramming experience, are invited to evaluate the generated
programs. Drawing on prior research in visual question
answering (Hu et al., 2024), we developed evaluation crite-
ria for each generated program. Human annotators scored
the model responses based on: (1) Correctness: Is the pro-
gram execution result accurate? (2) Explainability: Does
the LM clarify the type inference process? (3) Factuality:
Are all steps factually correct compared to the original code
snippet? (4) Consistency: Are the results consistent across
multiple executions?

Table 2 shows the human evaluation results of five LMs
across four metrics. GPT-4 and Llama 3 8B achieve the

7

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

Table 2. Evaluation of high-level program generation accuracy
across different LMs.

Model Acc. (%) Exp. (%) Fact. (%) Cons. (%)

Code Llama 7B 80 85 81 73
LLama 3 8B 96 88 96 100
GPT-4o mini 95 87 97 95
GPT-4o 87 95 91 92
GPT-4 96 87 97 96

int float bool str bytes list tuple dict user0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Sc
or

es 0.
73

0.
73

0.
88

0.
77

0.
53

0.
45

0.
34

0.
48

0.
740.

81

0.
76

0.
91

0.
84

0.
63

0.
52

0.
34

0.
58

0.
760.

81

0.
77

0.
92

0.
85

0.
64

0.
52

0.
40

0.
59

0.
77

Def
User
Usee

Figure 6. Iterative reasoning average accuracy of NESTER method
across various data types.

highest correctness, indicating that high-level programs gen-
erated by NESTER can be effectively produced by models as
small as 8 billion parameters. In contrast, Code Llama 7B
achieves only 80% correctness, likely due to Llama 3’s su-
perior handling of tasks that combine natural language and
code, while Code Llama focuses more on code generation.
GPT-4-4o mini scores 95% in explainability but only 87% in
overall correctness, suggesting strong generative ability but
occasional inaccuracies. This is supported by factuality rat-
ings, where GPT-4 and GPT-4o score highest at 97%, while
GPT-4o drops to 91%. Notably, Llama 3 8B achieves 100%
consistency, likely due to its lower temperature setting.

4.5. Effectiveness of Symbolic Parsing

To evaluate NESTER’s symbolic parsing, we focus on the
types inferred based on regular expressions. The results,
shown in Table 3, highlight NESTER’s coverage across local,
argument, and return variables in various type categories:
“int”, “float”, “bool”, “str”, “bytes”, “list”, “tuple”, “dict”,
and “set”. For local variables, types like “int” (54.7%) and
“str” (57.4%) show good coverage, while others like “float”
(25.3%), “bool” (29.7%), and “list” (33.0%) are also effec-
tively inferred. More complex types, such as “set” (4.3%),
are less covered but still show meaningful inference, con-
firming the validity of symbolic reasoning. For return types,
coverage is generally lower (around 3.4%), with function
arguments showing minimal coverage (0.1%). This suggests
that symbolic reasoning is less effective for return types and
arguments due to the higher frequency of local definitions.

4.6. Effectiveness of Iterative Inference

To assess the efficacy of NESTER’s iterative inference, we
conduct experiments on NESTER for each reasoning step.

HttpResponseNotFound
TypeGen

HttpResponse
Nester

Python Code Case Study

def download(req, id, name):
 redis = Redis.get_instance()
 val = redis.get(id)
 if val is None:
 return HttpResponseNotFound(f'Content
of id {id[:24]} not found. Expired?')
 res = HttpResponse(val.decode('utf-8'))
 res['Referrer-Policy'] = 'origin'
 return res

Figure 7. Case study of a real-world type inference example using
NESTER.

We detail the results of this three-step analysis across nine
categories, including “int”, “float”, “bool”, “str”,“bytes”,
“list”, “tuple”, “dict”, and “user defined”, in Figure 6.
From this figure, we can see an improvement in accuracy
across all categories. Notably, in the step of inference Def,
NESTER infers over 50% of the types, indicating that initial
type inference is relatively easy due to the simplicity of the
types. Furthermore, there is a significant performance im-
provement from Def to User compared to the transition from
User to Usee. This suggests that the step-by-step inference
is particularly effective in the early stages, but as more static
knowledge is incorporated, the types become increasingly
difficult to infer. We also observe that certain categories,
such as “tuple” and “user”, do not show substantial im-
provements from Def to User. This can be attributed to the
specific categories that are most likely defined or utilized
during the Def stage.

4.7. Case Study

To compare our methods with TypeGen, we present one
type inference example from real-world scenarios in GitHub
repositories, as shown in Figure 7. In this case, which fo-
cuses on the Python function download, the return type
needs to be inferred. TypeGen incorrectly reasons the return
type as HttpResponseNotFound. In contrast, NESTER first
generates a high-level program, incorporating control flow
in if analysis and type information for T1 and T2 in assign-
ment analysis. It merges this information based on control
flow, and during program interpretation, LMs evaluate if the
control flow can proceed. Due to insufficient information,
LMs default to allowing the flow to proceed. The assign-
ment of HttpResponseNotFound to T1 and HttpResponse to
T2 is done using LMs, and static analysis reveals that T1 is a
subclass of T2, concluding with the final type HttpResponse.

5. Related Work
Type Inference Type inference reduces the programming
burden in dynamic languages by minimizing explicit type
annotations. While static-rule-based solutions have been
widely used, they often have limited coverage due to the
complexity of dynamic languages (Chen & Erwig, 2016;

8

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

Table 3. Coverage analysis of symbolic rules across different type categories.

Type Category int float bool str bytes list tuple dict set total

Var. 54.7 25.3 29.7 57.4 5.5 33.0 2.1 0.6 4.3 32.2
Arg. 0.1 0 0 0.3 0 0.09 0 0.1 0 0.1
Ret. 11.1 3.9 2.2 3.5 2.3 2.2 3.1 0 0 3.4

Furr et al., 2009; Pavlinovic et al., 2021; Ke et al., 2024).
In contrast, machine learning’s adaptability has led to the
adoption of deep-learning techniques for type inference.
These methods are typically divided into two categories: the
supervised approach (Allamanis et al., 2020; Pradel et al.,
2020; Mir et al., 2021), which treats type inference as a
classification task, and the cloze-style approach (Wei et al.,
2023), which frames it as a fill-in-the-blank task. The rise
of language models like GPT-3, using a chain-of-thought
approach (Peng et al., 2023), has further enhanced reasoning
and interpretability in type inference tasks.

LMs for Reasoning LMs for reasoning enhance human
understanding of problem-solving and excel in complex
tasks like deducing formulas, solving logical puzzles, and
analyzing data patterns (Wang et al., 2023a; Mizrahi et al.,
2023; Biswas & Talukdar, 2024). To unlock their full
zero-shot potential, techniques such as prompt tuning, in-
context learning, chain-of-thought reasoning, and Retrieval-
Augmented Generation (RAG) have been developed. While
effective in simpler tasks, LMs struggle with complex rea-
soning, often producing ’hallucinations’ or inaccurate out-
puts (Tonmoy et al., 2024; Ji et al., 2023; Yao et al., 2023).
In RAG, for example, LMs may be influenced by retrieved
examples, leading to flawed reasoning. Compared to human
cognition, LMs still require significant improvement in their
reasoning abilities. This limitation becomes particularly
evident when the model size is reduced from hundreds of
billions to tens of billions of parameters.

Neural-Symbolic Reasoning Neural-symbolic learning
combines deep learning’s representational power with the
logical rigor of symbolic reasoning to address complex
cognitive tasks. In 2018, Manhaeve et al. (2018) intro-
duced DeepProbLog, integrating neural networks with prob-
abilistic logic programming to enhance reasoning. VIS-
PROG (Gupta & Kembhavi, 2023) leverages LMs for visual
reasoning tasks without task-specific training, highlighting
their potential. For more complex visual tasks, Embed2Sym
utilizes symbolic optimization via embedding space cluster-
ing to enhance reasoning efficiency (Aspis et al., 2022). Fur-
thermore, Manhaeve et al. (2018) extended neural-symbolic
learning to natural language processing using advanced tech-
niques such as inductive logic programming. Despite these
advancements, challenges persist in integrating deep learn-
ing with symbolic systems, particularly in terms of scalabil-
ity and robustness.

6. Discussion
Our work adopts a neuro-symbolic approach to type in-
ference by decomposing the task into simpler steps. We
further enhance inference by integrating both dataflow and
symbolic information into LMs, allowing for more accurate
and interpretable type predictions. Despite these clear ad-
vantages, the practical integration of symbolic components
introduces certain limitations.

A key limitation of our approach is its restricted applicability
to larger-scale LLMs. Although NESTER, integrated with
the symbolic rules on the Code Llama 7B, successfully
inferred types that Code Llama 7B alone could not handle,
larger models like Code Llama 70B are able to infer some
of these types without the constraints of symbolic rules,
as models with larger parameters generally possess better
comprehension and generalization capabilities. In future
work, we plan to extend NESTER to LMs of larger scale. We
also intend to adapt our approach to more locally deployable
models, such as Microsoft’s Phi series, to explore a balance
between inference accuracy and deployment efficiency.

Another limitation is the difficulty in extending our ap-
proach to other programming languages. Although we uti-
lized NESTER to tackle the issue of dynamic type inference
within Python, integrating it into Java presented significant
challenges due to Java’s strict syntax; for instance, Java
requires explicit type declarations at variable initialization
and prohibits null values without explicit nullable decla-
rations (Lanzinger et al., 2021). Consequently, we will
undertake a comprehensive redesign when adapting the type
inference system designed for Python to Java, ensuring that
high-level programs are restructured to meet Java’s syntactic
and type compatibility requirements.

7. Conclusion
We have presented NESTER, a new neuro-symbolic method
for type inference. NESTER leverages LMs to acquire high-
level programs through in-context learning. Subsequently,
it employs a program interpreter to execute the program.
By harnessing the dataflow information within the program,
NESTER facilitates human-like reasoning. Moreover, each
interface is designed to be extensible and offers good inter-
pretability. Experimental results demonstrate the effective-
ness of NESTER and highlight the usefulness of its major
modules.

9

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

Acknowledgements
This work is supported by the National Key Research
and Development Program of China under Grant No.
2022YFB4501400, the National Natural Science Founda-
tion of China under Grant No. 62372199, and the Major
Program (JD) of Hubei Province (Grant No. 2023BAA024).

Impact Statement
The proposed framework, NESTER, adopts a neuro-
symbolic approach to enhance the type inference capabili-
ties of LMs. By integrating dataflow-guided reasoning, our
method tackles key challenges in type inference, resulting in
more accurate and reliable predictions. The high-level pro-
gram we introduce not only improves type inference but also
expands to other areas of code intelligence, including code
summarization, code generation, and potentially automated
debugging. This approach is part of the community’s on-
going efforts in combining traditional software engineering
techniques with the powerful capabilities of modern LMs.
Additionally, our framework paves the way for developing
more robust, interpretable, and scalable LMs for software
development, ultimately improving both the efficiency and
safety of code-related tasks. The broader impact of this work
extends to a wide range of applications, from improving de-
veloper productivity to advancing research in LM-assisted
programming and automated software engineering.

Although NESTER, when integrated with symbolic rules on
Code Llama 7B, successfully inferred types that Code Llama
7B alone could not, larger models such as Code Llama 70B
are capable of inferring some of these types independently,
further demonstrating the potential of combining symbolic
reasoning with large-scale LMs.

References
Allamanis, M., Barr, E. T., Ducousso, S., and Gao, Z. Typ-

ilus: Neural type hints. In Proceedings of the 41st ACM
Sigplan Conference on Programming Language Design
and Implementation, pp. 91–105, 2020.

Arakelyan, S., Hakhverdyan, A., Allamanis, M., Garcia, L.,
Hauser, C., and Ren, X. Ns3: neuro-symbolic semantic
code search. In Proceedings of the 32nd Advances in
Neural Information Processing Systems, volume 35, pp.
10476–10491, 2018.

Aspis, Y., Broda, K., Lobo, J., and Russo, A. Embed2sym-
scalable neuro-symbolic reasoning via clustered embed-
dings. In Proceedings of the 19th International Con-
ference on Principles of Knowledge Representation and
Reasoning, volume 19, pp. 421–431, 2022.

Biswas, A. and Talukdar, W. Robustness of structured data
extraction from in-plane rotated documents using multi-

modal large language models. Journal of Artificial Intel-
ligence Research, 4(1):176–195, 2024.

Chen, S. and Erwig, M. Principal type inference for GADTs.
ACM Siglan Notices, 51(1):416–428, 2016.

Chen, T., Bao, H., Huang, S., Dong, L., Jiao, B., Jiang, D.,
Zhou, H., Li, J., and Wei, F. The-x: Privacy-preserving
transformer inference with homomorphic encryption. In
Proceedings of the 22nd Association for Computational
Linguistics., pp. 3510–3520, 2022.

Cunnington, D., Law, M., Lobo, J., and Russo, A. Neuro-
symbolic learning of answer set programs from raw data.
arXiv preprint arXiv:2205.12735, 2022.

Das, B. C., Amini, M. H., and Wu, Y. Security and privacy
challenges of large language models: A survey. ACM
Computing Surveys, 57(6):1–39, 2025a.

Das, B. C., Amini, M. H., and Wu, Y. Security and privacy
challenges of large language models: A survey. ACM
Computing Surveys, 57(6):1–39, 2025b.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E.,
Shi, F., Zhong, R., Yih, W., Zettlemoyer, L., and Lewis,
M. Incoder: A generative model for code infilling and
synthesis. arXiv preprint arXiv:2204.05999, 2022.

Furr, M., An, J.-h., Foster, J. S., and Hicks, M. Static type
inference for ruby. In Proceedings of the 2009 ACM
Symposium on Applied Computing, pp. 1859–1866, 2009.

Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., and Yin,
J. Unixcoder: Unified cross-modal pre-training for code
representation. arXiv preprint arXiv:2203.03850, 2022.

Gupta, T. and Kembhavi, A. Visual programming: Compo-
sitional visual reasoning without training. In Proceedings
of the 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 14953–14962, 2023.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

Hu, Y., Stretcu, O., Lu, C., Viswanathan, K., Hata, K.,
Luo, E., Krishna, R., and Fuxman, A. Visual program
distillation: Distilling tools and programmatic reason-
ing into vision-language models. In Proceedings of
the 2024 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 9590–9601, 2024. doi:
10.1109/CVPR52733.2024.00916.

Jesse, K., Devanbu, P. T., and Ahmed, T. Learning type
annotation: Is big data enough? In Proceedings of the
29th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering, pp. 1483–1486, 2021.

10

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

Ji, Z., Yu, T., Xu, Y., Lee, N., Ishii, E., and Fung, P. To-
wards mitigating llm hallucination via self reflection. In
Proceedings of the 23nd Association for Computational
Linguistics, pp. 1827–1843, 2023.

Ke, W., Shang, Z., Luo, Z., Wang, P., Guo, Y., Liu, Q., and
Chen, Y. Unveiling factuality and injecting knowledge for
llms via reinforcement learning and data proportion. Sci-
ence China Information Sciences, 67(10):209101, 2024.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Koubaa, A. GPT-4 vs. GPT-3.5: A concise showdown.
Preprints. org, 2023030422, 2023.

Lanzinger, F., Weigl, A., Ulbrich, M., and Dietl, W. Scalabil-
ity and precision by combining expressive type systems
and deductive verification. In Proceedings of the 2021
ACM on Programming Languages, volume 5, pp. 1–29,
2021.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig,
G. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. ACM
Computing Surveys, 55(9):1–35, 2023.

Lu, J., Yu, L., Li, X., Yang, L., and Zuo, C. Llama-reviewer:
Advancing code review automation with large language
models through parameter-efficient fine-tuning. In Pro-
ceedings of the 2023 IEEE International Symposium on
Software Reliability Engineering (ISSRE), pp. 647–658.
IEEE, 2023.

Lukasczyk, S., Kroiß, F., and Fraser, G. An empirical study
of automated unit test generation for python. Empirical
Software Engineering, 28(2):36, 2023.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T.,
and De Raedt, L. Deepproblog: Neural probabilistic
logic programming. In Proceedings of the 32nd Advances
in Neural Information Processing Systems, volume 31,
2018.

Mir, A. M., Latoškinas, E., and Gousios, G. Manytypes4py:
A benchmark python dataset for machine learning-based
type inference. In Proceedings of the 2021 IEEE/ACM
18th International Conference on Mining Software Repos-
itories (MSR), pp. 585–589. IEEE, 2021.

Mir, A. M., Latoškinas, E., Proksch, S., and Gousios, G.
Type4py: Practical deep similarity learning-based type
inference for python. In Proceedings of the 44th Inter-
national Conference on Software Engineering, pp. 2241–
2252, 2022.

Mizrahi, M., Kaplan, G., Malkin, D., Dror, R., Shahaf, D.,
and Stanovsky, G. State of what art? A call for multi-
prompt llm evaluation. arXiv preprint arXiv:2401.00595,
2023.

Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S.,
Usman, M., Akhtar, N., Barnes, N., and Mian, A. A
comprehensive overview of large language models. arXiv
preprint arXiv:2307.06435, 2023.

Nye, M., Tessler, M., Tenenbaum, J., and Lake, B. M. Im-
proving coherence and consistency in neural sequence
models with dual-system, neuro-symbolic reasoning. In
Proceedings of the 35th Advances in Neural Information
Processing Systems, volume 34, pp. 25192–25204, 2021.

Oh, W. and Oh, H. Pyter: effective program repair for
python type errors. In Proceedings of the 30th ACM
Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
pp. 922–934, 2022.

OpenAI. OpenAI models - GPT-4-vision.
https://openai.com/research/
gpt-4v-system-card, 2023.

Pavlinovic, Z., Su, Y., and Wies, T. Data flow refinement
type inference. In Proceedings of the 48th ACM on Pro-
gramming Languages, volume 5, pp. 1–31, 2021.

Peng, Y., Gao, C., Li, Z., Gao, B., Lo, D., Zhang, Q., and
Lyu, M. Static inference meets deep learning: a hybrid
type inference approach for python. In Proceedings of the
44th International Conference on Software Engineering,
pp. 2019–2030, 2022.

Peng, Y., Wang, C., Wang, W., Gao, C., and Lyu, M. R.
Generative type inference for python. In 38th IEEE/ACM
International Conference on Automated Software Engi-
neering, ASE 2023, Luxembourg, September 11-15, 2023,
pp. 988–999. IEEE, 2023. doi: 10.1109/ASE56229.
2023.00031. URL https://doi.org/10.1109/
ASE56229.2023.00031.

Pradel, M., Gousios, G., Liu, J., and Chandra, S. Typewriter:
Neural type prediction with search-based validation. In
Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 209–220, 2020.

Rathee, D., Li, D., Stoica, I., Zhang, H., and Popa, R.
MPC-minimized secure LLM inference. arXiv preprint
arXiv:2408.03561, 2024.

Ray, S. Samsung bans ChatGPT among employees after
sensitive code leak. https://www.forbes.com/
sites/siladityaray/2023/05/02/, 2023.

11

https://openai.com/research/gpt-4v-system-card
https://openai.com/research/gpt-4v-system-card
https://doi.org/10.1109/ASE56229.2023.00031
https://doi.org/10.1109/ASE56229.2023.00031
https://www.forbes.com/sites/siladityaray/2023/05/02/
https://www.forbes.com/sites/siladityaray/2023/05/02/

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

Siddiqui, K. A. I. and Kellogg, M. Inferring pluggable types
with machine learning. arXiv preprint arXiv:2406.15676,
2024.

Srinath, K. Python–the fastest growing programming lan-
guage. International Research Journal of Engineering
and Technology, 4(12):354–357, 2017.

Temsah, M., Jamal, A., Alhasan, K., Temsah, A. A., and
Malki, K. H. OpenAI o1-preview vs. ChatGPT in health-
care: a new frontier in medical AI reasoning. Cureus, 16
(10), 2024.

Tonmoy, S., Zaman, S., Jain, V., Rani, A., Rawte, V.,
Chadha, A., and Das, A. A comprehensive survey of hal-
lucination mitigation techniques in large language models.
arXiv preprint arXiv:2401.01313, 2024.

Wang, K., Ren, H., Zhou, A., Lu, Z., Luo, S., Shi, W., Zhang,
R., Song, L., Zhan, M., and Li, H. Mathcoder: Seam-
less code integration in llms for enhanced mathematical
reasoning. arXiv preprint arXiv:2310.03731, 2023a.

Wang, R., Zelikman, E., Poesia, G., Pu, Y., Haber, N., and
Goodman, N. D. Hypothesis search: Inductive reasoning
with language models. arXiv preprint arXiv:2309.05660,
2023b.

Wang, Y., Wang, W., Joty, S., and Hoi, S. C. Codet5:
Identifier-aware unified pre-trained encoder-decoder mod-
els for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting

elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Wei, J., Durrett, G., and Dillig, I. Typet5: Seq2seq
type inference using static analysis. arXiv preprint
arXiv:2303.09564, 2023.

Wu, S., Fei, H., Qu, L., Ji, W., and Chua, T. Next-
GPT: Any-to-any multimodal LLM. arXiv preprint
arXiv:2309.05519, 2023.

Yao, A. C. How to generate and exchange secrets. In Pro-
ceedings of the 27th Annual Symposium on Foundations
of Computer Science (SFCS 1986), pp. 162–167. IEEE,
1986.

Yao, J., Ning, K., Liu, Z., Ning, M., and Yuan, L. LLM lies:
Hallucinations are not bugs, but features as adversarial
examples. arXiv preprint arXiv:2310.01469, 2023.

Zhang, J., Chen, B., Zhang, L., Ke, X., and Ding, H. Neural,
symbolic and neural-symbolic reasoning on knowledge
graphs. AI Open, 2:14–35, 2021.

Zhang, X., Du, C., Pang, T., Liu, Q., Gao, W., and Lin,
M. Chain of preference optimization: Improving chain-
of-thought reasoning in LLMs. In Proceedings of the
38th Advances in Neural Information Processing Systems,
volume 37, pp. 333–356, 2024.

Zhang, Z., Chen, C., Liu, B., Liao, C., Gong, Z., Yu, H., Li,
J., and Wang, R. Unifying the perspectives of NLP and
software engineering: A survey on language models for
code. arXiv preprint arXiv:2311.07989, 2023.

12

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

A. Preliminaries
This section presents several preliminaries essential to our work, including LMs, type inference, and neuro-symbolic
reasoning.

A.1. Language Models

In the past few years, LLMs such as the GPT series (Koubaa, 2023) and Llama series (Das et al., 2025b) have made
significant progress in text and code generation (Naveed et al., 2023; Das et al., 2025a). LMs aim to predict the probability
distribution of the next token based on a given sequence of preceding tokens. Let s denote a sentence or code sample
tokenized into a sequence {w1, w2, . . . , w|s|}. The LM estimates the joint probability p(s) as the product of conditional
probabilities:

p(s) =

|s|∏
i=1

p(wi | w1, w2, . . . , wi−1).

Training is performed on a large corpus D = {s1, s2, . . . , sN} of size N , using the negative log-likelihood loss function:

LLM(θ) = −
∑
s∈D

|s|∑
i=1

log p(wi | w1, w2, . . . , wi−1; θ),

where θ represents the model parameters. Once trained, the language model can generate subsequent tokens during inference
by iteratively selecting tokens with the highest predicted probabilities from the vocabulary.

The emergence of LLMs is transforming the learning paradigm from the traditional “pre-train and fine-tune” to “pre-train,
prompt, and predict” (Liu et al., 2023). Instead of extensively fine-tuning LMs for each downstream task, tasks are now
reframed using textual prompts to align with the models’ original training objectives. Various prompting techniques have
been developed to fully leverage LMs’ capabilities.

To maximize the potential of LMs, researchers have developed various prompting techniques that reframe tasks to align
with the models’ original training objectives. Zero-shot prompting (Kojima et al., 2022) leverages well-designed prompts
to guide LMs in handling new tasks without additional training data, such as generating class hierarchies in game design
or solving math problems. In-context learning enhances task comprehension by providing a few input-output examples,
enabling the model to infer solutions based on similar cases. For more complex reasoning, Chain-of-Thought (CoT)
prompting (Wei et al., 2022; Zhang et al., 2024) breaks down problems into step-by-step reasoning processes, improving
accuracy in tasks like arithmetic. Finally, Least-to-Most (LTM) prompting further refines CoT by decomposing difficult
problems into progressively simpler subproblems, ensuring robust and scalable reasoning. These techniques collectively
optimize LM performance across diverse applications.

A.2. Type Inference

The type inference task studied in this work is to predict the type of an identifier based on its relevant context within a code
snippet. In this paper, we focus on Python, a dynamically-typed language, which is characterized by untyped programs
but can utilize an existing deterministic type system. Given a code snippet c, let {xv | v ∈ 1 . . . V } represent the set of
V distinct identifiers within c that require type assignment. Let p(τi | ctx) denote the probability distribution(may not
probability distribution) over types for an identifier xv, determined by the context ctx of the code. Our objective is to
develop a type inference model that can input an entirely or partially unannotated code snippet c and output a probability
distribution of types for each missing annotation. Typically, the prediction space Y(c) consists of two components: the
set of all user-defined types (classes/interfaces) declared within c and a fixed set of commonly-used library types. Let T
represent the typing environment of the code snippet c, and T ⊢ c indicate that the program c is well-typed according to the
deterministic type system, with types for identifiers specified by T .

LM-based Type Inference Recently, as the LMs have achieved substantial progress in content generation, including text
generation (OpenAI, 2023), code generation (Lu et al., 2023), and video synthesis (Wu et al., 2023), several studies have
leveraged the capabilities of LLMs for type inference (Siddiqui & Kellogg, 2024; Peng et al., 2023). The key of LM-based
type inference approaches lies in framing the task as a generative one by designing a natural language prompt. As shown
in Figure 8, the prompt describes the given code and identifies the relevant identifiers for type prediction. Such a prompt

13

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

Program Interpreter

ID Size Shape Location ...

1 Small Cube (1,3,-5) ...

2 Large Cylinder (-1,-2,4) ...

...

How many cubes that
are behind the cylinder
are large?

g Encoder + Decoder

h Decoder

filter_shape(scene, cylinder)
relate(behind)
filter_shape(scene, cube)
filter_size(scene, large)
count(scene)

High-level Program

Structural Scene
Representation

Image

Question Answer

2

Figure 9. Neuro-symbolic visual question answering.

can effectively guide LMs to perform type inference. TypeGen (Peng et al., 2023) represents the current state-of-the-art
in LM-based type inference, employing a specialized prompt designed around ICL. The TypeGen prompt is structured
as [Code, ICL EXAMPLES, TYPEHINTS], where ICL EXAMPLES refers to demonstration examples used for ICL, and
TYPEHINTS denotes prediction hints extracted through prior static analysis techniques. Additionally, TypeGen incorporates
CoT reasoning to enhance the accuracy of type inference. The CoT prompt in TypeGen is structured as follows: “First, the
variable error message is assigned from a string. Therefore, the type of the variable error message is ‘str’. ”

A.3. Neuro-Symbolic Reasoning

Python code:
error_message = 'Ensure this value has at most 64 characters'

Type hints:
AccountsTests,LoginForm,LoginFormTests...
Question:
What is the local type of variable error_message?
Answer:
First, the variable error_message is assigned from a str.
Therefore, the type of the variable error_message is `str`.
Python code:

message = 'Unauthorized'
Type hints:
Mock,SouffleSpotifyError,SpotifyGateway...
Question:
What is the local type of variable message?

Answer: [To be generated]

K Inference
Examples

CoT

Test Item

Prompt

Figure 8. An examplar prompt of LMs for type inference (Peng
et al., 2023).

Neuro-symbolic reasoning is an innovative approach that en-
hances the interpretability of tasks by breaking them down into
manageable subtasks (Gupta & Kembhavi, 2023; Cunnington
et al., 2022; Nye et al., 2021; Zhang et al., 2021). Specifically,
it divides the solution function, denoted as f , into two distinct
phases:

f = h ◦ g . (1)

Here, g represents a perception network that processes raw data
through human-like constraints to establish a set of conditions
for solving the problem. h, on the other hand, functions as
a reasoning model that analyzes the raw data to delineate a
logical inference pathway, leading to the solution. Neuro-
symbolic reasoning aims to optimize the learning of these two
functions to identify the most appropriate f .

The neuro-symbolic reasoning methodology has demonstrated
significant promise across a range of applications, such as
visual reasoning (e.g., visual question answering) (Gupta & Kembhavi, 2023), mathematical problem-solving (Wang et al.,
2023b), and code search (Arakelyan et al., 2018).

An Example of Visual Reasoning Figure 9 shows an example of neuro-symbolic visual question answering, the goal of
which is to derive an answer to a specified question by analysing the provided image. Consider the query “How many cubes
that are behind the cylinder are large?”. For the perception function g, the image is processed into a structure analogous to
a dataframe, which serves as static information for addressing the question. As for the reasoning function h, it employs a
context-aware model to parse the question text into a high-level program. This model identifies the key terms of the question
specifically, cube, cylinder, and large—which are utilized as parameters for the high-level program. The program then
generates a sequence of steps to address the question using the provided APIs, such as filter shape and count.

Finally, this high-level program is executed by a program interpreter, utilizing the database created earlier by the perception
function g before producing the final result answer 2. It is noteworthy that if errors occur in the high-level program, the
program interpreter will randomly sample an answer from all possible outputs of the final module. In this case, the sampling

14

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

will be limited to a numerical range that is contextually appropriate for the query, such as the number of cubes depicted in
the image.

B. Details of High-Level Program Generation
B.1. High-Level Program Definition

High-Level Program Definition We define the structure of a high-level program formally, starting by modeling the
original program as a flow graph G = (V,E), where V represents nodes and E represents control flows. Intra-procedurally,
a high-level program is represented as a flow graph G′ = (V ′, E′), where each node V in G corresponds to a smaller flow
graph G′′(V ′′, E′′) within G′. Each node in V ′ is defined by a function F : G → G′′ that selects a subgraph from G and
represents it as a node in G′. This ensures that

⋃
V ′ = G and that for any two nodes vi, vj ∈ V ′, vi ∩ vj = ∅. We define

control flows within V ′ as Sub-Control Flow (Fsub
1 ,Fsub

2 , . . . ,Fsub
n), and edges e ∈ E′ as Main-Control Flow (Fmain),

reflecting their hierarchical relationship.

B.2. Prompts for High-Level Program Generation

Local Type Prompt The local type prompt focuses on transforming Python code that involves local assignments or ex-
pressions. The goal is to use the transformation API Assignment Analysis() for assignments and If Analysis()
for conditional statements to generate a high-level program description for each line of code.

Example:
Code:
urlpatterns = [path(’about_project’, views.index, name=’video’)]
High-level Program:
urlpatterns = Assignment_analysis([path(’about_project’, views.index, name=’video’)])

Code: buf = self.getvalue()
High-level Program:
buf = Assignment_analysis(self.getvalue())

Code:
If val is None:
app_name = ’about’

High-level Program:
If_analysis(val, None, is)
app_name = Assignment_analysis(’about’)

Code:
If val is None:
a = 123

else:
a = ’abc’

High-level Program:
If_analysis(val, None, is)

a = Assignment_analysis(123)
If_analysis(val, None, is not)
a = Assignment_analysis(’abc’)

Code:
metrics_to_return = {}
if not self.error_analysis and name.startswith(’_’):

if is_empty_metric(metric):
if isinstance(metric, CategoricalAccuracy):

High-level Program:
metrics_to_return = Assignment_analysis({})
If_analysis(not self.error_analysis and name.startswith(’_’))

If_analysis(is_empty_metric(metric))
If_analysis(isinstance(metric, CategoricalAccuracy))

15

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

Arg Type Prompt The arg type prompt is designed for analyzing functions and arguments. It uses the
Function Analysis() API for functions and the Argument Analysis() API for specific arguments or values
passed into functions. This prompt is intended to break down function definitions and their corresponding arguments. It is
useful for situations where the focus is on understanding function signatures and the arguments they receive.

This kind of analysis is particularly valuable in real-world development, especially when dealing with complex codebases or
performing code reviews. By thoroughly examining argument types, developers can significantly reduce runtime errors and
improve code robustness. Additionally, structured analysis like this helps clarify a function’s intended behavior, preventing
potential logical flaws. When combined with proper documentation, the benefits multiply—clear docstrings and strict type
hints are, after all, the foundation of high-quality code.

Example:
Code:
def boot(self, container):
provider = container.get(settings.Props.DI_PROVIDER)

High-level Program:
Function_Analysis(boot(self, container))
Argument_Analysis(provider = container.get(settings.Props.DI_PROVIDER))

Code:
def __init__(self, value):
self.value = value

High-level Program:
Function_Analysis(__init__(self, value))
Argument_Analysis(self.value = value)

Code:
def _test_convenience_model_restorer(restorer, convenience_method, placeholder_model,
trained_model, ckpt_id, capsys):
_check_log(restorer, ckpt_id, capsys)

High-level Program:
Function_Analysis(_test_convenience_model_restorer(restorer,
convenience_method, placeholder_model, trained_model, ckpt_id, capsys))
Argument_Analysis(_check_log(restorer, ckpt_id, capsys))

Code:
def get_mods_manifest(manifest_url):
if n == 1:

return json.loads(get_requests_object(manifest_url).text)
High-level Program:
Function_Analysis(get_mods_manifest(manifest_url))
If_Analysis(n==1)

Argument_Analysis(return json.loads(get_requests_object(manifest_url).text))

Code:
def save_modlines(manifest_url, mods_details, mods_path):
if mod_ids.difference(set(mods_details)):

modlines[modline] = [mods_details[mod_id][’directory_name’] for mod_id in mod_ids]
High-level Program:
Function_Analysis(save_modlines(manifest_url, mods_details, mods_path))
If_Analysis(mod_ids.difference(set(mods_details)))

Argument_Analysis(modlines[modline] = [mods_details[mod_id][’directory_name’] for
mod_id in mod_ids])

Return Type Prompt The return type prompt is used for analyzing functions with return statements. The prompt uses
the Return Analysis() API to describe the function’s return value, and Combine() is used for combining multiple
return values if the function contains more than one conditional return. This type of transformation focuses on the function’s
return logic and how the return values are constructed based on conditions.

Understanding return behavior is crucial for debugging and ensuring predictable function outputs—after all, inconsistent
return types can lead to nasty surprises down the line. By systematically analyzing return paths, developers can catch edge

16

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

cases early, enforce type safety, and maintain cleaner control flow. Whether a function returns a single value, multiple
conditional results (r1, r2, ..., rn), or even raises exceptions, the Return Analysis() API helps document and verify
expected behavior.

In practice, this means fewer ”Why is this function returning None?” moments and more confidence in code reliability. The
relationship between input parameters and output values becomes more transparent when return types are properly analyzed.

Example:
Code:
return TestApp(app())
High-level Program:
Return_Type1 = Return_Analysis(TestApp(app()))

Return_Type = Return_Type1

Code:
return json.loads(get_requests_object(manifest_url).text)
High-level Program:
Return_Type1 = Return_Analysis(json.loads(get_requests_object(manifest_url).text))
Return_Type = Return_Type1

Code:
if n == 1:
return mods_details

High-level Program:
If_Analysis(n == 1)
Return_Type1 = Return_Analysis(mods_details)

Return_Type = Return_Type1

Code:
if code != 0:
return False

if counter == 3:
return True

High-level Program:
If_Analysis(code != 0)
Return_Type1 = Return_Analysis(False)

If_Analysis(counter == 3)
Return_Type2 = Return_Analysis(True)

Return_Type = Combine(Return_Type1, Return_Type2)

Code:
if payload.get(’type’) == ’auth’:
return json_success({’full_name’: user_profile.full_name,
’email’: user_profile.email, ’id’: user_profile.id})

if topic is None:
if topic is None:

if content is None:
return json_success()

High-level Program:
If_Analysis(payload.get(’type’) == ’auth’)
Return_Type1 = Return_Analysis(json_success({’full_name’: user_profile.full_name,
’email’: user_profile.email, ’id’: user_profile.id}))

If_Analysis(topic is None)
If_Analysis(topic is None)

If_Analysis(content is None)
Return_Type2 = Return_Analysis(json_success())

Return_Type = Combine(Return_Type1, Return_Type2)

A line of the high-level program, or a program step, consists of the name of an API, the API’s input argument names
and the API’s output variable name. To aid LM generation, we use descriptive API names (e.g., if analysis,
return analysis), argument names (e.g.,lr, 1.0, >), and variable names (e.g., T1, T2) to allow LM to under-
stand the input and output of each API. The LMs need to identify the locations of these statements (e.g., conditional and

17

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

return), fill in the corresponding identifiers from each line as arguments for the respective APIs and create a new variable
name as output.

Through this method, we gradually guide from the simplest condition to more complex structures, increasing complexity
step-by-step, which is in line with the ”least-to-most prompting” instructional strategy. This approach helps the model (or
learner) to gradually build up complex logical expressions, enhancing the accuracy and reliability of understanding and
execution.

B.3. Details of Supported Modules in NESTER

NESTER currently supports four modules, including the If Statement Module, Assignment Module, Argument Module,
and Return Module. These modules are designed to implement fundamental constructs and operations of high-level
programming languages, facilitating the processing and execution of code within the interpreter. Each module has specific
responsibilities and execution workflows, detailed as follows:

▷ If Statement Module: This module handles conditional statements. It first determines the truth value of the condition
expression through the condition judgment method. If the condition is true, the execute method will carry out the
code within the conditional block; otherwise, it will skip it.

▷ Assignment Module: Responsible for handling variable assignment operations. This module parses variables and
expressions in assignment statements using the symbolic parse method, then calculates the value of the expression and
updates the corresponding variable in the state dictionary through the execute method.

▷ Argument Module: This module manages the passing of arguments in function calls. During the execute process, it
parses the incoming arguments and calculates each parameter’s value based on the current state dictionary, subsequently
passing these values to the respective function or procedure.

▷ Return Module: Handles the return operations from functions or methods. By parsing return statements using the
symbolic parse method, this module calculates the return value in the execute method, updates the state dictionary,
and returns the result to the caller.

C. Details of Program Interpreter
C.1. Details of Symbolic Parsing

In the high-level program interpreter, we denote the parameters (always a statement) received by the interpreter as S. To
determine the type of S, we first use symbolic parsing to classify the input xv , requiring type annotation. Figure 11 shows
the denotational semantics of regular expressions used for symbolic parsing in this paper. These include simple types like
int, float, bool, str, and bytes, as well as generic types such as tuple, list, and dict. Finally, if S has not been generated by
an LM, we parse it to identify xv for iterative type inference.

Specifically, for statement S, we first use regular expressions to classify the type of input xv. For instance, the statement
return ”Odd” is processed by our regular expression and recognized as type str. If our designed regular expression fails to
recognize the type, we proceed to parse it, such as in the statement return a + b, which we identify as two identifiers a and b.

C.2. Details of CGDG

Coarse-Grained Dataflow Graph (CGDG) To build a bridge from a non-structured code representation to a structured
intermediate code graph representation, a Coarse-Grained Dataflow Graph (CGDG) is introduced in NESTER framework.
Compared to traditional Concrete Syntax Tree (CST) and Abstract Syntax Tree(AST), the CGDG has at most three hops for
each identifier, resulting in a more concise graph structure. The CGDG is constructed from the CST of the target program.
For an identifier xv , we represent these three hops using three types of nodes: Def(xv), User(xv), and Usee(xv), while the
edges are directed to capture the relationships between them.

For an identifier xv , Def(xv) represents the definition of xv within the code snippet c. This includes all top-level assignment
statements where xv appears on the left-hand side. Let Uc represent the set of all code constructs, i.e., the individual
nodes in the CST that correspond to elements such as variable declarations and operations. User(xv) includes all con-
structs u in which the identifier xv is used for computations or condition checks. We define User(xv) = {u ∈ Uc :

18

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

class If_Statement_Module():
 def __init__(self):
 # load a trained model; move to GPU

 def condition_judgment(self, step: str):
 # parse the list of input expression/variable
 names/operator and output a bool value of the condition

 def execute(self, step: str, state: Dict):
 step += query_table(query)
 inputs, input_var_names, output_var_name = self.parse(step)

 # get values of input variables from state
 for var_name in input_var_names:
 inputs.append(state[var_name])

 # perform computation using the loaded LLMs
 query, type = some_computation(inputs)

 # update state
 state[output_var_name] = output
 return output

class Assignment_Module():
 def __init__(self):
 # load a trained model; move to GPU

 def symbolic_parse(self, step: str):
 # parse step and return list of input values/variable
 names/operator and output the type or variable name

 def execute(self, step: str, state: Dict):
 inputs, input_var_names, output_var_name = self.parse(step)

 # get values of input variables from state
 for var_name in input_var_names:
 inputs.append(state[var_name])

 # perform computation using the loaded LLMs
 type = some_computation(inputs)

 # update state
 state[output_var_name] = output
 return output

class Argument_Module():
 def __init__(self):
 # load a trained model; move to GPU

 def execute(self, step: str, state: Dict):
 step += query_table(query)
 inputs, input_var_names, output_var_name = self.parse(step)

 # get values of input variables from state
 for var_name in input_var_names:
 inputs.append(state[var_name])

 # perform computation using the loaded LLMs
 query, type = some_computation(inputs)

 # update state
 state[output_var_name] = output
 return output

class Return_Module():
 def __init__(self):
 # load a trained model; move to GPU

 def symbolic_parse(self, step: str):
 # parse step and return list of input values/variable
 names/operator and output the type or variable name

 def execute(self, step: str, state: Dict):
 step += query_table(query)
 inputs, input_var_names, output_var_name = self.parse(step)

 # get values of input variables from state
 for var_name in input_var_names:
 inputs.append(state[var_name])

 # perform computation using the loaded LLMs
 query, type = some_computation(inputs)

 # update state
 state[output_var_name] = output
 return output

Figure 10. Modules currently supported in NESTER.

JintK = {w | w = s · d, s ∈ {+,−}, d ∈ JdigitsK}
JfloatK = {w | w = s · d1.d2, s ∈ {+,−}, d1, d2 ∈ JdigitsK}

JstringK = {w | w = s1 . . . sn, si ∈ (σ ∪ ϵ), n ≥ 0}
JboolK = {w | w = “True” ∨ w = “False”}

JbytesK = {w | w = b(s1 . . . sn), si ∈ (σ ∪ ϵ), n ≥ 0}
JlistK = {w | w = [[s1, s2]], s1, s2 ∈ JstringK}
JdictK = {w | w = {[s1, s2]}, s1, s2 ∈ JstringK}
JsetK = {w | w = {s1, s2, . . . , sn}, si ∈ JstringK, n ≥ 0}

JtupleK = {w | w = ([s1, s2]), s1, s2 ∈ JstringK}
JdigitsK = {w | w = d1d2 . . . dn, di ∈ JdigitK, n ≥ 1}
JdigitK = {w | w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}

JϵK = {w | w is a valid escape sequence}
JσK = {w | w is any valid character}

Figure 11. Denotational semantics of regular expressions applied in NESTER.

xv is actively utilized in u}, where active utilization indicates that the identifier xv is involved in computational opera-
tions or evaluations. Usee(xv) contains not just the direct users of xv, but also anything that is used in the user context
Usee(xv) =

⋃
u∈User(xv)

{v | v is involved in u’s computation}, v denotes a variable actively engaged in u’s operations.

19

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

Algorithm 1 Coarse-grained Dataflow Graph Generation from CST
Input: The CST of the function, func cst
Output: Coarse-grained dataflow graph of the given function, cg
for n ∈ func cst do

if n.type = Token ∧ n.tokenType = Identifier then
if hasCSTDef(n) then

cg.addNode(Def(n), n.line number)
end

end
for n ∈ cg do

cst node← getCSTNode(n) if hasCSTUser(cst node) then
user node← getCSTUser(cst node) if Def(user node) ∈ cg then

cg.addEdge(Def(n),Def(user node), 0) cst user node ← getCSTNode(user node) if hasCSTUser(cst user node)
then

usee node← getCSTUser(cst user node) if usee node ∈ cg then
cg.addEdge(Def(n),Def(usee node), 1)

end
else

cg.addNode(Usee(n), usee node.line number) cg.addEdge(Def(n),Usee(n), 1)
end

end
end
else

cg.addNode(User(n), user node.line number) cg.addEdge(Def(n),User(n), 0)
end

end
end

Assign

Code
1 def calculate(a):
2 x = a.keys()

6 re = "example result"
7 z = re + y
8 return y

3 b = x + 10
4 c = x - 5
5 y = str(x) + "is result"

Keyword

TDG

Dataflow

(a) Code segment.

Assignment Keywords TDG Complete Code0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(t)

 /
50

 p
y.

 a
no

t.

0.03 0.01

0.95

0.00

Assignment
Keywords
TDG
Complete Code

(b) Slice method effects on an M.

Local Argument Return0.0

0.2

0.4

0.6

0.8

1.0
Ac

c

0.69
0.63

0.51

0.68 0.70

0.57

0.69 0.70

0.59

0.35

0.56

0.41

Assignment
Keywords

TDG
Complete Code

(c) Slice time for each method.

Figure 12. Impact of code slice on type inference performance.

CGDG Construction Given the input code’s CST, NESTER constructs a CGDG for each function following the logic in
Alg. 1. It first identifies all identifier definitions Def(xv) and builds CGDG nodes by traversing the CST. The RedBaron
library is used to visit each CST node. When an identifier node is found (line 2), NESTER creates a corresponding CGDG
node and preserves the line number (line 4). The process repeats recursively until all identifier nodes are visited, reaching
the CST’s leaf nodes (line 6).

After node instantiation, NESTER traverses the CGDG. As each node is encountered, it identifies the corresponding CST
node and checks for identifiers in use (line 9). If a node uses another, NESTER checks for an existing matching node in the
CGDG. If found, an edge is added (line 12). Otherwise, a new User(n) node is created, and an edge is added from Def(n) to
User(n) (line 24). Similarly, Usee(n) nodes are created if necessary, and a Usee edge is added from Def(n) to Usee(n) (line
21).

D. Extended Analysis: Rethinking Type Dependency Graph (TDG) for Neural Type Inference
To the best of our knowledge, TypeGen (Peng et al., 2022; 2023) is the first to explore LMs for type inference using a Type
Dependency Graph (TDG) to model variable type dependencies and static analysis for code slicing to improve efficiency.
We argue that the TDG may be too detailed, impacting inference efficiency. To test this, we design an experiment to assess
the TDG’s role and the granularity of code slices. As shown in Figure 12a, code can be sliced at different granularities,

20

Dataflow-Guided Neuro-Symbolic Language Models for Type Inference

click

select

Figure 13. Example from case study 1 solved by the NESTER plugin. You can directly select the type recommended by NESTER to
complete the annotation. Alternatively, you can click the ’>’ icon to view the detailed type inference process.

such as by assignments, keywords, or TDG. These slices are then input into an LM (Code Llama 7B) to predict variable,
argument, and return types.

Figure 12b shows that slicing by Assignment, Keywords, and TDG all improve accuracy compared to using the full code.
The TDG method achieves the highest accuracy, but for local types, the Assignment method is nearly as accurate (69%).
For argument types, the Keywords method reaches 70%, close to the TDG’s performance. Figure 12c compares slicing
times for 50 Python annotations. The TDG method takes an average of 0.95 seconds, while the Assignment and Keywords
methods take just 0.02 and 0.05 seconds, respectively—20 times faster. These results show that while the TDG performs
well, it sacrifices time, even underperforming simple keyword searches. We suggest that LMs don’t need such detailed static
analysis; coarser slices can still provide good results with greater efficiency. Moreover, a new method is needed to better
integrate LMs with static analysis to avoid reducing the potential of combining both.

E. Implementation
To show the interpretability of our method, we developed a plugin on Visual Studio Code (VSCode). Any developer can
download the plugin to their local system. This plugin is crafted to assist developers in obtaining type inference results and
gaining a deeper understanding of the type inference process. We use simple regular expressions to generate high-level
programs, which can not handle complex code structures, but fortunately can handle most simple code, thereby facilitating a
seamless interaction.

Figure 13 depicts a screenshot of the VSCode plugin. The plugin’s interface is designed to be intuitive and interactive,
featuring an arrow-based type annotation mechanism. When developers append the ‘− >’ symbol after a function definition
for type annotation, the plugin promptly activates a feedback interface. This interface displays five potential types associated
with the annotated identifier. For instance, download is predominantly identified as an HttpResponse type. Additionally,
a ‘click’ option is available beneath the recommended type, allowing developers to view the inference process if desired.
Upon clicking, a detailed high-level program response is displayed, which elucidates the concrete reasoning steps of the
type inference process.

21

