

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GEOVLMATH: ENHANCING GEOMETRY REASONING IN VISION-LANGUAGE MODELS VIA CROSS-MODAL REWARD FOR AUXILIARY LINE CREATION

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Auxiliary lines are essential for solving complex geometric problems but remain
 014 challenging for large vision-language models (LVLMs). Rather than editing dia-
 015 grams to draw auxiliary lines, which current image editing models struggle to
 016 render with geometric precision, we generate textual descriptions of auxiliary-
 017 line constructions to better align with the representational strengths of LVLMs.
 018 To bridge the gap between textual descriptions and spatial structure, we propose
 019 a reinforcement learning framework that enhances diagram-text alignment. At
 020 the core of our approach is a cross-modal reward that evaluates how well the
 021 generated auxiliary-line description for an original diagram matches a ground-
 022 truth auxiliary-line diagram. Built on this reward, we present GeoVLMath, an
 023 open-source LVLM tailored to auxiliary-line reasoning in solid geometry. This
 024 fine-grained signal drives a GRPO-based RL stage, yielding precise diagram-text
 025 alignment. To support training, we develop a scalable data creation pipeline and
 026 construct AuxSolidMath, a dataset of 3,018 real-exam geometry problems with
 027 paired diagrams and aligned textual fields. At the 3B and 7B scales, GeoVLMath
 028 achieves competitive and often superior performance compared with strong open-
 029 source and proprietary LVLMs on auxiliary-line reasoning benchmarks.

030 1 INTRODUCTION

031 Geometric problems constitute an important category of mathematical tasks, characterized by in-
 032 tricate spatial structures and multi-step reasoning processes (Ma et al., 2024). They are commonly
 033 divided into plane geometry and solid geometry. This study focuses on solid geometry, where rea-
 034 soning over three-dimensional spatial relations is substantially more complex. Such problems rarely
 035 yield to direct application of standard theorems; instead, they often require the deliberate intro-
 036 duction of auxiliary lines¹ to reveal hidden geometric structure and enable further analysis. These
 037 constructions are essential for anchoring visual diagrams to formal symbolic reasoning and for pro-
 038 viding the intermediate steps required for rigorous problem solving.

039 To validate the above idea, we conduct a pilot study with three preliminary experiments: one with
 040 incorrect auxiliary lines (Incorrect Aux), one without auxiliary lines (No Aux), and one with correct
 041 auxiliary lines (Correct Aux). As shown in Figure 1, **the use of correct auxiliary lines achieves**
 042 **the highest accuracy, whereas incorrect auxiliary lines lead to the poorest performance.** One
 043 possible explanation is that inaccurate auxiliary lines tend to misdirect reasoning and produce errors,
 044 while precise auxiliary lines uncover key spatial relationships, thereby enhancing solution accuracy.

045 Given that accurate auxiliary lines are crucial for solution correctness, the key question is how
 046 to obtain them reliably. The most straightforward approach is to draw auxiliary lines directly on
 047 the original diagram. However, current image editing models cannot accurately draw auxiliary
 048 lines (as illustrated in Figure 5). Another representative approach adopts a tool-use pipeline, ex-
 049 exemplified by Visual Sketchpad (Hu et al., 2024): an LVLM is prompted to generate code that
 050 draws auxiliary lines, which is then rendered into an augmented diagram. Although effective
 051 in controlled settings, this method faces two key limitations. First, it depends on the specific
 052 coordinate position of the diagram elements, which is rarely available in real-world problems.

053 ¹In this paper, we use *auxiliary lines* broadly to include both additional lines and coordinate systems.

054 Additionally, it relies on the LVLM’s ability to generate highly accurate code for auxiliary lines. This dependency constrains its robustness and limits its applicability to broader classes of geometric problems. Taken together, these limitations indicate that neither direct image editing nor coordinate-dependent tool usage approaches can reliably produce accurate auxiliary lines in current technology, motivating an approach that avoids image manipulation and strict coordinate requirements.

064 Motivated by the success of textual chain-of-thought, we avoid image editing and explicit coordinates by expressing auxiliary-line constructions in text and verifying them against the diagram. Our main idea is to design a **cross-modal reward model** that measures the consistency between a generated textual auxiliary-line description for the original diagram and a ground-truth auxiliary-line diagram. The reward is computed by jointly encoding the original diagram and the generated auxiliary-line description, and then comparing this pair with the ground-truth auxiliary-line diagram, providing geometry-aware supervision without requiring coordinate assumptions or image manipulation. Building on this reward signal, we train a policy model using Group Relative Policy Optimization (GRPO) to obtain geometry-consistent, generalizable constructions. Training follows a two-stage paradigm inspired by recent progress in reinforcement learning (RL) for reasoning (e.g., DeepSeek-R1 (Guo et al., 2025)): supervised fine tuning (SFT) for cold start, followed by GRPO-based RL to further elicit structured reasoning and strengthen diagram-text alignment. We instantiate the framework as GeoVLM (3B/7B), a vision-language model tailored to auxiliary-line-based geometric reasoning. Through the cross-modal supervision, GeoVLM achieves strong alignment between text and geometric structure, enabling faithful reasoning on complex diagrams.

080 To effectively train the above model, we require a high-quality dataset that captures both visual and symbolic aspects of real-world geometry problems. Yet, creating such a dataset is inherently challenging due to the need for automation, scalability, and semantic precision across diverse and noisy educational materials. In response to these challenges, we develop a **robust and scalable data construction pipeline** specifically designed to transform raw high school exam papers into structured multimodal instances suitable for training LVLMs. (1) First, we develop automated scripts to identify and filter geometry problems that satisfy predefined criteria from a large corpus of exam papers; (2) Next, we apply a fully automated pipeline to deduplicate problems and extract their associated geometric diagrams, which are filtered to remove low-resolution or unclear diagrams and then saved for subsequent processing; (3) Subsequently, we train a specialized text extraction model capable of handling MathType equations. This model accurately parses the problem description, the final answer, and the auxiliary-line description from exam papers and converts them into a structured JSON format; (4) Finally, we perform a manual verification step to ensure the accuracy, completeness, uniqueness, and semantic consistency of each data instance. While the pipeline is largely automated, this lightweight manual verification step is essential for maintaining data quality, particularly when handling complex symbolic expressions and diagrammatic content in real-world settings. Based on this pipeline, we construct **AuxSolidMath**, a curated dataset of 3,018 solid geometry problems in a rich multimodal format, comprising the problem description, the final answer, the auxiliary-line description, the original diagram, and the auxiliary-line diagram. To our knowledge, AuxSolidMath is the first systematically constructed dataset explicitly tailored to auxiliary-line-based solid geometry reasoning. Beyond this specific resource, our pipeline offers a scalable framework that can be readily adapted to generate large-scale, high-quality datasets for multimodal reasoning tasks.

101 To assess the effectiveness of our model, GeoVLM, we conduct a comprehensive evaluation against frontier open-source and closed-source LVLMs. Despite its relatively modest parameter scale, GeoVLM achieves highly competitive performance, frequently outperforming substantially larger models such as Qwen2.5-VL-32B-Instruct (Bai et al., 2025) and GPT-4o (Hurst et al., 2024). These results suggest that supervision grounded in auxiliary-line constructions is more effective for enhancing geometric reasoning than simply scaling model parameters. Furthermore, our evaluation protocol highlights the utility of datasets augmented with auxiliary lines in revealing the

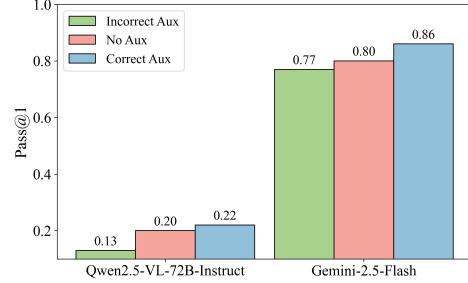


Figure 1: Pass@1 of Qwen2.5-VL-72B-Instruct and Gemini-2.5-Flash. “Aux” denotes auxiliary-line description.

108 limitations of existing LVLMs in structured visual reasoning, and provides a principled foundation
 109 for future model design and evaluation.
 110

111 The main contributions of this work are threefold:

112 • **Cross-modal reward for auxiliary-line alignment.** We propose a geometry-aware scalar reward
 113 that contrasts a fused diagram-text representation with the ground-truth auxiliary-line diagram,
 114 requiring no coordinates or image edits. Training with GRPO turns this signal into effective RL
 115 supervision, improving diagram-text alignment and spatial reasoning.
 116

117 • **AuxSolidMath: a dataset for auxiliary-line geometric reasoning.** We design a scalable, mod-
 118 ular pipeline to construct AuxSolidMath, a dataset tailored to auxiliary-line reasoning in solid
 119 geometry problems. Curated from authentic high-school exams, it comprises 3,018 richly anno-
 120 tated multimodal instances pairing diagrams with aligned textual fields, providing training data
 121 for our proposed framework. AuxSolidMath will be publicly released on Hugging Face to enable
 122 community use and further research.
 123

124 • **GeoVLM(3B/7B): Competitive Small-Scale Models for Geometric Reasoning.** We intro-
 125 duce GeoVLM(3B/7B), a LVLM trained on AuxSolidMath and optimized with a GRPO-based RL
 126 framework. Despite its relatively modest parameter scale, GeoVLM(3B/7B) achieves performance
 127 comparable to, or even surpassing, that of substantially larger models such as Qwen2.5-VL-32B-
 128 Instruct and GPT-4o on geometric reasoning tasks requiring auxiliary line constructions.
 129

2 METHODOLOGY

2.1 PROBLEM DEFINITION

132 We study geometry problems whose solution requires the *active construction of auxiliary lines*.
 133 Formally, each instance is represented as a pair $\langle I, q \rangle$, where I denotes an original diagram, and q
 134 is a question grounded in I . The goal is to generate a solution y that includes the auxiliary lines
 135 aux , a sequence of deductive steps, and a final answer ans . Since auxiliary lines are absent from the
 136 original diagram I , they must be constructed during reasoning. The deliberate introduction of these
 137 lines uncovers latent spatial relations and formalizes them as explicit geometric constraints, thereby
 138 enabling solutions that would otherwise be difficult to derive from the original diagram alone.
 139

2.2 FRAMEWORK OVERVIEW

140 We introduce a two-stage training framework for LVLMs that integrates the auxiliary-line construc-
 141 tion into the reasoning process. In the first stage, we apply supervised fine-tuning (SFT) on auto-
 142 matically synthesized chain-of-thought (CoT) data with explicit auxiliary-line steps, enabling the
 143 model to actively construct auxiliary lines, thereby establishing a good initialization. In the second
 144 stage, we further use reinforcement learning to encourage the model to construct auxiliary lines that
 145 faithfully reflect the geometry of the diagram, boosting the precision of the solution. At the core is a
 146 **cross-modal reward model** that provides fine-grained feedback by scoring the agreement between
 147 the original diagram plus the generated auxiliary-line description and a reference diagram annotated
 148 with the correct auxiliary line. Overall, this framework combines direct supervision with struc-
 149 tured visual feedback, resulting in more reliable auxiliary-line constructions and stronger geometric
 150 problem-solving performance.
 151

2.3 SUPERVISED FINE-TUNING FOR COLD-START INITIALIZATION

152 We start with SFT on COT exemplars to provide a cold-start initialization for subsequent reinforce-
 153 ment learning. Each training instance is represented as a triplet $\langle I, q, y \rangle$, where I denotes an original
 154 geometric diagram, q is a natural language question, and $y = (y_1, \dots, y_T)$ is a step-by-step solution
 155 that includes the construction of necessary auxiliary lines aux , intermediate deductions, and the
 156 final answer ans . To facilitate structured supervision and prepare for reward modeling in the RL
 157 stage, we mark auxiliary lines with special tokens `[AUX]` and `[/AUX]` within y . These markers ex-
 158 pose auxiliary-line steps as explicit supervision signals. We fine-tune the model using a standard
 159 next-token prediction objective. The SFT loss is defined as:
 160

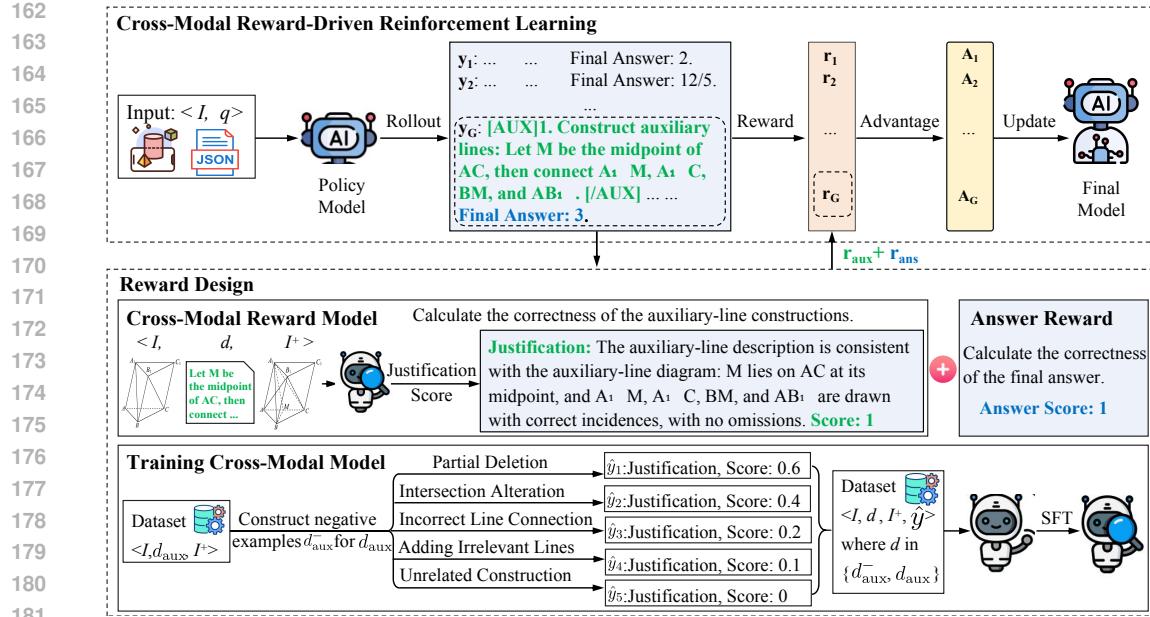


Figure 2: Overview of the cross-modal reward-driven RL. We first fine-tune a cross-modal reward model on curated high-quality data to evaluate the correctness of auxiliary-line constructions. During the RL phase, the reward model’s consistency score is combined with a final-answer accuracy reward to produce a composite signal that updates the policy via GRPO.

$$\mathcal{L}_{\text{SFT}} = -\mathbb{E}_{(I, q, y) \sim \mathcal{D}} \left[\sum_t^T \log P_{\theta}(y_t | I, q, y_{<t}) \right] \quad (1)$$

where \mathcal{D} is the training set, θ denotes the model parameters, y_t indicates the t -th output token, and $y_{<t}$ comprises all previously generated output tokens.

2.4 CROSS-MODAL REWARD-DRIVEN REINFORCEMENT LEARNING

As shown in Figure 1, accurate auxiliary-line constructions improve reasoning success. The key challenge is how to integrate these constructions into the reasoning process. The most intuitive approach is to draw auxiliary lines via image editing models or adopt coordinate-dependent pipelines, but limited editing reliability and the need for precise, accessible coordinates often render both impractical. Motivated by the recent advances of textual COT supervision, we represent auxiliary-line constructions in natural language and propose a **cross-modal reward model** that scores diagram-text alignment between the original diagram together with the textual description and a reference diagram annotated with the ground-truth auxiliary lines. This resulting signal is geometry-aware yet agnostic to image editing and strict coordinate assumptions, enabling scalability across diverse diagram styles. We integrate this cross-modal reward, alongside a final-answer reward, into a GRPO-based RL stage to align intermediate constructions with the diagram while maintaining final-answer accuracy. An overview of the RL stage is illustrated in Figure 2.

2.4.1 CROSS-MODAL REWARD MODEL FOR DIAGRAM-TEXT ALIGNMENT

Given an original diagram I , a textual description d of auxiliary lines (either the correct d_{aux} or a perturbed d_{aux}^-), and a reference diagram I^+ annotated with the ground-truth auxiliary lines, the reward model compares the *relations induced by applying d to I* against the *additional geometric structures present in I^+ but absent from I* . Beyond surface similarity, it evaluates diagram-text relational consistency, such as parallelism, orthogonality, and angle bisection, and scores whether these relations are satisfied in the reference diagram. Accordingly, the reward exhibits three desirable properties: **(1) cross-modal relational alignment**, measuring diagram-text consistency at the level of geometric relations, rather than lexical similarity; **(2) Coordinate-free and render-free**, requiring neither

pixel-accurate coordinates nor explicitly drawing the specified auxiliary lines on the diagram, since the alignment is computed from diagram-text correspondence; and **(3) Fine-grained**, providing intermediate scores for partially correct yet meaningful constructions, thereby enabling precise credit assignment across multi-step reasoning. In summary, the cross-modal reward precisely measures diagram-text spatial consistency, capturing whether and to what extent the generated auxiliary lines match the intended geometric structure, without explicitly rendering on the diagram or relying on coordinate-dependent methods. Next, we explain how to **construct diagram-text supervision** automatically and at scale, and **train the cross-modal reward model** accordingly.

Constructing Diagram–Text Supervision. Each training example is represented as $\langle I, d, I^+, \hat{y} \rangle$, where $\hat{y} = (r, s)$ contains a brief justification r and a consistency score $s \in [0, 1]$ indicating how well d aligns with I^+ given I . We construct this supervision dataset via a fully automated pipeline (see Figure 2). Starting from high-quality triplets $\langle I, d_{\text{aux}}, I^+ \rangle$ sourced from the dataset described in Section 3, we introduce rule-based perturbations that simulate common errors, including *partial deletion, intersection alteration, incorrect line connections, adding irrelevant lines, unrelated auxiliary lines*. Based on these templates, we then leverage a large language model to generate diverse and linguistically varied negatives d_{aux}^- that are lexically plausible yet geometrically inconsistent with the intended construction in the reference diagram. To evaluate the consistency between each description $d \in \{d_{\text{aux}}, d_{\text{aux}}^-\}$ and its target construction I^+ , we employ an *LVLM-as-a-Judge* strategy. Specifically, the LVLM is prompted to assess diagram-text alignment for the pair $\langle I, d \rangle$ against I^+ and to output both a natural language rationale r and a scalar score $s \in [0, 1]$. This automated evaluation provides interpretable justifications and continuous alignment signals, enabling scalable, fine-grained supervision that spans faithful descriptions through adversarial counterexamples.

Training the Cross-Modal Reward Model. Given the input triplet $\langle I, d, I^+ \rangle$, the model outputs a structured prediction $\hat{y} = (r, s)$, where r is a rationale and $s \in [0, 1]$ is a consistency score. We train the model by maximizing the conditional likelihood of the serialized output:

$$p_{\phi}(\hat{y} \mid I, d, I^+) = \prod_{i=1}^T p_{\phi}(\hat{y}_i \mid I, d, I^+, \hat{y}_{<i}) \quad (2)$$

where T denotes the length of the generated sequence \hat{y} , \hat{y}_i is the i -th token in the output, and $\hat{y}_{<i}$ represents the sequence of previously generated tokens. The consistency score is indicated as $r_{\text{aux}} = s = \text{Score}(\hat{y})$, where higher values correspond to better consistency.

Through this training, we obtain a reward model that provides precise, interpretable feedback on diagram-text alignment between auxiliary-line descriptions and the reference diagram. This model serves as a key component of our RL framework, guiding the policy toward auxiliary-line constructions that are geometrically consistent and diagram-grounded.

2.4.2 OPTIMIZATION

We adopt GRPO as the policy optimization algorithm. The overall reward signal combines the cross-modal reward introduced in Section 2.4.1 with a final-answer reward defined as a binary score, yielding 1 if the predicted final answer matches the ground truth and 0 otherwise, *i.e.*,

$$r = \alpha r_{\text{aux}} + (1 - \alpha) r_{\text{ans}} \quad (3)$$

Given a geometric diagram I and a question q , GRPO samples a set of response sequences $\{y_1, y_2, \dots, y_G\}$ from the old policy model $\pi_{\theta_{\text{old}}}$. The policy model π_{θ} is then optimized by maximizing the following objective, following the formulation introduced in (Guo et al., 2025):

$$\mathcal{L}_{\text{GRPO}} = \frac{1}{G} \sum_{i=1}^G \left(\min \left(\frac{\pi_{\theta}(y_i \mid I, q)}{\pi_{\theta_{\text{old}}}(y_i \mid I, q)} A_i, \text{clip} \left(\frac{\pi_{\theta}(y_i \mid I, q)}{\pi_{\theta_{\text{old}}}(y_i \mid I, q)}, 1 - \epsilon, 1 + \epsilon \right) A_i \right) - \beta \mathbb{D}_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}}) \right) \quad (4)$$

Here, G denotes the group size, while ϵ and β are hyperparameters for clipping and KL penalty.

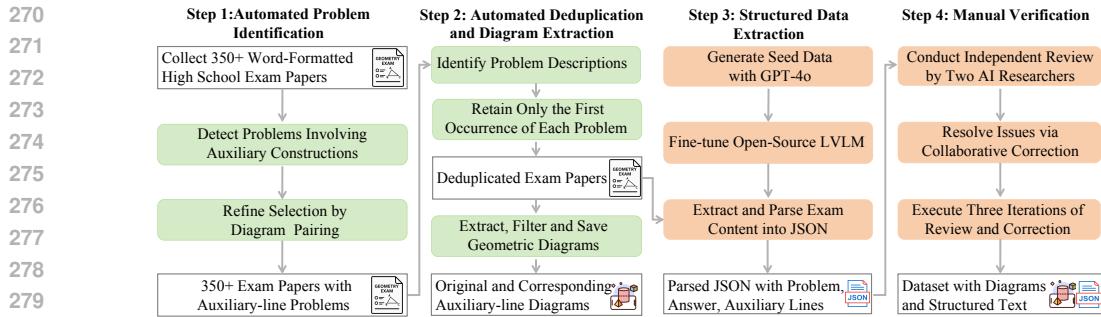


Figure 3: Overview of the Proposed Data Creation Pipeline.

3 DATA CREATION

Building on this framework, we curate the AuxSolidMath dataset to support model training. As illustrated in Figure 3, our data creation pipeline proceeds through four progressive steps: **automated problem identification**, **automated deduplication and diagram extraction**, **structured data extraction**, and **manual verification**. The pipeline standardizes raw exam problems into semantically aligned, high-quality multimodal instances that support training vision-language models for auxiliary-line geometric reasoning (More details in Appendix D). Figure 4 shows an example from the dataset. Each instance is represented as a five-tuple consisting of the *problem description*, *the final answer*, *the auxiliary-line description*, *the original diagram*, and *the auxiliary-line diagram*.

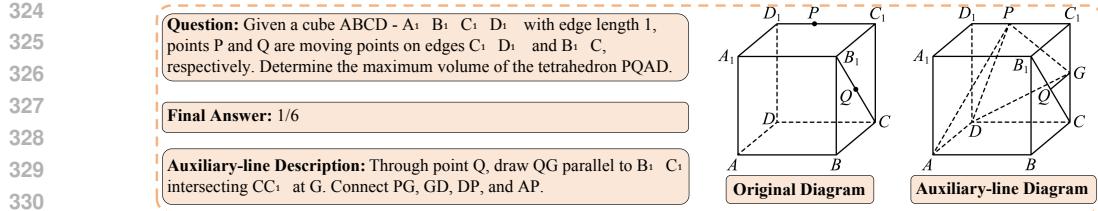
Automated Problem Identification. We curate AuxSolidMath from 350+ authentic high-school geometry exam sets by automatically selecting problems that explicitly require auxiliary-line constructions. A two-stage filter consists of cue-verb retrieval in reference solutions (e.g., “connect,” “construct,” “draw,” “establish”) and verification of paired diagrams (original and auxiliary-line-annotated), retaining only items that meet both criteria.

Automated Deduplication and Diagram Extraction. We automatically deduplicate the dataset and extract paired diagrams to ensure unique and high-quality instances. **Problem Deduplication.** Duplicates are detected by textual matching, and only the first occurrence is retained. **Diagram Extraction.** For each retained problem, we extract the original and auxiliary-line-annotated diagrams and apply OpenCV-based filtering to discard low-resolution or unclear images.

Structured Data Extraction. Building on the high-quality diagram pairs obtained in the previous step, we extract three textual fields for each problem: the problem description, the final answer, and the auxiliary-line description. Because the source Word files embed MathType formulas that standard parsers handle poorly, we render pages as images and parse them with a vision-language model. To ensure accuracy, we curate a 300-example seed verified by GPT-4o (Hurst et al., 2024) and use it to fine-tune Qwen2.5-VL-7B-Instruct (Bai et al., 2025), yielding a reliable, domain-adapted extractor. All outputs follow a unified JSON schema for downstream training.

Manual Verification. Each instance is independently reviewed by two AI researchers for accuracy, completeness, uniqueness, semantic consistency, as well as visual clarity and resolution. If either reviewer flags an issue, the instance is collaboratively revised, with up to three rounds per instance to systematically identify and correct even subtle or ambiguous errors. A human review resolves complex symbolic expressions and ambiguous diagrammatic elements that are often misinterpreted by automated tools. Despite its modest cost and effort, this step remains indispensable for maintaining the high data fidelity required for reliable model training and evaluation.

Dataset Statistics. Our dataset AuxSolidMath comprises 3,018 solid geometry problems collected from real high school examination papers. Within this dataset, we curate a new benchmark, GeoAuxBench, designed specifically to evaluate a model’s ability to construct auxiliary lines, a skill essential to solving complex geometry problems. GeoAuxBench contains 302 examples and is divided into two difficulty levels, *Easy* (150) and *Hard* (152), using the original difficulty annotations from the source exam papers rather than post hoc labels. The tiers reflect increasing reasoning complexity along three axes: (i) the sophistication of auxiliary-line constructions, (ii) the depth of multi-step reasoning, and (iii) the degree of implicit spatial inference. This design provides a principled basis for evaluating models across different levels of geometric reasoning difficulty.



378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

Table 1: Overall evaluation on GeoAuxBench (%).

LVLM	Easy		Hard		Average	
	Pass@1	Pass@5	Pass@1	Pass@5	Pass@1	Pass@5
Closed-source LVLMs						
gpt-5-mini	89.33	92.67	63.16	75.00	76.25	83.84
o4-mini-2025-04-16	84.00	93.33	60.53	74.34	72.27	83.84
GPT-4o	8.67	25.33	6.58	15.13	7.63	20.23
Gemini-2.0-Flash	37.33	62.67	25.00	39.47	31.17	51.07
Gemini-2.5-Flash	84.00	91.33	63.16	78.95	73.58	85.14
Claude 3.7 Sonnet 20250219	15.33	41.33	13.16	28.29	14.25	34.81
Claude Sonnet 4 20250514	56.00	77.33	30.92	44.74	43.46	61.04
Open-source LVLMs (3B-14B)						
InternVL3-8B	9.33	25.33	5.92	15.79	7.63	20.56
Llama-3.2-11B-Vision-Instruct	2.00	12.00	3.29	5.92	2.65	8.96
InternVL3-14B	13.33	28.67	5.92	15.13	9.63	21.90
Qwen2.5-VL-3B-Instruct	2.00	14.89	1.97	8.33	1.99	11.61
GeoVLMath-3B (Ours)	12.89	20.44	5.70	9.87	9.30	15.16
Qwen2.5-VL-7B-Instruct	5.14	20.67	3.95	11.18	4.55	15.93
GeoVLMath-7B (Ours)	14.67	35.56	5.92	16.67	10.30	26.12
Open-source LVLMs (17B-78B)						
Qwen2-VL-72B-Instruct	6.00	15.33	5.26	8.55	5.63	11.94
Qwen2.5-VL-32B-Instruct	20.67	23.33	11.18	13.16	15.93	18.25
Llama-4-Scout-17B-16E-Instruct	20.67	36.67	7.89	18.42	14.28	27.55
InternVL3-38B	19.33	41.33	10.53	21.71	14.93	31.52
Qwen2.5-VL-72B-Instruct	24.00	40.67	13.16	19.74	18.58	30.21
InternVL3-78B	16.67	36.67	9.21	21.05	12.94	28.86

* Bold indicates the best results for models of similar sizes.

resulting constraints in subsequent steps. These results indicate that supervision of the auxiliary line, rather than parameter count alone, is the decisive factor for reliable reasoning.

4.3 CROSS-MODAL REWARD MODEL

Leveraging AuxSolidMath triplets $\langle I, d_{\text{aux}}, I^+ \rangle$, we apply rule-based perturbations to simulate typical auxiliary-line errors and use the resulting data to train a cross-modal reward model on Qwen2.5-VL-7B. The dataset comprises 2,970 training examples and 330 test examples. We train the model for 3 epochs with a batch size of 16, using the AdamW optimizer with a learning rate of 2e-5 and a cosine learning rate scheduler with a 0.1 warm-up ratio. During training, the vision tower and projection modules are frozen, while the language model remains trainable. The model achieves a pass@1 accuracy of **98.18%** on the test set, indicating reliable alignment between textual auxiliary-line descriptions and their visually annotated counterparts. This result further validates cross-modal supervision as an effective means of producing geometry-aware rewards, providing signals that assess whether the proposed constructions satisfy the underlying geometric constraints of the diagram without resorting to image manipulation or explicit coordinates.

4.4 ABLATION STUDIES

Cross-Modal Reward. We assess the role of cross-modal supervision with two variants, keeping all other settings unchanged. (a) *w/o cross-modal reward*. This variant removes all supervision related to auxiliary lines and trains the model solely for final-answer accuracy, with no supervision on whether auxiliary lines are introduced. This isolates the effect of answer-only supervision and approximates a setting where auxiliary lines are omitted from the training objective. (b) *Textual reward*. Cross-modal consistency is replaced by a text-only semantic similarity objective that measures the proximity between the generated auxiliary-line description and the ground-truth annotation. Concretely, we use *EmbeddingGemma* (DeepMind, 2025c) to encode sentences and compute a similarity score for training. This variant favors fluent textual descriptions but does not enforce grounding to the input diagram. *Findings.* As reported in Table 2, removing the cross-modal reward results in performance degradation (Average pass@1: **10.30** \rightarrow **7.86**, pass@5: **26.12** \rightarrow **22.91**), underscoring the importance of geometry-aware supervision for instances that require introducing auxiliary lines. Substituting it with a purely textual similarity objective performs even worse (Average pass@1: **10.30** \rightarrow **7.53**, pass@5: **26.12** \rightarrow **20.47**), consistent with our pilot finding in Section 1 that incorrect auxiliary lines can be worse than none. These declines suggest that lexical alignment introduces

Table 2: Results of ablation studies (%).

	Easy		Hard		Average	
	Pass@1	Pass@5	Pass@1	Pass@5	Pass@1	Pass@5
GeoVLMath-7B	14.67	35.56	5.92	16.67	10.30	26.12
w/o Cross-Modal Reward	10.89 _{±3.78}	32.22 _{±3.34}	4.82 _{±1.10}	13.60 _{±3.07}	7.86 _{±2.44}	22.91 _{±3.21}
Textual Reward	10.67 _{±4.00}	28.44 _{±7.12}	4.39 _{±1.53}	12.50 _{±4.17}	7.53 _{±2.77}	20.47 _{±5.65}
w/o RL	3.33 _{±11.34}	20.44 _{±15.12}	3.95 _{±1.97}	11.18 _{±5.49}	3.64 _{±6.66}	15.81 _{±10.31}

spurious signals and conflicts with precise diagram grounding, favoring surface-level paraphrases over geometry-aware reasoning. Error analysis reveals distinct failure modes: (a) often ignores auxiliary-line construction and overfits to answer-only cues; (b) produces fluent but visually inconsistent descriptions (e.g., incorrect lines) that fail to constrain diagram-based reasoning. Overall, text-only alignment is intrinsically lossy for geometric structure. Robust auxiliary-line reasoning requires visually grounded, structure-preserving diagram-text alignment that enables rigorous checks of metric accuracy and incidence relations.

Reinforcement Learning. To quantify the contribution of reinforcement learning, we ablate it and train the SFT-only variant. As shown in Table 2, GeoVLMath-7B with SFT+RL consistently outperforms the SFT-only model, with pronounced drops once RL is removed. This improvement reflects how RL drives the policy beyond strict imitation: reward-aligned optimization not only encourages exploration of more effective strategies but also provides credit assignment for beneficial intermediate steps, rather than confining learning to surface-level matching. As a result, the model becomes less dependent on dataset-specific heuristics and exhibits more stable performance across the evaluated benchmarks. From this perspective, RL functions as a post-SFT catalyst that unlocks latent capacities of the base model and consolidates preliminary SFT competence into robust multistep reasoning, particularly in scenarios demanding deliberate auxiliary-line construction.

5 RELATED WORK

Recent LVLMs (Anthropic, 2025b; DeepMind, 2025a; OpenAI, 2025) have advanced geometric problem solving, especially in plane geometry. The prior methods mainly follow two categories: (i) direct generation of answers or reasoning paths from multimodal inputs (Ning et al., 2025; Xia et al., 2025; Gao et al., 2025), which is limited by intrinsic reasoning capacity; and (ii) tool-augmented reasoning that produces executable code for symbolic computation (Zhao et al., 2025; Sharma et al., 2025; Chen et al., 2024), offloading difficult steps to external engines. However, most methods still handle visual and textual modalities largely separately and lack mechanisms to incorporate auxiliary lines, which restricts performance on tasks requiring such constructions. Visual Sketchpad (Hu et al., 2024) prompts LVLMs to generate code for auxiliary lines that are rendered into augmented diagrams, but relies on precise code and exact coordinate annotations that are rare in real diagrams. In contrast, our approach integrates auxiliary-line construction into a RL framework guided by a cross-modal reward model, decouples construction from the LVLM’s intrinsic reasoning, generalizes across model scales, and removes the need for explicit coordinates, enabling robust auxiliary-line reasoning in solid geometry. Details on benchmarks and datasets are provided in Appendix F.

6 CONCLUSION

We present a framework for solving solid geometry problems that require auxiliary lines, an under-explored area in vision-language reasoning. To support this task, we curate **AuxSolidMath**, a high-quality dataset from real high-school exams with paired diagrams, problem statements, auxiliary-line descriptions, and final answers, enabling both answer supervision and vision-language reward modeling. At the core is a vision-based reward model that scores the agreement between generated auxiliary-line descriptions and ground-truth auxiliary-line-annotated diagrams, providing stable signals for reinforcement learning. Using this dataset and reward model, we train **GeoVLMath**, an open-source LVLM optimized with RL. Experiments demonstrate state-of-the-art results among open-source LVLMs of comparable size and competitive performance against advanced closed-source LVLMs such as GPT-4o. We will make AuxSolidMath and GeoVLMath publicly available on Hugging Face to facilitate reproducibility, benchmarking, and further research.

486 REFERENCES
487488 Anthropic. Claude 3.7 sonnet and claude code. <https://www.anthropic.com/news/claude-3-7-sonnet>, 2025a.489 Anthropic. Claude 4. <https://www.anthropic.com/news/claude-4>, 2025b.490 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
491 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqiang
492 Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
493 Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report.
494 *CoRR*, abs/2502.13923, 2025.495 Jiaqi Chen, Jianheng Tang, Jinghui Qin, Xiaodan Liang, Lingbo Liu, Eric P. Xing, and Liang Lin.
496 Geoqa: A geometric question answering benchmark towards multimodal numerical reasoning.
497 In *Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021*, pp. 513–523,
498 2021a.499 Jiaqi Chen, Tong Li, Jinghui Qin, Pan Lu, Liang Lin, Chongyu Chen, and Xiaodan Liang. Unigeo:
500 Unifying geometry logical reasoning via reformulating mathematical expression. In *Proceedings
501 of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022*,
502 pp. 3313–3323, 2022.503 Jingchang Chen, Hongxuan Tang, Zheng Chu, Qianglong Chen, Zekun Wang, Ming Liu, and Bing
504 Qin. Divide-and-conquer meets consensus: Unleashing the power of functions in code genera-
505 tion. In *Advances in Neural Information Processing Systems 38: Annual Conference on Neural
506 Information Processing Systems 2024, NeurIPS 2024*, 2024.507 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
508 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
509 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
510 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
511 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
512 tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
513 Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
514 Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
515 Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
516 McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
517 large language models trained on code. *CoRR*, abs/2107.03374, 2021b.518 DeepMind. Gemini 2.5 flash. <https://deepmind.google/models/gemini/flash/>, 2025a.519 DeepMind. Gemini 2.5 pro. <https://deepmind.google/models/gemini/pro/>, 2025b.520 Google DeepMind. Embeddinggemma: A 308m multilingual text embedding model. <https://ai.google.dev/gemma/docs/embeddinggemma?hl=zh-cn>, 2025c.521 Yumeng Fu, Jiayin Zhu, Lingling Zhang, Bo Zhao, Shaoxuan Ma, Yushun Zhang, Yanrui Wu, and
522 Wenjun Wu. Geolaux: A benchmark for evaluating mllms’ geometry performance on long-step
523 problems requiring auxiliary lines. *CoRR*, arXiv:2508.06226v1, 2025.524 Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wanjun Zhong, Yufei Wang, Lanqing Hong,
525 Jianhua Han, Hang Xu, Zhenguo Li, and Lingpeng Kong. G-llava: Solving geometric problem
526 with multi-modal large language model. In *The Thirteenth International Conference on Learning
527 Representations, ICLR 2025*, 2025.528 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
529 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
530 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.531 Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith,
532 and Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal
533 language models. In *Advances in Neural Information Processing Systems 38: Annual Conference
534 on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver*, 2024.

540 Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 541 trow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb,
 542 Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino,
 543 Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Ka-
 544 mali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya
 545 Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codis-
 546 poti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, An-
 547 gela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano,
 548 Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben
 549 Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby
 550 Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian
 551 Guerraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll L. Wainwright,
 552 Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Con-
 553 ger, Charlotte Burette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont,
 554 Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine McLeavey,
 555 Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei,
 556 Constantin Koumouzelis, and Dane Sherburn. Gpt-4o system card. *CoRR*, abs/2410.21276, 2024.
 557
 558 Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-Chun Zhu.
 559 Inter-gps: Interpretable geometry problem solving with formal language and symbolic reasoning.
 560 In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and*
 561 *the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021*, pp.
 562 6774–6786, 2021.
 563
 564 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
 565 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
 566 of foundation models in visual contexts. In *The Twelfth International Conference on Learning*
 567 *Representations, ICLR 2024*, 2024.
 568
 569 Bin Ma, Pengpeng Jian, Cong Pan, Yanli Wang, and Wei Ma. A geometric neural solving method
 570 based on a diagram text information fusion analysis. *Scientific Reports*, 14(1):31906, 2024.
 571
 572 Meta. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models. <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/>, 2024.
 573
 574 Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation. <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>, 2025.
 575
 576 Maizhen Ning, Zihao Zhou, Qiufeng Wang, Xiaowei Huang, and Kaizhu Huang. GNS: solving
 577 plane geometry problems by neural-symbolic reasoning with multi-modal llms. In *AAAI-25,*
 578 *Sponsored by the Association for the Advancement of Artificial Intelligence*, pp. 24957–24965,
 579 2025.
 580
 581 OpenAI. Gpt-5 system card. <https://cdn.openai.com/gpt-5-system-card.pdf>, 2025.
 582
 583 OpenAI. Openai o3 and o4-mini system card. <https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf>, 2025.
 584
 585 Aditya Sharma, Aman Dalmia, Mehran Kazemi, Amal Zouaq, and Christopher Pal. Geocoder:
 586 Solving geometry problems by generating modular code through vision-language models. In
 587 *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 7340–7356, 2025.
 588
 589 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
 590 Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. In *Ad-*
 591 *vances in Neural Information Processing Systems 38: Annual Conference on Neural Information*
 592 *Processing Systems 2024, NeurIPS 2024*, 2024a.
 593
 594 Peijie Wang, Chao Yang, Zhong-Zhi Li, Fei Yin, Dekang Ran, Mi Tian, Zhilong Ji, Jinfeng Bai,
 595 and Chenglin Liu. SOLIDGEO: measuring multimodal spatial math reasoning in solid geometry.
 596 *CoRR*, abs/2505.21177, 2025a.

594 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 595 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 596 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 597 perception of the world at any resolution. *CoRR*, abs/2409.12191, 2024b.

598 Xiaofeng Wang, Yiming Wang, Wenhong Zhu, and Rui Wang. Do large language models truly
 599 understand geometric structures? In *The Thirteenth International Conference on Learning Rep-*
 600 *resentations, ICLR 2025*, 2025b.

602 Renqiu Xia, Mingsheng Li, Hancheng Ye, Wenjie Wu, Hongbin Zhou, Jiakang Yuan, Tianshuo
 603 Peng, Xinyu Cai, Xiangchao Yan, Bin Wang, Conghui He, Botian Shi, Tao Chen, Junchi Yan, and
 604 Bo Zhang. Geox: Geometric problem solving through unified formalized vision-language pre-
 605 training. In *The Thirteenth International Conference on Learning Representations, ICLR 2025*,
 606 2025.

607 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,
 608 Pan Lu, Kai-Wei Chang, Yu Qiao, Peng Gao, and Hongsheng Li. MATHVERSE: does your
 609 multi-modal LLM truly see the diagrams in visual math problems? In *Computer Vision - ECCV*
 610 *2024 - 18th European Conference*, pp. 169–186, 2024.

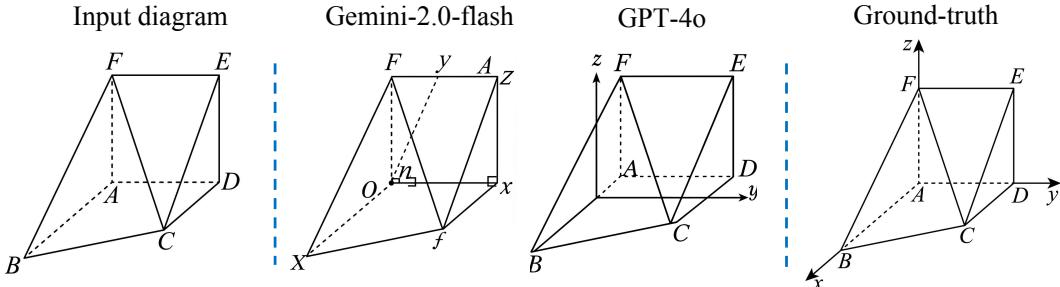
611 Junbo Zhao, Ting Zhang, Jiayu Sun, Mi Tian, and Hua Huang. Pi-gps: Enhancing geometry problem
 612 solving by unleashing the power of diagrammatic information. *CoRR*, abs/2503.05543, 2025.

614 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, and Yongqiang Ma. Lla-
 615 mafactory: Unified efficient fine-tuning of 100+ language models. *CoRR*, abs/2403.13372, 2024.

617 Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong.
 618 Easyr1: An efficient, scalable, multi-modality rl training framework. <https://github.com/hiyouga/EasyR1>, 2025.

620 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 621 Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
 622 Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen
 623 Deng, Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi,
 624 Xingcheng Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong
 625 Jiao, Han Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min
 626 Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. In-
 627 ternv13: Exploring advanced training and test-time recipes for open-source multimodal models.
 628 *CoRR*, abs/2504.10479, 2025.

629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647



[Auxiliary Line Construction] Take A as the origin, and let the lines along AB, AD, and AF be the x-axis, y-axis, and z-axis, respectively, then establish the three-dimensional Cartesian coordinate system A-xyz.

Figure 5: Comparison of two representative image editing models for constructing a three-dimensional Cartesian coordinate system.

A THE USE OF LARGE LANGUAGE MODELS

In this paper, the authors used ChatGPT solely for language polishing, including grammar, phrasing, and stylistic refinement. We did not use it to generate scientific content, such as research ideas, methods, or related work. We did not provide any confidential, personal, or proprietary data to the model. The authors take full responsibility for all scientific content, which was exclusively written and verified by us.

B LIMITATION AND FUTURE WORK

Although our framework achieves competitive performance, it does not yet realize the ideal approach of directly rendering precise auxiliary lines on the diagram. Given the limited geometric controllability of current image editing and diffusion models, we instead employ a cross-modal reward model as a practical proxy to promote diagram-text consistency without directly editing the diagram images. In future work, we will investigate constraint-guided diffusion in conjunction with a geometry-constrained rendering engine to explicitly render auxiliary lines, thereby enhancing the alignment between visual constructions and symbolic reasoning.

C QUALITATIVE COMPARISON OF IMAGE EDITING MODELS FOR AUXILIARY-LINE GENERATION

To further highlight the limitations of current image-editing models in precise geometric construction, we present a single illustrative example comparing two representative models on a three-dimensional coordinate system construction task. As shown in Figure 5, this comparative example reveals a persistent difficulty in faithfully instantiating the specified auxiliary line descriptions, namely, aligning the edits with the intended spatial constraints, which motivates our text-driven auxiliary line construction guided by a cross-modal reward model.

D DATA CREATION

In this section, we detail the four progressive steps of our data creation pipeline.

D.1 AUTOMATED PROBLEM IDENTIFICATION

To construct the AuxSolidMath dataset, we first collect over 350 sets of high school geometry problems from publicly available online sources. Given that the dataset is intended to support constructive geometric reasoning, we specifically target problems that necessitate auxiliary line constructions as integral components of their solutions.

To efficiently identify such problems, we design an automated two-stage filtering pipeline using Python scripts. In the first stage, we detect problems whose solutions contain explicit mentions of auxiliary-line constructions. Specifically, we apply regular expression patterns to locate question number markers that are explicitly present in the exam papers and use these markers to segment the content into individual problem units. For each problem, we examine the solution for verbs that signal the introduction of auxiliary lines (e.g., "connect," "construct," "draw," "establish"). Problems lacking such terms are discarded, while those containing relevant cues are retained. In the second stage, we further refine the selection by ensuring that each retained problem contains both the original diagram and an auxiliary-line diagram. To this end, we quantify the number of diagrams associated with each problem. Problems with fewer than two diagrams are excluded, whereas those with at least two, which usually represent the original and modified diagrams, are preserved. This automated pipeline enables scalable and consistent filtering of auxiliary-line geometry problems, significantly reducing manual annotation effort.

715 D.2 AUTOMATED DEDUPLICATION AND DIAGRAM EXTRACTION

Upon identifying geometry problems requiring auxiliary lines, we employ an automated pipeline to deduplicate instances and extract the associated diagrams. This step guarantees the uniqueness and visual quality of data instances for downstream model training.

Problem Deduplication. To eliminate duplicate problems, we retain only the first occurrence of each unique problem based on its textual content. Concretely, we initialize a global problem set as an empty collection. We then sequentially process all Word-formatted exam papers, examining only the problem descriptions while ignoring the associated solutions and diagrams. For each problem, if its description is not already present in the global set, we add the problem; otherwise, we discard it as a duplicate. This procedure ensures that identical problems, which often recur across different examinations, are retained only once.

Diagram Extraction. Following deduplication, we extract, filter, and store the geometric diagrams associated with each retained problem. A key challenge lies in reliably distinguishing true geometric figures from image-embedded mathematical expressions (e.g., MathType equations), as both appear in Word exam papers. Existing Python libraries are unable to make this distinction accurately, often misclassifying equations as diagrams and introducing significant noise into the extraction process. To overcome this limitation, we innovatively integrate the Apache POI library through a custom Java implementation, enabling fine-grained control over the parsing of Word documents. This setup enables reliable identification and extraction of genuine geometric diagrams while effectively filtering out formula-rendered images. To further ensure visual quality, the extracted diagrams are then processed using OpenCV to discard low-resolution or unclear diagrams. The remaining diagrams are subsequently saved using a standardized naming convention that distinguishes between the original and the annotated versions of the auxiliary lines. To be more specific, for each problem indexed by i , we store two images: $\{i\}.png$, which contains the original diagram, and $\{i\}_\text{auxiliary}.png$, which includes the corresponding auxiliary-line diagram. This consistent format facilitates downstream alignment between textual and visual modalities within the multimodal processing pipeline.

742 D.3 STRUCTURED DATA EXTRACTION

Building on the high-quality geometric diagrams obtained in the previous step, we proceed to extract the corresponding textual content for each geometry instance, including the problem description, the final answer, and the auxiliary-line description. This extraction process is non-trivial, as the original Word documents frequently embed mathematical expressions using MathType formats that are not reliably handled by standard document parsing tools.

To address this challenge, we render the processed Word documents as images, thereby enabling LVLMs to leverage their visual reasoning capabilities. Although this approach appears straightforward, open-source models such as Qwen2.5-VL-7B-Instruct (Bai et al., 2025) often struggle to accurately parse complex geometry problems involving symbolic notation and mathematical expressions. In contrast, closed-source models like GPT-4o (Hurst et al., 2024) exhibit significantly stronger performance, but their reliance on commercial APIs introduces substantial costs and limits scalability in large-scale applications. To balance accuracy with scalability, we adopt a hybrid strategy. More concretely, we first utilize an advanced closed-source model (*i.e.*, GPT-4o) to gen-

756 erate a small, high-quality seed dataset comprising 300 manually verified instances. This curated
 757 dataset is then used to fine-tune an open-source LVLM (*i.e.*, Qwen2.5-VL-7B-Instruct), resulting
 758 in a lightweight, domain-adapted model capable of accurate and scalable text extraction. The final
 759 output consists of the extracted problem description, the final answer, and the auxiliary-line descrip-
 760 tion, all encapsulated in a structured JSON format. This unified representation facilitates consistent
 761 data handling and serves as a foundation for training a robust open-source text extraction model. By
 762 releasing this model, we aim to contribute a practical and reusable resource to the broader research
 763 community working on geometry-aware vision-language understanding.

764 D.4 MANUAL VERIFICATION

765 To ensure the quality and reliability of the final dataset, we perform a manual verification step that
 766 assesses each data instance in terms of accuracy, completeness, uniqueness, and semantic consis-
 767 tency, alongside visual quality criteria such as image clarity and resolution. Two AI researchers
 768 serve as independent checkers. Each instance is independently reviewed by both researchers. If
 769 either checker identifies a potential issue, the instance is collaboratively revised. This process is
 770 repeated up to three times per instance, ensuring that all errors, including subtle or ambiguous ones,
 771 are systematically identified and corrected. Manual verification plays a critical role in resolving
 772 complex symbolic expressions and ambiguous diagrammatic content that automated tools may mis-
 773 interpret. Despite its relatively low cost and effort, this step remains indispensable for ensuring the
 774 high data fidelity necessary for a reliable model.

775 E EXPERIMENTAL SETUP

776 E.1 MODELS

777 On the closed-source models, we include leading models such as gpt-5-mini (OpenAI, 2025),
 778 o4-mini (OpenAI, 2025) and GPT-4o (Hurst et al., 2024), Gemini-2.0-Flash and Gemini-
 779 2.5-Flash (DeepMind, 2025a), Claude 3.7 Sonnet (Anthropic, 2025a) and Claude Sonnet 4
 780 20250514 (Anthropic, 2025b). These models represent the forefront of multimodal reasoning among
 781 closed-source models, although their internal architectures remain undisclosed. On the open-source
 782 models, we consider several publicly available high-performance models, including the Qwen2
 783 VL (Wang et al., 2024b) and Qwen2.5 VL series (Bai et al., 2025), InternVL 3 families (Zhu et al.,
 784 2025), LLaMA-3.2-11B-Vision-Instruct (Meta, 2024) and Llama-4-Scout-17B-16E-Instruct (Meta,
 785 2025). These models encompass a range of design paradigms, parameter scales, and instruction
 786 tuning strategies, providing a robust comparative foundation for evaluating multimodal reasoning
 787 capabilities. Note that models such as Gemini-2.5 Pro (DeepMind, 2025b) and OpenAI o3 (Ope-
 788 nAI, 2025) are excluded from our study due to limited accessibility and high inference costs.

789 E.2 TRAINING IMPLEMENTATION DETAILS

790 We adopt a two-stage training paradigm based on the Qwen2.5-VL series, including Qwen2.5-VL-
 791 3B and Qwen2.5-VL-7B, consisting of the SFT stage and the RL stage.

792 **SFT Stage.** The SFT phase is conducted using the LLaMA-Factory framework (Zheng et al., 2024).
 793 For Qwen2.5-VL-7B, we train the model for 5 epochs with a per-device batch size of 2 and a gradient
 794 accumulation step of 8 (effective batch size of 16). We use the AdamW optimizer with a learning
 795 rate of 2e-5 and apply a cosine learning rate scheduler with a warmup ratio of 0.1. The model is
 796 trained in bf16 precision. Vision and projection modules are frozen during this stage, while the
 797 language model remains unfrozen. For Qwen2.5-VL-3B, we adopt the same training configuration
 798 as the 7B variant, except learning rate and training epochs. Specifically, Qwen2.5-VL-3B is trained
 799 for 5 epochs with a learning rate of 3e-5.

800 **RL Stage.** The RL phase is performed using the EasyR1 framework (Zheng et al., 2025) with the
 801 GRPO algorithm. For the Qwen2.5-VL-7B model, training and validation data are loaded from
 802 Parquet files containing question-diagram pairs, with a maximum response length of 8192. Both
 803 rollout and validation batch size are set to 16. The actor is optimized using AdamW (learning
 804 rate 2e-6, weight decay 1e-2, no warmup). KL regularization is applied using the `low_var_kl`

810 penalty with a coefficient of 1e-2. Training runs for 6 epochs using bf16 precision, with gradient
 811 checkpointing and partial FSDP offloading enabled for memory efficiency.
 812

813 *Rewards.* The overall reward is the sum of a cross-modal auxiliary-line consistency reward and
 814 a final-answer accuracy reward, where the auxiliary-line component is weighted by $\alpha = 0.1$. For
 815 Qwen2.5-VL-3B, we adopt the same RL configuration as the 7B model, with adjustments to the
 816 batch size and the number of training epochs. Specifically, Qwen2.5-VL-3B is trained for 4 epochs
 817 with a batch size of 8.

818 All training was conducted on a server equipped with two NVIDIA A100 80GB and two NVIDIA
 819 A800 80GB GPUs. The SFT stage was performed on the A100 GPUs, while the full set of four
 820 GPUs was utilized during the reinforcement learning stage.

822 F RELATED WORK

823 In this section, we also review benchmarks and datasets for geometric reasoning. Most benchmarks
 824 and datasets for geometric problem solving focus on plane geometry, where diagrams and prob-
 825 lems involve two-dimensional figures. Well-known resources in this area include Geometry3K (Lu
 826 et al., 2021), GeoQA (Chen et al., 2021a), UniGeo (Chen et al., 2022), and GeomRel (Wang et al.,
 827 2025b), which primarily cover plane geometry problems. A concurrent benchmark, GeoLaux (Fu
 828 et al., 2025), explores the use of auxiliary lines in plane geometry, but is limited to simple cases
 829 and lacks engagement with the spatial complexity of solid geometry. Nonetheless, there remains a
 830 lack of dedicated resources for solid geometry, even though solving such problems often requires
 831 interpreting three-dimensional relationships and drawing auxiliary lines to uncover hidden spatial
 832 structures. While SolidGeo (Wang et al., 2025a) is a recent benchmark that focuses exclusively on
 833 solid geometry, it does not explicitly require auxiliary lines for solving its problems, leaving this
 834 important aspect of spatial reasoning underexplored. Similarly, other benchmarks such as Math-
 835 Vista (Lu et al., 2024), MathVision(Wang et al., 2024a), and MathVerse (Zhang et al., 2024) contain
 836 only a limited number of solid geometry problems, and these also do not require auxiliary lines to
 837 reach the solution. As a result, these resources fall short of evaluating a model’s ability to solve
 838 complex solid geometry problems where auxiliary lines are essential for uncovering implicit spatial
 839 relationships. To address this gap, we present AuxSolidMath, the first dedicated dataset for solid
 840 geometry problems that require auxiliary lines to solve. It offers comprehensive multimodal super-
 841 vision, including the original diagram, the problem statement, textual descriptions of the required
 842 auxiliary lines, the final answer, and a corresponding diagram annotated with those lines, enabling
 843 models to learn how the auxiliary lines facilitate solid geometry reasoning.

845 G PROMPTS

846 G.1 PROMPTS FOR SUPERVISED FINE-TUNING

847 The following presents the two-part prompt template used in our supervised dataset. The sys-
 848 tem prompt assigns the solver role and enforces formatting: auxiliary lines must be wrapped in
 849 `[AUX] ... [/AUX]` and the final answer must appear as plain text in `Final Answer:....`. The user
 850 prompt is multimodal, pairing a diagram referenced by the `<image>` token with the natural language
 851 question `{question}`, which yields explicit reasoning steps and a final answer.

852 SYSTEM_PROMPT_FOR_SFT

853 `SYSTEM_PROMPT_FOR_SFT = """`

854 You are a mathematician skilled in solving geometry problems through step-by-step reasoning. Solve
 855 the given geometry problem based on a geometric diagram and a natural language question. Use
 856 `'[AUX]...[/AUX]'` to indicate auxiliary constructions, such as establishing coordinate systems or con-
 857 structing auxiliary lines. Finally, provide your final answer within `'Final Answer:....'`.
 858
 859 `"""`

864
 865
 866 **USER_PROMPT_FOR_SFT**
 867 **USER_PROMPT_FOR_SFT** = """
 868 Image: <image>
 869 Question: {question}
 870 """
 871

871 G.2 PROMPTS FOR CROSS-MODAL REWARD MODEL

872
 873 Using the prompt below, the cross-modal reward model compares the description of the auxiliary line
 874 generated by the policy model against a pair of diagrams, the original image I and its auxiliary-line
 875 counterpart I^+ , and returns a single line justification and a calibrated score in $[0, 1]$ that measures
 876 visual-textual agreement. The instruction emphasizes the correctness of auxiliary-line constructions
 877 and adherence to geometric constraints. Higher scores indicate stronger alignment.
 878

879 **SYSTEM_PROMPT_FOR_CROSS-MODAL_REWARD_MODEL**

880
 881 **SYSTEM_PROMPT_FOR_CROSS-MODAL_REWARD_MODEL** = """
 882 You are a professional geometry reasoning evaluator. Your task is to evaluate whether a given textual
 883 description of auxiliary lines accurately explains the visual difference between the original diagram and
 884 the auxiliary-line diagram.
 885 Score the description on a scale from 0 to 1:
 886 1. 1 indicates a fully accurate and helpful description.
 887 2. 0 indicates a completely irrelevant or misleading description.
 888 3. Intermediate values (e.g., 0.25/ 0.50/ 0.75) reflect partial relevance or minor issues.

889 Return exactly one line:
 890 <brief justification>. Score: <s>.
 891 """
 892

894 **USER_PROMPT_FOR_CROSS-MODAL_REWARD_MODEL**

895
 896 **USER_PROMPT_FOR_CROSS-MODAL_REWARD_MODEL** = """
 897 Image (original diagram): <image I >
 898 Image (auxiliary-line diagram): <image I^+ >
 899 Auxiliary-line description: {generated_aux_description}
 900 """
 901

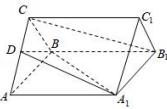
902 H REPRESENTATIVE EXAMPLES

903
 904 As illustrad in Figure 6 present qualitative examples from the AuxSolidMath dataset, including the
 905 question, the final answer, the auxiliary-line description, the original diagram, and the auxiliary-line
 906 diagram. The examples showcase diverse strategies for constructing auxiliary lines and demonstrate
 907 that explicit annotations reveal the key spatial constraints.
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

972 I CASE STUDY
973974 I.1 SUCCESSFUL CASES
975

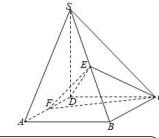
976 In this section, we present representative cases produced by GeoVLM-7B (see Figure 7). The
977 examples illustrate how valid auxiliary-line constructions capture essential spatial constraints, which
978 in turn lead to correct final answers. Collectively, these results provide concrete evidence of both
979 the effectiveness of our training framework and the model’s capacity to tackle complex geometric
980 reasoning requiring robust visual understanding and precise symbolic inference.

981
982 **Question:** As shown in the diagram, in the regular triangular prism $ABC - A_1 B_1 C_1$, the side length of
983 the base is 2, and the lateral edge length is $\sqrt{3}$. D is the midpoint of AC. Find the volume of the triangular
984 pyramid $D - A_1 C_1 B$.



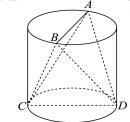
985
986 **Solution:** ∇ [AUX]1. **Construct auxiliary lines: Take the midpoint E of BC_1 , and connect $A_1 E$ and $D_1 E$.** ∇ [AUX] ∇ 2.
987 Determine parallel lines: Since $ABC-A_1 B_1 C_1$ is a regular triangular prism, $AB \parallel C_1 D_1$ and $AB = C_1 D_1$. So
988 quadrilateral $ABC_1 D_1$ is a parallelogram. ∇ 3. Identify equal lengths: Given the side length of the base is 2 and the lateral edge
989 length is $\sqrt{3}$, triangle $C_1 DC$ is equilateral with side length 2. ∇ 4. Calculate the volume: Since $ABC-A_1 B_1 C_1$ is a regular
990 triangular prism and triangle ABC is equilateral with side length 2, the height of the pyramid from D to the plane $A_1 C_1 B$ can be
991 calculated as $\sqrt{3}$. The area of the triangular base $A_1 C_1 B$ is $(\sqrt{3})/4 * (2)^2 = \sqrt{3}$. Therefore, the volume of the pyramid is $(1/3) *$
992 base area * height = $(1/3) * \sqrt{3} * \sqrt{3} = 1$. ∇ **Final Answer: 1.**

993
994 **Question:** As shown in the diagram, in the quadrilateral pyramid $S - ABCD$, SD is perpendicular to the
995 plane ABCD. The base ABCD is a rhombus, with E and F being the midpoints of SB and AD, respectively.
996 If $\angle BAD = 60^\circ$, $SD = 4$, and $AB = 2$, find the volume of the triangular pyramid $C - DEF$.



997
998 **Solution:** ∇ [AUX]1. **Construct auxiliary lines: Take the midpoint H of AB, and connect DH.** ∇ [AUX] ∇ 2. Since $\angle BAD = 60^\circ$ and $AB = AD = 2$, triangle ABD is equilateral. ∇ 3. Since H is the midpoint of AB, $AH = 1$. By Pythagoras theorem in right
1000 triangle ADH, $DH = \sqrt{(AD^2 - AH^2)} = \sqrt{(2^2 - 1^2)} = \sqrt{3}$. ∇ 4. Since ABCD is a rhombus with $AB = BC = CD = DA = 2$ and
1001 $\angle ADC = 120^\circ$, we can calculate DC. Using cosine rule in triangle ADC, $DC^2 = AD^2 + AC^2 - 2*AD*AC*\cos(120^\circ) = 2^2 + (2^2) - 2*2*2*\cos(\pi/3) = 4 + 4 - 4 = 1$. So $DC = 1$. ∇ 5. Triangle CDE has vertices: C, D, E. E is the midpoint of SB. Since S is
1002 the apex and SD \perp plane ABCD, plane SAB \perp plane ABCD. Therefore, DE \perp plane ABCD. Since CH lies in plane ABCD, we
1003 conclude DE \perp CH. ∇ 6. Since AB = BC = CD = DA = 2, and H is the midpoint of AB, AC \perp BH. Similarly, since CD \perp DA
1004 (because $AD^2 + CD^2 = 2^2 + 1^2 = 5$, $AC^2 = 2^2 - 1^2 = 3$) and DC = 1, we can deduce CH \perp CD. Thus CH \perp plane
1005 CDE. ∇ 7. The area of triangle CDE is: ∇ $\text{Area}(CDE) = (1/2) * DC * DE = (1/2) * 1 * 2 = 1$. ∇ 8. The height of the pyramid C-
1006 DEF is CH. We need to find CH. In triangle CDB, DB = $2\sqrt{2}$ (by Pythagoras theorem). So $CH = AC \sin(60^\circ) = 2 * (\sqrt{3}/2) = \sqrt{3}$. ∇ 9. The volume of pyramid C-DEF is: ∇ $\text{Volume}(C-DEF) = (1/3) * \text{Area}(CDE) * CH = (1/3) * 1 * \sqrt{3} = \sqrt{3}/3$. ∇
1007 **Final Answer: $\sqrt{3}/3$.**

1008
1009 **Question:** As shown in the diagram, the diameter of the base of the cylinder is 3, and the slant height is 4.
1010 AB and CD are the diameters of the upper and lower bases of the cylinder, respectively, and $AB \perp CD$.
1011 Find the volume of the triangular pyramid A-BCD.



1012
1013 **Solution:** ∇ [AUX]1. **Construct auxiliary lines: Take the midpoint M of AB, and connect MD and MC.** ∇ [AUX] ∇ 2.
1014 Determine the base area of the triangular pyramid: Since $AB \perp CD$ and $AB = CD = 3$ (diameter), the area of the triangular base
1015 ABCD is given by: ∇ $\text{Area} = (1/2) * AB * CD = (1/2) * 3 * 3 = 4.5$ ∇ 3. Determine the height of the pyramid: The height of the
1016 triangular pyramid A-BCD is the perpendicular distance from A to the plane BDC. Given that $AB \perp$ plane BDC, the height is AB
1017 itself, which is given as 4 (slant height). ∇ 4. Calculate the volume of the triangular pyramid A-BCD: ∇ $\text{Volume} = (1/3) * \text{Area}$
1018 of base * Height = $(1/3) * 4.5 * 4 = 6$. ∇ **Final Answer: 6.**

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

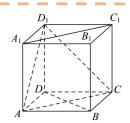
1076

1077

1078

1079

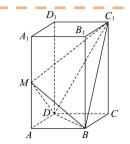
Question: As shown in the diagram, the edge length of the cube ABCD – A₁ B₁ C₁ D₁ is 2. Find the sine of the angle between line BD and plane ACD₁.



Solution: [AUX]1. Establish coordinate system: Take point D as the origin, and let the lines DA, DC, and DD₁ be the x-axis, y-axis, and z-axis, respectively, to establish the three-dimensional Cartesian coordinate system D-xyz. [/AUX]

Determine coordinates of points: Since the edge length of the cube ABCD – A₁ B₁ C₁ D₁ is 2, we have the coordinates of the vertices as follows: D = (0, 0, 0) A = (2, 0, 0) C = (0, 2, 0) B = (2, 2, 0) D₁ = (0, 0, 2) A₁ = (2, 0, 2) C₁ = (0, 2, 2) B₁ = (2, 2, 2). Find the coordinates of point E: E is the midpoint of BD. The coordinates of B are (2, 2, 0) and D are (0, 0, 0). The midpoint E is the average of the coordinates of B and D: E = ((2+0)/2, (2+0)/2, (0+0)/2) = (1, 1, 0). Find the vector BD: We have point B = (2, 2, 0) and point D = (0, 0, 0). Vector BD = D - B = (0 - 2, 0 - 2, 0 - 0) = (-2, -2, 0). Find a normal vector to the plane ACD₁: To find the normal vector, we need two vectors in the plane ACD₁. Vector AC = C - A = (0 - 2, 2 - 0, 0 - 0) = (-2, 2, 0). Vector AD₁ = D₁ - A = (0 - 2, 0 - 0, 2 - 0) = (-2, 0, 2). Normal vector n to the plane ACD₁ is the cross product of AC and AD₁: n = AC × AD₁ = (-2, 2, 0) × (-2, 0, 2) = (2*2 - 0*0, 0*(-2) - (-2)*2, (-2)*0 - 2*(-2)) = (4, 4, 4). We can take a simpler normal vector by dividing by 4, so we can take n = (1, 1, 1). Calculate the sine of the angle between line BD and plane ACD₁: The sine of the angle θ between line BD and plane ACD₁ is given by the absolute value of the cosine of the angle between vector BD and normal vector n. $\sin(\theta) = |\cos(\text{angle between BD and n})| = |(BD \cdot n) / (|BD| * |n|)|$. BD · n = (-2, -2, 0) · (1, 1, 1) = (-2)(1) + (-2)(1) + (0)(1) = -2 - 2 + 0 = -4. |BD| = sqrt((-2)^2 + (-2)^2 + 0^2) = sqrt(8) = 2sqrt(2). |n| = sqrt(1^2 + 1^2 + 1^2) = sqrt(3). $\sin(\theta) = |-4| / (2sqrt(2) * sqrt(3)) = |-4| / (2sqrt(6)) = |-2/sqrt(6)| = 2/sqrt(6) = 2sqrt(6) / 6 = sqrt(6) / 3$. **Final Answer:** $\sqrt{6}/3$.

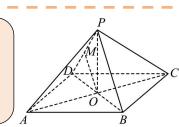
Question: As shown in the diagram, in the regular quadrilateral prism ABCD-A₁ B₁ C₁ D₁, M is the midpoint of AA₁, AB = 2, AA₁ = 4. Find the cosine value of the dihedral angle C₁ - BD - M.



Solution: [AUX]1. Establish coordinate system: Take point D as the origin, and let the lines DA, DC, and DD₁ be the x-axis, y-axis, and z-axis, respectively, to establish the three-dimensional Cartesian coordinate system D-xyz. [/AUX]

Determine coordinates of points: Since ABCD-A₁ B₁ C₁ D₁ is a regular quadrilateral prism with base side length AB = 2 and height AA₁ = 4, we have the coordinates of the vertices as follows: D = (0, 0, 0) A = (2, 0, 0) C = (0, 2, 0) B = (2, 2, 0) D₁ = (0, 0, 4) A₁ = (2, 0, 4) M is the midpoint of AA₁, so M = ((2+2)/2, (0+0)/2, (0+4)/2) = (2, 0, 2). Find normal vectors of planes C₁ - BD and MBD: For plane C₁ - BD, we need two vectors in the plane: C₁ - D and C₁ - B. Vector C₁ - D = D - C₁ = (0, 0, 0) - (0, 2, 4) = (0, -2, -4). Vector C₁ - B = B - C₁ = (2, 2, 0) - (0, 2, 4) = (2, 0, -4). The normal vector n1 of plane C₁ - BD is the cross product of C₁ - D and C₁ - B: n1 = C₁ - D × C₁ - B = (0, -2, -4) × (2, 0, -4) = (-2)(-4) - (-4)(0), (-4)(2) - 0*(-4), 0(0) - (-2)(2) = (8, -8, 4). We can take a simpler normal vector by dividing by 4, so n1 = (2, -2, 1). For plane MBD, we need two vectors in the plane: MB and MD. Vector MB = B - M = (2, 2, 0) - (0, 0, 2) = (2, 2, -2). Vector MD = D - M = (0, 0, 0) - (0, 0, 2) = (0, 0, -2). The normal vector n2 of plane MBD is the cross product of MB and MD: n2 = MB × MD = (2, 2, -2) × (0, 0, -2) = (0, -4, -4). We can take a simpler normal vector by dividing by 4, so n2 = (-1, 1, 1). Calculate the cosine of the dihedral angle: The cosine of the dihedral angle theta is the cosine of the angle between the normal vectors n1 and n2. cos(theta) = |(n1 · n2) / (|n1| * |n2|)|. n1 · n2 = (2, -2, 1) · (-1, 1, 1) = -2 - 2 + 1 = -3. |n1| = sqrt(2^2 + (-2)^2 + 1^2) = sqrt(9) = 3. |n2| = sqrt((-1)^2 + 1^2 + 1^2) = sqrt(3). cos(theta) = |-3| / (3 * sqrt(3)) = |-3| / (3sqrt(3)) = |-1| / sqrt(3) = 1/sqrt(3) = sqrt(3)/3. **Final Answer:** sqrt(3)/3.

Question: In the quadrilateral pyramid P-ABCD, the quadrilateral ABCD is a rhombus, with AC and BD intersecting at point O. PA = PC, PB = PD, $\angle BAD = 60^\circ$, AB = 2, and M is the midpoint of segment PD. If the angle between line OM and plane ABCD is 60° , find the sine of the dihedral angle between plane PAD and plane PBC.



Solution: [AUX]1. Establish coordinate system: Take point O as the origin, and let the lines OA, OB, and OP be the x-axis, y-axis, and z-axis, respectively, to establish the three-dimensional Cartesian coordinate system O-xyz. [/AUX]

Determine coordinates of points: Since the rhombus ABCD has side length 2 and $\angle BAD = 60^\circ$, triangle ABD is equilateral, and triangle BCD is also equilateral. The diagonals AC and BD are perpendicular bisectors of each other. Given AB = 2, we have AO = OC = 1 and BO = OD = sqrt(2^2 - 1^2) = sqrt(3). Thus, the coordinates are: O = (0, 0, 0) A = (1, 0, 0) C = (-1, 0, 0) B = (0, sqrt(3), 0). Since PA = PC and PA = sqrt((1-0)^2 + (0-0)^2 + (k-0)^2), PC = sqrt((-1-0)^2 + (0-0)^2 + (k-0)^2). Squaring both PA and PC and equating them: (1-h)^2 + k^2 = (-1-h)^2 + k^2. Substituting h = 0 into PA^2 = (1-0)^2 + (0-0)^2 + k^2 = 1 + k^2 = 1^2 = 1 + (h^2/2) = PB^2. So z coordinate of P = OM = sin(60 degrees) = sqrt(3)/2. M is the midpoint of PD, M = ((0+0)/2, (0+0)/2, sqrt(3)/2) = (0, 0, sqrt(3)/2). P = (0, 0, sqrt(3)). A = (1, 0, 0), B = (0, sqrt(3), 0), C = (-1, 0, 0), D = (0, -sqrt(3), 0), P = (0, 0, sqrt(3)). Find normal vectors of plane PAD and plane PBC: For plane PAD, we need vectors PA and PD. PA = A - P = (1, 0, -sqrt(3)). PD = D - P = (0, -sqrt(3), -sqrt(3)). Normal vector n1 of plane PAD is the cross product of PA and PD: n1 = PA x PD = (1, 0, -sqrt(3)) x (0, -sqrt(3), -sqrt(3)) = (-sqrt(3), sqrt(3), -sqrt(3)). For plane PBC, we need vectors PB and PC. PB = B - P = (0, sqrt(3), -sqrt(3)). PC = C - P = (-1, 0, -sqrt(3)). Normal vector n2 of plane PBC is the cross product of PB and PC: n2 = PB x PC = (0, sqrt(3), -sqrt(3)) x (-1, 0, -sqrt(3)) = (-sqrt(3), sqrt(3), sqrt(3)). Calculate the cosine of the dihedral angle: The cosine of the dihedral angle theta is the cosine of the angle between the normal vectors n1 and n2. cos(theta) = |(n1 · n2) / (|n1| * |n2|)|. n1 · n2 = (-sqrt(3), sqrt(3), -sqrt(3)) · (-sqrt(3), sqrt(3), sqrt(3)) = 9. |n1| = sqrt((-sqrt(3))^2 + (sqrt(3))^2 + (-sqrt(3))^2) = sqrt(21). |n2| = sqrt((-sqrt(3))^2 + (sqrt(3))^2 + (sqrt(3))^2) = sqrt(21). cos(theta) = |9| / (sqrt(21) * sqrt(21)) = 9/21 = 3/7. Calculate the sine of the dihedral angle: sin^2(theta) = 1 - cos^2(theta) = 1 - (3/7)^2 = 16/49. sin(theta) = sqrt(16/49) = 4/7. **Final Answer:** 4/7.

Figure 7: Successful cases generated by GeoVLMath-7B.

1080
1081

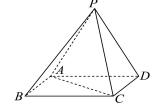
I.2 FAILURE CASES

1082
1083
1084
1085
1086
1087

In this section, we illustrate typical failure cases generated by GeoVLMath-7B (see Figure 8). The observed failures are exemplified by mis-specified coordinate systems and auxiliary-line descriptions that are irrelevant to the diagram, both of which fail to capture essential spatial constraints and may yield incorrect final answers. To mitigate such errors, we will explore diffusion-based drawing modules that render auxiliary lines directly on the original diagram and support iterative correction as part of future work.

1088
1089
1090
1091
1092
1093
1094

Question: As shown in the diagram, in the quadrilateral pyramid P-ABCD, the base ABCD is a square, PAD is an equilateral triangle, and $PC = AC$. Find the sine of the angle between line PB and plane PCD.



Ground Truth: $\sqrt{6}/4$

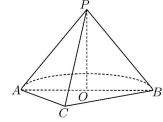
Analysis: The A-xyz coordinate system is incorrectly established—**AP is not orthogonal to AB or AD**, violating the pairwise orthogonality required for a three-dimensional Cartesian system. Consequently, the coordinates assigned to points and lines are invalid, leading to an incorrect final answer.

1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106

Solution: **[AUX]1. Establish coordinate system: Take point A as the origin, and let the lines AB, AD, and AP be the x-axis, y-axis, and z-axis, respectively, to establish the three-dimensional Cartesian coordinate system A-xyz.** **[/AUX]** $\text{Determine the coordinates of the vertices: Let the side length of the square ABCD be 2. Since A is the origin, } A = (0, 0, 0). \text{ As AB is along the x-axis and B is to the right of A with length 2, } B = (2, 0, 0). \text{ As AD is along the y-axis and D is above A with length 2, } D = (0, 2, 0). \text{ Since ABCD is a square, } C = (2, 2, 0). \text{ As PA is a line from A in the z-direction upwards and triangle PAD is an equilateral triangle with side length 2, the height from P to the base ABCD must be } \sqrt{(2^2 - 1^2)2} = \sqrt{3}. \text{ So, } P = (0, 0, \sqrt{3}).$ $\text{Find the vector PB: We have } P = (0, 0, \sqrt{3}) \text{ and } B = (2, 0, 0). \text{ The vector } PB = B - P = (2, 0, 0) - (0, 0, \sqrt{3}) = (2, 0, -\sqrt{3}).$ $\text{Find the normal vector of the plane PCD: We need two vectors in the plane PCD, for example, vector PC and vector PD. Vector } PC = C - P = (2, 2, 0) - (0, 0, \sqrt{3}) = (2, 2, -\sqrt{3}). \text{ Vector } PD = D - P = (0, 2, 0) - (0, 0, \sqrt{3}) = (0, 2, -\sqrt{3}). \text{ The normal vector } n \text{ of the plane PCD is the cross product of } PC \text{ and } PD: n = PC \times PD = (2, 2, -\sqrt{3}) \times (0, 2, -\sqrt{3}) = (2 * (-\sqrt{3}) - (-\sqrt{3}) * 2, (-\sqrt{3}) * 0 - 2 * (-\sqrt{3}), 2 * 2 - 2 * 0) = (-2\sqrt{3} + 2\sqrt{3}, 0 + 2\sqrt{3}, 4 - 0) = (0, 2\sqrt{3}, 4).$ $\text{To take a simpler normal vector, we can use } n' = (0, \sqrt{3}, 2).$ $\text{Calculate the sine of the angle between line PB and plane PCD: The sine of the angle } \theta \text{ between line PB and plane PCD is given by the absolute value of the cosine of the angle between vector PB and normal vector } n': \text{nsin}(0) = |\cos(\text{angle between } PB \text{ and } n')| = |(PB \cdot n') / (|PB| * |n'|)|.$ $\text{Vector } PB \cdot n' = (2, 0, -\sqrt{3}) \cdot (0, \sqrt{3}, 2) = 2 * 0 + 0 * \sqrt{3} + (-\sqrt{3}) * 2 = -2\sqrt{3}. |PB| = \sqrt{(2^2 + 0^2 + (-\sqrt{3})^2)} = \sqrt{(4 + 0 + 3)} = \sqrt{7}. |n'| = \sqrt{(0^2 + (\sqrt{3})^2 + 2^2)} = \sqrt{(0 + 3 + 4)} = \sqrt{7}.$ $\text{nsin}(0) = | -2\sqrt{3} / \sqrt{7} | = | -2\sqrt{3} / 7 | = 2\sqrt{3} / 7.$ **Final Answer: $2\sqrt{3}/7$.**

1107
1108
1109
1110
1111
1112
1113
1114
1115
1116

Question: As shown in the diagram, the given solid consists of half of a cone and a triangular pyramid. The base of the cone is a circle with center O and radius 1, and the height of the cone satisfies $PO = 2$. The triangular pyramid P-ABC has its base ABC as an isosceles right triangle, where AB is the hypotenuse and coincides with the diameter of the cone's base circle. The base ABC lies on the same plane as the cone's base. Determine the angle between line PC and plane ABC.



Ground Truth: $\arctan 2$

Analysis: The generated auxiliary-line description **leaves the geometric configuration unchanged**. Consequently, the subsequent reasoning proceeds from a spurious auxiliary premise rather than from added geometric constraints, leading to an incorrect final answer.

1117
1118
1119
1120
1121
1122
1123

Solution: **[AUX]1. Construct auxiliary lines: Take the midpoint M of AB, and connect OM. [/AUX]** $\text{Determine perpendicularity: Since O is the center of the circle, } OM \perp AB. \text{ Also, } PO \perp OM \text{ because } PO \text{ is the height of the cone and } O \text{ is on the base circle. Since } AB \cap PO = O, \text{ and } AB \text{ and } PO \text{ are in plane PAB, we conclude } OM \perp \text{plane PAB.}$ $\text{Determine angle: The angle between line PC and plane ABC is the angle between line PC and its projection onto plane ABC. Since } OM \perp \text{plane PAB, the projection of point P onto plane ABC lies on line OM. The projection of line PC onto plane ABC is segment AC.}$ $\text{Calculate angle: To find the angle between line PC and plane ABC, we need to find the sine of the angle. Given } PO = 2 \text{ and } OA = 1, \text{ we have } AC = \sqrt{(PA^2 - AO^2)} = \sqrt{(2^2 - 1^2)} = \sqrt{3}.$ **Final Answer: $\arcsin(\sqrt{3} / 3)$**

Figure 8: Failure cases generated by GeoVLMath-7B.

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133