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Abstract

Tissues can be characterized by their complex morphological structures and molec-1

ular programs, as captured by histology images and spatial transcriptomic tech-2

nologies. Current unimodal foundation models are limited in their ability to3

reason across morphological and molecular features. We introduce a multimodal4

transformer architecture that unifies histology images and spatial transcriptomics5

through token-level fusion. By representing both modalities as interoperable to-6

kens within a shared sequence, our model integrates morphological and molecular7

features throughout all layers, prioritizing cross-modal relationships over isolated8

single-modality representations. The resulting token-fusion transformer captures9

rich morphological and molecular signatures, contextualizing histopathology pat-10

terns with molecular information and vice versa. Though preliminary, our results11

demonstrate that token fusion enhances disease-state prediction and lay the ground-12

work for multimodal models capable of reasoning jointly over tissue morphology13

and gene expression.14

1 Introduction15

Tissue organization arises from the coordinated arrangement of many different cell types, each with16

distinct morphologies, phenotypes, and molecular programs [1]. Histopathology has long relied on17

hematoxylin and eosin (H&E) staining of whole-slide images (WSIs), which captures rich morpho-18

logical information across tissue scales, from single cells to global organization. The emergence19

of Vision Transformers (ViTs) [2] as powerful image encoders has revolutionized computational20

pathology: ViTs operate on image patches as input tokens, capturing contextual dependencies across21

tissue scales. Self-supervised pretraining of ViTs on hundreds of millions of image patches from22

millions of H&E WSIs has led to general-purpose foundation models (FMs) such as UNI [3], Vir-23

chow [4] and Midnight [5], that excel across diverse pathology tasks, underscoring the power of24

morphological representations. In parallel, FMs for single-cell transcriptomics (sc-FMs, e.g., Gene-25

Former [6], scGPT [7]) provide rich molecular information across tissues and diseases. However,26

scFMs lack spatial resolution and therefore cannot directly connect molecular programs back to27

the tissue. Emerging spatial transcriptomics (ST) technologies promise to fill this gap: they enable28

the deep molecular profiling of individual cells within intact tissue [8]. Imaging-based ST such as29

Xenium (10x Genomics) exemplify this advance: they map millions of transcripts in situ at subcellular30

resolution, potentially exposing tissue niches and cellular interactions in health or disease [9].31

Together, these developments have laid the groundwork for models that learn unified representations32

combining morphology and gene expression, with the potential of capturing a holistic view of33

tissue ecosystems. Recent efforts in this direction mostly follow the paradigm of CLIP (Contrastive34

Language-Image Pretraining) [10], and typically train dual encoders to align image with omics35

features in a shared latent space. For instance, TANGLE [11] learns slide-level embeddings by36
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contrasting H&E images with their bulk transcriptomic profile. In OmiCLIP [12], patches from H&E37

WSIs are paired with corresponding gene expression "sentences", and separate encoders–a ViT for38

images and a text encoder for the sentences–are trained with a contrastive objective. However, in all39

CLIP-like models, the modalities are not fused at any point during training. Instead, the transcriptomic40

data serve mainly as a supervisory signal to improve the image encoder via contrastive alignment. As41

such, these models remain fundamentally unimodal in their architecture and the representations from42

the different modalities are only merged late at inference time if at all, limiting their utility for tasks43

requiring unified morphological and molecular reasoning.44

Here we introduce a new multimodal model that overcomes these limitations by performing token-45

level fusion of H&E images and ST features within a unified transformer architecture. In our approach,46

the two data modalities are merged early, as interoperable tokens in the same sequence, enabling the47

model to attend to joint morpho–molecular patterns at every layer. By building on powerful pretrained48

encoders per modality, we leverage prior learning – the image branch starts from a ViT model already49

trained on H&E images, and the ST branch employs a sc-FM – and focus on learning cross-modal50

relationships. The result is a flexible, token-fusion transformer that can enrich histological patterns51

with gene expression context and vice versa, capturing unified signatures.52

2 Methods53

Model Architecture Our model (Figure 1) builds upon any pretrained ViT on H&E images (e.g.,54

UNIv2 [3], Midnight [5]) as a unified encoder for both H&E image and ST data. Both H&E images55

and ST data are "tokenized" in a consistent way based on their coordinates to create a set of spatially56

aligned image / transcript tokens, which, together with the corresponding positional information57

for each token, is encoded by the pretrained ViT. This design allows seamless switching between58

unimodal and multimodal inference: the model can ingest an image alone (using image tokens only),59

an ST sample alone, or both together in an integrated fashion.60

Figure 1: A novel multimodal transformer architecture fusing H&E and ST images: The H&E and ST
images are spatially aligned and tokenized. H&E tokens are embedded using the patch embedding
layer in the vision-only pathology FM, while transcript tokens are embedded using a sc-FM. The
resulting tokens are concatenated before being passed through a transformer encoder. The vision
encoder and the gene encoder are kept frozen during training (snowflake), while the projection layer
and classification head are trained for each downstream task (flame).

Tokenization The tokenization of images follows the standard ViT patching scheme as is usually61

defined in the patch embedding layer. Input images are divided into fixed-size patches: e.g. a62

224×224 pixel region is split into a 14×14 grid of patches with 16×16 pixels each, yielding 19663

image tokens. We also keep the usual cls token from the ViT architecture, which aggregates the fused64

information for downstream predictions. For the ST modality, we develop an analogous tokenization65

strategy to represent spatial gene expression in a ViT-compatible manner. In the Xenium images, each66

detected transcript is associated with gene id Gi and tissue coordinates (xi, yi). To align those to the67

H&E image, we partition the ST image into patches corresponding to the H&E image patch grid–the68
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same 14×14 layout over the tissue area. For each region Rj , we aggregate the set of local transcripts69

(xi, yi, Gi) | i ∈ Rj into a vector of gene expression vector Mj ∈ R|G|, where |G| is the number of70

genes, and the entries of Mj contain the gene counts observed in Rj . This yields a set of "ST tokens",71

each spatially aligned to an image token and characterized by the local gene expression profile Mj .72

Importantly, this approach circumvents the need for explicit cell segmentation of the H&E and ST73

images, a tedious and error-prone process [13] that would be otherwise required to assign transcripts74

to individual cells and link them back to their counterparts in the H&E image. Each token’s gene75

expression profile Mj is encoded by a dedicated transcript encoder which plays a similar role as the76

PatchEmbed layer in the ViT. In our experiments, we mainly use GeneFormer [6, 14] models, but any77

gene expression encoder can be plugged into this framework with minimal changes.78

Modality fusion To fully utilize the flexibility of ViT to handle sequences of variable lengths, we79

fuse the modalities by expanding the sequence of the tokens. The two sets of tokens are concatenated80

into one longer sequence after projecting to d dimensions and adding positional encodings. For81

example, a 14×14 patch grid could yield 196 image tokens + 196 transcript tokens + 1 cls token =82

393 tokens. For comparison, we also considered a different fusion strategy, where we combine the83

modalities at each token-patch position in the feature dimension without sequence expansion, i.e.,84

the image and transcriptomic token embeddings are either averaged or concatenated in the feature85

dimension at each token-patch position. After fusion, the combined token sequence is fed into the86

self-attention layers of the ViT. The cls token attends to both H&E and ST tokens, thus capturing a87

joint tissue representation. Importantly, our design is modality-flexible as the tokens from the two88

modalities are treated as interoperable tokens: with only H&E tokens available, the model reduces to89

the original ViT; with only ST tokens present, the model provides a novel way to aggregate ST data.90

Training Strategy To illustrate the efficacy of the proposed model architecture, we perform91

supervised learning using our model on the disease state classification task in HEST-1k dataset [15]92

(details in section 3). The sequence of embeddings after the transformer layers are pooled together to93

create image-level embeddings which are fed into a linear classification head for downstream tasks.94

Different pooling strategies, such as averaging, or using cls token can be applied. During training,95

both the ViT backbone and the gene expression encoder are kept frozen, and only the projection layer96

from the transcriptomic embedding to the vision embedding space, and the classification head are97

trained, as shown in figure 1 (more implementation details in the Appendix A.2). The supervised98

approach could accommodate any downstream tasks, and the small number of trainable parameters99

reduces the risk of overfitting.100

3 Results101

Data We tested our model on the HEST-1k dataset [15], a publicly available collection of ST102

profiles with corresponding WSIs and metadata. We focused on the Xenium subset of HEST-1k that103

contains 59 pairs of Xenium and H&E images, covering a diverse collection of human samples from104

14 organs and 18 tissue types, further labeled by disease state (18 diseased, 28 cancer, 13 healthy,105

details in Appendix Figure 3). The experiments were conducted at a patch level, with the slide-level106

disease states propagated to be patch-level labels. To evaluate the model’s performance, we created107

4-fold stratified train/test splits based on the sample level, with an average train/test ratio of 75/25,108

corresponding to ∼300,000 and ∼100,000 patches.109

Fusing modalities achieves higher performance in disease state prediction To evaluate the effect110

of fusing the H&E and Xenium images, we compared the performances of uni- and multi-modal111

models trained with different choices of the fusion and pooling strategies. All experiments here used112

the ViT-B14 from the Midnight series as the vision encoder and "gf-6L-30M-i2048" GeneFormer as113

the transcripts encoder. All results across all splits are given in Table 1 in terms of macro-accuracy114

(and Table 2 in Appendix for F1 scores), and additionally in Figure 2 as the difference to the115

performance of ResNet18 [16] trained on H&E images, used as a baseline. Our preliminary results116

indicate that, across all 4 splits, different versions of the multimodal fusion model were always the117

top performing, with the sequence expansion and average pooling configuration ranking first in 2 out118

of the 4 splits. We also see large variations across the 4 splits, most likely due to the small sample size119

of the dataset: while in most cases the top scoring models exceeded a macro-accuracy of 0.85, in Split120

1 almost all models struggled to exceed a macro-accuracy of 0.7. Interestingly, the "expr-only-image"121
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Table 1: Macro-accuracy of disease state prediction by various models across four splits. Bold is best.

Model Modality Fusion Pooling Macro-accuracy (↑)
H&E ST Split 1 Split 2 Split 3 Split 4

fmx-concat-avg ✓ ✓ concat average 0.61 0.89 0.86 0.65
fmx-concat-token ✓ ✓ concat cls token 0.65 0.66 0.71 0.94
fmx-add-avg ✓ ✓ sum average 0.63 0.65 0.67 0.71
fmx-add-token ✓ ✓ sum cls token 0.67 0.65 0.67 0.70

expr-only-image ✓ NA NA 0.60 0.72 0.78 0.88
expr-only-token ✓ NA cls token 0.49 0.57 0.56 0.57

vision-only-avg ✓ NA average 0.59 0.54 0.66 0.59
vision-only-token ✓ NA cls token 0.62 0.56 0.69 0.62

ResNet-18 ✓ NA NA 0.53 0.57 0.66 0.52

Figure 2: Performance of various uni- and multi-modal models, in comparison to ResNet18 in terms
of macro-accuracy. For each data split and each model configuration, we report ∆ Accuracy, defined
as the difference of the macro-accuracy of each model to the one of ResNet18. Bars indicate the
median of ∆ Accuracy across 4 splits. Numbers under the bars indicate in how many of the 4 splits
the model ranked first in terms of absolute macro-accuracy.

variant ranked second in terms of median macro-accuracy, outperforming the "expr-only-token"122

variant (see section A.2 for more details on the differences between the two variants). We suspect123

that the unexpected low performance of the "expr-only-token" variant is largely due to the sparsity124

of the transcripts at token level, i.e. no or fewer transcripts at token level thus higher noise; as well125

as the distribution shift of the token level gene expression profile from the cell level profiles with126

which the GeneFormer models were trained. Finally, both vision-only models achieved a very low127

performance regardless of the pooling strategy, indicating that morphology alone is not enough for128

the task at hand.129

4 Discussion and Future Work130

Although our results demonstrate that token-level fusion of H&E and ST consistently improves131

disease state prediction compared to unimodal models, the variability across folds highlights the132

limitations imposed by small sample sizes and heterogeneous data sources, suggesting that more133

robust evaluation requires larger benchmarks. Although our results are encouraging and establish134

the potential of fusing modalities early, they are still preliminary, and we are currently working on a135

number of additional baselines and extensions, including: (i) testing more FM backbone models, (ii)136

pretraining the transcript encoder to overcome the potential distributional shift, (iii) training the model137

on additional tasks (e.g., tissue type prediction), (iv) scaling to larger datasets to reduce variance and138

improve generalization. As future work, we aim to train our model in a self-supervised fashion, e.g.139

by continued pretraining of a vision-only encoder on a dataset with matched H&E and ST data.140
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A Appendix205

A.1 HEST-1k Xenium subset206

Based on the alignment between the H&E slides and transcripts data made available by the HEST-1k207

dataset, we cropped the H&E slides to the bounding boxes covering all transcripts data and extracted208

patches of 256 x 256 pixels at a resolution of 0.25 micron per pixel. Patches with a foreground area209

less than 25% based on the tissue segmentation in HEST-1K data were dropped.210

Although the disease type label is at a slide level, the experiments were conducted at a patch level,211

and the slide level labels were simply propagated to be the patch level labels. To evaluate the model212

performance, we created 4-fold stratified train/test splits with a ratio of 75/25 based on the sample213

level. On average in each split there are ∼300,000 and ∼100,000 patches.

Figure 3: Overview of Xenium subset in HEST-1K: 59 Homo Sapien samples with H&E slides and
corresponding transcripts data.

214

A.2 Implementation details215

For the vision encoder, we experimented with the "Midnight-12k"[5] model of size ViT-g14 and216

a smaller ViT-B14 model from the same series. For the gene expression encoder, we used the217

"gf-6L-30M-i2048" and "gf-18L-316M-i4096" version of the GeneFormer[6, 14]. The model was218

trained with the AdamW optimizer using a learning rate of 0.00001, weight decay of 0.04, and a219

global batch size of 256 when transcripts are included in the input and 1024 for vision only inputs.220

Further ablation studies on hyperparameters, model sizes are still work in progress.221

The model and training framework were implemented using PyTorch and pytorch-lightning libraries.222

The experiments were performed on two nvidia H200-80GB GPUs. Each model configuration was223

trained for maximally 15 epochs or 24 hours, whichever comes first.224

Aggregating transcripts at image vs. token level For the configurations with transcripts only225

inputs ("expr-only-image" and "expr-only-token" in table 1), we compared two strategies to aggregate226

the transcripts:227

• "expr-only-token": as described in section 2, the transcripts are aggregated within each228

token, individually encoded by GeneFormer and then average pooled to obtain a patch-level229

representation. A token of 16x16 pixels with a resolution of 0.25µm per pixel (mpp),230

corresponds to an area of 16µm2, which is smaller than the typical size of a cell which range231

between 10− 20µm in diameter or around 150µm2. Thus, the gene expression profile for232

each token could be out-of-distribution with respect to the training data seen by GeneFormer,233

which was pretrained on single-cell transcriptomics data. This would reduce the quality of234

the token embeddings and explain the markedly lower performance to the "expr-only-image"235

version.236
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• "expr-only-image": all the transcripts in the whole image area are aggregated and then237

encoded with the gene expression encoder to obtain the patch-level embedding. An image238

of size 256×256 pixels at a resolution of 0.25 mpp spans an area of 64×64 µm, which is239

considerably larger than individual cell sizes. However, since GeneFormer relies only on the240

ranked gene expression values, aggregating expression over such regions reduces noise and241

produces profiles more consistent with the type of data GeneFormer was trained on, thereby242

avoiding performance loss.243

A.3 Additional results244

Table 2: F1 score of disease state prediction by various models across four splits. Bold is best.

Model Modality Fusion Pooling F1 score (↑)
H&E ST Split 1 Split 2 Split 3 Split 4

fmx-concat-avg ✓ ✓ concat average 0.67 0.90 0.87 0.60
fmx-concat-token ✓ ✓ concat cls token 0.71 0.70 0.74 0.90
fmx-add-avg ✓ ✓ sum average 0.69 0.67 0.68 0.68
fmx-add-token ✓ ✓ sum cls token 0.73 0.66 0.68 0.67

expr-only-image ✓ NA NA 0.67 0.76 0.82 0.85
expr-only-token ✓ NA cls token 0.50 0.57 0.56 0.57

vision-only-avg ✓ NA average 0.58 0.55 0.66 0.58
vision-only-token ✓ NA cls token 0.62 0.57 0.70 0.61

ResNet-18 ✓ NA NA 0.55 0.58 0.64 0.51

A.4 Model and data licenses245

The model licenses for the models in this work are as follows:246

• ResNet-18: Qualcomm® license can be found at here: https://247

qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/248

Qualcomm+AI+Hub+Proprietary+License.pdf249

• Vision encoder "Midnight-12k": permissive MIT-license250

• Expression-only "gf-6L-30M-i2048" and "gf-18L-316M-i4096": Apache-2.0251

• HEST-1k data: cc-by-nc-sa-4.0252
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NeurIPS Paper Checklist253

1. Claims254

Question: Do the main claims made in the abstract and introduction accurately reflect the255

paper’s contributions and scope?256

Answer: [Yes]257

Justification: Our results support the claims in the introduction and abstract. As this is a work258

in progress paper, we have also clarified across the paper that the results are preliminary.259

Guidelines:260

• The answer NA means that the abstract and introduction do not include the claims261

made in the paper.262

• The abstract and/or introduction should clearly state the claims made, including the263

contributions made in the paper and important assumptions and limitations. A No or264

NA answer to this question will not be perceived well by the reviewers.265

• The claims made should match theoretical and experimental results, and reflect how266

much the results can be expected to generalize to other settings.267

• It is fine to include aspirational goals as motivation as long as it is clear that these goals268

are not attained by the paper.269

2. Limitations270

Question: Does the paper discuss the limitations of the work performed by the authors?271

Answer: [Yes]272

Justification: As this is an work in progress paper, we discuss current limitations and future273

work to overcome these limitations in the "Discussion and Future Work" section of the274

paper.275

Guidelines:276

• The answer NA means that the paper has no limitation while the answer No means that277

the paper has limitations, but those are not discussed in the paper.278

• The authors are encouraged to create a separate "Limitations" section in their paper.279

• The paper should point out any strong assumptions and how robust the results are to280

violations of these assumptions (e.g., independence assumptions, noiseless settings,281

model well-specification, asymptotic approximations only holding locally). The authors282

should reflect on how these assumptions might be violated in practice and what the283

implications would be.284

• The authors should reflect on the scope of the claims made, e.g., if the approach was285

only tested on a few datasets or with a few runs. In general, empirical results often286

depend on implicit assumptions, which should be articulated.287

• The authors should reflect on the factors that influence the performance of the approach.288

For example, a facial recognition algorithm may perform poorly when image resolution289

is low or images are taken in low lighting. Or a speech-to-text system might not be290

used reliably to provide closed captions for online lectures because it fails to handle291

technical jargon.292

• The authors should discuss the computational efficiency of the proposed algorithms293

and how they scale with dataset size.294

• If applicable, the authors should discuss possible limitations of their approach to295

address problems of privacy and fairness.296

• While the authors might fear that complete honesty about limitations might be used by297

reviewers as grounds for rejection, a worse outcome might be that reviewers discover298

limitations that aren’t acknowledged in the paper. The authors should use their best299

judgment and recognize that individual actions in favor of transparency play an impor-300

tant role in developing norms that preserve the integrity of the community. Reviewers301

will be specifically instructed to not penalize honesty concerning limitations.302

3. Theory assumptions and proofs303

Question: For each theoretical result, does the paper provide the full set of assumptions and304

a complete (and correct) proof?305
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Answer: [NA]306

Justification: No theoretical results are presented in this paper.307

Guidelines:308

• The answer NA means that the paper does not include theoretical results.309

• All the theorems, formulas, and proofs in the paper should be numbered and cross-310

referenced.311

• All assumptions should be clearly stated or referenced in the statement of any theorems.312

• The proofs can either appear in the main paper or the supplemental material, but if313

they appear in the supplemental material, the authors are encouraged to provide a short314

proof sketch to provide intuition.315

• Inversely, any informal proof provided in the core of the paper should be complemented316

by formal proofs provided in appendix or supplemental material.317

• Theorems and Lemmas that the proof relies upon should be properly referenced.318

4. Experimental result reproducibility319

Question: Does the paper fully disclose all the information needed to reproduce the main ex-320

perimental results of the paper to the extent that it affects the main claims and/or conclusions321

of the paper (regardless of whether the code and data are provided or not)?322

Answer: [Yes]323

Justification: Figure 1, the Methods section and additional details in the Appendix describe324

the model architecture, dataset, encoding strategy and additional steps needed to recreate325

the results presented in the paper.326

Guidelines:327

• The answer NA means that the paper does not include experiments.328

• If the paper includes experiments, a No answer to this question will not be perceived329

well by the reviewers: Making the paper reproducible is important, regardless of330

whether the code and data are provided or not.331

• If the contribution is a dataset and/or model, the authors should describe the steps taken332

to make their results reproducible or verifiable.333

• Depending on the contribution, reproducibility can be accomplished in various ways.334

For example, if the contribution is a novel architecture, describing the architecture fully335

might suffice, or if the contribution is a specific model and empirical evaluation, it may336

be necessary to either make it possible for others to replicate the model with the same337

dataset, or provide access to the model. In general. releasing code and data is often338

one good way to accomplish this, but reproducibility can also be provided via detailed339

instructions for how to replicate the results, access to a hosted model (e.g., in the case340

of a large language model), releasing of a model checkpoint, or other means that are341

appropriate to the research performed.342

• While NeurIPS does not require releasing code, the conference does require all submis-343

sions to provide some reasonable avenue for reproducibility, which may depend on the344

nature of the contribution. For example345

(a) If the contribution is primarily a new algorithm, the paper should make it clear how346

to reproduce that algorithm.347

(b) If the contribution is primarily a new model architecture, the paper should describe348

the architecture clearly and fully.349

(c) If the contribution is a new model (e.g., a large language model), then there should350

either be a way to access this model for reproducing the results or a way to reproduce351

the model (e.g., with an open-source dataset or instructions for how to construct352

the dataset).353

(d) We recognize that reproducibility may be tricky in some cases, in which case354

authors are welcome to describe the particular way they provide for reproducibility.355

In the case of closed-source models, it may be that access to the model is limited in356

some way (e.g., to registered users), but it should be possible for other researchers357

to have some path to reproducing or verifying the results.358

5. Open access to data and code359
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Question: Does the paper provide open access to the data and code, with sufficient instruc-360

tions to faithfully reproduce the main experimental results, as described in supplemental361

material?362

Answer: [No]363

Justification: The dataset is publicly available and can be downloaded following the instruc-364

tions here: https://huggingface.co/datasets/MahmoodLab/hest. The code is not365

yet public as this is work in progress.366

Guidelines:367

• The answer NA means that paper does not include experiments requiring code.368

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/369

public/guides/CodeSubmissionPolicy) for more details.370

• While we encourage the release of code and data, we understand that this might not be371

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not372

including code, unless this is central to the contribution (e.g., for a new open-source373

benchmark).374

• The instructions should contain the exact command and environment needed to run to375

reproduce the results. See the NeurIPS code and data submission guidelines (https:376

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.377

• The authors should provide instructions on data access and preparation, including how378

to access the raw data, preprocessed data, intermediate data, and generated data, etc.379

• The authors should provide scripts to reproduce all experimental results for the new380

proposed method and baselines. If only a subset of experiments are reproducible, they381

should state which ones are omitted from the script and why.382

• At submission time, to preserve anonymity, the authors should release anonymized383

versions (if applicable).384

• Providing as much information as possible in supplemental material (appended to the385

paper) is recommended, but including URLs to data and code is permitted.386

6. Experimental setting/details387

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-388

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the389

results?390

Answer: [Yes]391

Justification: Data splits are described in the Data subsection in the Results section. Model392

training details including optimizer, hyperparameters are described in the appendix.393

Guidelines:394

• The answer NA means that the paper does not include experiments.395

• The experimental setting should be presented in the core of the paper to a level of detail396

that is necessary to appreciate the results and make sense of them.397

• The full details can be provided either with the code, in appendix, or as supplemental398

material.399

7. Experiment statistical significance400

Question: Does the paper report error bars suitably and correctly defined or other appropriate401

information about the statistical significance of the experiments?402

Answer: [Yes]403

Justification: Figure 2 shows the median results, to show the single data points to show the404

statistical variation around this mean. Otherwise no summary statistics are reported.405

Guidelines:406

• The answer NA means that the paper does not include experiments.407

• The authors should answer "Yes" if the results are accompanied by error bars, confi-408

dence intervals, or statistical significance tests, at least for the experiments that support409

the main claims of the paper.410
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• The factors of variability that the error bars are capturing should be clearly stated (for411

example, train/test split, initialization, random drawing of some parameter, or overall412

run with given experimental conditions).413

• The method for calculating the error bars should be explained (closed form formula,414

call to a library function, bootstrap, etc.)415

• The assumptions made should be given (e.g., Normally distributed errors).416

• It should be clear whether the error bar is the standard deviation or the standard error417

of the mean.418

• It is OK to report 1-sigma error bars, but one should state it. The authors should419

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis420

of Normality of errors is not verified.421

• For asymmetric distributions, the authors should be careful not to show in tables or422

figures symmetric error bars that would yield results that are out of range (e.g. negative423

error rates).424

• If error bars are reported in tables or plots, The authors should explain in the text how425

they were calculated and reference the corresponding figures or tables in the text.426

8. Experiments compute resources427

Question: For each experiment, does the paper provide sufficient information on the com-428

puter resources (type of compute workers, memory, time of execution) needed to reproduce429

the experiments?430

Answer: [Yes]431

Justification: The ’Implementation details’ in the appendix describe the computational432

resources used for all experiments?.433

Guidelines:434

• The answer NA means that the paper does not include experiments.435

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,436

or cloud provider, including relevant memory and storage.437

• The paper should provide the amount of compute required for each of the individual438

experimental runs as well as estimate the total compute.439

• The paper should disclose whether the full research project required more compute440

than the experiments reported in the paper (e.g., preliminary or failed experiments that441

didn’t make it into the paper).442

9. Code of ethics443

Question: Does the research conducted in the paper conform, in every respect, with the444

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?445

Answer: [Yes]446

Justification: We conform to the ethical guidelines.447

Guidelines:448

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.449

• If the authors answer No, they should explain the special circumstances that require a450

deviation from the Code of Ethics.451

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-452

eration due to laws or regulations in their jurisdiction).453

10. Broader impacts454

Question: Does the paper discuss both potential positive societal impacts and negative455

societal impacts of the work performed?456

Answer: [No]457

Justification: This paper is a work in progress paper and at this stage it is too early to discuss458

how and whether this work would impact the society in for example health care applications.459

Guidelines:460

• The answer NA means that there is no societal impact of the work performed.461
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• If the authors answer NA or No, they should explain why their work has no societal462

impact or why the paper does not address societal impact.463

• Examples of negative societal impacts include potential malicious or unintended uses464

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations465

(e.g., deployment of technologies that could make decisions that unfairly impact specific466

groups), privacy considerations, and security considerations.467

• The conference expects that many papers will be foundational research and not tied468

to particular applications, let alone deployments. However, if there is a direct path to469

any negative applications, the authors should point it out. For example, it is legitimate470

to point out that an improvement in the quality of generative models could be used to471

generate deepfakes for disinformation. On the other hand, it is not needed to point out472

that a generic algorithm for optimizing neural networks could enable people to train473

models that generate Deepfakes faster.474

• The authors should consider possible harms that could arise when the technology is475

being used as intended and functioning correctly, harms that could arise when the476

technology is being used as intended but gives incorrect results, and harms following477

from (intentional or unintentional) misuse of the technology.478

• If there are negative societal impacts, the authors could also discuss possible mitigation479

strategies (e.g., gated release of models, providing defenses in addition to attacks,480

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from481

feedback over time, improving the efficiency and accessibility of ML).482

11. Safeguards483

Question: Does the paper describe safeguards that have been put in place for responsible484

release of data or models that have a high risk for misuse (e.g., pretrained language models,485

image generators, or scraped datasets)?486

Answer: [NA]487

Justification: This paper poses no risk for misuse.488

Guidelines:489

• The answer NA means that the paper poses no such risks.490

• Released models that have a high risk for misuse or dual-use should be released with491

necessary safeguards to allow for controlled use of the model, for example by requiring492

that users adhere to usage guidelines or restrictions to access the model or implementing493

safety filters.494

• Datasets that have been scraped from the Internet could pose safety risks. The authors495

should describe how they avoided releasing unsafe images.496

• We recognize that providing effective safeguards is challenging, and many papers do497

not require this, but we encourage authors to take this into account and make a best498

faith effort.499

12. Licenses for existing assets500

Question: Are the creators or original owners of assets (e.g., code, data, models), used in501

the paper, properly credited and are the license and terms of use explicitly mentioned and502

properly respected?503

Answer: [Yes]504

Justification: All models and data that are not original are properly cited and can be found505

in the references. The corresponding licenses are also mentioned in Appendix section A.4.506

Guidelines:507

• The answer NA means that the paper does not use existing assets.508

• The authors should cite the original paper that produced the code package or dataset.509

• The authors should state which version of the asset is used and, if possible, include a510

URL.511

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.512

• For scraped data from a particular source (e.g., website), the copyright and terms of513

service of that source should be provided.514
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• If assets are released, the license, copyright information, and terms of use in the515

package should be provided. For popular datasets, paperswithcode.com/datasets516

has curated licenses for some datasets. Their licensing guide can help determine the517

license of a dataset.518

• For existing datasets that are re-packaged, both the original license and the license of519

the derived asset (if it has changed) should be provided.520

• If this information is not available online, the authors are encouraged to reach out to521

the asset’s creators.522

13. New assets523

Question: Are new assets introduced in the paper well documented and is the documentation524

provided alongside the assets?525

Answer: [NA]526

Justification: Although we present a new method in this paper, due to the early stage of this527

research it is not yet published as a tool for users. Therefor, no new assets are released.528

Guidelines:529

• The answer NA means that the paper does not release new assets.530

• Researchers should communicate the details of the dataset/code/model as part of their531

submissions via structured templates. This includes details about training, license,532

limitations, etc.533

• The paper should discuss whether and how consent was obtained from people whose534

asset is used.535

• At submission time, remember to anonymize your assets (if applicable). You can either536

create an anonymized URL or include an anonymized zip file.537

14. Crowdsourcing and research with human subjects538

Question: For crowdsourcing experiments and research with human subjects, does the paper539

include the full text of instructions given to participants and screenshots, if applicable, as540

well as details about compensation (if any)?541

Answer: [NA]542

Justification: No crowdsourcing or research with human subjects.543

Guidelines:544

• The answer NA means that the paper does not involve crowdsourcing nor research with545

human subjects.546

• Including this information in the supplemental material is fine, but if the main contribu-547

tion of the paper involves human subjects, then as much detail as possible should be548

included in the main paper.549

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,550

or other labor should be paid at least the minimum wage in the country of the data551

collector.552

15. Institutional review board (IRB) approvals or equivalent for research with human553

subjects554

Question: Does the paper describe potential risks incurred by study participants, whether555

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)556

approvals (or an equivalent approval/review based on the requirements of your country or557

institution) were obtained?558

Answer: [NA]559

Justification: No research with human subjects.560

Guidelines:561

• The answer NA means that the paper does not involve crowdsourcing nor research with562

human subjects.563

• Depending on the country in which research is conducted, IRB approval (or equivalent)564

may be required for any human subjects research. If you obtained IRB approval, you565

should clearly state this in the paper.566
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• We recognize that the procedures for this may vary significantly between institutions567

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the568

guidelines for their institution.569

• For initial submissions, do not include any information that would break anonymity (if570

applicable), such as the institution conducting the review.571

16. Declaration of LLM usage572

Question: Does the paper describe the usage of LLMs if it is an important, original, or573

non-standard component of the core methods in this research? Note that if the LLM is used574

only for writing, editing, or formatting purposes and does not impact the core methodology,575

scientific rigorousness, or originality of the research, declaration is not required.576

Answer: [NA]577

Justification: The core method development in this research does not involve LLMs as any578

important, original, or non-standard components.579

Guidelines:580

• The answer NA means that the core method development in this research does not581

involve LLMs as any important, original, or non-standard components.582

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)583

for what should or should not be described.584
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