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ABSTRACT

Current cross-modal retrieval methods still struggle with the retrieval trilemma
to simultaneously satisfy three key requirements, including high accuracy, fast
speed, and low storage. For example, the cross-modal embedding methods usu-
ally suffer from either slow query speed caused by the time-consuming modal-
ity interaction or the tremendous memory cost of dense vector storage. While
the cross-modal hashing methods are typically unsatisfied in accuracy due to the
lossy discrete quantization for vector compression. In this paper, we tackle the
retrieval trilemma with a new paradigm named Cross-Modal Indexing (CMI) that
directly maps queries into identifiers of the final retrieved candidates. Specifi-
cally, we firstly pre-define sequential identifiers (SIDs) for all candidates into a
hierarchical tree that maintains data semantically structures. Then we train an
encoder-decoder network that maps queries into SIDs with the supervision of the
constructed SIDs. Finally, we directly sample SIDs of relevant candidates for
queries with O(1) time complexity. By evading the unfavorable modality interac-
tion, dense vector storage, and vector compression, the proposed CMI reaches a
satisfactory balance in the retrieval trilemma. For example, experiments demon-
strate that CMI achieves comparable accuracy with about 1000x storage reduction
and 120x speedup compared to the state-of-the-art methods on several popular

image-text retrieval benchmarks.

1 INTRODUCTION

Cross-Modal Retrieval (Wang et al., 2016a; Cao
et al., 2020; 2022) aims to retrieve data across
different modalities, e.g., taking an image as a
query to retrieve the most relevant texts in the
gallery. It fundamentally requires i) high retrieval
accuracy, ii) fast query speed, and iii) low mem-
ory storage in real scenarios with large-scale gal-
leries, e.g., image search (Luo et al., 2003) on
the Internet and product retrieval (Rubio et al.,
2017) for E-commerce. Unfortunately, existing
approaches still struggle with satisfying these re-
quirements simultaneously and usually compro-
mise among them. For example, the cross-modal
embedding (CME) methods (Chen et al., 2020c;
Wang et al., 2020) trade speed or storage for high
accuracy, and the cross-modal hashing (CMH)
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Figure 1: Cross-modal retrieval trilemma.

methods (Faghri et al., 2018; Hu et al., 2022) achieve fast speed and low storage with decayed
retrieval performance. Formally, we identify the challenge posed by these requirements as the cross-

modal retrieval trilemma.

Figure 2 summarizes how current mainstream frameworks balance these three requirements. The
cross-modal embedding (CME) paradigm follows the pipeline of 1) Feature Extraction for query
and candidates across modalities, 2) Similarity Measurement between query and candidates embed-
dings, and 3) Brute-Force Search to acquire the final retrieval results. Specifically, the single-stream
framework (Diao et al., 2021; Zhang et al., 2022) usually acquires high accuracy by performing fully
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Figure 2: Comparison of cross-modal retrieval paradigms. (a) Single-stream framework relies on
heavy modality interaction, leading to low query speed. (b) Two-stream framework stores dense
vectors, suffering from huge memory costs. (¢) Cross-modal hashing paradigm adopts vector com-
pression, thus hurting the retrieval accuracy. (d) The proposed cross-modal indexing paradigm
directly maps query into identifiers of relevant candidates, satisfying the retrieval trilemma. Blue,
red, and green texts highlight the accuracy, speed, and storage performance, more details are in Sec-
tion 4.

cross-modal interaction during the similarity measurement and zero memory cost since the computa-
tions are purely online. However, the heavy and online modality interaction also incurs unacceptable
time consumption in practice. While, the two-stream framework (Chen et al., 2021; Wang et al.,
2020) discards the cross-modal interaction with a dot product operation, as well as pre-computes
and stores the candidate embeddings offline. With a light and offline similarity measurement, the
two-stream framework speeds up online retrieval with the cost of memory storage. However, storing
massive dense vectors still hinders practical applications. On the contrary, the cross-modal hashing
(CMH) paradigm (Jiang & Li, 2017; Hu et al., 2022) follows the pipeline of 1) Feature Extraction, 2)
Vector Compression that learns binary representations for query and candidates embeddings, and 3)
Approximate Nearest Neighbor Search with low storage cost and fast retrieve speed. However, the
vector compression with quantization error significantly hurts the retrieval accuracy. Even though
they achieve promising performance on the coarse label-based retrieval, they usually fail in the fine-
grained instance-level cross-modal matching.

In this paper, we aim to tackle the retrieval trilemma for all the above existing frameworks that failed.
Inspired by the power of deep neural networks (Raghu et al., 2017; Lu & Lu, 2020), we propose to
train a model that takes the query as input and then directly generates the identifiers of the rele-
vant candidates. By avoiding the time-consuming cross-modal interaction, memory-costing dense
vector storage, and accuracy-damaging vector compression, the proposed new paradigm named
cross-modal indexing (CMI) successfully achieves a satisfactory trade-off with respect to the re-
trieval trilemma. We implement the CMI with sequential identifiers (SIDs) across modalities and
the pipeline follows three steps: 1) pre-defines a unique SID for each data pair, 2) trains the in-
dexing model with the data point-SID pairs offline, and 3) samples SIDs for each query as the
final retrieval results online. Specifically, the SIDs are sequential and pre-defined by a hierarchical
clustering tree according to their semantic embeddings, thus maintaining the semantic structure of
SIDs, i.e., semantically similar data points share SID prefixes. The indexing model is a multi-modal
encoder-decoder network where the encoder extracts dense features for data points, and the decoder
auto-regressively generates the sequential SIDs. The index sampling adopts a beam search strategy
to enable top-k retrievals.

In summary, our contributions are threefold: 1) We propose a new paradigm named cross-modal
indexing (CMI) that directly maps the query into identifiers of relevant candidates. 2) We realize
the CMI with pre-defined sequential identifiers, the encoder-decoder indexing model, and the index
sampling strategy with beam search. 3) Our experimental results on image-text retrieval bench-
marks show that the proposed CMI achieves comparable retrieval performance with about a 1,000
compression ratio and 120 speedup ratio compared to current state-of-the-art methods.
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2 BACKGROUND AND RELATED WORKS

In this section, we will introduce the background and recent advances of CME and CMH. Formally,
the cross-modal retrieval task is to retrieve n relevant candidates from the gallery C = {c1,--- ,en}
according to the query ¢, where ¢ denotes the candidate and [V is the size of the gallery.

2.1 CROSS-MODAL EMBEDDING

Background. The cross-modal embedding methods follow the pipeline of feature extraction, simi-
larity measurement, and brute-force search, as illustrated in Figure 2. Formally, CME firstly extracts
dense vectors of both query and candidates:

dq =v(q), dc = ¢(c), (D

where v (.) and ¢ (.) are the mapping functions of query features and candidate features, respec-
tively. Notably, for cross-modal retrieval, query g and candidate c are from different modalities thus
v (.) and @ (.) are different networks, e.g., ViT (Dosovitskiy et al., 2020) for images and BERT (De-
vlin et al., 2018) for texts.

After that CME adopts a similarity function Sim (.) to predict relevance score s(q, ¢) for query ¢
and each candidate c in the dense vector space, as,

s(gq,c) = Sim(dg, ds). 2)

Most existing CME methods usually focus on designing a delicate similarity function. For exam-
ple, the single-stream framework employs a heavy cross-modal interaction (e.g., co-attention Li et al.
(2017b) and graph neural network Liu et al. (2020a)) to strengthen the local similarities between two
modalities, while the two-stream framework designs different distance computations (e.g., Wasser-
stein Distance Wang et al. (2021) and Graph Optimal Transport Chen et al. (2020b)) to mitigate
the semantic gap across the modality. CME methods are mainly trained by negative sampling and
encourage the similarity of paired data maximum. Specifically, single-stream methods calculate
similarity online thus the memory storage is 0, while two-stream methods pre-calculate the dense
vectors d. € RP thus the memory storage is 32N D bits since each float consumes 32 bits, where
D is usually 1,024 or 2,048 for most methods.

With the relevance scores, CME utilizes a brute-force search procedure to retrieve the final results,
formally,
results = sort(c € C based on s(q, ¢))[: n]. 3)

Since the sorting procedure has to be performed over all candidates in the gallery C, the time com-
plexity of CME is O(N).

Related works. Existing works on Cross-Modal Embedding fall into two categories: Single-stream
models and Two-stream ones. Single-stream models (Lu et al., 2019; Chen et al., 2020c; Gan et al.,
2020; Huang et al., 2020; Zhang et al., 2021) usually utilize cross-modal fusion modules like Trans-
former (Vaswani et al., 2017) layers to interact between image regions and text words and measure
the similarity via model reasoning. Although sufficient interaction leads to superior accuracy per-
formance, it suffers from huge computational costs and intolerable latency in real-world scenarios
due to this online model reasoning fashion that matches a query with the whole gallery in a brute-
force way in real time. To circumvent this shortcoming, two-stream models (Yan & Mikolajczyk,
2015; Wang et al., 2016b; Radford et al., 2021; Jia et al., 2021; Sun et al., 2021) mapping image
and language to a joint embedding space where the embeddings can be pre-computed offline and
the matching process can be accelerated via similarity calculation of dense vectors. However, the
pre-computed dense vectors bring huge memory occupancy, and the linear time complexity is still
unacceptable when facing massive data in the real world.

2.2 CROSS-MODAL HASHING

Background. The cross-modal hashing methods introduce a new perspective that maps the dense
vectors into a discrete space with vector compression and performs an approximate nearest neighbor
search (ANNS). This is essentially a kind of Production Quantization (PQ) (Jégou et al., 2011), a
classical vector compression method for approximate nearest neighbor search. We next revisit this
method concisely. PQ firstly splits a dense vector d into M sub-vectors.
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Firstly, PQ defines M set of embeddings, each of which includes K centroid embeddings, denoted
by ¢;; € RP/M where i € [1,M] and j € [1, K]. For each dense vector d, PQ splits d into M
sub-vectors as,

d=d,ds,....dy, (G))
Then PQ quantizes each sub-vector d; as the index of centroid embeddings where the quantization
algorithm can be formulated as finding the closest PQ centroid embedding for d; in the vector space,

0i(d) = argmin [|¢; ; — d;|?, %)
j

Thus, the discrete representation of d is the concatenation of g;(d),
d — o(d) = 01(d), 02(d), ..., ons (d). (6)

With the discrete code, the memory storage of CMH is N M, where M is usually 16/32/64 bits for
NUS-WIDE, and 512 bits for Flickr30K.

With the discrete code o(d), CMH performs ANNS with a fast similarity function,
s"(¢,¢) = XOR(¢(dg), o(de))- (M
Similarly, the search procedure is,
results = fast sort(c € C based on s*(q, ¢))[: n] 8)
Thanks to the fast hashing sorting algorithm, the time complexity is O(logN) for ANNS.

Related works. CMH is an option to cater to the demand for low storage cost and retrieval latency
with Approximate Nearest Neighbor Search(ANNS). Prior CMH methods can be roughly divided
into two groups: supervised and unsupervised. The supervised approaches (Li et al., 2017a; Deng
et al., 2018; Liu et al., 2019; Hu et al., 2019; Liu et al., 2021) often learn the unified binary codes
under the supervision of semantical labels, which is labor-intensive to gather a large quantity of
annotated data for training. Moreover, the unicity of semantical labels prevents hash codes from
representing rich semantics or accomplishing fine-grained retrieval tasks. As an alternative, the
unsupervised methods (Liu et al., 2017; Zhang et al., 2018a; Li et al., 2019a; Hu et al., 2022) learn
the hash codes by mapping features from multiple modalities into a common Hamming space via
graph-based fusion (Liu et al., 2017), generative a/o adversarial mode (Zhang et al., 2018b;a; Li
et al., 2018; 2019a; Bai et al., 2020) or contrastive learning (Li et al., 2020; Qiu et al., 2021; Hu
et al., 2022). However, it’s still hard for the binary code to carry enough semantic information for
instance-level retrieval. In contrast, our SIDs contain hierarchical semantical information that fulfills
fine-grained retrieval requirements.

3 CROSS-MODAL INDEXING
Different from the CME and CMH, the proposed CMI directly maps the query ¢ into the identifiers
T'. corresponding to the relevant candidate c in the gallery C, formally,

result = lookup(c € C based onT'.), where I'. sample from CMI(q). )

With the new paradigm CMI, the memory storage is NI bits where [ is the size of identifiers which
is usually about 30, and the time complexity is O(1) thanks to the lookup algorithm.

Next, we will elaborate the implementation of CMI by 1) define the identifiers I'. (Section 3.1),
2) train the cross-modal indexing model CMI (Section 3.2), and 3) design the sampling strat-
egy(Section 3.3).

3.1 INDEX CONSTRUCTION

We represent the identifiers T' as a sequence {~1,--- ,yw} with length as W. Without loss of
generality, here we take image-text retrieval as an example.

Features extraction. Before constructing the clustering tree, we need to extract the image and
text features. The linguistic or visual representations and the target sequence are closely related in
semantics, thus the SIDs must represent correlative semantic information of the multi-modal data to
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Figure 3: I. Index Construction pre-defines SIDs extraction from hierarchical clustering tree. II. In-
dex Learning procedure with the encoder-decoder framework.

make the training of sequence mapping feasible. Here we introduce the hierarchical clustering tree
algorithm to generate SIDs that implicate hierarchical semantics. Features extraction is crucial to
the quality of the created sequential identifier. Considering the powerful generalization performance
of CLIP (Radford et al., 2021), we extract image and text features with a pre-trained CLIP vision
model and text model respectively. In practice, if a sample of one modality owns several matching
pairs from another modality, all the embeddings of the sample and matching pairs will be extracted.
Then we concatenate visual and textual features together into a group as the final representations of
multi-modal data, which will be used to create the hierarchical clustering tree.

Recursive clustering algorithm. Given the embedding groups G = { (v; t)l} of multi-modal data,
we cluster them into 2™ clusters with K-means and number them from 0 to 2” — 1 in a recursive
way until the number of samples in the clusters is no more than 2. Finally, we get a hierarchical
clustering tree where the none-leaf nodes present the hierarchical clustering centers and leaf nodes
are the embeddings of sample pairs. If we take the original embeddings as the first layer of the tree,
we code from the second layer as a-z. Now we can create the sequential identifiers according to the
path of every leaf node in the tree. For the none-leaf nodes in the path, we name them by composing
their hierarchical layer and clustering number. And for the leaf nodes, we name them according
to their similarity to the corresponding clustering center from 0 to 2”* — 1. The final semantical
identifier for each sample pair is the concatenation of all nodes’ code from the path. Figure 3 (I)
shows the visual illustration of this algorithm. And we formulate this process as:

L={y, 1} < R(fo(vs 1)), (10)
where T is the code length, R(.) is the recursive clustering function, fy(.) represents the CLIP
encoder.

Then the identifiers are used as supervision of our model training. It serves as the transduction target
of multimodal input in our encoder-decoder framework. The target vocabulary size of this discrete
representation space is calculated as:

V=_d-1)-2"+1-2"+2 (11)
where d is the depth of the hierarchical clustering tree and [ is the number of the layer that contains
leaf nodes, ‘2’ represents two special tokens for marking the beginning and blank of the sequence
(More detail can be found in Section 4.1). The letters (i.e., a-z) provide hierarchical information in

training yet will be removed in the pre-computed SID gallery. The memory occupancy of SID is
(d=1)-n+m.

3.2 INDEX LEARNING

Similar to CMH, CMI maps the dense vectors into a discrete semantic space, which is also a process
of production quantization. The difference is we fulfill the quantization of dense vectors as an auto-
regression decoding process:

Ql(x)792(m)""aQM(m) (—D(SC), (12)
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Figure 4: Tllustration of Index Sampling (Taking text-to-image retrieval as an example). CMI gets
top-K results in the decoding process via semi-beam search with the beam width K. For the sake of
description, we set K=2 and the SID length as 5. Thus decoder searches at the last ng = 2 codes.

where z represents the embeddings of input and D(.) is the decoder. The preliminary of PQ is non-
differentiable while our encoder-decoder model can be optimized in an end-to-end fashion with the
following seq2seq (Image or text tokens — ID) cross-entropy loss:

1 N M
L= —Nzi:zj:yi,j logy{,j (13)

where y; ; is the probability distribution of the ji, code for the 7;;, sample of the mini-batch (Size
N). And y; ; is the corresponding ground-truth distribution, which is obtained via the beforehand
hierarchical clustering operation elaborated in the following Section 3.1. M is the discrete sequence
(SID) length. Finally, we describe the retrieval pipeline via discrete sequence (ID). Taking the
text-to-image retrieval task as an example, we first train the visual encoder-decoder model with
the objective 13 to index the image gallery as the discrete sequences, then we finetune the textual
encoder-decoder model with the objective 13 to generate IDs for textual queries. A correct retrieval

means:
D(v(t;)) = D(p(vs)) (14)
As for image-to-text retrieval, vice versa.

Different from traditional cross-modal retrieval methods that usually have only one training goal,
learning appropriate embeddings of two modalities and then pulling them as close as possible in the
common subspace. As for CMI, it is a completely different paradigm containing two training goals,
learning to index and learning to inference. To this end, we explored two modeling strategies. The
first strategy is training separately in two independent models. A straightforward approach that one
model for creating the sequential identifiers and the other for retrieval. We denote this framework as
Sep. (rep. Separate models).

Considering the consistency of the output targets of the two models, we designed the second strategy
that trains successively in a decoder-shared framework where the image and text encoders connect to
a mutual decoder. For ease of description, we name the textual encoder-decoder as the T2id module,
and similarly the image encoder-decoder as the 12id module. Taking the text-to-image retrieval
task as an example, the training process is: 12id module — T2id module. Specifically, 1) we first
train the 12id module and preserve the parameters to create the sequential identifiers for the image
gallery. 2) Then we continue to use decoder parameters and train the T2id module for mapping text
queries to the sequential identifiers. A visual illustration of this training process is shown in Figure 3
(II). Combining those two modules, we can accomplish the text-to-image retrieval task given ahead,
which we call as T2I model. As for the image-to-text retrieval task, and vice versa, we reverse the
training order and get the I2T model.

Note that both models can take on the bidirectional image-text retrieval tasks independently, al-
though we design them for the two retrieval tasks separately. Experimental results are reported in
Section 4.3 to illustrate their performances.

3.3 INDEX SAMPLING

Different from previous methods that rank a gallery of embeddings to get top-K results, CMI fulfills
the matching and ranking operation in the decoding process, just like sampling from the latent space
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of the learned model. Specifically, taking text-to-image retrieval as an example, we first put images
into the visual encoder-decoder model to generate the ID gallery. Then a sentence query will be
put into the textual encoder-decoder model. To obtain top-K predictions, we use semi-beam search
in the sentence decoding process and a re-read strategy to improve the quantity of the predictions,
which are introduced at length below. And a vivid illustration is shown in Figure 4.

Semi Beam Search. In the general seq-to-seq model like translation, beam search is a left-to-right
truncated breadth-first search algorithm for the best prediction of the decoder at each time step. We
express beam search as the following recursion:

Ve = arg Topk pg(§| @), ¢ € [1, .., T] (15)
yeB;
where z is the input, 4 is the predicted code at the time step ¢ and B; is the code set at the time step
t. And T is the whole time step (i.e., code length). pg(y|x) is the product of probability distributions
over the output space whose size is defined in Equation 11.

However, the sequence of identifiers presents a coarse to fine semantical change following the hier-
archical clustering tree. That means it is relatively easy to predict the prefix of a sequential identifier
while not that easy in the suffix. In light of this observation, we propose the semi-beam search, a
simple but efficient modification of beam search. We divide the decoder progress into two parts and
apply beam search only in the suffix part, which we called Semi Beam Search. It can be formulated
as: T

7 = arg Topkps (3] ), € [[S 1, .., T] (16)

YyeB,

which means semi-beam search begins at the time step [%] and only pays attention to the difficult
and fine semantical code, which is applicable to our CMI.

Re-read. After getting IDs via the semi-beam search in decoding, we can read very quickly from
the gallery by index. However, with some probability, we encounter a missing problem that query
IDs are not existing in the gallery. As compensation, we re-read all the candidates in the partition
(denoted as G’) where the abortive ID is located and select the 44, candidate as an alternative that
achieves the minimum difference:

I = argmin|G'[1] - T (17)

An example of this process is given in Appendix 6.2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Please refer to Appendix 6.1.

4.2 EXPERIMENTAL RESULTS

Accuracy, Speed, and Memory. We carry out bi-directional retrieval experiments on MS-COCO
and Flickr30K. The comparison results with CME and CMH are shown in Table 1 and Table 4 (in
Appendix 6.2). We can draw the following conclusions by analyzing: CME single-stream methods
are leading in retrieval accuracy. CME two-stream methods occupy more than 32K bits for im-
age and text embedding storage while our CMI only takes 30 bits for SIDs usage, which reduced
memory consumption by at least 1000x. More importantly, CMI achieves better or comparable ac-
curacy to CME two-stream methods except GPO pre-trained on 940M tagged images. What’s more,
CMI surpasses CMH on the three metrics with higher lookup speed, lower memory occupancy, and
significant accuracy (e.g., 50.4% upper in image-to-text top-1 retrieval results). Note that, CME
single-stream methods matching via model reasoning online have no lookup (Speed) stage. We also
have compared the inference (model reasoning + lookup) time of various methods.

Inference Time. Additionally, we test the once inference time of UNITER (Chen et al., 2020c)
(rep. CME single-stream), GPO (rep. CME two-stream), DCMH (rep. CMH) and our CMI under
different magnitude of candidates. The results in Figure 5 show that the time complexity of CMI
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Method Speed Memory Image — Text Text — Image
(ms) (bits) R@l R@5 R@I0 R@1 R@5 R@I10
CME Single-Stream
BLIP (Li et al., 2022) - 0 974  99.8 99.9 87.6 97.7 99.0
IMRAM (Chen et al., 2020a) - 0 741 93.0 96.6 539 794 87.2
NCR (Huang, 2021) - 0 773 94.0 97.5 59.6 84.4 89.9
SGRAF (Diao et al., 2021) - 0 77.8  94.1 97.4 58.5 83.0 88.8
CMCAN (Zhang et al., 2022) - 0 79.5 95.6 97.6 60.9 843 89.9
CME Two-Stream
GPO (Chen et al., 2021) ~25 32K 88.7 98.9 99.8 76.1 945 97.1
SCAN (Lee et al., 2018) ~25 32K 674 903 95.8 48.6 777 85.2
VSRN (Li et al., 2019b) ~50 64K 71.3  90.6 96.0 547 81.8 88.2
CVSE (Wang et al., 2020) ~25 32K 70.5  88.0 92.7 547 822 88.6
CMH
VSE++ (Faghri et al., 2018) ~3 512 13.5 347 48.2 10.8  31.1 43.6
DJSRH (Su et al., 2019) ~3 512 179 435 56.3 133 363 48.9
JDSH (Liu et al., 2020b) ~3 512 13.6 356 494 9.8 29.1 42.6
UCCH (Hu et al., 2022) ~3 512 22.8 48.1 61.0 169 418 54.9
CMI ~0 30 | 724 917 942 558 81.5 89.2

BLIP and GPO are trained with large-scale datasets.

Table 1: Comparison of bi-directional retrieval results on Flickr30K 1K test set with Cross-modal
Embedding (CME) and Cross-modal Hashing (CMH) methods.

200K { —e— UNITER(single-stream) 2
= ol | e o Image-Text Text-Image
R ST . depth | length | p@1 " R@10 | R@I R@I0
2 716 93.1 | 537 884
i3 6 | 724 942 | 558 892
4 720 938 | 55.1  88.8
5 | 71.8 938 | 535 889
" w : 3 6 | 724 942 | 558 892
e 7 1703 932 | 538 880

Number of Image Candidiates

Figure 5: Comparison of inference time un- Table 2: Ablation studies on the depth and length of
der different magnitude of candidates. SIDs with Flickr30K 1K test set.

is approximately sub-linear while CMH and CME two-stream methods are linear, which are more
evident when the scale of the gallery is more than 10°. What is more, the inference time of the CME
single-stream is too long to compare with other methods under one scale axis.

Ranking and Lookup. We conduct bi-directional retrieval ranking experiments on NUS-WIDE.
The comparison results with CMH are shown in Table 5 (in Appendix 6.2). CMI achieves better
or comparable accuracy to CMH methods in three code lengths. We also report the mean of the
image-to-text and text-to-image retrieval ranking results. CMI surpasses prior CMH methods, which
demonstrate our balance performance in bi-directional retrieval. This may be because the SIDs of
CMI can uniformly represent multi-modal instance pairs. And the hierarchical semantical help
recalls similar candidates for the query. The P-R curves of lookup in CMH methods and our CMI
are shown in Figure 6 (in Appendix 6.2), which also supports the conclusion mentioned above.

Qualitative results. Please refer to Appendix 6.2 for visualization results of bi-directional retrieval.
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Framwork Ranking Image-Text Text-Image
Sep. I2T T2I | BS SBS | R@l R@I0 | R@l R@10
v v 69.3 86.5 53.6 80.4
v v 69.3 89.4 53.6 83.1

v v 724 923 522 79.1
v v 724  94.2 522 81.2

v v 68.6 84.2 55.8 86.3
v v 68.6 88.7 558  89.2
v v v 72.4 92.3 55.8 86.3
v v v o724 94.2 55.8 89.2

Table 3: Ablation studies on framework and ranking strategy. ‘Sep.” means two independent frame-
works without shared decoder. 12T and T2I represent Image-to-Text and Text-to-Image framework
respectively. ‘BS’ meas beam search while ‘SBS’ means semi beam search strategy. The ensemble
results are marked as gray.

4.3 ABLATION STUDY

Depth and Length of SIDs. We conduct ablation studies on the depth and length of SIDs. As
Table 2 shows, the code style of SIDs has a limited impact on the accuracy. This is probably because
SIDs is determined especially by the dataset so the memory size of SIDs is limited on it too.

Framework and Ranking Strategy. We first conduct ablation studies to analyze the individual
impact of each model proposed in this paper and the effectiveness of the semi-beam search. The
results are presented in Table 3. We note that the separate architecture model works pretty well
with 72.4% for R@1 in sentence retrieval and 55.8% for R@1 in image retrieval. What’s more, 12T
and T2I achieve the comparable result on their respective retrieval task while the performance is
relatively down on the opposite task, e.g using 12T model for the image retrieval task. Particularly
for semi-beam search, it helps improve about 2% and 3% for R@1 in the sentence and image re-
trieval task respectively. It is profitable for the separate architecture model too, with an average 3%
improvement on bi-directional retrieval tasks on R@10.

5 CONCLUSION

In this paper, we propose a new paradigm named cross-modal indexing (CMI) for the cross-modal
retrieval trilemma to simultaneously satisfy high accuracy, fast speed, and low storage requirements.
Compared to existing methods, the proposed CMI discard the unfavorable modality interaction,
dense vector storage, and vector compression by directly mapping the query into the identifiers
of relevant candidates. Specifically, we implement CMI with pre-defined sequential identifiers,
encoder-decoder networks, and a beam search sampling strategy. By conducting extensive exper-
iments on the most popular image-text benchmarks, we confirm that the proposed paradigm CMI
reduces the time complexity from O(logN) to O(1) and substantially compresses the memory stor-
age more than 1000x while performing favorably accuracy against the state-of-the-art methods. We
hope we could raise the community’s attention on the retrieval trilemma, and shed some light on
future research in the new CMI paradigm.

Limitations. Even though the proposed CMI paradigm balances the retrieval trilemma with the
lowest time complexity and the lowest memory storage, the accuracy somehow is unsatisfied com-
pared to state-of-the-art methods, especially those pre-trained methods. Besides, the paper only
conducts experiments on the most representative cross-modal retrieval across image and text do-
mains, remaining video and audio modalities unexplored. In the future, we will further 1) exploit
the potentialities of CMI and improve the accuracy performance, and 2) investigate more modalities
of cross-modal retrieval with the proposed paradigm.
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6 APPENDIX

6.1 DETAILED EXPERIMENTAL SETTINGS

Datasets. CMI is evaluated on the three datasets: MS-COCO (Lin et al., 2014), Flickr30k (Plummer
et al., 2015), NUS-WIDE (Chua et al., 2009). In MSCOCO and Flickr30k datasets, each image
owns five annotated text descriptions, which we take as a multi-modal sample group. MSCOCO
is a popular dataset for image-text matching and retrieval tasks, which contains 123,287 groups.
In (Karpathy & Fei-Fei, 2015), it is split into 82,783 groups as the training set, 5000 validation set
and 5000 test set. We follow the data split of (Faghri et al., 2018) to add 30,504 groups into the
training set, which are originally abandoned in the validation set. Flickr30k contains 31,000 groups,
which we split into 29,000 groups for the training set, 1000 validation set and 1000 test as (Karpathy
& Fei-Fei, 2015; Faghri et al., 2018). Particularly for MSCOCO, the result of MSCOCO 1K is the
average over five fold on the test set while MSCOCO 5K and Flickr30k are reported on the full
test set. NUS-WIDE consists of 269,498 web images where each image corresponds to some text
description of 81 concept categories. We select 186,557 image-text pairs belonging to 10 most
frequent classes in our experiments.

Evaluation metrics. General cross-modal retrieval methods use the metric of recall at K (R@K,
K=1,5,10). R@K is the percentage of correct matching in the top-K candidates. For a fair compar-
ison, we obtain the top-K candidates using semi beam search with the beam width K. In addition,
we introduce Speed and Memory in cross-modal retrieval task. Memory represent the memory oc-
cupancy of pre-computed representation, i.e., dense vector in CME two-stream methods, hashing
code in CMH, SID in our CMI. And Speed indicate the lookup time in the prepared gallery (1000
candidates in Flickr30k and 5000 in MSCOCOQ), i.e., doc-product of vectors, ANN then XOR of
hashing codes, index then ANN of SIDs, and no model reasoning time included here.

To compare with CMH methods thoroughly, we also utilize the widely-used mean Average Precision
(mAP) and precision-recall (P-R) curve. mAP is the mean value of Average Precision (AP) scores
for each query to measure the accuracy of the ranking results. P-R curve can measure the accuracy
of the lookup. In CMH baselines, mAP is reported on all recall results. Semi beam search is limited
here. Thus we sort the output logits of the last layer’s left token and obtained the corresponding
SIDs as CMI ranking results.

Implementation Details. We experiment with all Transformer (Vaswani et al., 2017) architecture.
For the image encoder, we use the popular ViT (Dosovitskiy et al., 2021) pre-trained by CLIP (Rad-
ford et al., 2021). We closely follow CLIP implementations by adding an additional layer normal-
ization before the transformer. For the text encoder, we naturally use the pre-trained base size Trans-
former in CLIP with 12 layers in depth, 512 for width and 8 attention heads. We closely follow CLIP
tokenization method and bracket the text sequence with [SOS] and [EOS] tokens. Corresponding
to [EOS] token, the activations of the last layer in the transformer are taken as the representation of
the input sequence. The mutual decoder is a light Transformer decoder with 2 layers in depth, 512
for width and 2 attention heads.

We set n={2, 3,4} and m=6 to create the hierarchical clustering tree, which corresponds to 16bits,
32bits and 64bits of hashing code in CMH methods respectively. Except for special instructions, we
set n=3, m=6 as default in the experiments. We add [SO.S] at the beginning of all identifiers and
[SP] at the blank place of short identifiers like the padding operation.

We implement the proposed method using PyTorch, and conduct the training and evaluation pro-
cesses on two NVIDIA RTX 3090 GPU with 24 GB memory each. In all experiments, our model is
optimized by Adam, and batch-size is set to 64. In addition to semi-beam search, we obtain predic-
tions from the hidden state of the last layer for ranking results. The training progress is presented in
Section 3.1. We start training the shared decoder with a learning rate 2e-4 for the first 5 epochs and
then decay the learning rate by 0.1 for the rest of 10 epochs. After that, we keep the learning rate to
finetune the image/text encoder-decoder model for 10 epochs and finetune the text/image encoder-
decoder model for 5 epochs at last. As for the separate architecture model, we take the same training
strategy. We choose the snapshot of the best performance on the validation for testing.
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Table 4: Comparison of bi-directional retrieval results MSCOCO 5K test set with Cross-modal
Embedding (CME) methods.

Speed Memory Image — Text Text — Image

Method (ms)  (bit) | R@l R@5 R@10 R@I R@5 R@IO

CME Single-Stream

BLIP (Li et al., 2022) -
IMRAM (Chen et al., 2020a) -
NCR (Huang, 2021) -

824 954 97.9 65.1 863 91.8
537 832 91.0 397 69.1 79.8
582 842 915 417 710 81.3

(=N el N No)

SGRAF (Diao et al., 2021) - 57.8 - 91.6 41.9 - 81.3
CMCAN (Zhang et al., 2022) - 61.5 - 92.9 44.0 - 82.6
CME Two-Stream

GPO (Chen et al., 2021) ~120 32K 68.1 90.2 95.2 527 80.2 88.3
SCAN (Lee et al., 2018) ~120 32K 504  82.2 90.0 386 693 80.4
VSRN (Li et al., 2019b) ~260 64K 53.0 8.1 89.4 40.5 70.6 81.1
PCME (Chun et al., 2021) ~120 32K 442 738 83.6 319 62.1 74.5
CMI ~1 30 \ 51.8 814 90.6 393 715 80.7

BLIP and GPO are trained with large-scale datasets.

Table 5: Comparison of bi-directional retrieval ranking mAP on NUS-WIDE with Cross-modal
Hashing (CMH) methods. Namely, DCMH (Jiang & Li, 2017), JDSH (Liu et al., 2020b),
MDCH (Lin et al., 2021), UCCH (Hu et al., 2022).

Method 16 bits 32 bits 64 bits

etio I-T TI  Mean | LT TI  Mean | LT TI  Mean
DCMH | 0.5903 0.6389 0.6146 | 0.6031 0.6511 0.6271 | 0.6093 0.6571 0.6332
JDSH 0.6470  0.6490 0.6480 | 0.6560 0.6690 0.6625 | 0.6790 0.6890 0.6840

MDCH 0.6920 0.6654 0.6787 | 0.6994 0.6822 0.6908 | 0.7072 0.6915 0.6994
UCCH 0.6980 0.7010 0.6995 | 0.7080 0.7240 0.7160 | 0.7370 0.7450 0.7410
CMl(ours) | 0.7125 0.7267 0.7196 | 0.7218 0.7346 0.7282 | 0.7285 0.7350 0.7315

6.2 ADDITIONAL EXPERIMENTS

Qualitative Results. Here we provide some image-to-text retrieval visual results in Figure 7 and
text-to-image retrieval visual results in Figure 8, including correct and incorrect ones. We can find
that our proposed SIDs are semantic relevant, and semi-beam search can provide multiple retrieval
results. Even for the incorrect results, the generated SIDs are still similar to the correct ones, which
demonstrates the effectiveness of our CMI framework.

Image - Text on NUS-WIDE Text -» Image on NUS-WIDE

= JDSH —m— |DSH
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—— DCMH 0.9 —— DCMH
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(a) P-R curves of text retrieval. (b) P-R curves of image retrieval.

Figure 6: Precision-Recall curves on NUS-WIDE. The code length of UCCH is 128 and oth-
ers @64bits.
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Retrieval =) == Index

- semi bear search asblcOdles A guy is near a busy street in a foreign country .
a5 asblc0dl e a5 bl c0dl e2 Man standing at edge of busy road in metropolitan street .
t:)(l) asblcodled a5blc0dle9 The man is standing beside a busy street .
dl asblcOdlels a5blcOdle8 A young man is standing away from the traffic .
¢ asblc0d2e7 a5bl c0 d2e23 cars traveling on a busy road in Asia

- semi beam search alb3c7dsel two dogs sharing a frisby in their mouth in the snow
al al b3 c7d5el al b3 c7d5el3 two dogs on the snow playing frisbee together
]z; al b3 c7d5e5 al b3 ¢7 d4 e7 A couple of dogs fighting over a frisbee .
ds al b3 c7d5e8 al b3 c7d5e3 Two dogs fighting over a Frisbee in the snow .
e3 alb3c7d2e3 al b3c7d5e8 there are two dogs trying to get the frisbee

- semi beam search aSblc2dSel An airport filled with planes sitting on tarmacs .
as aSblc2dses a5blc2dse3 The view of runway from behind the windows of airport .
'é; a5blc2d4el2 a5blc2d5e2 |5 tryuck driving towards some planes parked on the runway
ds a5blc2d4el a5blc2d5e7 Planes on a wet tarmac unloading at arrival gates .
e0 aSblc2d5e9 a5blc2d5el0 Window view from the inside of airplanes , baggage carrier and tarmac .

Figure 7: Examples of visual results in image to text retrieval task. A correct retrieval by the
generated SID is noted with red. All result is reported by semi beam search with width 2. The first
one is the top-1 result and the four row followed are the rest result in Top-5.

Retrieval ¢== Index
semi beam search
a8 a8 b3 c2 d4 el a8
b3 b3
A pizza with sauce , mushrooms , and cheese on a plate . 2 a8 b3 c2 d4 e3 c2
d4 a8 b3 c2 d4e7 d4
e a8 b3 c2 ds ed e5
a3 a3 b4 c8 d3 e2 a3
b4 b4
A table and chairs with wooden kitchen tools on top . c8 a3bdc8 d3 8 c8
d3 a3 b4 c8d2e0 d3
€0 a3 b4 c8 d2 €9 e2

Figure 8: Examples of visual results in text-to-image retrieval task. A correct retrieval by the
generated SID is noted with red. All result is reported by semi beam search with width 2. The first
one is the top-1 result and the four row followed are the rest result in Top-5.

Re-read example. In Equation 17, only the leaf node layer that codes with embedding distance
(Section 3.1) participates in this calculation. For example, the abortive ID is 000226 and the partition
to which it belongs is G’=[0002a, ..., 0002z]. In Equation 17, 0002a—000226 means a—26. Suppose
the 7,5, candidate 000225 achieves the minimum of Equation 17, 000225 will be the prediction. Note
that, each partition is very small and easy to access in the hierarchical and partitioned gallery, which
has little impact on CMI sampling speed.
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