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Abstract

We introduce ViXReg, a framework that adapts Vision Transformers (such as
Google ViT, Swin, BEiT) to tackle image analysis challenges in Inertial Confine-
ment Fusion (ICF) radiography. ViXReg introduces a novel approach by adapting
Vision Transformers, originally designed for pixel-level classification, to handle
complex image regression tasks. This transformation, which is not commonly
explored in current methods, enables precise reconstruction of asymmetric double-
shell structures, essential for diagnosing nuclear fusion dynamics and identifying in-
stabilities in high-energy-density plasmas. Our investigation explores architectural
adaptations, including nonlinear and linear mappings, and advanced fine-tuning
strategies like multi-scale pre-training and knowledge distillation, enhancing model
scalability and generalization across diverse data distributions. Evaluating 60,000
synthetic ICF radiographs and 115 radiographs captured from 6 ICF experimental
shots, we further craft domain learning techniques with weakly pseudo-labeled
data, enabling ViXReg to transfer robust representations effectively to experimental
dataset. The results from the above tasks demonstrate considerable advancements
in using transformers as backbone architectures for fusion imagery, effectively cap-
turing the subtle double-shell structures identified in plasma physics. Additionally,
fine-tuning the pre-trained ViXReg model accelerates training convergence and
enhances the accuracy of double-shell reconstructions, surpassing the performance
of traditional convolutional neural networks and generative adversarial models.
These findings demonstrate ViXReg’s potential as a candidate for a foundation
model component in scientific modeling for nuclear fusion research.

1 Introduction

Inertial Confinement Fusion (ICF) represents a significant branch of high-energy physics, primarily
focusing on initiating fusion reactions. Central to this process are ingeniously designed double-shell
capsules[1, 2]. These tiny yet complex structures, composed of an external ablator layer and an
internal shell, play a crucial role to compress and heat a mixture of Deuterium and Tritium, two
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hydrogen isotopes[2], creating the extreme conditions necessary for fusion governed by essential
physical parameters, such as neutron scattering and gamma radiation, impacting how we analyze
related imagery[1, 3, 4]. However, conventional analysis methods, including correlations[5], often
struggle with these datasets. Specifically, they can fail to adequately capture subtle but crucial
elements like variations in neutron scattering or the finer details in gamma radiation profiles, critical
for plasma diagnostics[6]. This challenge is compounded by the typically limited availability of
high-resolution and reliable experimental data, posing a significant hurdle to achieving accurate
image analysis.

Machine learning (ML)[7–10] techniques are increasingly applied to these datasets, providing insights
into ICF and contributing to the advancement of nuclear fusion as a sustainable energy source. Vision
Transformers (VTs)[11–13] have rapidly become a new standard in the field of computer vision,
offering a paradigm shift in how we approach image analysis. They serve as core structures in
visual foundation models (FMs)[14–16]. [To avoid confusion, we use the term "Vision Transformers"
(VTs) to refer to vision architectures that adapt the self-attention mechanism for images, while "ViT"
specifically refers to the Vision Transformer variants initially developed by Google.] The ability
to capture long-range dependencies and complex patterns within images makes VTs particularly
well-suited for the dynamic imagery found in ICF experiments. This transformative potential of VTs
has motivated us to pursue a streamlined and energy-efficient model architecture centered around
VTs as foundational components for scientific models, particularly those that heavily involve image
analysis.

VTs process images in patch sequences[12] using self-attention mechanisms[17], focusing on key
aspects while reducing dependence on pre-processing like super-resolution. This attribute is valuable
in ICF imaging, where fine shell details may indicate new physical insights, supporting our goal to
develop an energy-efficient model while maintaining or enhancing the accuracy compared to hybrid
approach incorporated super-resolution.

In addition, the strategic shift towards employing vision transformer (VT)-centric models in scientific
imaging, particularly in plasma physics, requires a deep understanding of their operational strengths
and potential limitations. We explore fine-tuning strategies such as multi-scale pre-training and
knowledge distillation through a teacher-student model to improve ViXReg’s performance in recon-
structing double-shell structures in ICF radiography. These approaches leverage scaling laws and
model adaptation techniques to enhance convergence and accuracy, even when beginning with modest
baseline models like MobileNet[18]. Additionally, we employ domain learning with weakly labeled
data, encouraging the model to learn robust representations that transfer from synthetic datasets to
noisy experimental images. Our results demonstrate that these techniques not only accelerate training
convergence but also improve the accuracy of double-shell reconstructions. This adaptability will
examine the architecture’s transferability and generalization.

2 Methodology

2.1 Imagery Architecture within ViXReg

Key to our work is the crafted adaptation and integration of VT models into our specialized regression-
based framework, ViXReg. This includes the adaptation of Google ViT Large and Base instances [12],
BEiT [19], and Swin Base and Swin Tiny variants [20]. We inherit parts of these models from their
original image classification roles, adapting them for regression tasks by transforming their outputs
into mappings Y = f(X) at the regression head stage. Here, X represents the feature embeddings
generated by the model after processing the input ICF radiograph, and Y corresponds to the precise
double-shell inference or target. We implement f(X) as a linear or nonlinear mapping. One strategy
to do that is to preserve the foundational layers of these VT models, incorporating them up to
certain later learning stages. This is then followed by the customized addition of nonlinear/linear
head consisting of concatenated feature layer and dense tables, culminating in a tailored regression
mapping. While the core of the model inherently introduces nonlinearity through self-attention and
convolutional operations, the distinction lies in the structure of the final regression mapping.

For Convolutional Neural Networks (CNNs), we apply a similar adaptation. For instance, in Xcep-
tion [21], we freeze the high-level feature extraction layers and introduce a dense layer with 1024
neurons to effectively interpret ICF double shells. The outputs from the last middle and exit flow
layers are concatenated into a single layer, which then connects to a custom 1024-neuron dense
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Custom Models Xception InceptionV3 Swin Tiny ResNet152 ViT Base BEiT Base Swin Base ViT Large
Parameters (M) 19.4 20 26 58 83 83 86 305

Table 1: Complexity of the core models used in our ViXReg framework, sorted in ascending order by
the number of parameters (in millions, M).

table. Fine-tuning the kernel sizes at this stage further enhances performance. Our control experi-
ments indicate that this customized architecture achieves comparable accuracy to models with denser
configurations. Additionally, we extended this adaptation strategy to other CNN models, such as
InceptionV3 [22] and ResNet152 [23], for a comprehensive comparison with our VT-based regression
architectures.

Our approach is a departure from traditional methods commonly used in scientific imaging tasks, such
as denoising [24, 25] or conditional generative adversarial networks (c-GANs)[26–28]. While many
existing methods focus on indirect tasks like denoising to enhance signal quality, our direct regression
approach provides a more efficient solution for extracting meaningful patterns and structures from
scientific imagery.

2.2 ICF radiograph dataset

We developed a dataset of 60,000 synthetic radiographs paired with corresponding double-shell infer-
ences, both of image size 256×256×3, serving as reference standards. These synthetic radiographs X̂
were generated from their inference capsules using the Beer-Lambert Law, computed numerically via
the Tomographic Iterative GPU-based Reconstruction Toolbox (TIGRE)[29] incorporating physical
features characteristic of ICF shots, ensuring realism in the dataset, Y. In our ViXReg framework, we
address an inverse regression problem: raw inputs X̂ are processed through the model’s core layers
(e.g., self-attention or convolutional layers) to generate feature representations, denoted as X, which
are used to predict the target Y.

For clarity, examples of the raw paired images are shown in fig. 3, where the simulated radiograph
input, depicted as X̂, is shown in the first column, and the corresponding double-shell inference
as Y in the second column. Additionally, we obtained 115 experimental ICF radiographs from six
distinct ICF shots, used as an extra test set to evaluate our model’s generalization capability. These
experimental images lack corresponding ground truth inferences, presenting a unique challenge
for validation. We consulted plasma physicists to help valuate the double-shell reconstructions
for this real-world case. In scientific imaging of X-rayed ICF, we tackle the challenge of noise,
evident in low Peak Signal-to-Noise Ratio (PSNR), that inhibits image processing. We applied
unsupervised noise2noise [30] algorithm to remove salt-and-pepper adversarial noise to our synthetic
and experimental ICF datasets.

The synthetic ICF dataset, discussed above, is divided into training, validation, and test sets in
a 0.8/0.1/0.1 ratio. We trained ViXReg on 50,000 denoised ICF images and their corresponding
inferences as targets, validated on 5,000 separate images and inferences. All subsequent ViXReg’s
results shown in this paper are on the test set consisting the remaining 5,000 ICF images and inferences
and later on 115 experimental ICF images.

2.3 Optimizing regression mapping: model and data scaling

We conducted a series of control experiments by testing different key layers within various architec-
tures on general VT models, identifying two optimal mapping types for f(X) at the later learning stage
of regression. The first type, nonlinear mapping, involves a multi-layer configuration (three dense
layers with 256, 512, and 1024 neurons, followed by a concatenated layer) applied during the later
stages of training. The second type, linear mapping, directly connects input pixels to target pixels
through a single dense layer on top of a concatenated layer, integrated with either a self-attention
or convolutional learning architecture. The preserved backbone learning layers and the number of
hyperparameters that need optimization when training ViXReg are summarized in table 1. As
shown in fig. 1, the nonlinear mapping approach results in consistently higher loss values across
epochs compared to the linear mapping strategy. This is shown in the top curves (blue for ViT
Base and orange for Swin Base) versus the lower loss values observed in the remaining 12 curves
representing the 6 linear mapping cases using the same core architectures of ViT and Swin variants.
This suggests that the linear mapping method achieves better performance by an order of magnitude.
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Nonlinear mapping

newest

Figure 1: Training and test losses per epoch on a logarithmic scale (base 10). The y-axis repre-
sents the loss values to highlight convergence patterns across orders of magnitude. The top four
curves/circles (orange and blue) represent losses for nonlinear mapping f(X), while the remaining
twelve curves/circles in six colors (right legend) correspond to linear mapping f(X).

Figure 2: Training and test losses per epoch on a logarithmic scale (base 10) to highlight convergence
patterns across multiple orders of magnitude. Losses are shown for the linear mapping protocol f(X)
of Swin and ViT families, evaluating model and data scaling.

Errors Xception InceptionV3 Swin Tiny ResNet152 ViT Base BEiT Base Swin Base ViT Large Swin Large
ϵ̄ (10−3) 1.10 29.97 0.97 30.50 0.84 0.86 0.82 0.63 0.58
ϵ hard (10−3) 27.46 59.90 20.9 62.21 25.31 22.53 17.62 19.20 18.67

Table 2: Errors measured by MSE ϵ for ViXReg’s study models presented in table 1 performed on
the 5,000 test radiograph images. The top row shows the average values of ϵ over the entire test set,
denoted as ϵ̄, and the bottom row represents the hard study case shown in fig. 4.

We trained our most effective models using the direct linear mapping over 120 epochs with 50K data
pairs (radiographs and double-shells), and the final error metrics are presented in table 2 (top row).
For visualization purposes, we plotted the first 70 epochs (out of 120 epochs) to clearly capture the
acceleration rate.

The scaling law on the models’ size and dataset aspects are shown in figs. 1 and 2. In fig. 1, the
performance on learning our 50K pair dataset across different variants of Swin and ViT is explored.
Although Xception performs well, its dense learning structure shows limitations in our control runs on
different datasets; the compact structure is less effective than VTs when handling similar regression
problems with higher resolution data, such as 512×512×3 images. InceptionV3 and ResNet152
exhibit substantial noise, resulting in large fluctuations in both training and test losses (not plotted
here due to intensive feature observation). In contrast, VT families, despite having a larger number of
hyperparameters, show better efficiency in scaling both model size and input size.

Among the models, Swin Tiny, the smallest VT variant with the least number of parameters on the
backbone, has the highest error rate but still outperforms the Swin Base with nonlinear head mapping.
The Swin family demonstrates better scalability in model size compared to ViT, as ViT Large shows
signs of overfitting (see also fig. 2). When handling data size, the Swin family also performs better
than ViT (see fig. 2). We examine data scaling by gradually increasing the training set from 5K to
50K (from magenta to blue curves/circles), with the trained model tested on a fixed set containing 5K
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pairs of radiograph images and corresponding double-shells. An apparent improvement is observed
as expected.

Regarding model size, Swin continues to show scalability up to the largest model considered, Swin
Large, which contains roughly 194M parameters in our customized regression model’s backbone. Ad-
ditionally, despite being smaller than ViT Large or ViT Huge (≈ 630M parameters in our customized
regression variant), Swin Large shows a smaller error on the test set (see table 2). For our subsequent
learning and mechanism testing runs, we will mainly focus on Swin Base due to its size and efficiency
in examining our architecture and hybrid learning protocol. We plan to explore ViT Huge and ViT
Large to examine their characteristics as suitable FM components within a larger dataset scale.

3 ViXReg: Foundational model properties

3.1 Model robustness: Understanding ViXReg’s effectiveness with low-resolution dataset and
non-label dataset

3.1.1 Model accuracy on the ICF synthetic dataset
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Figure 3: Three synthesized ICF radiographs (far-left column) alongside their corresponding ground
truths as inferences (second far-left column). The double shell inference structures are reconstructed
with ViXReg, implemented using 6 distinct regression models adapted from ViT Large, Swin Base,
BEiT, Xception, InceptionV3, and ResNet152, as well as the cGAN pix2pix mapping, shown
respectively, from left to right in the last 7 columns. Images of original size 256× 256× 3.

First, we analyzed the generalizability of six models, evenly split between Vision Transformer (VT)
and Convolutional Neural Network (CNN) architectures, using their mean squared error (MSE)
between reconstructed Ŷ and the original inference Y: ϵ = 1

N

∑N
i=1 (Ŷi − Yi)

2, as shown in table 2.
Swin Large appears to be the best backbone for the ViXReg regression architecture, with the smallest
MSE error (ϵ̄ = 5.8 × 10−4), followed by ViT Large (ϵ̄ = 6.3 × 10−4), then followed closely by
Swin Base (ϵ̄ = 8.2× 10−4). Despite their larger sizes, detailed in table 1, VTs demonstrated more
efficient memory usage with larger inputs in the ViXReg regression framework compared to CNNs.
Notably, the ViT family manages memory allocation more effectively than the Swin family. However,
due to their significantly longer training times, Swin Large- and ViT Huge-inspired regression models
will be excluded from the following numerical experiments (see also fig. 2).

Despite InceptionV3 demonstrating stable convergence, its generalizability, like that of ResNet152, is
relatively lower compared to the other models, with errors of ϵ = 0.02997 and 0.0305, respectively,
as shown in table 2. By contrast, our adapted regression models within ViXReg, as detailed in table 1,
showed significantly higher precision in reconstructing synthetic double-shell structures on the test
ICF images. This performance is illustrated in the double-shell reconstructions in fig. 3, with the
corresponding error metrics provided in the top row of table 2.

In fig. 3, we further compared the results obtained using VTs and CNNs with those produced by a
conditional Generative Adversarial Network (cGAN), specifically pix2pix [26, 31]. Unlike ViXReg,
which optimizes for regression tasks, pix2pix utilizes a cGAN architecture to learn a supervised
mapping from radiographs to inference targets. Across all models tested, ViXReg consistently
outperformed pix2pix in terms of accuracy. The results from pix2pix, presented in the last column
of fig. 3, revealed notable mispredictions, particularly in the double-shell interiors and asymmetries
in the two representative cases (top and bottom rows). Additionally, in our control experiments, we
evaluated other cGAN architectures, such as CycleGAN [28] and TransGAN [27]. However, pix2pix
demonstrated the best performance among these cGAN models for image-to-image translation tasks
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on our ICF synthetic dataset. This highlights ViXReg’s superior adaptability and precision in handling
complex regression tasks, especially when compared to traditional cGAN approaches.

3.1.2 Model efficiency in low-resolution image analysis

274/15/24
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NewestFigure 4: A hard study case of synthesized ICF radiograph with inference ground truth shown in the

top left labeld as ‘Inference’. The double shell inference is reconstructed using four distinct regression
models, Swin Base, ViT Large, Xception, and InceptionV3, shown in the remaining 5 images. 2
x and 1 x refer, respectively, to the enhanced resolution of 2 times and original ICF radiograph.
Original image size is 256× 256× 3. 2 x resolution is 512× 512× 3. To obserfve finer details, it is
recommended to use a zoom-in tool.

Learning the finer details with vision transformers We previously built a hybrid ML framework
that incorporated an unsupervised super-resolution SRCNN [32] to a regression protocol based
on, e.g., Xception and received image quality improvement resulting in training speed up by 70%.
Super-resolution process is an one-time offline step, and in our previous work, it has been crucial
for accurate predictions in synthetic images. To evaluate the advancements of regression framework
ViXReg as a standalone architecture, we examined a very complex ICF case with inner shell rim
“hidden" in the inference, which can be mispredicted as visible inner shell contour. One such study
inference is the top left image in fig. 4. This inference appearance serves for both image sizes 256
× 256 × 3 and 512 × 512× 3. Hereafter, unless specifically referring to the pixel count, we will
omit the channel dimension (× 3) for simplicity when discussing image scale. The performances
of our adapted VTs and CNNs on this complex example are characterized in fig. 4 for double-shell
reconstructions and table 2 (bottom row) for quantified errors (MSE ϵ). Xception integrated with a
super-resolution-enhanced process on 512× 512 ICF dataset in a separate hybrid learning algorithm,
Swin Base and ViT Large on the study ICF dataset without super-resolution (256 × 256) within
ViXReg, as in top row and bottom left of fig. 4, achieved subtle inner shell details mostly obscured
and visible only at certain edges, shown in the top left ground truth in fig. 4. The limited capability of
Xception on the original-sized dataset, i.e. within ViXReg, is revealed in the middle image of the
bottom row in fig. 4 (MSE ϵ = 0.02746). Both Xception (1x) and InceptionV3 (ϵ = 0.0599), with
reconstructions shown in the bottom row of fig. 4 and errors in the bottom row of table 2, exhibit
variations in their reconstructions, occasionally missing subtle “details" along the inner shell rim,
as discrepancy highlighted against the top left ground truth in fig. 4. This analysis emphasizes the
distinct precision levels of each model in complex imaging and examines the energy efficiency of
CNNs and VTs as independent regression architectures.

Model transferability ViXReg leverages specifically trained regression models on the training
synthetic dataset to analyze observable radiographs in ICF dynamics where inferences are not
available. In fig. 5, we present the inferred double-shell capsules using all top models under study
(ViT Large, Swin Base, ViT Base, BEiT, Swin Tiny, Xception), whose origins and errors are detailed
in table 1 and table 2, respectively. Despite broadly similar training convergence patterns across
models, their diverse interpretations on two experimental ICF shots highlight significant differences,
as seen in fig. 5. Consultation with experts shows that models like Swin Base, Swin Tiny, ViT
Base, Xception have distinct generalizability compared to ViT Large and BEiT, each showing
relatively unique extrapolation behaviors (double shells, asymmetry) in Experiment 1 (top row
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Figure 5: Double shell capsule inference reconstructions on two experimental ICF input radiographs
(far left column) using transferred learning weights obtained with 7 ViXReg’s regression variants.
No ground truths on the inferences are available. We compare our adapted regression instances with
cGAN pix2pix. Images of original size 256 × 256 × 3.

of fig. 5). In contrast, these models demonstrate more consistent extrapolation in Experiment 2
(bottom row). Notably, the cGAN pix2pix mapping demonstrates limited effectiveness, evident
from disruptions in image reconstructions (far right column in fig. 5). Overall, ViXReg’s VT
variants achieve reconstructions with significantly less noise, identified as the black and greenish
‘fringes’ observed outside the active double-shell region in Xception’s and ResNet152’s predictions
(respectively, fifth and eighth column from the left in fig. 5).

The limitations of ViXReg are highlighted by the mismatches observed in double-shell predictions
for experimental radiographs, where no ground truths are available, across different VT architectures,
indicating areas for improvement. In the remainder of the paper, we discuss several strategies to
examine and enhance the performance of ViXReg from a foundation model perspective, including its
application to multi-scale tasks and the use of nested learning architectures for better generalization.
We explore fine-tuning methods tailored to our regression and imagery analysis to develop efficient
building blocks for a foundation model in radiography. These strategies include knowledge distillation,
few-shot learning, and pseudo-labeling techniques, all of which are integrated within our ViXReg
framework.

3.2 Enhancing ViXReg through finetuning and multi-scale training

convergence

(b)(a)

Figure 6: ViXReg’s multi-scale variant, built with the Swin Base backbone, is finetuned on the ICF
synthetic dataset at two scales: (a) 150 × 150 and (b) 512 × 512. Training and test loss per epoch
are displayed on a logarithmic scale of base 10. Label "convergence" indicates the stage at which
finetuning begins from the multi-scale pre-trained ViXReg at a smaller scale (150 × 150). Finetuning
results from two existing pre-trained foundation models, MAE and CLIP, are also included for scale
150 × 150.
To enhance the robustness and generalization of our ViXReg model, specifically the ViXReg multi-
scale variant with the Swin Base backbone, we adopted a multi-scale training strategy designed to
enable the model to learn features across different spatial resolutions. This approach allows the model
to capture both coarse and fine-grained features in one running, making it more adaptive to varying
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input sizes. We trained the ViXReg model using images at three different scales: 256 × 256 × 3
(original size), 192 × 192 × 3, and 168 × 168 × 3 pixels. During each epoch, the model was exposed
to all three scales, iterating over the resized images and performing gradient updates based on the
MSE loss between the predicted outputs and the true targets. The model’s weights were updated
using the Adam optimizer.

The ViXReg multi-scale model, pre-trained on different scales, was then fine-tuned on the ICF
synthetic images at two scales: (a) 150 × 150 and (b) 512 × 512. At the smaller scale (150 ×
150), fine-tuning significantly accelerated convergence, achieving faster learning with lower errors
compared to: (i) two state-of-the-art pre-trained foundation models, MAE [15] and CLIP [16] (see
the blue and cyan curves and circles in fig. 6(a)); and (ii) our ViXReg Swin Base variant trained from
scratch. For clarity, “training from scratch" in this context is a relative term, as the ViXReg variant
is initialized with partially pre-trained weights from Swin (or ViT, BEiT, see details in section 2)
models and then adapted for regression tasks. Although it begins with pre-trained weights, the model
undergoes full training from scratch specifically for the regression task within ViXReg. While CLIP
outperforms MAE, it still underperforms compared to both the finetuned and from-scratch training of
ViXReg, as shown by the magenta, cyan, and brown curves and squares/circles in fig. 6(a). Notably,
the finetuned ViXReg achieves converged errors within only 10 epochs (ϵ̄ = 6.1 × 10−4). This
overall error ϵ̄ = 9.1× 10−4, 1.5× 10−3, 9.8× 10−4, respectively, for training from scratch ViXReg,
MAE, CLIP after epoch ≈ 70 (fig. 6(a)). Further testing at various scales, such as 180 × 180 and 112
× 112, confirms that the finetuned multi-scale ViXReg remains the top-performing model. However,
at a larger scale (512 × 512), which is twice the original image size (256 × 256) as shown in fig. 6(b),
no significant improvement is observed for the finetuned multi-scale ViXReg variant. The model
trained from scratch (cyan curve and circles in fig. 6(b) shows slightly better performance toward
the end of the training cycle. Our available 512 × 512 ICF dataset has only 10,000 paired images of
radiographs and double-shell inferences in the training set and each of 1,500 paired images in the
validation and test set.

In the next subsection, we discuss potential learning strategies to overcome this limitation of finetuning
when applied to unseen resolutions significantly higher than the pre-trained scales.

3.3 Enhancing generalization with hybrid learning: Knowledge distillation and domain
learning

(a)

(b)

Figure 7: (a) Knowledge distillation (KD) applied to ViXReg Swin Base coupled with MobileNetV3;
(b) Application of the KD strategy from (a) to finetuning from the ViXReg multi-scale Swin Base
pre-trained model on the 512 × 512 dataset. Training and test loss per epoch are displayed on a
logarithmic scale of base 10.

Distill the knowledge within ViXReg We first applied a knowledge distillation technique[33, 34]
to our original ViXReg model with an image scale of 256 × 256. The motivation behind this approach
was to transfer the knowledge from a robust pre-trained model, referred to as the “teacher," to a
more compact model, referred to as the “student." The teacher model, in this case, is our customized
Swin Base regression within ViXReg and provides “soft labels" to guide the student model. Soft
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labels are probability distributions over the output space that represent the teacher model’s confidence
in its predictions. The student model is trained to replicate the teacher’s behavior. To examine
the pronounced effectiveness of the distillation, we design student model from a relatively modest
mode, as a MobileNetV3[18] adapted regression. The student’s learning is guided by a training
loss as a combination of two components: MSE loss, which captures the difference between the
student model’s predictions and the actual ground truth targets, and distillation loss (namely Kullback-
Leibler divergence)[33]. This loss is written as: Ltotal = αLMSE + (1− α)LKL where α is a control
hyperparameter that balances the weight of the MSE loss and the distillation loss. This loss function
is designed to effectively encourage the student to mimic the teacher’s behavior, leveraging both
the ground truth labels and the information contained in the soft labels. We demonstrate in fig. 7(a)
the effectiveness of this technique applied to ViXReg, with Swin Base as the teacher model and
MobileNetV3 as the student model. When trained with our synthetic dataset (50K data points),
MobileNetV3 initially exhibits relatively poor performance with high errors (top cyan curve and
circles in fig. 7(a) with ϵ̄ = 10−2 after 120 epochs. However, when treated as a student model in the
hybrid learning framework of knowledge distillation, it shows substantial improvements (bottom blue
curve and circles in fig. 7(a)) with ϵ̄ = 1.8× 10−3 after 120 epochs.

The success of the knowledge distillation approach[33, 35, 36] and our finding above inspired us
design of a new learning protocol for ViXReg. In this protocol, the teacher model is a customized
Swin Base variant of ViXReg, specifically trained on multiple scales (256 × 256, 192 × 192, 168 ×
168). This teacher model inherits its weights from the pre-trained multi-scale variant, as illustrated
in fig. 6. The student model, also a Swin Base variant, is initialized with the pre-trained weights of
the teacher model, a good starting point. To further enhance learning, we added a few-shot learning
phase on top of the knowledge distillation, a new step compared to our previous architecture fig. 7(a).
A small subset (150 samples of paired radiographs and inferences) of the training data was used to
fine-tune the student model in this final stage, allowing it to adapt to unseen data. Our results are
presented in fig. 7(b). The previous failure to improve fine-tuning for a finer scale not seen during
pre-training (see fig. 6(b)) is now resolved using our new hybrid learning framework. The fine-tuning
with the distilled ViXReg now outperforms the results from training from scratch (cyan curve and
circles in fig. 6(b)). Note the similar trend inherited from the knowledge distill in fig. 7(a) now
observed in fig. 7(b) where the loss gap widens with increasing epochs. ϵ̄ attains at 8.4× 10−4 after
120 epochs for the distilled finetuning of ViXReg shown as magenta curve and diamonds in fig. 7(b)
compared to 1.2× 10−3 for the two remaining cases shown in fig. 6(b), repost in fig. 7(b).

Model domain learning: Preliminary results We augmented the Swin Base-adapted ViXReg
regression variant with a semi-supervised learning strategy to evaluate the model’s generalizability.
The model employs a weakly-labeled domain adaptation approach[37], generating pseudo-labels[38,
37, 39] for 115 experimental ICF radiographs that lack ground-truth annotations. Initially, the model
learns from synthetic, labeled data and subsequently generates pseudo-labels for the experimental data
using its own predictions. These pseudo-labels are then used to refine the model through consistency
loss[37]. Various augmentations[40] (such as brightness, contrast, and masking) are applied to the
inputs to ensure robust training, allowing the model to generalize effectively despite the absence of
labeled experimental data. This approach leverages both supervised learning from labeled synthetic
data and unsupervised learning from experimental data with pseudo-labels to improve generalization.
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Figure 8: Domain learning results (last column) using weakly labeled data with the ViXReg Swin
Base backbone as the regression variant. The first two columns are repost from fig. 5. Images of
original size 256 × 256 × 3.
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We show in fig. 8 our preliminary results (last column) obtained with this training methodology and
repost the experimental inputs (first column) and results obtained with original Swin Base adapted
regression ViXReg in fig. 5. We note that we see the improvement in the accuracy on the overall
MSE error ϵ̄ = 7.1× 10−4, compared to Swin Base ϵ̄ = 8.2× 10−4 (from table 2).

Domain learning with ICF images presents unique challenges, largely due to the complexity of
the images themselves, which contain complex, high-dimensional patterns that are difficult to
interpret, given the inherent noise in experimental data. The absence of labeled experimental
data further complicates the task, requiring the model to generalize from limited synthetic data
to real-world experimental conditions. To further evaluate and enhance the model’s performance,
we plan to use domain adaptation techniques[41–44] and self-supervised learning (SSL) methods
[45, 46], to better handle unseen data distributions of noisy inputs. We are also exploring multi-task
learning architectures within ViXReg across different multi-modal datasets, including leveraging
complementary learning from multiple probe sources within ICF environment.

4 Discussion

Our study evaluates VTs and CNNs for ICF double-shell detection, highlighting Swin Base’s and
ViT’s effectiveness in recovering subtle features in low-resolution plasma images and Xception’s
efficiency despite its simpler design. VT models, particularly those utilizing cutting-edge architectures
(e.g. ViT, Swin, BEiT), offer less noise in imaging regression tasks compared to CNNs. However,
the varying interpretation obtained from ViXReg’s adapted regression models’ predictions on the
real-world cases of experimental samples highlights areas for improvement.

Leveraging a teacher-student framework, our model integrates knowledge distillation with few-shot
learning to efficiently transfer learned representations from a robust multi-scale trained teacher model
to a more compact student model, ensuring high accuracy and rapid adaptability even with limited
labeled data. Our findings on model scaling and finetuning indicate that ViXReg holds promising
potential when integrated with a much larger data scale.

By applying the principles of scientific FMs, we aim to leverage the scalability and adaptability of
ViXReg to effectively handle diverse data types encountered in ICF radiography, such as synthetic
simulations and noisy experimental images. Our approach aligns with recent efforts to build FM
components tailored for scientific tasks by focusing on domain-specific fine-tuning techniques and
robust model architectures capable of capturing the complex details of double-shell structures in
fusion environments. This work explores certain potential of FMs to accelerate scientific discovery
in nuclear fusion research by creating adaptable, efficient tools that can be fine-tuned for specific
diagnostic tasks.
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