
Published as a Tiny Paper at ICLR 2024

NON PARAMETRIC ALEATORIC UNCERTAINTY QUAN-
TIFICATION WITH NEURAL NETWORKS

Kshitij Kapoor
Department of Computer Science,
Ashoka University (Haryana, India).
kshitij.kapoor1@ashoka.edu.in

Debayan Gupta
Department of Computer Science,
Ashoka University (Haryana, India).
debayan.gupta@ashoka.edu.in

ABSTRACT

Classic methods for aleatoric uncertainty quantification in regression settings
make assumptions about the distribution of noise in the dependent variable. In-
correct assumptions can lead to poor model performance and unreliable uncer-
tainty estimates. In this paper, we introduce a simple method for non-parametric
aleatoric uncertainty quantification. In particular, we train a neural network model
for binary classification. The inputs to our binary classifier are the independent
variables and a sample from the marginal distribution of the dependent variable.
This binary classifier is trained to predict whether the sample from the marginal
distribution of the dependent variable is greater than the dependent variable cor-
responding to independent variables in the input. Our method can be used for not
only quantifying aleatoric uncertainty but also estimating the conditional distribu-
tion of the dependent variable.

1 INTRODUCTION AND RELATED WORK

With the increasing penetration of neural network models in critical decision making processes, it is
necessary to quantify the uncertainty in model output. While there are components of both aleatoric
and epistemic uncertainty in predictions generated by neural networks (Hüllermeier & Waegeman,
2019), we focus our analysis on aleatoric uncertainty. Generally, while modelling aleatoric uncer-
tainty with a neural network in regression settings, we assume that the dependent variable obser-
vations have additive noise ϵ. Further, we assume that this additive noise follows a heteroscedastic
gaussian distribution that has zero mean i.e. ϵi ∼ N(µ = 0, σ = h(xi)) where xi ∈ Rd and
h : Rd → R+. We can then train a neural network to predict the parameters of the conditional
distribution of the dependent variable (Nix & Weigend, 1994). Negative log likelihood is used as
the loss function to optimize the weights of this neural network. This trained model can predict the
conditional distribution of the dependent variable in one pass. Though easy to train and cheap to
infer, models trained with the assumption that the noise is additive and gaussian might lead to poor
performance (Cervera et al., 2021). This is because the structure of the aleatoric noise might be
misspecified. Further the conditional distribution of the dependent variable might be multimodal.
In this scenario, the model would perform very poorly as the predicted mean would be somewhere
between these modes and the predicted variance would be very high.

To address issues caused by distribution misspecification and multimodal conditional distribution
of the dependent variable, we propose a simple non parametric method for aleatoric uncertainty
quantification. Our method revolves around a neural network based binary classification model B
with a sigmoid activation applied to the output layer. Let us assume we have a pair comprising an
independent variable vector xi ∈ Rd and the associated dependent variable yi ∈ R and another
yj ∈ R sampled from the marginal distribution of dependent variable Y . The binary classification
model is trained to predict whether yi < yj . The inputs to this model are the independent variable
vector xi concatenated with the yj i.e. B : Rd+1 → [0, 1]. We use the binary cross-entropy loss
function to train the binary classifier. Hence, once trained binary classifier probability B(x = xi)
estimates the probability P (yi < yj |x = xi). By varying the value yj in a suitable subset of the
real number line, we can estimate the cumulative distribution function F (y|x). Further, by using
automatic differentiation to calculate the gradient ∇(B(xi⊕y))y

1 we can implicitly estimate the
conditional probability density function f(y|x).

1⊕ is for concatenation

1

Published as a Tiny Paper at ICLR 2024

Table 1: Mean log likelihood (higher is better) of test data sampled from the synthetic datasets.

Dataset Log Likelihood
Ground Truth Gaussian NLL Model Nonparametric Model

Linear −2.176 −3.383 −2.421
Quadratic −3.646 −4.902 −4.562

2 METHODOLOGY

To train this binary classification model we need to generate mini batches that can be used for
optimizing the weights of the neural network. To generate a mini batch of size k, we sample k
pairs of independent variable vectors and dependent variables {(x1, y1), . . . (xk, yk)}. We also
draw k samples {y∗1 , . . . , y∗k} from the marginal distribution of the dependent variable Y by simply
sampling with replacement from the list of all Y . We then sample {l1, . . . , lk} from a distribution
suitable for multiplicative noise. The input samples are generated by concatenating xi with (y∗i ∗ li)
i.e. xi ⊕ (y∗i ∗ li). The associated binary labels are the result of the comparison yi < (y∗i ∗ li).

3 EXPERIMENTS

To evaluate the performance of the proposed model, we experimented with two synthetic datasets.
These were constructed such that the conditional distributions of dependent variables could be mul-
timodal. Further, the noise added to the dependent variable was heteroscedastic. Scatterplots of
samples from these datasets can be found in Figure 1. We trained the proposed non parametric
model using the methodology described in previous sections. For mini batch construction, we chose
the log normal distrtibution for multiplicative noise l i.e. li ∼ LogNormal(0, 0.1). We also trained
a neural network to predict parameters of a gaussian distribution that would estimate the conditional
distribution of the dependent variable (to compare against our method). This model was trained with
the gaussian negative log likelihood loss function. Both models were optimized using the Adam al-
gorithm and had the same numbers of neurons and hidden layers. We then generated another sample
from the ground truth distribution and calculated its log likelihood using both methods. Table 1
gives an overview of the negative log likelihood comparisons. For both datasets, the non parametric
model outperformed the model trained with gausssian negative log likelihood loss function.

Figure 1: Scatter plot of the synthetic datasets used in experimentation.

4 CONCLUSION

In this paper we proposed a new non parametric method for aleatoric uncertainty estimation in re-
gression setting. We compared it’s performance to that of models trained by minimizing gaussian
negative log likelihood loss on synthetic datasets. These results motivate an analysis of the perfor-
mance of the proposed model on real-world datasets.

2

Published as a Tiny Paper at ICLR 2024

ACKNOWLEDGEMENTS

We thank the Mphasis F1 Foundation for supporting this work.

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.

REFERENCES

Maria R. Cervera, Rafael Dätwyler, Francesco D’Angelo, Hamza Keurti, Benjamin F. Grewe, and
Christian Henning. Uncertainty estimation under model misspecification in neural network re-
gression. CoRR, abs/2111.11763, 2021. URL https://arxiv.org/abs/2111.11763.

Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learn-
ing: A tutorial introduction. CoRR, abs/1910.09457, 2019. URL http://arxiv.org/abs/
1910.09457.

D.A. Nix and A.S. Weigend. Estimating the mean and variance of the target probability distribution.
In Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94), volume 1,
pp. 55–60 vol.1, 1994. doi: 10.1109/ICNN.1994.374138.

A IMPLICIT ESTIMATION OF CONDITIONAL PROBABILITY DENSITY
FUNCTION

Once trained, the neural network based binary classification model B can be used for calculating
the entire probability density function of the dependent variable y conditioned on any indepen-
dent variable vector x. Because, the binary classification model B estimates F (y|x), the gradient
∇(B(x⊕y))y estimates the conditional probability density function f(y|x). A viable probability den-
sity function f should be positive in it’s respective domain. Given that there is no guarantee that the
output of the binary classification model B is monotonically increasing with respect to y, it is possi-
ble that the gradient ∇(B(x⊕y))y is negative. Hence, adjustments need to be made to account for this
issue. To this end, we define another function g(y,x) = (∇(B(x⊕y))y)

+. The function g(y,x) is the
positive part of the the gradient ∇(B(x⊕y))y, i.e. if the gradient is negative, the function g(y,x) = 0.
Hence, the minimum value of g(y,x) is 0.

We will now walk through an example of how our proposed method works. Assume, that we have
trained the neural network based binary classification model B using the methodology described in
previous sections. Further assume that the conditional variable vector x is fixed and that the range of
the dependent variable y is the subset (l, u) of the real number line. We can then partition this subset
(l, u) into n equal size partitions each of width w where w = (u− l)/n. These equal sized partitions
will be ({c1, c2}, {c2, c3}, . . . , {cn, cn+1}) where c1 = l, cn+1 = u and c2 − c1 = c3 − c2 = . . . =
cn+1−cn = w. The midpoint of these partitions will be {c1+(w/2), c2+(w/2), . . . , cn+(w/2)}.
We then calculate the function g(y,x) at the midpoints of all the partitions to get the array a =
{g(c1 + (w/2),x), g(c2 + (w/2),x), . . . , g(cn+1 + (w/2),x)}. We then apply a smoothing filter
convolution to the array a to get a∗. The array a∗ has estimates of the conditional probability
distribution functionf(y|x) for midpoints of all the partitions. With partitions of reasonably small
width w, the value a∗i would estimate the conditional probability distribution function f(y|x) for
any y ∈ (ci, ci+1). Likelihood can also be calculated similarly. To increase the accuracy of these
estimates at the cost of increase in computational complexity, one can simply increase the number
of partitions n (which would decrease their width).

B MULTIPLICATIVE NOISE AND LOG-NORMAL DISTRIBUTION

While generating mini-batches for training the binary classifier B, we found that it was necessary
to multiply lognormally distributed noise to the samples from the marginal distribution of the de-
pendent variable y∗. This is because when we initially experimented without any noise added to

3

https://arxiv.org/abs/2111.11763
http://arxiv.org/abs/1910.09457
http://arxiv.org/abs/1910.09457

Published as a Tiny Paper at ICLR 2024

these samples, the conditional CDF and PDF estimates at the extremes of the range of the dependent
variable were not well behaved. For example, when experimenting with the linear synthetic dataset,
the PDF estimates were not well behaved when the absolute value of the independent variable x
was greater than 9 i.e. |x| > 9. For example, for x = 9.5, the estimated conditional cumulative
distribution function were F̂ (y = −30|x = 9.5) > 0 and F̂ (y = −30|x = 9.5) < 1. Our intu-
ition was that this is because there are insufficient samples at the extremes (of the domain of the
dependent variable) from which the neural network model can learn. Hence, to ensure that the es-
timated conditional cumulative distribution function are well behaved, we had to augment the data
by ”stretching” the range of y∗ while generating batches for training the network. To make this
”stretching” independent of the scale of dependent variable, we choose multiplicative noise over
additive noise.

C CODE FOR REPRODUCING EXPERIMENTS

We have published the code required for generating the synthetic
datasets and training the models (https://github.com/k00lk0der1/
NonParametricAleatoricUncertaintyEstimation/).

4

https://github.com/k00lk0der1/NonParametricAleatoricUncertaintyEstimation/
https://github.com/k00lk0der1/NonParametricAleatoricUncertaintyEstimation/

	Introduction and Related Work
	Methodology
	Experiments
	Conclusion
	Implicit estimation of conditional probability density function
	Multiplicative noise and log-normal distribution
	Code for reproducing experiments

