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Abstract

We present an inference procedure for the seman-

tic segmentation of images , based on estimates

of the overlap between each of a set of large

object segmentation proposals and the objects

present in the image. We extend the composite

likelihood methodology to error distributions on

such one-dimensional statistical estimates, and

define continuous latent variables on superpixels

obtained by multiple intersections of segments,

then output the optimal segments from the in-

ferred superpixel statistics. The algorithm is ca-

pable of recombine initial mid-level proposals, as

well as handle multiple interacting objects, even

from the same class, all in a consistent joint in-

ference framework by maximizing the compos-

ite likelihood of the underlying statistical model

using an EM algorithm. In the PASCAL VOC

segmentation challenge, the proposed approach

obtains high accuracy and successfully handles

images with complex object interactions.

1. Introduction

Semantic segmentation aims to detect objects from dif-

ferent categories and identify their spatial layout simulta-

neously. Each pixel in the image must be classified as

a foreground object of a certain category, or be assigned

as background. Because it can identify object bound-

aries, this challenging task is of great practical importance

for scene understanding and robot vision (Arbelaez et al.,

2012; Ion et al., 2011; Gould et al., 2009; Kumar et al.,

2011; Ladicky et al., 2010; Pantofaru et al., 2008).

International Conference on Machine Learning (ICML) workshop
on Inferning: Interactions between Inference and Learning, At-
lanta, Georgia, USA, 2013. Copyright 2013 by the author(s).

An approach that we have pursued with some success was

based on ‘sliding segments’, starting from an unsupervised

generation of many possibly conflicting mid-level figure-

ground object segmentation proposals with large spatial

support, obtained based on cuts in graphs defined on edge

and color potentials. The segments are then passed to clas-

sifiers or regressors that determine to which category they

belong. Full image interpretations are then assembled se-

quentially from individual segments (Fig. 1).

The existence of predictions for many mutually overlap-

ping segments poses a new inference challenge for pixel

labeling. High-order CRF models (Ladicky et al., 2009;

2010; Dann et al., 2012) usually involve different types

of pairwise potentials (between pixels, between pixels

and segments and between segments) and inference can

be intractable. Other approaches search for configura-

tions of non-overlapping segment hypotheses (Gould et al.,

2009; Kumar et al., 2011) by using non-maxima suppres-

sion and maximum clique random field models (Ion et al.,

2011). They can be tractable since the decision space

is limited to the initial segments (normally < 200 in

practice). However, segments often occlude and cut

through each other and the initial mid-level proposals

may not be entirely accurate. Non-probabilistic meth-

ods have also been developed to produce an average

(Hoiem et al., 2007; Pantofaru et al., 2008) or weighted

average (Carreira & Sminchisescu, 2012; Li et al., 2010;

Arbelaez et al., 2012) of the predicted scores on each

pixel/superpixel, then output the highest scoring labels.

This strategy would typically allow for the refinement of

a semantic segmentation, but in a heuristic manner, by e.g.

thresholding pixel or superpixel scores.

In this paper, we propose a model that allows for the refine-

ment and recombination of initial bottom-up proposals us-

ing a principled statistical inference method, while avoid-

ing some of the intractability with random field structures.

Instead of directly modeling the high-dimensional condi-
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Figure 1. (Best viewed in color). The need for an efficient in-

ference procedure given multiple object segmentation proposals.

Simply performing non-maximum suppression would discard all

the person segments, which have lower scores because they all

overlap the first bike segment.

tional label distributions, we model the one-dimensional

error distributions of many predicted region statistics. By

combining thousands of pixels that span a large segment

into one segment statistic, we avoid difficult maximum a

posteriori inference in random field models with cyclic de-

pendencies. Models of error distributions are commonly

seen in the context of regression, the simplest being the

Gaussian error used in least squares. In our case, the error

distribution is modeled as a mixture with two components

based on exploratory data analysis. The first component

corresponds to false positive detections while the second

one is a Gaussian truncated to the domain of the statistic.

Our main idea is to model the segments as computable

statistics from superpixels that have no spatial overlap,

which means there exists a mathematical formula that can

output segment statistics given values of the superpixel

statistics. From this link, we can optimize the superpixel

statistics by maximizing the composite likelihood (or pos-

terior) of the predicted segment statistics in the modeled

error distribution. Intuitively, the configuration of super-

pixels that can explain most segment statistics will emerge

as the maximum likelihood solution, as shown in fig. 2. The

conceptual graphical model is presented in fig. 3.

Our methodology consists of a training phase and an in-

ference phase. During training, regressors are estimated to

predict segment statistics. This can be done by standard

routines such as SVR or least-squares, and is not covered.

Given a test image, the inference has three main stages:

• Use the regressors to predict segment statistics.

• Maximize the composite likelihood to estimate super-

pixel statistics.

• Output an optimal full-image semantic segmentation

given the estimated superpixel-level statistics.

The first stage is straightforward thus we will be mainly

discussing the second and the third ones.
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Predicted Overlap: 48%

Config_1: 50%
Config_2: 100%

Predicted Overlap: 27%
Config_1: 50%

Config_2: 72%

Configuration 1 is more likely to be right!

Predicted Overlap: 4%
Config_1: 0%

Config_2: 25%

Predicted Overlap: 3%
Config_1: 0%

Config_2: 40%

Figure 2. (Best viewed in color) The goal of our inference is to

find the superpixel configuration which best explains most of the

predicted segment statistics, here spatial overlap (with the chair

object). This formulation allows discovering objects that are cut

into disconnected components, such as the chair in this figure.
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Figure 3. The conceptual graphical model. Superpixel statistics

are generated from the ground truth objects. Segment statistics

are generated from superpixel statistics and the segments. The

observations are predicted segment statistics on each category,

perturbed with noise ǫ. During inference, we first solve for the

superpixel statistics θ, then output full objects given θ.

2. Composite Likelihood and Statistical

Estimates

We denote p(x) the probability of random variable x, I

the indicator function. N (x;µ, σ2) the normal distribution

with mean µ and variance σ2, Ber(α) a Bernoulli distribu-

tion with parameter α, Exp(x;λ) an exponential distribu-

tion with parameter λ, and δ(x) the Dirac function. When

x is a vector, x ≥ 0 means that all dimensions of x are

larger or equal to 0. For a set A, let |A| denote its cardinal-

ity. A segment is considered a set whose cardinality is the

number of pixels inside it.

A maximum composite likelihood (MCL) ap-

proach (Lindsay, 1988; Dillon & Lebanon, 2010) drops the

independence assumptions typical in maximum likelihood.

For us, this is important, in order to be able to leverage

overlapping higher-order observations (on segments) that

are strongly inter-dependent.

Definition 1 Suppose we have a dataset D =
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{X(1), . . . , X(n)}, where each X(i) is a m-dimensional

vector. Consider a finite sequence of variable subset

pairs (called m-pairs) (A1, B1), . . . , (Ak, Bk), where

Aj , Bj ⊂ {1, . . . ,m}, ∀j ∈ 1, . . . , k with A 6= ∅ = A∩B.

Given vector β ≥ 0, the composite likelihood object is

cl(θ) =
k

∑

j=1

βj log pθ(XAj
|XBj

). (1)

MCL solves for θ by maximizing the composite likelihood

(1). It is asymptotically consistent given an identifiabil-

ity assumption, but often intractable because of the need to

model a high-dimensional distribution pθ(XAj
|XBj

). We

propose to extend the MCL framework to distributions on

statistical estimates, which are 1-dimensional distributions

hence easier to model and estimate.

Definition 2 With the same conditions as in Definition 1

for D,X(i), Aj , Bj and β, let us further assume that

f(X(i), Aj , Bj) is an observed statistic from X(i), Aj and
Bj . We define the maximum composite f -likelihood prob-
lem as

max
θ

n
∑

i=1

k
∑

j=1

βj log pθ(f(X
(i)

, Aj , Bj)). (2)

This new MCL problem recovers the model parameters θ

from the composite f -likelihood log pθ(f(X
(i), Aj , Bj))

for all the random variables on multiple different subsets.

As an example, suppose a fixed-length feature vector Zij

can be extracted from X(i), Aj , Bj and the distribution of

fij can be modeled as pθ(fij) = N (θ⊤Zij , σ
2), with θ

the regression weights. The MCL problem in this case be-

comes a weighted least squares regression of solving for θ.

The asymptotic consistency proof still partially holds (see

associated technical report (Li et al., 2013)), even when

different fij are inter-dependent. Intuitively, as the number

of observations goes to infinity, the true model parameters

θ should give the best performance for each individual seg-

ment, hence converge to the optimal solution of the MCL

problem (2), given a suitably chosen β vector.

3. Maximizing the Composite Likelihood for

Semantic Segmentation

In this section we present the probabilistic model of the

proposed CSI (Composite Statistical Inference) method

that uses the modified MCL to infer superpixel statistics.

The final stage output final segmentations given the super-

pixel statistics is discussed in sec. 4.

3.1. Semantic Segmentation from Figure-Ground

In our problem setting, I represents the image, as a lat-
tice of pixels. An object segmentation proposal (or simply

segment) Ai ⊂ I is a subset of I . Suppose m segments
A1, A2, . . . , Am; c object categories C1, C2, . . . , Cc; r
ground truth objects F1, . . . , Fr are present in the image
I and each one belongs in a particular category, denoted as
Fk ∈ Cj . Each pixel p in the image should either belong

to a single object or to the background, i.e.
∑r

k=1 I(p ∈
Fk) ≤ 1. For each segment Ai, its class-specific overlap
with a category Ck is defined by

V
0
ik = V (Ck, Ai) = max

Fj∈Ck

|Fj ∩Ai|

|Fj ∪Ai|
. (3)

V 0
ik can be estimated by training one regressor for each

category Ckon a separate training set (for details on possi-

ble training methods one can consult e.g. (Li et al., 2010;

Carreira & Sminchisescu, 2012; Arbelaez et al., 2012)).

We denote the estimates as V̂ 0
ik .

Given segments A1, A2, . . . , Am, we find multiple in-

tersections by dividing the image I into superpixels

S1, S2, . . . , Sn, so that ∀i, j, Si∩Sj = ∅, ∀k,Ak = ∪iSk(i)

(every segment Ak is the union of some superpixels), and

the number of superpixels is minimal. In practice we

consider only segments that have non-negligible predicted

overlap (over a loose threshold) with at least one category.

Therefore, in many cases, the superpixels have finer gran-

ularity inside objects of interest (fig. 4) and coarser granu-

larity on the background.

3.2. The Probabilistic Model

We use θkj to model the percentage of pixels within a su-
perpixel Sk that belongs to object Fj . Then, the overlap
between a segment Ai and Fj can be computed as

Vij =
|Fj ∩Ai|

|Fj ∪Ai|
=

∑

Sk∈Ai
θkj |Sk|

∑

Sk∈Ai
|Sk|+

∑

Sk /∈Ai
θkj |Sk|

(4)

Importantly, Vij is computable from θ only since each |Sk|

is a constant. Now, given the observed overlaps V̂ 0
ij , one

can optimize θ by maximizing the composite likelihood of

V̂ 0
ij , given the overlap Vij(θ) computed from θ:

max
θ

m
∑

i=1

c
∑

k=1

max
Fj∈Ck

log p(V̂ 0
ik|Vij(θ)) (5)

where the inside max operation represents the fact that V̂ 0
ik

is an estimate of maxFj∈Ck
Vij(θ), instead of any Vij(θ).

If we know the number of objects in each category and their

rough locations, this can be solved by assigning each V̂ 0
ik to

one of the objects in Ck, so that likelihood is maximized
(see (Li et al., 2013) for details). After the assignment,

suppose each V̂ij has been properly assigned from a cor-

responding V̂ 0
ik, if Fj ∈ Ck. The MCL problem becomes:

max
θ

m
∑

i=1

r
∑

j=1

βijp(V̂ij |Vij(θ)) (6)
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where θ is an n×r matrix, βij = 1 if segment Ai has been

assigned to object Fj and 0 otherwise.

Fig. 5 shows histograms on V |V̂ , for the data collected

from PASCAL VOC training set, which can easily be in-

terpreted as a combination of two components: a bump at

V = 0, which apparently corresponds to false positive de-

tections, and a centered distribution with V 6= 0. As V̂

increases, the chance of misclassification is reduced.

Motivated by these observations, we introduce an addi-
tional Bernoulli random variable zij for each predicted

score V̂ij (fig. 6). The outcome of zij informs whether

the prediction V̂ij is a false positive. We make three condi-
tional distribution assumptions:

Vij |V̂ij , zij ∼

{

Exp(λ), zij = 0

N (V̂ij , σ
2), zij = 1

(7)

zij |V̂ij ∼ Ber(α(V̂ij))

zij = 1|V̂ij , Vij , θ ∼ Pr(zij = 1|Vij , V̂ij)f(Vij , θ−j)

where θ−j = [θ1, . . . , θj−1, θj+1, . . . , θr] represents all

the θ columns without the j-th. The assumptions are in line

with our observations: if zij = 0, the prediction is a false

positive and the overlap Vij should be 0. We take an expo-

nential distribution as an approximation, due to smoothness

and tractability. If zij = 1, then Vij should be centered

around the predicted overlap1. Besides, the false positive

probability p(zij = 0|V̂ij) controlled by α(V̂ij) is smaller

if V̂ij is larger. The third assumption is a ‘mutual exclusion’

prior. We observe that in categories that are hard to dis-

tinguish, e.g. cat and dog, horse and cow, a segment

often has significant predicted overlaps on multiple cate-

gories, but only one of them is correct (see (Li et al., 2013)

for an example). In such cases, when evidence from θ−j

suggests the object is from another category, the probabil-

ity of zij = 1 is diminished by a factor (details in (Li et al.,

2013)). The 1-dimensional function α(V̂ij) is obtained by

computing the histogram on the false positive rate over a

validation set and fitting a smooth function to it.

3.3. EM Estimation

To maximize the likelihood with latent variable zij , we
adopt a conventional expectation maximization (EM) ap-
proach. Formally, we would like to optimize the composite
likelihood with latent variables Z = [zij ]: In the E-step,
E(zij) is computed from existing estimates using Bayes’
formula (see (Li et al., 2013)):

E(zij) = p(zij = 1|V̂ , V, θ) = f(Vij , θ−j)p(zij = 1|V̂ij , Vij)
(8)

This turns out to be similar to a standard mixture model

update rule, with an additional factor f(Vij , θ−j) reflecting

1Here N is a truncated Gaussian on the range [0, 1], but since
the log-likelihood between truncated and normal Gaussians dif-
fers only by a constant, we abuse the notation N here.

Figure 4. (Best viewed in color) Refined superpixels obtained by

multiple intersection from original mid-level segments. Each dif-

ferent color represents a different superpixel (black identifies the

largest one). Note that the partitions are, automatically, finer-

grained, on the objects of interest.
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Figure 5. Histograms of true overlap given predicted overlap

across the VOC validation set.

the change of belief on Vij and V̂ij , given current estimates

of θ for other categories.

In the M-step we maximize the log-likelihood based on the
following optimization (detailed derivations in (Li et al.,
2013)):

min
θ

∑

i,j βij

(

E(zij)

2σ2 (V̂ij − Vij(θ))
2 + (1− E(zij))λVij(θ)

)

s.t. 0 ≤ θkj ≤ 1, k = 1, . . . , n, j = 1, . . . , C;
∑C

j=1 θkj ≤ 1, k = 1, . . . , n (9)

Substituting (4) into (9) results in the full optimization.

In practice, we also employ a smoothness regularization

term λ2

∑n

k=1 |Sk|
(

∑c

j=1 θ
2
kj

)

where λ2 is a parameter.

It tends to preserve the shape of segments in the superpixel

potentials and proved important for practical performance.

max
θ,Z

m
∑

i=1

r
∑

j=1

βij log p(V̂ij |Vij(θ), zij) (10)

Interestingly, the optimization has a convex relaxation

(see (Li et al., 2013)). In the M-step of each EM iteration

we first solve the convex relaxation, then use the solution to

warm start the optimization (9). A projected quasi-Newton

method 2 is used to solve both optimization problems.

2http://www.di.ens.fr/ mschmidt/Software/minConf.html
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Figure 6. The graphical model used. We separate objects within

each category ((Li et al., 2013)) so that the categorical predictions

are mapped to each object. Also, θ and V generate a Bernoulli

random variable z, which determines whether the predicted over-

lap would be a false positive.

1 Bicycle 2 Bicycles 1 Person 2 Persons
Bicycle 1 Bicycle 1 Bicycle 2 Person 1 Person 1 Person 2

Figure 7. The θ map computed for 1 bicycle/2 bicycles, and 1 per-

son/2 persons for the same set of predicted segment overlaps. The

second bike represents spurious predictions from noise, whereas

separating two people indeed improves the solution.

3.4. The Full Procedure

The full inference procedure involves two steps:

• Determining the number of objects within each cat-

egory by the within-class object separation routine

(see (Li et al., 2013)).

• Performing joint inference by iterating (8) and (9)

across all categories and objects.

Notice that we choose to perform the within-class object

separation routine before the joint inference, because enu-

meration of object counts in each category in a joint infer-

ence could lead to exponential blowups. Whereas, even if

the within-class object separation can make mistakes, the

erroneous object hypotheses can still be suppressed during

the joint inference.

In fig. 7 we show the result of the within-class object sepa-

ration routine on the segments in fig. 1. Two objects are

generated in both the bicycle and the person categories.

After detecting two objects for each category and running

joint inference with these 4 objects, the algorithm is able to

correct the mistake in the second bike (fig. 8).

4. Optimal Full Image Labeling

Given the inferred real-valued parameters θ (e.g. fig. 8), we

still need to produce a consistent segment for each object.

A graph-cut algorithm can be used on a potential map like

fig. 8, but because θ has different magnitudes in different

images, a uniform cut parameter choice across a dataset

is unlikely to be successful. We propose an algorithm to

produce optimal segments that maximizes the overlap with

Bike 1 Bike 2 Person 1 Person 2

Figure 8. Joint optimization on 4 objects. One can see that po-

tentials for Bicycle 2 have been suppressed due to similar spatial

layout and lower scores to Person 2.
Bicycle: 0.457 Person: 0.243 Bicycle: 0.071 Person: 0.222

Original Image Class Output Instance Output

Bicycle

Person

Figure 9. Final masks and final output of the algorithm. Bike 2

is filtered out because of very low score. Superpixels are chosen

according to the procedure in Sec. 4. It is interesting to see that

the first person has his right leg correctly cut through by the bi-

cycle, a solution that was not available in any of the initial object

segmentation proposals.

ground truth, without the need to re-segment. First, we

prove that if there is only a single object, then the following

procedure is optimal (see (Li et al., 2013) for details):

• Sort all θ in descending order. Initialize C = 0.

• From the start of the sorted list, include superpixel into

the final segment one-by-one and compute the overlap

V of the current segment using formula (4) from θ.

• Stop when V >
θj

1−θj
, and output the segment with

superpixels 1 to j − 1 in the sorted list.

In case the optimal segments in multiple categories con-

flict on some superpixels, one can run a branch-and-bound

search on all the conflicting superpixels to maximize the

sum of overlaps on each object (see (Li et al., 2013). Since

θ from all categories are optimized jointly, only a limited

number of superpixels will be simultaneously present in the

optimal segment of many categories and the search is usu-

ally fast. Fig. 9 shows the search results for the 4 objects

in fig. 8 as well as the final output.

5. Experiments

The experiments are conducted on the PASCAL VOC Seg-

mentation dataset (Everingham et al., 2012), a widely used

benchmark for semantic segmentation. This dataset defines

20 object categories and provides around 3, 000 training

images with pixelwise ground truth annotations. In addi-

tion, around 9, 000 images annotated with bounding box

information are used for training. The final benchmark is

on a held out test set, for which an evaluation can only be

done by submitting results to an online evaluation server.

Performance is evaluated as the average pixel precision,

computed on all the pixels of each class and then averaged

over the 20 classes plus background. The overlap predic-

tions V̂ used in our system are obtained by combining the

regressors from (Li et al., 2010) and (Carreira et al., 2012),

with linear weights learned on the trainval set.
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Table 1. VOC 2012 test results. CSI performs better especially in the categories with more object interactions.
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Figure 10. Example of semantic segmentations. The first row

shows results using the post-processing algorithm of (Li et al.,

2010), the second row shows results of the proposed CSI algo-

rithm. Note CSI performs significantly better in complex scenes

with multiple interacting objects.

In the results (Table 1) The method performs slightly bet-

ter than the others, especially for object categories in-

volved in interactions such as Bike, Chair, Person

and Sofa. The 47.5% overall result for CSI is the

best reported on comp5 of the VOC 2012 challenge so

far (Everingham et al., 2012). We show some images on

the VOC test set in fig. 10. It can be seen that CSI handles

object interactions very well in many cases. More images

and comparisons are given in our technical report(Li et al.,

2013).

6. Conclusion

This paper proposes a composite statistical inference

approach to semantic segmentation. The composite

likelihood methodology is generalized to model one-

dimensional error distributions of statistical estimates.

Then, superpixel-level inference is performed using a set

of mutually overlapping object segmentation proposals and

their predicted overlaps with object categories. The genera-

tive process is modeled and an EM algorithm is proposed to

maximize the composite likelihood in two steps: the num-

ber of objects in each category is first determined, then a

joint optimization is performed for all objects across cat-

egories. Once superpixel-level parameters have been esti-

mated, the optimal pixel-level segmentation can be com-

puted efficiently by branch-and-bound search. Experi-

ments demonstrate the effectiveness of the approach, es-

pecially in scenes with multiple objects and interactions.
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