
The Effective Horizon Challenge

Cassidy Laidlaw∗

UC Berkeley
Daniel P. Khalil

Caltech
Michelle Li
UC Berkeley

Laker Newhouse
UC Berkeley & MIT

Stuart Russell
UC Berkeley

Anca Dragan
UC Berkeley

Abstract

While benchmarks have driven significant progress in deep reinforcement learning
(RL), they may be easier to solve than intended: recent work has found that
many RL benchmark environments have a short effective horizon, a measure of
complexity that captures how easy it is to explore and solve an environment via
Monte Carlo lookahead search. We introduce a new benchmark, the Effective
Horizon Challenge (EHC), which consists of environments with much longer
effective horizons than those in past benchmarks. Although environments in the
EHC have small state spaces, short episodes, shaped rewards, and deterministic
transitions, we find that deep RL struggles to solve them. For example, PPO finds
an optimal policy in only 8 of 43 environments in the EHC and DQN in only 12.
Our results establish environments with long effective horizons as a new frontier
for deep RL research, and the Effective Horizon Challenge provides a concrete
way to make progress in this direction.

1 Introduction

A decade of progress in deep reinforcement learning (RL) has been enabled by benchmarks like the
Arcade Learning Environment (ALE) [1]. Deep RL algorithms have progressed from matching human
performance using huge amounts of experience to surpassing human performance with minimal
data [2, 3, 4, 5, 6]. However, prior work by Laidlaw et al. [7, 8] has found that the ALE and other
popular deep RL benchmarks may be easier to solve than intended. In particular, they show that
many environments in these benchmarks can be solved by a single step of policy iteration on the
random policy. This means that it is possible to select optimal actions purely by approximating
the Q-function of the policy that takes uniformly random actions. Laidlaw et al. [7] generalize this
property to introduce a complexity measure called the effective horizon, which they find is quite
low for many deep RL benchmarks. Essentially, environments with a short effective horizon do
not require extensive exploration, since finding an optimal policy only requires inspecting random
rollouts rather than exhaustively exploring the environment.

Since existing benchmarks have low effective horizon, it remains an open question how well deep
RL performs in environments with longer effective horizons where more exploration is needed. To
address this gap in RL evaluations, we introduce a new benchmark called the Effective Horizon
Challenge (EHC). The EHC consists of 43 Markov decision processes (MDPs) based on classical
planning problems and games. We construct complete tabular versions of all MDPs in the EHC and
verify that their effective horizons are much longer than those in the ALE and Procgen [9].

We use the EHC to benchmark two of the most popular model-free deep RL algorithms: PPO [10]
and DQN [2]. We measure whether each algorithm can find an optimal policy in ten million timesteps.
We find that PPO succeeds in only 8 of 43 environments and DQN succeeds in only 12 of 43.
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Figure 1: We introduce the Effective Horizon Challenge (EHC), a new deep RL benchmark that consists of
MDPs with longer effective horizons than those in past work. The effective horizon measures how easy it is
to solve an MDP with Monte Carlo lookahead search, and previous benchmarks like the Atari games in the
ALE have low effective horizon (top left corner). In contrast, the EHC environments have much longer effective
horizons (lower left). We find that the deep RL algorithms PPO and DQN struggle in the EHC, solving only
around 20% of the environments. This shows that RL struggles in settings with long effective horizons and
suggests that future work on deep RL should focus on solving these harder environments.

Our findings suggest that while deep RL has produced impressive results, its success may still be
limited to environments with short effective horizons. In other words, PPO and DQN seem to struggle
to explore in cases where random rollouts cannot be used to select optimal actions. The MDPs in
the EHC are simple in many ways—they are deterministic, they all have fewer than four million
states (and most less than one million), they do not have extremely sparse rewards—and yet popular
algorithms still struggle to solve them. We hope that the EHC serves as a catalyst to develop improved
RL algorithms that can leverage more advanced exploration strategies to succeed beyond the short
effective horizon regime.

2 Background

Before introducing the EHC, we survey related work and present background information on MDPs,
RL, and the effective horizon.

2.1 Related work

Deep RL benchmarks Benchmarking has played a central role in the progress of deep RL. In
discrete-action RL, the Arcade Learning Environment (ALE) [1] is a widely used testbed that
emphasizes performance across diverse games. Procgen [9] is a newer benchmark which has been
used to test generalization in RL. However, recent work by Laidlaw et al. [7, 8] shows that many
environments in these benchmarks can be solved by acting greedily with respect to the Q-function
of the random policy. This raises the concern that improvements in sample efficiency in these
benchmarks may not generalize to deep RL solving fundamentally harder decision-making problems.

Some benchmarks such as bsuite [11], MDP Playground [12], SEGAR [13], MiniGrid [? ], and
NetHack [14] are designed to empirically evaluate deep RL algorithms across various axes of
environment difficulty. bsuite [11] decomposes RL performance into interpretable components
such as exploration, reward sparsity, and memory, but its tasks are typically low-dimensional and
analytically simple. SEGAR [13] provides a flexible 3D physics sandbox to test inductive biases
and reasoning, though its continuous control setting and partial observability make it difficult to
isolate specific planning challenges. MiniGrid [? ] is a gridworld-based benchmark that emphasizes
exploration and memory, but the environments are small, not tabularized, and lack formal complexity
metrics, limiting theoretical analysis. MDP Playground [12] offers configurable MDPs with explicit
control over factors like stochasticity and reward delays, but does not focus on long-horizon planning
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or exploration. NetHack [14] is a more semantically rich and procedurally complex benchmark, but
it is hard to analyze theoretically due to its massive action space, textual interface, and lack of known
optimal policies.

These platforms allow testing across a wide range of environment properties, but often lack theoretical
grounding for why some tasks are harder than others. BRIDGE [7] partially fills this gap by introducing
tabular versions of existing environments, enabling exact Q-function computation and introducing
the effective horizon as a complexity metric; however, most environments in BRIDGE have short
effective horizons, so it cannot be easily used to benchmark deep RL performance in MDPs with
long effective horizons. Furthermore, the MDPs in bsuite, SEGAR, and MDP Playground are quite
artificial; they are specifically constructed to have a certain structure. Thus, it is unclear if they
represent difficult sequential decision-making problems more broadly. Of course many other RL
benchmarks are also artificial or “toy” in some sense—they are often literally games—but at least
they are based on some previously existing interesting decision problems inspired by real-world tasks
like navigation, balancing competing objectives, and hand-eye coordination.

In this work, we introduce a diverse dataset of MDPs, the Effective Horizon Challenge, which both
have long effective horizons (unlike Atari games), are not too artificial (unlike bsuite, SEGAR, and
MDP Playground), and include tabular representations to enable theoretical analysis. Unlike prior
benchmarks focused on improving sample efficiency within already-solvable environments (e.g., the
Atari 100K challenge [15]), our benchmark explicitly tests whether algorithms can solve previously
unsolvable tasks using principled exploration. The EHC shares a key strength with ALE and Procgen:
a diversity of environments that prevents overfitting to a single task. However, it moves beyond
them by focusing on environments that demand deep planning, making it a more challenging and
informative benchmark for the next generation of RL algorithms.

2.2 Setting and notation

We consider the standard reinforcement learning (RL) setting in a tabular, deterministic, episodic
Markov decision process (MDP). Our benchmark focuses on discrete-action environments because
the effective horizon is only defined for such MDPs; furthermore, discrete action MDPs support the
widest range of deep RL algorithms, unlike continuous control environments which require more
specialized algorithms. We consider deterministic environments to further simplify the benchmark,
but the MDPs in the EHC could be modified in the future by adding, for example, sticky actions
[16] to make them stochastic; Laidlaw et al. [8] define an equivalent notion of effective horizon for
stochastic environments.

An MDP consists of a finite set of states S, a finite action space A, a horizon T ∈ N, a start state
s1, a deterministic transition function f : S × A → S, a reward function R : S × A → R, and a
discount factor γ ∈ [0, 1].

An RL agent interacts with an MDP over multiple episodes, each beginning from a fixed initial state
s1. During each episode, at every timestep t ∈ [T ] (where [n] = {1, . . . , n}), the agent observes the
current state st, selects an action at, receives a reward R(st, at), and transitions to the next state
st+1 = f(st, at). A policy π is defined as a set of functions π1, . . . , πt : S → ∆(A), specifying
a probability distribution πt(a | s) over actions for each state and timestep. When the policy is
deterministic at a given state, we slightly abuse notation and write a = πt(s) to denote the action
selected by πt in state s.

For each timestep t ∈ [T ], the Q-function and value function of a policy are defined by

Qπ
t (s, a) = Eπ

[∑T
t′=t γ

t′−t R(st′ , at′) | st = s, at = a
]

V π
t (s) = Eπ

[∑T
t′=t γ

t′−t R(st′ , at′) | st = s
]
.

The objective of an RL algorithm is to find an optimal policy π∗, which maximizes J(π) = V π
1 (s1),

the expected discounted sum of rewards over an episode, also known as the return of the policy π.

Generally, an RL algorithm can be run for any number of timesteps n (i.e., counting one episode as
T timesteps), returning a policy πn. We define the sample complexity N of an RL algorithm as the
minimum number of timesteps needed such that the algorithm has at least a 50-50 chance of returning
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an optimal policy:

N = min {n ∈ N | P (J(πn) = J∗) ≥ 1/2} .

Here, the probability is with respect to any randomness in the algorithm itself. One can estimate the
sample complexity N empirically by running an algorithm several times, calculating the number of
samples n needed to reach the optimal policy during each run, and then taking the median.

The effective horizon and GORP A key concept introduced by Laidlaw et al. [7] is the effective
horizon, a complexity measure that helps explain when deep RL with random exploration succeeds
or fails. This is motivated by the surprising empirical finding that in many benchmark environments,
the optimal policy can be recovered by acting greedily with respect to the Q-function of the random
policy (i.e., πrand

t (a | s) = 1/|A|). In such environments, a single step of policy iteration—starting
from the random policy—can suffice to find the optimal policy.

Laidlaw et al. [7] extend this property to define an MDP as k-QVI-solvable if applying k − 1 steps of
Q-value iteration starting from the random policy yields a Q-function Qk such that any greedy policy
w.r.t. Qk is optimal, where the set of greedy policies Π(Q) for a Q-function Q is defined as

Π(Q) =
{
π | ∀s, t πt(s) ∈ argmax

a∈A
Qt(s, a)

}
.

Definition 2.1 (k-QVI-solvable). Let Q1 = Qπrand
and Qi+1 be the result of applying one step of

Q-value iteration to Qi for i = 1, . . . , T − 1, i.e.,

Qi+1
t (s, a) = Rt(s, a) + argmax

a′∈A
Qi

t+1 (f(s, a), a
′) . (1)

We say an MDP is k-QVI-solvable for some k ∈ [T ] if every policy in Π(Qk) is optimal.

In other words, a small number of Q-value iteration steps on the Q-function of a random (or fixed)
policy may suffice to uncover the optimal policy.

To efficiently solve such environments, Laidlaw et al. [7] propose the Greedy Over Random Policy
(GORP) algorithm. GORP simulates k steps of lookahead search and estimates Qπrand

using Monte
Carlo rollouts. Crucially, GORP separates exploration (through random rollouts) from learning,
making it both practically effective and theoretically analyzable. The resulting complexity measure,
the effective horizon H, combines the number of QVI steps k with the number of rollouts m required
to accurately estimate Q-values at the leaf nodes:

Definition 2.2 (Effective horizon). Given k ∈ [T ], let Hk = k+ logA mk, where mk is the minimum
value of m needed for GORP with parameter k to return the optimal policy with probability at least
1/2, or ∞ if no value of m suffices. The effective horizon is H = mink Hk.

The sample complexity of GORP is then bounded by O(T 2AH). H is called the effective horizon
because GORP’s sample complexity is exponential only in the H, while a randomly-exploring
algorithm’s worst-case sample complexity is exponential in the full horizon T .

[7] introduce a dataset called BRIDGE of MDPs based on the ALE and Procgen, and find that many
of these MDPs have short effective horizons. In particular, about two thirds of the MDPs in BRIDGE
are 1-QVI-solvable, meaning they can be solved using simply by acting greedily with respect to
Qπrand

. This suggests that these existing benchmarks cannot be used to test whether deep RL succeeds
beyond the short effective horizon regime. We aim to fill this gap by introducing the EHC.

A note on discount factors One gap between the effective horizon definition and typical RL
practice is the use of discount factors γ. Most RL papers train with a discount factor γ < 1, which is
often treated as a hyperparameter to tune, but then evaluate with no discounting, i.e. γ = 1. For the
EHC we follow the typical practice of using γ = 0.99 during training but γ = 1 during evaluation.
This makes our analysis of the effective horizon slightly different than Laidlaw et al. [7]; we define
the effective horizon based on the GORP parameters m and k that allow GORP using γ = 0.99 to
find an optimal policy in the undiscounted MDP. We furthermore confirm in all environments that the
optimal policy for γ = 0.99 is also optimal for γ = 1.
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3 The Effective Horizon Challenge

The Effective Horizon Challenge consists of 43 MDPs designed to have long effective horizons,
allowing us to test whether deep RL can succeed in such environments. The MDPs are based on a
number of classical planning environments and two-player games and then filtered to ensure that they
are of sufficient difficulty to constitute a challenge for deep RL algorithms.

Dataset desiderata We aimed to make the EHC satisfy a few desiderata. First, we didn’t want
the MDPs in the EHC to be too artificial. Thus, instead of constructing MDPs from scratch like in
other benchmarks [11, 13, 12], we draw from existing sequential decision making problems in the
literature.

Second, we wanted the MDPs in the EHC to have long effective horizons, but not to be very difficult
along other measures of difficulty. For example, Osband et al. [11] identify aspects of RL difficulty
including memory, noise, generalization, and so on. We thus designed the MDPs in the EHC to have
small state spaces (up to 4 million states), short horizons (up to 100 timesteps), no stochasticity,
and non-sparse reward functions. By focusing on making our MDPs only hard in terms of effective
horizon, we can isolate how well deep RL can solve long effective horizon environments without
other factors confounding the analysis.

Finally, we wanted the EHC to enable theoretical as well as empirical analysis, allowing researchers
to explore assumptions that might hold in realistic environments that could enable efficient RL. Thus,
similarly to Laidlaw et al. [7], we construct full tabular representations of each MDP in the EHC.
This has additional benefits beyond theoretical analysis: it makes the environments extremely fast to
run and easy to implement in any programming language, as the environment step can be reduced to
a few lookups in the tabular transition and reward matrices.

Sources of MDPs To create the EHC, we constructed MDPs based on four classical planning
environments (3 × 3 slide tile puzzles, towers of Hanoi, the 2 × 2 × 3 “tower” Rubik’s cube, and
Sokoban levels) as well as four two-player games (4× 4 Go, miniature chess played on 4× 3 and
4× 4 boards, checkers/draughts on 5× 5 and 6× 4 boards, and Connect Four played on 6× 5 and
7× 4 boards). See Figure 2 for illustrations of these MDPs.

The classical planning environments are based on planning problems described in Planning Domain
Definition Language (PDDL) [17], which encodes goals as a set of logical predicates which must
all be satisfied. For example, the goal in Sokoban environments consists of predicates indicating
each box is on a target square, and the goal in Rubik’s cube consists of predicates indicating the
colors are in the correct locations. Our reward functions for these environments are based on the
number of logical predicates in the goal satisfied before and after an action is taken. In particular,
letting the potential Φ(s) represent the number of goal predicates satisfied in state s, the reward
function is R(s, a) = Φ(s′)−Φ(s), where s′ is the state reached from taking action a in state s. This
ensures that the maximum reward is achieved by completing the entire goal, but also gives reward
for completing parts of the goal. For each planning environment, we constructed several MDPs
by varying the start state (for Rubik’s cube and slide tile), problem size (for Hanoi), or layout (for
Sokoban).

For the games, we first constructed a full tabular representation of the two-player game. The reward
function for each game assigns 1 for a win, -1 for a loss, and 0 for a draw. We also added shaped
rewards for some of the checkers, chess, and Go MDPs. These shaped rewards are based on a
potential function for each game that measures how much the current player is winning or losing: the
Tromp-Taylor score for Go and the difference in piece values for chess and checkers (for checkers, we
assign a king double the value of a regular piece). To use these games as single-player environments
for benchmarking purposes, we then fixed deterministic opponent policies. The opponent policies are
constructed by sampling an action at each state from a Boltzmann distribution based on either the
optimal or noisy-optimal Q-value for the opponent at that state, assuming optimal or noisy-optimal
play by the RL agent. We sampled opponent policies at multiple temperatures with and without
reward shaping. We filtered out cases where the opponent policies were so strong that they made it
impossible for the first player to win.

Filtering We expected that many of our MDPs would have longer effective horizons due to the
difficult strategies required for these planning problems and games. However, we suspected that some
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Sokoban
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Figure 2: The 43 MDPs in the Effective Horizon Challenge include classical planning problems and two-player
games against a fixed opponent. We calculate the full tabular representation of each MDP, necessitating smaller-
scale versions of many of the games. See Section 3 for more details.

might still be too easy to solve. Thus, we removed MDPs that could be solved either via GORP or
random guessing in fewer than ten million timesteps, since this is how many samples we used for
deep RL algorithms (see Section 4). To calculate whether GORP could solve each MDP, we ran
it empirically, exhaustively searching over GORP’s first parameter k and then performing binary
search on its second parameter m to see if it could achieve the optimal reward; if any combination of
parameters could solve an MDP in fewer than ten million timesteps we excluded that MDP.

To determine whether random guessing could solve each MDP, we used the tabular representation
to calculate the probability that a random sequence of actions from the initial state would achieve
optimal reward; denote this as popt. Then, it is simple to show that an RL algorithm which samples
log(2)/popt episodes of random actions has at least a 1/2 chance of seeing one action sequence
with the optimal reward, which it can return as an optimal policy (since the MDP is deterministic,
a closed-loop policy is not needed). Thus, we calculated T log(2)/popt as an upper bound on the
sample complexity of this random guessing algorithm for each MDP; we removed those for which
the bound was below ten million.

After removing MDPs which could be solved by either GORP or random guessing in fewer than ten
million timesteps, we were left with 43 MDPs: 28 based on games and 15 based on classical planning
problems.

Analyzing the effective horizon To make sure our dataset does have longer effective horizons
than past deep RL benchmarks, we measure the effective horizons of our MDPs and other popular
environments. Since it is intractable to exactly compute the effective horizon of full Atari games or
other deep RL benchmarks, we instead use the horizon-limited tabular versions of Atari and Procgen
[9] environments in the BRIDGE dataset [7]. We approximate the effective horizon for each MDP by
tuning GORP over many possible values of its parameters k and m. Then, we use the formula for the
effective horizon H = k+ logA m from Laidlaw et al. [7], where k and m are selected to make H as
small as possible while still allowing GORP to find an optimal policy.

The effective horizons of MDPs in the EHC versus past benchmarks are shown in Figure 1. We find
that the effective horizon is less than 8 in 72% and 82% of the Atari and Procgen MDPs from BRIDGE,
respectively. In contrast, only 23% of MDPs in the Effective Horizon Challenge have an effective
horizon less than 8. This analysis confirms that the EHC is a useful benchmark for measuring deep
RL performance in environments with long effective horizons.

4 Experiments

To measure whether popular deep RL algorithms can solve the environments in the Effective Horizon
Challenge, we run PPO and DQN in each MDP. We use the Stable Baselines3 [18] implementations
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MDPs solved
Benchmark PPO DQN

Atari MDPs in BRIDGE 60% 67%
Procgen MDPs in BRIDGE 65% 67%
The Effective Horizon Challenge (ours) 19% 28%

Table 1: While deep RL algorithms solve most Atari and Procgen MDPs, they struggle in our dataset of MDPs
with longer effective horizons. The Effective Horizon Challenge consists of 43 MDPs, while BRIDGE [7]
includes 67 Atari MDPs and 55 Procgen MDPs. See Section 4 for experiment details.

of both algorithms and run them for ten million timesteps across three random seeds and 2-3
hyperparameter settings. Every 1,000 timesteps during training, we measure the reward achieved by
a deterministic version of the current policy (i.e., always taking the action with the highest Q-value
or action probability). If any hyperparameter setting enables the algorithm to reach the optimal
policy during training, we consider the MDP solved by that algorithm. For PPO, we tune the number
of steps sampled in each environment within the set {128, 1280, 12800}. For DQN, we tune the
epsilon-greedy schedule to decay from ϵ = 1 to ϵ = 0.01 either over the first 10% of training or
over the entire course of training. Besides these, we use the default Atari hyperparameters for each
algorithm.

The results of our experiments are shown in Figure 1 and Table 1, where we also run each deep RL
algorithm on the Atari and Procgen MDPs from the BRIDGE dataset. We find that both PPO and DQN
struggle to solve the long-effective-horizon MDPs in the EHC: DQN solves 28%, while PPO solves
only 19%. In contrast, the algorithms solve 60-70% of the Atari and Procgen MDPs in BRIDGE. This
suggests that the algorithms do struggle to solve environments with long effective horizons.

Figure 3 in Appendix A shows the learning curves for each algorithm in each MDP in the EHC. In
virtually all MDPs, PPO and DQN are able to increase reward at the beginning of training, but they
often appear to then get caught in local maxima of reward, where the reward plateaus and fails to keep
increasing. This could suggest that they are behaving similarly to GORP by myopically optimizing
with a few steps of lookahead, rather than successfully exploring the environment to find a globally
optimal policy.

5 Conclusion and future work

We have introduced a novel benchmark, the Effective Horizon Challenge, for reinforcement learning
focused on environments with a long effective horizon, a measure of MDP complexity and exploration
difficulty introduced by Laidlaw et al. [7]. The EHC fills a gap in the existing landscape of RL
benchmarks, whose environments generally have short effective horizons, making exploration trivial.
Although the MDPs in the EHC are deterministic and have small state spaces, we find RL fails to
find an optimal policy in them.

Our results suggest that hill-climbing on current benchmarks like the ALE can lead to improved
efficiency in short effective horizon environments, but may not enable RL to solve fundamentally
harder MDPs like those in the EHC. Improving performance in the EHC may require new exploration
techniques or fundamental insights into how to structure RL to efficiently learn in environments that
cannot be solved in a few steps of lookahead on the random policy’s Q-function.

While our results of evaluating deep RL algorithms in the EHC are striking, they are limited to older
RL algorithms and a limited amount of environment interaction. In the future, we plan to address
both of these limitations by testing more RL algorithms and by using more environment samples.
Regardless, it is still striking that two of the most-used deep RL algorithms fail to solve environments
with relatively short episodes and small state spaces even after ten million timesteps. We hope our
benchmark kick-starts a push towards more effective exploration in deep RL that can efficiently solve
long effective-horizon decision problems.
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Appendix

A Additional results

See the following page for the learning curves of PPO and DQN in all MDPs in the EHC.
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Figure 3: Learning curves for PPO and DQN across MDPs in the EHC. The shaded region shows the range
across random seeds.
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