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Abstract

Language models (LMs) like GPT-4, are adept
in tasks ranging from text generation to ques-
tion answering. However, their decision pro-
cess lacks of transparency due to complex
model structures and millions of parameters.
This hinders user trust on LMs, especially in
safety-critical applications. Due to the opaque
nature of LMs, a promising approach for ex-
plaining how they work is by generating ex-
planations on a more transparent surrogate
(e.g., a knowledge graph (KG)). Such works
mostly exploit attention weights to provide ex-
planations for LM recommendations. How-
ever, pure attention-based explanations lack
scalability to keep up with the growing com-
plexity of LMs. To bridge this important
gap, we propose LMExplainer, a knowledge-
enhanced explainer for LMs capable of pro-
viding human-understandable explanations. It
is designed to efficiently locate the most rel-
evant knowledge within a large-scale KG via
the graph attention neural network (GAT) to
extract key decision signals reflecting how
a given LM works. Extensive experiments
comparing LMExplainer against eight state-
of-the-art baselines show that it outperforms
existing LM+KG methods and large LMs
(LLMs) on the CommonsenseQA and Open-
BookQA datasets. We compare the expla-
nation generated by LMExplainer with other
algorithm-generated explanations as well as
human-annotated explanations. The results
show that LMExplainer generates more com-
prehensive and clearer explanations.

1 Introduction

Pre-trained language models (LMs) have recently
attracted significant attention due to their im-
pressive state-of-the-art (SOTA) performance on
various natural language processing (NLP) tasks
(Brown et al., 2020; Liu et al., 2023; Wei et al.;
Zhou et al., 2022; Li et al., 2022). These tasks in-
clude language translation (Conneau and Lample,
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Figure 1: LMExplainer demystifies the decision-

making process of LMs for better human understanding.
It includes a graph surrogate for structural reasoning,
attention-based interpretation for decision rationales,
and an explanation generator that provides explanations
of “why-choose” and “why-not-choose” to bridge the
gap between LMs and human understandability.

2019), text generation (Mireshghallah et al., 2022),
and text classification (Raffel et al., 2020), among
others. One of the main advantages of LMs is their
ability to capture the nuances and the complexity
of human languages.

However, a major limitation of LMs is a lack of
interpretability (Meng et al., 2022). It is often diffi-
cult to provide explanations about their “black box”
decision-making processes. LMs use techniques
such as attention mechanisms, which allow them to
focus on specific parts of the input data when mak-
ing decisions (Vaswani et al., 2017; Devlin et al.,
2019; Liu et al., 2019a). These mechanisms can be
difficult for people to understand, as they produce
abstract and non-transparent internal learning repre-
sentations (Jain and Wallace, 2019). For example, a
model embedding might capture relationships and
meanings as a result of passages through millions
of neurons. However, such meanings might not
be immediately apparent to humans. This lack of
interpretability poses a challenge to mission criti-



cal domains (e.g., healthcare (Loh et al., 2022) and
online education (Zytek et al., 2022)) as it hampers
users’ trust on the recommendations made by the
models.

Due to the opaque nature of LMs, a promising
approach for explaining how they work is by gen-
erating explanations on a more transparent surro-
gate (e.g., a knowledge graph (KG)). (Geng et al.,
2022) leverages a KG as a submodel to enhance
the explainability of LM-based recommendations.
Such methods provide insights into how to inter-
pret the complex model by translating it into more
comprehensible counterparts. Attention-based ex-
planations have also gained significant attention.
For instance, (Vig, 2019) proposes a visualizing
method for attention in the LM, enhancing our un-
derstanding of how these models allocate focus
across input tokens. However, (Zini and Awad,
2022) pointed out that attention is not equal to ex-
planation. Individual token representations are not
enough. A surrogate that maps tokens to specific
knowledge elements that align with the reasoning
process of the LM is imperative.

In this paper, we explore the potential of using
explanations to serve two purposes (Figure 1): 1)
helping humans in understanding the model,
and 2) enhancing the model’s understanding of
the task at hand through interpretation during
the explanation process. In this paper, explanation
refers to explaining the model’s decision-making in
a human-understandable way, while interpretation
refers to understanding the internal workings of the
model. To address the limitations of current ap-
proaches, we propose the LMExplainer approach.
It is a novel method for explaining the recommen-
dations made by LMs. It is designed to efficiently
locate the most relevant knowledge within a large-
scale KG via the graph attention neural network
(GAT) (Velickovi€ et al., 2018) to extract key de-
cision signals reflecting the rationale behind the
recommendations made by LMs.

We experimentally evaluate LMExplainer on
the question-answering (QA) task using the Com-
monsenseQA (Talmor et al., 2019) and Open-
BookQA (Mihaylov et al., 2018) datasets. The
results demonstrate that LMExplainer outperforms
SOTA LM+KG QA methods and large LMs
(LLMs) on CommonsenseQA and OpenBookQA.
Furthermore, we demonstrate that LMExplainer is
capable of providing useful insights on the reason-
ing processes of LMs in a human understandable

form, surpassing prior explanation methods. To the
best of our knowledge, LMExplainer is the first
work capable of leveraging graph-based knowledge
in generating natural language explanations on the
rationale behind LM behaviors.

2 Related Work

Post-hoc explanation methods have attracted sig-
nificant attention in NLP research in recent years.
Ribeiro et al. proposed LIME, which generates
explanations by approximating the original model
with a local sample and highlights the most im-
portant features. Guidotti et al. extended it with a
decision tree classifier to approximate deep mod-
els. However, they cannot guarantee that the ap-
proximations are accurate representations of the
original model due to inherent limitations of deci-
sion trees. Thorne et al. generate concepts of clas-
sifiers operating on pairs of sentences, while Yu
et al. generate aspects as explanations for search
results. Kumar and Talukdar used positive labels to
generate candidate explanations, while Chen et al.
used contrastive examples in the form of “why A
not B” to distinguish between confusing candidates.
Different from prior work, we integrate reasoning
features and concepts into LMExplainer to explain
LM behaviors.

Recently, language models (LMs) such as
RoBERTa (Liu et al., 2019a), Llama (Touvron et al.,
2023a) and GPT-4 (OpenAl, 2023) have achieved
impressive results. However, these models lack
interpretability, which can hinder their adoption
in mission critical real-world applications. Previ-
ous interpretable frameworks (Ribeiro et al., 2016;
Sundararajan et al., 2017; Smilkov et al., 2017;
Ding and Koehn, 2021; Swamy et al., 2021) can
be applied to LMs. However, they often rely on
approximations and simplifications of the original
models, which can result in discrepancies between
the model behaviours and the explanations. In con-
trast, LMExplainer explains LMs by illustrating
the model reasoning process.

KGs are increasingly adopted as a means to im-
prove the interpretability and explainability of LMs
(Huang et al., 2022; Yasunaga et al., 2021; Huang
et al., 2019; Liu et al., 2019b). KGs are structured
representations of knowledge, and can be used to
capture complex semantic relationships that are dif-
ficult to represent in traditional LMs (Ji et al., 2021).
(Zhan et al., 2022a) retrieves explainable reasoning
paths from a KG and uses path features to predict



the answers. (Yasunaga et al., 2021) integrates the
KG into the model, enabling the model to reason
over structured knowledge and generate more inter-
pretable predictions. However, these explanations
can be inconsistent and accurate representations of
the model reasoning process. In addition, they are
difficult for humans to understand as they are being
represented in a graph-based format. By drawing
upon insights from prior works, LMExplainer em-
ploys graph embedding to generate explanations to
address these limitations.

3 The Proposed LMExplainer Approach

The LMExplainer architecture is shown in Fig-
ure 2. It consists of three main steps: (1) key
element extraction and building (Section 3.2),
(2) element-graph interpretation (Section 3.3),
and (3) explanation generation (Section 3.4). In
the first step, we extract the relevant elements from
the input data and the knowledge retrieved from
the KG, and build an element-graph representa-
tion. In the second step, we leverage GAT to in-
terpret the element-graph and identify the reason-
elements behind LM predictions. In the third step,
we design an instruction-based method to gen-
erate human-understandable explanations of the
decision-making process based on the identified
reason-elements. LMExplainer is flexible and ap-
plicable to a range of LMs (e.g., RoOBERTa (Liu
et al., 2019a), GPT-2 (Radford et al.), and Llama-2
(Touvron et al., 2023b)).

3.1 Task Definition

We define the task of generating reasoning-level
explanations for inferences made by LMs. As an
example, we use a QA task. Given a pre-trained
LM fr 5 with input question ¢, answer choice set
A and predicted answer 3/ € A, the goal is to
generate an explanation Fy for why f7 s chooses
y' and an explanation E for why f7,; does not
choose other options A \ {y'}. This task can be
expressed as:

(Eo, E1) < GenerateExplanation(frar, q, A, ).
(1)

3.2 Key Elements Extraction and Building

Certain key elements can significantly influence the
reasoning process of LMs. To capture these essen-
tial elements, we first tokenize a set of sentences
{¢}UAinto tokens {z1, z2,...,x,}. Let z denote
this set of resulting tokens. Figure 2 illustrates the

“Input Content [2]”. The tokens z are then used
to construct a multi-relational graph, following the
approach from Yasunaga et al.. Firstly, the L-hop
neighbor Gy, of z is extracted from ConceptNet
(Speer et al., 2017) to integrate external knowledge,
following the approach from (Feng et al., 2020).
However, G}, can still contain a large number of
edges, which lead to a huge reasoning space. Our
main goal is therefore to construct a relevant sub-
graph of G, referred to as the element-graph G..
This allows us to identify essential elements that
play a key role, and analyze the relations among
them. We integrate the embedding from LMs to
guide the pruning for G. Specifically, for every
node v in GG, we define an associated score for
pruning purposes, which is expressed as:

Vscore = fprob(zemb7 Uemb)v (2)

where f},,.o5 is the probability computation func-
tion of the pre-trained LM, z,,;, and ve,,,; are the
embeddings derived from textual representations of
z and v respectively, are concatenated to f,.,. The
score captures the correlation between the node v
and input content z, and is used to remove irrel-
evant nodes. We select the top K nodes based
on their scores. The resulting pruned graph is de-
noted by G, which is referred to as the element-
graph. We outline the procedure for constructing
the element-graph in the Appendix (Algorithm 1).

3.3 Element-Graph Interpretation

Given an element-graph G., we follow (Ya-
sunaga et al., 2021) to extract the representation
for graph reasoning. The method leverages the
GAT (Velickovi€ et al., 2018) to preserve the struc-
ture and context of the input through the connec-
tions between the nodes. Velickovic et al. use the
graph attention operation to take a set of node fea-
tures as input and output a corresponding set of new
node features. Formally, the input to the kth atten-
tion layer is denoted as hy, = {hk1, hko, - .-, hEN}s
where hy; € R¥ is the intermediate feature for
node v;, I is the input feature size and N is
the number of nodes in the graph. The attention
layer outputs a new set of corresponding node fea-
tures, hk—i;l = {hk+1717 hk_,_l’g, ce 7hk+1,N} with
hk]’ S R,

A parameterized transformation m : R — RM
is first applied to hj, to generate the transformation
m(hy). A parameterized self-attention mechanism
a : RF x RF — R is then used to obtain atten-
tion scores on hy. To retain structural information
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Figure 2: The LMExplainer architecture. Given an input content z, we first generate language embeddings using a
pre-trained LM. Simultaneously, it retrieves relevant knowledge from a KG to construct a subgraph. The language
embeddings and subgraph are then combined to obtain GNN embeddings. This combined representation is then
passed through a GAT to obtain the attention. The attention serves two purposes. Firstly, it weighs the importance
of the GNN embeddings and is used with the language embeddings for the final prediction. Secondly, they are used
to generate explanations by highlighting the most important parts of the reasoning process.

within the graph, attention scope for node v; is lim-
ited to nodes in its 1-hop neighborhood which is
denoted as N;. Furthermore, the attention scores
are normalized over the neighborhood N; to gener-
ate attention coefficients:

exp(a(hii, hij))
> exp(a(hgi, hir))

vy GM

3

Oéij =

The output feature 1 ; is an attentive linear
combination of neighboring features with an op-
tional activation:

hig1 = o Z aiym(hij)) 4)
’U]'EM

We build the graph reasoning network based on
the above graph attention operation. Specifically,
we employ a parameterized MLP f,,, for feature
transformation. This MLP f,,, explicitly associates
the node v; with its neighboring nodes v; € N; by
processing the feature hy;, the recorded node type
u; of node v; and the recorded relation types r;;
to v;, all of which are sourced from the element-
graph. The attention scores «;; are computed us-
ing another parameterized MLP that takes features
hpi;, hyj, node and relation types u;, r;; and node
scores of v; and v; as input. The detailed informa-
tion can be found in the Appendix C.

The output activation is implemented as a third
2-layer parameterized MLP f, and the output fea-

tures are thus obtained by:

hiiri = fo( > aigm(hg, i 1i)) + hig, (5)
’U]'G./\/i

where the output feature size is the same as the
input feature size. The initial input features hg is
obtained by a linear transformation of node embed-
dings vepmp.

3.3.1 Learning and Inference

In our task, each question ¢ is associated with
a set of answer choices .4, with only one being
the correct answer. We leverage the information
from the LM embedding and the node embed-
ding from the element-graph. Specifically, we
define the probability of choosing an answer as
P(alq) o< exp(MLP(H*M hp, o)), where hy
is the output features and a is the last-layer at-
tention coefficients of a K-layer graph reasoning
network given G, as input, and H* is the repre-
sentation embedding from LM. The corresponding
nodes (i.e., the reason-elements) in GG, are used to
generate textual explanations about the decision-
making process of the LM. We optimize the model
by minimizing the cross-entropy loss.

3.4 Attention-aware Explanation Generation

The LMExplainer explanation generator consists
of two steps: 1) explanation component extraction,
and 2) instruction-based explanation generation.



System
Prompt

You're a professional researcher in NLP.
Write it step by step.

Q ‘ Question content is...

A ‘ The predicted choice is...

According to the model top reason-elements +

R . . . . »
‘ KC + explain the model reasoning process with “since...

P ‘ According to...

Explain why the model doesn’t choose other options
with “The other potential choices...”

Table 1: The instructions for explanation generators.

3.4.1 Explanation Component Extraction

We first extract the key components that are es-
sential to the LM decision-making process. These
key components consist of the final answer, reason-
elements and the attention . The final answer and
reason-elements are used to trace the important
explanation nodes. The attention is used to sort
the nodes and select the top w nodes most relevant
to the decision. Each node represents an element,
so we have w most important components for the
explanation. We use K to represent the set of ex-
tracted key components. The output, E, is a natural
language explanation. We outline the procedure to
interpret the element-graph and extract the reason-
elements in the Appendix (Algorithm 2).

3.4.2 Instruction-based Explanation
Generation

We integrate the key component set /C into our
instruction-based explanation generator. To guide
the generation of explanations, we leverage a set
of predefined structures, including the input con-
tent z, model predicted output 3/, the trigger sen-
tences, and the extracted key components /C. The
LMExplainer explanation generation involves two
stages: (1) why-choose for explaining why the
model chose the specific answer, and (2) why-
not-choose for explaining why the model did not
choose the other explanations. In the why-choose
stage, we use instructions in the form of “Q: [z],
A: [y/], R: [K]”. The why-choose explanation is
denoted as Ejy. In the why-not-choose stage, we use
instructions in the form of “P: [Ey], T: [A\ {¢'}]”.
Q, A, R, P and T are instructions for an explanation
generator to generate the literal explanations of the
reasoning process of a given LM. The generator
outputs a natural language explanation in the form
of a sentence or a paragraph. The details of our
instruction are shown in Table 1.

4 Experimental Evaluation

4.1 Experiment Settings

In our experiments, we use the CommonsenseQA
(Talmor et al., 2019) and OpenBookQA (Mihaylov
et al., 2018) datasets to evaluate the performance of
the candidate approaches. CommonsenseQA con-
sists of 12,247 questions created by crowd-workers,
which are designed to test commonsense knowl-
edge through a 5-way multiple-choice QA task.
OpenBookQA consists of 5,957 four-way multiple-
choice questions designed to evaluate models’ rea-
soning with elementary science knowledge.

Our evaluation can be divided into two parts. In
the first part, we focus on model performance.
We compare LMExplainer with two sets of base-
line models on the CommonsenseQA and Open-
BookQA datasets. The first set comprises KG-
augmented versions of RoOBERTa-large. It includes
the current SOTA commonsense reasoning method
on CommonsenseQA, MHGRN (Feng et al., 2020),
KagNet (Lin et al., 2019), GconAttn (Wang et al.,
2019), RGCN (Schlichtkrull et al., 2018), RN (San-
toro et al., 2017), QA-GNN (Yasunaga et al., 2021),
GreaseLM (Zhang et al., 2022). The second set con-
sists of LLM Llama-2-7B (Touvron et al., 2023b),
which demonstrates the capabilities of LMs with-
out interpretation. The LMs we used are from
Huggingface'.

In the second part, we evaluate LMExplainer
on explanation ability. To establish a baseline
for comparison, two prior works, namely PathRea-
soner (Zhan et al., 2022a) and Explanations for
CommonsenseQA (ECQA) (Aggarwal et al., 2021),
were employed as benchmarks. These works are
recognized for providing natural and comprehensi-
ble explanations.

We train two variants of LMExplainer, each uti-
lizing a different language model: RoBERTa-large
and Llama-2-7B, respectively. We set our GNN
module to have 200 dimensions and 5 layers, where
a dropout rate of 0.2 is applied to each layer. We
train the model on a single NVIDIA A100 GPU
with a batch size of 64. The learning rates for the
language model and the GNN module are set to
le — 5 and le — 3, respectively. We opt for the
RAdam optimizer for RoBERTa-large, while em-
ploying AdamW for Llama-2-7B. These settings
are adopted in the first part of the evaluation to
investigate the performance of the GNN module.

"https://huggingface.co/



We employ ConceptNet (Speer et al., 2017)
as our external knowledge source for Common-
senseQA and OpenBookQA. ConceptNet contains
a vast amount of information with 799,273 nodes
and 2,487,810 edges, which provides a valuable re-
source for improving the accuracy of QA systems.
We extract the G, with a hop size of 2, and subse-
quently prune the obtained graph to retain only the
top 200 nodes.

4.2 Results and Discussion

We present our experimental results in Table 2
and Table 3, where the accuracy of our pro-
posed LMExplainer is evaluated on the Common-
senseQA and OpenBookQA datasets. Our em-
pirical findings indicate that LMExplainer leads
to consistent improvements in performance com-
pared to existing baseline methods on both datasets.
Specifically, the test performance on Common-
senseQA is improved by 4.71% over the prior best
LM+KG method, GreaseLM, 5.35% over the in-
cluded KG augmented LMs, and 7.12% over fine-
tuned LMs. The test performance achieves com-
parable results to the prior best LM+KG method,
GreaseLM, on OpenBookQA. However, our pro-
posed LMExplainer utilizing LLM Llama-2 sig-
nificantly outperforms baseline LM+KG method
by 8.6%. It is worth noting that LLM Llama-2
is trained with a huge amount of data, so that
finetuning LLM Llama-2 without KG is able to
achieve comparable results to LMExplainer. Be-
yond achieving high accuracy, our LMExplainer
also provides transparency in reasoning, enhanc-
ing human understanding of the decision-making
process.

To more thoroughly understand the influence of
various components of LMExplainer on its overall
performance, we have conducted a ablation study
in Appendix E.

4.3 Explanation Results

Our explanation results are in Table 4. The LM
frar used in our explanation is RoBERTa-large,
paired with GPT-3.5-turbo (Ouyang et al., 2022) as
the explanation generator. It should be noted that
this fras serves as a representative example and
can be replaced with other LMs as required. To fur-
ther demonstrate the effectiveness of our approach,
we compare it with two SOTA methods, PathRea-
soner (Zhan et al., 2022b) and ECQA (Aggarwal
et al., 2021). PathReasoner utilizes structured infor-
mation to explain the reasoning path, while ECQA

Method IHdev-Acc. IHtest-Acc.
Baselines (Feng et al., 2020)

MHGRN (2020) 73.69% 71.08%
KagNet (2019) 73.47% 69.01%
GceonAttn (2019) 72.61% 68.59%
RGCN (2018) 72.69% 68.41%
RN (2017) 74.57% 69.08%
Baselines (our implementation)

GreaseLM (2022) 76.17% 72.60%
QA-GNN (2021) 74.94% 72.36%
Llama-2-7B (w/o KG) (2023) 81.49% 78.24%
LMExplainer (RoBERTa-large) 77.97 % 77.31%
LMExplainer (Llama-2-7B) 82.88% 77.36 %

Table 2: Comparative performance of LMExplainer
on CommonsenseQA In-House Split: Our model sur-
passes all baselines, achieving accuracies of 77.97% and
77.31% with RoBERTa-large, and 82.88% and 77.36%
with Llama-2-7B on IHdev and IHtest, respectively.
While the LMExplainer (Llama-2-7B) closely matches
the performance of Llama-2-7B, it offers the benefit of
explainability.

Method Dev-Acc. Test-Acc.
Baselines (Feng et al., 2020)

MHGRN (2020) 68.10% 66.85%
GceonAttn (2019) 64.30% 61.90%
RGCN (2018) 64.65% 62.45%
RN (2017) 67.00% 65.20%
Baselines (our implementation)

GreaseLM (2022) 71.80% 70.80%
QA-GNN (2021) 63.00% 59.80%
Llama-2-7B (w/o KG) (2023) 80.60% 78.40%
LMExplainer (RoBERTa-large)  69.20% 68.00%
LMExplainer (Llama-2-7B) 80.80% 79.40 %

Table 3: Performance Comparison on OpenBookQA:
LMExplainer demonstrates competitive results against
various baselines, closely matching the top-performing
GreaseLM. Notably, while GreaseLM is optimized for
accuracy in QA tasks, LMExplainer focuses on explain-
ing the reasoning process behind its answers. Especially,
the version integrated with Llama-2-7B achieves the
best performance, combining high accuracy with the
added value of explainability.

first is created by human-annotated explanations
and then leverages a generation model to organize
the final explanation.

As illustrated in Table 4 and Table 6 (com-
plete results), PathReasoner presents four reason-
ing paths, including redundant paths, making it
difficult to identify the faithful reasoning path. The
ECQA consists of human-annotated explanations
that provide highly accurate descriptions of the rea-
soning process. However, its explanations are sim-
ply a combination of positive and negative exam-



Input Questions

Q: What is someone doing if he or she is sitting quietly and his or her eyes are moving?
A. reading B. meditate C. fall asleep D. bunk E. think

Label ‘ A. reading

‘ Results of Our Approach - LM

Ranked Reason-elements

1. quiet chattering mind, 2. not making sound, 3. mind focuses,
4. glasses for people with poor eyesight, 5. war

Since the person is described as sitting quietly and their eyes are moving,

it is likely that they are engaged in a visual activity.

Explanation | (why-choose)

Based on the keyword “glasses for people with poor eyesight”,

option “A. reading” is the most likely answer,
reading is a common visual activity that requires focusing one’s eyes on a page
and is often aided by glasses for people with poor eyesight.

Explanation ‘ (why-not-choose) ‘ ‘ so it is unlikely that

The other options |, such as | “B. meditate” | or | “C. fall asleep” |,

involve closing one’s eyes or having a still mind,
the person is doing either of those activities if their eyes are moving.

Similarly, | “D. bunk” | and | “E. think” || do not seem to ‘ be related to the visual activity of
having one’s eyes move while sitting quietly.
‘ Explanation of Others
(le::;hel:z?szl:;gza) quietly [related to] quiet [at location] a library [used for] reading
*
ECQA . L .
( Aggarwaf?t al., 2021) While meditating and sleeping, eyes don’t move, eyes are closed.
*

Table 4: Explanation examples of LMExplainer (using GPT-3.5-turbo as explanation generator), PathReasoner and
ECQA. We show the different types of explanations, including ranked reason-elements, why-choose explanations
and why-not-choose explanations. The explanations for why-choose, present the model reasoning process in a
logical way, while for why-not-choose show the model why does not choose other answers, which enhances the
transparency and interpretability of the reasoning process for humans. We use green and blue to highlight the logical
connectives and reasoning framework, respectively. The complete results of comparison methods are shown in

Appendix (Table 6).

ples provided by humans, which fails to illustrate
the actual decision-making process of the model.
In contrast, our explanations are not a mere com-
bination of sentences but are inferred and logically
derived. LMExplainer provides a more compre-
hensive and accurate depiction of the reasoning pro-
cess and improves the overall interpretability and
usefulness of the generated explanations. In addi-
tion, the why-not-choose explanation explains why
the model does not choose other answers, which
gives people a better understanding of the model’s
reasoning process and increases the transparency
of the model. For an in-depth understanding, a
detailed case study is available in Appendix D.

4.3.1 Evaluation of Explanation

We evaluate the quality of explanations with three
approaches: human expert review, crowdsourcing,
and automated methods. Our expert panel consists
of individuals with graduate-level education, taught
in English, and a minimum of three years of re-
search experience in NLP. We also hire 50 general

users through the crowdsourcing platform Prolific 2,
ensuring a gender-balanced participant pool of na-
tive English speakers, all possessing at least a high
school education. For automated evaluation, we
utilize GPT-3.5-turbo and GPT-4 to further validate
the explanations. We randomly select 20 QA pairs
from CommonsenseQA dataset, using RoBERTa-
large as the LM (f757) and GPT-3.5-turbo as the
explanation generator. The evaluation follows the
methodology in (Hoffman et al., 2018) and involves
eight evaluative dimensions: overall quality, clarity,
credibility, satisfaction, detail adequacy, relevance,
completeness, and accuracy. Participants rate these
aspects using a three-point Likert scale, and scores
are normalized to a range [0, 1], with higher scores
indicating better quality.

The scores are shown in Table 5. Human ex-
perts highly commend the Understandability, Trust-
worthiness, and Completeness (above 0.95) of our
explanations. They acknowledge our adeptness

Zhttps://www.prolific.com



\ Overall Quality  Understandability =~ Trustworthiness  Satisfaction  Sufficiency of detail  Irrelevance =~ Completeness  Accuracy
Human Experts 091 0.97 0.95 0.89 0.98 0.85 0.97 0.93
Crowdsourcing 0.85 0.89 0.86 0.80 0.83 0.60 0.81 0.85
GPT-3.5 0.98 0.98 0.98 0.98 0.98 0.53 0.98 0.98
GPT-4 0.90 0.93 0.87 0.87 0.88 0.69 0.87 0.88

Table 5: Evaluation by automated evaluator GPT-3.5-turbo, GPT-4, human experts, and crowdsourcing on 8

evaluation metrics.

in producing comprehensive and reliable explana-
tions. The crowdsourcing results are slightly lower
across all metrics. This outcome potentially mir-
rors the diverse and less specialized viewpoints of
the general public. Overall, the general users are
able to understand how LMs reason through our
explanations. Automated evaluators GPT-3.5-turbo
and GPT-4 deliver assessments of our explanations’
quality closely aligned with human experts, exhibit-
ing consistent evaluation across key metrics. GPT-
3.5-turbo agrees with our strong performance in
Overall Quality, Understandability, and Accuracy,
with each scoring 0.98. Similarly, GPT-4 gives a
comparable evaluation, with its highest score in
Understandability (0.93).

The notably lower scores in “Irrelevance” in-
dicate incorrect inferences result in irrelevant in-
formation in our explanations. This issue, easily
identified by evaluators, highlights a potential area
for future human-centered explanations.

These results highlight the high quality of our
explanations. The consistency across key metrics
emphasises the effectiveness and reliability of the
explanations generated by LMExplainer. The de-
tails of the automated evaluation process and ques-
tionnaires are outlined in Appendix G.

4.3.2 Impact of Explanation Generators

In this section, we investigate the robustness of
LMExplainer against variations in explanation gen-
erators. We focus on three generators: Llama-2-
70B (Touvron et al., 2023a), GPT-3.5-turbo, and
GPT-4. We present the results in Figure 3.

Due to the limited space, we include detailed
results in the Appendix F. The explanations gen-
erated by the three models are largely consistent
in semantic meaning, demonstrating that under our
constrained prompt instruction, these models pri-
marily functioned as “translators”. They convert
the reasoning process into human-understandable
language. However, it is important to note that
the capability of the generator influenced the read-
ability of the explanations. For instance, Llama-2
tends to produce more repetitive language (in red),
while GPT-3.5-turbo and GPT-4 show consistency

because:
Since the person is sitting quietly with their eyes
Llama2 moving, it is likely that they are engaged in a
quiet activity that requires focus and attention.
Since reading involves the use of glasses for
people with poor eyesight and can be done silently
without making a sound, it fits the given
description. Since the person's mind is focused and
not making sound, it suggests that they are
concentrating on a task, such as reading. Since war
is not related to the context of a person sitting
quietly, it can be eliminated as an option.
Therefore, based on these reasons, the model
predicted that the person is “reading”.

%E% The model predicted that the person is "A. reading"

The model predicts "A. reading" as the correct
choice, primarily because the scenario described
involves someone sitting quietly with their eyes
moving. This behavior is typically associated with
reading, where the eyes move across text silently.
The top reason-words support this decision:

1. "quiet chattering mind" and "not making sound"
suggest a silent, internal activity, like reading.
2. "mind focuses™ aligns with the concentration
often required for reading.

3. "glasses for people with poor eyesight" imply
that visual aids are used for activities like
reading.

4, "war" is less directly related but could be part
of a reading material's content.

These reasons collectively indicate that the person
is engaged in a silent, visually-focused, and
mentally absorbing activity, which reading
typically involves.

GPT-4

Figure 3: The why-choose explanations generated by
Llama-2-70B and GPT-4. The example of GPT-3.5-
turbo is shown in Table 4. They exhibit a high degree of
semantic consistency. The similarity scores are detailed
in Appendix F. All experimental settings are the same.

and conciseness. Based on these observations, we
recommend using GPT-3.5-turbo or GPT-4 as the
explanation generator for optimal clarity.

5 Conclusions

In this paper, we propose LMExplainer, a novel
model that incorporates an interpretation module
to enhance the performance of LMs while also
providing clear and trustworthy explanations of
the model’s reasoning. Our explanation results
are presented in a logical and comprehensive man-
ner, making it easier for humans to understand the
model’s reasoning in natural language. Our experi-
mental results demonstrate superior performance
compared to prior SOTA works across standard
datasets in the commonsense domain. Our anal-
ysis shows that LMExplainer not only improves
the model’s performance but also provides humans
with a better understanding of the model.



6 Limitation

While striving for transparency and thoroughness
in our approach, we acknowledge certain limita-
tions inherent in our method. Primarily, our KG
is dependent on ConceptNet. Therefore, any lim-
itations or inaccuracies present in ConceptNet di-
rectly influence the quality and accuracy of the
explanations generated by our LMExplainer. This
dependency highlights a potential area for improve-
ment and emphasizes the need for enhancement of
the knowledge sources to ensure the reliability and
validity of our method.

7 Ethics Statement

The primary ethical concern in our work relates to
the use of LLMs for explanation generation. Specif-
ically, if the explanation generator is of low qual-
ity or deemed unsafe, it presents a significant risk.
This could adversely affect the integrity and relia-
bility of the content and style of the explanations.
We acknowledge the importance of ensuring the
quality and safety of the explanation generator to
maintain ethical standards in our outputs and to
prevent the dissemination of potentially harmful or
misleading information.
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A Algorithms

Algorithm 1: Construct Element-graph

—

Data: Input content z
Result: Pruned element-graph G,
begin
G}, < ExtractFromConceptNet(z)
// Extract the L-hop neighbor
from ConceptNet
for each node v, in G, do
Uscore € fprob(zemba Uemb)
// Compute score for pruning
end
G. + SelectTopK(G)
based on top K scores
return G,

// Prune

end

Algorithm 2: Element-graph Interpretation

1
2

o e 9 &

10

11
12

Data: Element-graph G, containing node
type embedding u; and relation
embedding r;;, input 2.

Result: Reason-elements

begin

for each attention layer k in graph

reasoning network do

for each node v; in G. do
- exp(a(hpi, i wi,riz))
g > exp(al(hgihii))
vy GNZ'

// Compute attention
coefficient «y;
hry1 <

Vj EM
Pgi
feature

// Update node

end

end

HEM « fra(2) 7/ Forming HEM
P(alq) < exp(MLP(H"M  hj ag))
// Probability of choosing an
answer

ReasonElements <

RankNode(G., ax)) // Rank
nodes based on the attentions
return ReasonElements

end

fs | X agym(hij, ui,r) |+
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B Other Explanation Examples

We demonstrate the complete explanation exam-
ple of PathReasoner and ECQA in Table 6. These
methods exhibit in an unclear and intricate manner.
Such explanations make it hard for humans to un-
derstand the decision-making process behind the
model.

Q: What is someone doing if he or she is sitting quietly and his or
her eyes are moving?
A. reading B. meditate C. fall asleep D. bunk E. think

Input Questions

Label ‘ A. reading

Explanation of Others

quietly [related to] quiet [at location] a library [used for] reading
eyes [used for] reading

eyes [form of] eye [related to] glasses [used for] reading

sitting [related to] sit [related to] relaxing [has subevent] reading

Path-
Reasoner

Positive examples:

- When we read, our eyes move.

- While reading, a person sits quietly,

Negative examples:

- While meditating, eyes don’t move, eyes are closed,
- While sleeping, eyes are closed and they don’t move,
- When a person bunks, he/she doesn’t sit quietly,

- Eyes don’t move when you think about something.
Explanation:

‘When we read, our eyes move.

While reading, a person sits quietly.

While meditating and sleeping, eyes don’t move, eyes are closed.
When a person bunks, he/she doesn’t sit quietly.

Eyes don’t move when you think about something.

ECQA

Table 6: The complete explanation examples of PathRea-
soner and ECQA.

C Details of Element-graph

Due to space constraints in the main text, we pro-
vide a comprehensive description of the node and
relations types, alongside the detailed equations for
computing their embeddings.

The node-type u; are the one-hot vectors of the
node types. The type is according to the node’s ori-
gin form, the input content z, question {¢}, answer
A, or the node in the KG. The wu; is transformed
into an embedding through a linear transformation
for subsequent calculations.

The relation type r;; is determined using pre-
defined templates, which are employed to ex-
tract relations from the knowledge triples in the
KG (Feng et al., 2020). The embedding 7;; for the
relation is computed for subsequent use:

rij = fe(rij,wij) = fe(rij, ui,ug), — (6)
where f. is a two-layer MLP, u;; denotes the con-
catenation of u; and u;.

The node score vscore 1S subsequently utilized in
its embedded form, calculated by:

(N

Vscore = fp(vscore)

where f, is a two-layer MLP.



D Case Study

In this section, we will present more explanation ex-
amples generated by LMExplainer, to demonstrate
the effectiveness of our method. These questions
are randomly selected from the dataset. By sharing
these examples, we aim to highlight the broad appli-
cability and robust performance of LMExplainer
across diverse contexts. These examples not only
illustrate the adaptability of our approach but also
substantiate its validity by demonstrating consistent
results.

[Example A]

Input Question: Where could there by tens of
thousands of people playing baseball?

A. America B. Canada C. Pitcher’s mitt D. Park
E. Sporting goods store

Label: A. America

Ranked Reason-elements: 1. bronx new york,
2. amharic, 3. baseball game, 4. pitcher’s mitt, 5.
thousand and one.

Why-choose explanation:
Since ‘ the reason-elements bronx new york,

types of flowers result in a variety

of colors and arrangements of petals, which aligns

with the predicted option of many colors.
Why-not-choose explanation:

‘ The other potential choices , such as | smell good
and | smell bad |, are excluded the model

did not identify any relevant keywords related to
scent. |Similarly , | cover fields | and continue to
grow are not directly related to the presence of
different types of flowers, which is the focus of the
question.

[Example C]

Input Question: Why does someone engage in
chatting with friends when they want to workout?

A. Fun B. Agreement C. Cell phone D. Answers
E. Inspiration

Label: E. Inspiration

Ranked Reason-elements: 1. assemble clean-
ing materials, 2. gain, 3. feeling of comfort, 4.
chatoyance, 5. walking.

Why-choose explanation:
Since | the words ‘ gain‘ and ‘ feeling of comfort‘

baseball game, and thousand and one ‘ are associ-
ated with American baseball culture and history,
and pitcher’s mitt is specifically related to playing
baseball, | the model predicted ‘ that the answer is
America where there could be tens of thousands of
people playing baseball.

Why-not-choose explanation:

The other potential choices , | Canada, park, and

>

sporting goods store |,  are ‘unlikely because
these locations do not have the same historical
significance or cultural association with baseball as
America. , the word
suggests an outdoor area where people can
play baseball, making it ‘even less likely‘ that a
sporting goods store would be the correct answer.

[Example B]

Input Question: What would you see if there
were different types of flowers near you?

A. Many colors B. Smell good C. Cover fields
D. Smell bad E. Continue to grow

Label: A. Many colors

Ranked Reason-elements: 1. plant themselves,
2. flower arrangement, 3. pair of shoes, 4. female
reproductive part of flower, 5. wisconsin product.
Why-choose explanation:

the model identified

and ‘ female reproductive part of the flower ‘ as top

reasons, it that the presence of different
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a desire to improve oneself during a

workout, and ‘assemble cleaning materials‘ and

‘ walking ‘ ‘ imply ‘ a pre-workout routine, the model
predicts that the reason for engaging in chatting
with friends during a workout is inspiration,
it can provide motivation and support to achieve
fitness goals.

Why-not-choose explanation:

‘ The other potential choices |, such as

, and ‘ cell phone |, are | unlikely ‘ reasons for

engaging in chatting during a workout

they do not offer a clear connection to exercise.
, they do not address the underlying
motivation for the workout or the desire to improve
oneself. , the word answers does not
align with the context of working out and could be
interpreted in various ways, making it an improba-
ble option.

E Ablation Studies

In this section, we examine the impact of different
components of LMExplainer on its performance.
We evaluated the effects of the size of the LMs,
knowledge components, and interpreting compo-
nents using the CommonsenseQA IHdev and [Htest
datasets. Tables 8, 9 and 7 summarize the ablation
study results.



Method IHdev-Acc. IHtest-Acc.
RoBERTa w/o itp 68.63% 64.54%
RoBERTa-large w/o itp 73.05% 71.96%
RoBERTa-large + itp 77.97 % 77.31%

Table 7: Ablation study on the effect of interpreting
component on model accuracy.

Table 8 shows the impact of the size of LM
on LMExplainer. We evaluate the performance of
LMs with two different sizes: 1) RoOBERTa-large
(with 340 million parameters) and 2) RoBERTa
(with 110 million parameters). The results show
that using a larger LM leads to significant improve-
ment in performance, with an increase of 11.71%
and 14.30% in model accuracy on the IHdev dataset
and the IHtest dataset, respectively.

Table 9 shows the impact of the knowledge com-
ponent of LMExplainer. We compare the perfor-
mance of the LM-only model with and without
external knowledge from ConceptNet. only means
we only use the LM to predict the answer. + ex-
ternal knowledge means the external knowledge is
leveraged. We observe that incorporating external
knowledge significantly improves the accuracy of
the LM prediction, especially on the test set. With
external knowledge, the model accuracy on [Hdev
and [Htest is increased by at least 3.69% and 7.12%,
respectively.

LM IHdev-Acc. IHtest-Acc.
RoBERTa 66.26% 63.01%
RoBERTa-large (final) 77.97 % 77.31%

Table 8: Ablation study on the effect of LM size on
model accuracy.

In Table 7, we analyze the impact of the inter-
preting component on LM performance. w/o itp
indicates that the interpreting component was not
incorporated in the prediction, whereas the + itp in-
dicates its presence. We observe that removing the
interpreting component leads to a clear decrease
in accuracy by at least 4.92% and 5.35% on IHdev
and IHtest, respectively. Furthermore, comparing
the results of RoBERTa-large only, RoOBERTa-large
+ itp, and final, we find that the interpreting com-
ponent has a greater impact on accuracy than the
other components.

The ablation highlights the positive contributions
of each component of LMExplainer. Specifically,
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Method IHdev-Acc. IHtest-Acc.
RoBERTa only 62.65% 60.27%
RoBERTa-large only 74.28% 70.19%
RoBERTa-large + external knowledge 77.97 % 77.31%

Table 9: Ablation study on the effect of knowledge
component on model accuracy.

we find that the interpreting component plays a
crucial role in enhancing model accuracy and gen-
eralizability on unseen questions.

F Results of Different Generators

In this section, we present a comprehensive analy-
sis of the results from different explanation genera-
tors: Llama-2-70B, GPT-4, and GPT-3.5-turbo. We
focus on evaluating how each generator interprets
and translates the model’s decision-making process
into human-understandable explanations.

The complete experimental results are presented
in Figure 4, where all experiments are conducted
under the same settings. The question is collected
randomly:

* Question: What is someone doing if he or
she is sitting quietly and his or her eyes are
moving?

* Answer Choices: A. reading, B. meditate, C.
fall asleep, D. bunk, E. think.

* Correct Answer: A. reading

We utilize RoBERTa-large as the LM f1 ;s for
this experiment. The f75; correctly predicts the
answer as “A. reading”. Our extracted reason-
elements are: 1. quiet chattering mind, 2. not
making sound, 3. mind focuses, 4. glasses for
people with poor eyesight, 5. war.

To further quantify the semantic similarity be-
tween explanations of Llama-2, GPT-4, and GPT-
3.5, we employ GPT-4 to generate similarity scores.
GPT-4’s advanced language comprehension abil-
ities make it well-suited for this task, offering a
human-like understanding of textual content. The
scores reflect the degree of alignment in content
among the explanations. The score is on a scale
from O to 1, where 1 is very similar and O is not
similar at all.

<Llama-2> vs. <GPT-4>:

Similarity: Both explanations align in focusing
on the ‘reading’ activity, referencing quiet sitting,
eye movement, and glasses use.



why-choose

The model predicted that the person is "A. reading"
because:

Since the person is sitting quietly with their eyes
moving, it is likely that they are engaged in a
quiet activity that requires focus and attention.
Since reading involves the use of glasses for
people with poor eyesight and can be done silently
without making a sound, it fits the given
description. Since the person's mind is focused and
not making sound, it suggests that they are
concentrating on a task, such as reading. Since war
is not related to the context of a person sitting
quietly, it can be eliminated as an option.
Therefore, based on these reasons, the model
predicted that the person is “reading”.
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Llama2

description.

The model predicts "A. reading" as the correct
choice, primarily because the scenario described
involves someone sitting quietly with their eyes
moving. This behavior is typically associated with
reading, where the eyes move across text silently.
The top reason-words support this decision:

1. "quiet chattering mind" and "not making sound"
suggest a silent, internal activity, like reading.
2. "mind focuses" aligns with the concentration
often required for reading.

3. "glasses for people with poor eyesight" imply
that visual aids are used for activities like
reading.

4, "war" is less directly related but could be part
of a reading material's content.

These reasons collectively indicate that the person
is engaged in a silent, visually-focused, and
mentally absorbing activity, which reading
typically involves.

GPT-4

Since the person is described as sitting quietly
and their eyes are moving, it is likely that they
are engaged in a visual activity.

Based on the keyword "glasses for people with poor
eyesight”, option "A. reading” is the most likely
answer, as reading is a common visual activity that

GPT-3.5

requires focusing one’s eyes on a page and is often
aided by glasses for people with poor eyesight.

why-not-choose

The model didn’t choose the option “B. meditate” because meditation is a quiet and calm activity
that requires focus, but it doesn’t necessarily involve the use of glasses or reading. The person
could be meditating, but the description doesn’t provide enough information to confirm this.

The model didn’t choose the option “C. fall asleep” because the description states that the
person is sitting quietly with their eyes moving, indicating that they are awake and engaged in
an activity. Falling asleep is not consistent with the given description.

The model didn’t choose the option “D. bunk” because bunking is not a typical activity that a
person would engage in while sitting quietly with their eyes moving. Bunking implies a more
active and physical activity, such as hiding or escaping, which doesn’t fit the context of the

The model didn’t choose the option “E. think” because thinking is a general activity that doesn’t
necessarily require the use of glasses or reading. While the person could be thinking, the
description doesn’t provide enough information to confirm this.

Therefore, based on the given description and the eliminated options, the model predicted that
the person is “A. reading”.

The other potential choices were not selected for the following reasons:

B. Meditate: While meditation involves quietness and mental focus, it typically does not involve
eye movement as described in the scenario. Meditation is more often associated with closed eyes
or a fixed gaze, not the active eye movement indicative of reading.

C. Fall Asleep: Falling asleep usually involves closing the eyes, not moving them actively. The
described behavior of eye movement is inconsistent with the typical indicators of someone
falling asleep.
D. Bunk: The term "bunk" is ambiguous, but it generally refers to being absent from a place
where one is expected to be (like skipping school or work). The described scenario of sitting
quietly with moving eyes does not align with the typical understanding of "bunk."

E. Think: While thinking can occur in a quiet setting with a focused mind, it does not
specifically involve the active eye movement mentioned in the scenario. Thinking is a broader,
more internal process and doesn't necessarily manifest in visible eye movements as reading does.
Therefore, given the specific detail of eye movement in a quiet setting, "reading" aligns most
closely with the described behavior, leading to its selection over the other options.

The other options, such as ”B. meditate” or ”C. fall asleep”, involve closing one’s eyes or
having a still mind, so it is unlikely that the person is doing either of those activities if
their eyes are moving.

Similarly, ”D. bunk” and "E. think” do not seem to be related to the visual activity of having
one’s eyes move while sitting quietly.

Figure 4: The why-choose and why-not-choose explanations generated by Llama-2-70B, GPT-4 and GPT-3.5. The
semantic meanings remain consistently aligned among the explanations generated by the three models.
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Figure 5: Heatmap of Similarity Scores for Llama-
2, GPT-4, and GPT-3.5: Their generated explanations
show high consistency in terms of semantic meaning.

Similarity Score: 0.85/1 - High similarity in core
reasoning and conclusion.

<Llama-2> vs. <GPT-3.5>:

Similarity: Both identify the person as engaged
in reading, noting quiet sitting and glasses use.

Similarity Score: 0.75/1 - Similar in conclusion
and main points, but <GPT-3.5> provides more
concise content.

<GPT-4> vs. <GPT-3.5>:

Similarity: Agreement in the conclusion of
“reading”, common elements include quiet posture,
eye movement, and glasses use.
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Similarity Score: 0.80/1 - Similar key conclu-
sions and elements, but <GPT-4> includes more
detail.

We illustrate the similarity scores in Figure 5.
The color intensities represent the degree of simi-
larity, with darker tones indicating higher congru-
ence. It shows their generated explanations align
in semantic meaning.

Despite variations in style and detail, the funda-
mental meanings are consistent across all genera-
tors. This consistency highlights the effectiveness
of our approach in preserving the accuracy of the
explanations.

G Details of Automated Evaluation

In this section, we describe the process of using
automated evaluators to evaluate the quality of our
explanations. We start by randomly selecting an
example to demonstrate the evaluation procedure.
The evaluators provide their scores and reasons for
their ratings. This allows us to verify the validity of
their assessments and better understand the basis
of their evaluations. We use GPT-3.5-turbo and
GPT-4 as our automated evaluators.

Question: What might happen when not being
careful setting a cup on a table?

A. picks up

B. noise

C. decorating the table



D. spillage

E. clutter

LM predicted answer: D. spillage

Ranked Reason-elements: 1. cold day, 2. care-
less, 3. past can, 4. quite possible, 5. written
document.

Why-choose explanation: Since the person is
being careless and it’s quite possible that they’ve
spilled things in the past, the model predicts that
there is a high likelihood of spillage when not being
careful setting a cup on a table.

Why-not-choose explanation: The other poten-
tial choices, such as picks up, decorating the table,
and clutter, were not predicted because those words
were not mentioned as significant reasons by the
model. Additionally, there was no indication in the
reason-words to suggest that those actions would
occur as a result of not being careful when setting
a cup on a table. The word noise was also not
predicted because it does not directly relate to the
action of setting a cup on a table, nor were any
reason-words related to it.

Prompt: Suppose you are an Al expert. We now
require your assistance in evaluating the content
validity of explanations that why a language model
made certain decisions. Please adhere to our grad-
ing rubric, using “1” to represent “Disagree”, “2”
for “Neutral”, and “3” for “Agree”. Your grading
should be based on the following 8 questions:

1. This is a good explanation;

2. I understand this explanation of how the Al
model works;

3. I trust this explanation of how the AI model
works;

4. This explanation of how the Al model works
is satisfying;

5. This explanation of how the Al model works
provides sufficient detail;

6. This explanation of how the Al model works
contains irrelevant details;

7. This explanation of how the Al model works
seems complete;

8. This explanation of how the Al model works
is accurate.

Evaluation results:

GPT-3.5-turbo:

1. This is a good explanation: 3 (Agree)

2. I understand this explanation of how the Al
model works: 3 (Agree)

3. I trust this explanation of how the Al model
works: 3 (Agree)
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4. This explanation of how the Al model works
is satisfying: 3 (Agree)

5. This explanation of how the Al model works
has sufficient detail: 3 (Agree)

6. This explanation of how the Al model works
contains irrelevant details: 2 (Neutral)

7. This explanation of how the Al model works
seems complete: 3 (Agree)

8. This explanation of how the Al model works
is accurate: 3 (Agree)

Reason: The explanation provided is clear and
understandable, providing a valid reasoning for
why the predicted answer is “spillage”. The men-
tion of being careless and the likelihood of spillage
based on past experiences supports the prediction
that not being careful when setting a cup on a ta-
ble could result in spillage. However, some of the
reason-elements, such as cold day, quite possible,
and written document, do not seem directly relevant
to the context and do not contribute significantly
to the explanation, resulting in a neutral rating for
question 6. Nonetheless, the overall explanation is
satisfactory and accurate given the available infor-
mation.

GPT-4:

1. This is a good explanation: 3 (Agree)

2. I understand this explanation of how the Al
model works: 3 (Agree)

3. I trust this explanation of how the AI model
works: 3 (Agree)

4. This explanation of how the Al model works
is satisfying: 3 (Agree)

5. This explanation of how the AI model works
has sufficient detail: 3 (Agree)

6. This explanation of how the Al model works
contains irrelevant details: 2 (Neutral)

7. This explanation of how the Al model works
seems complete: 3 (Agree)

8. This explanation of how the AI model works
is accurate: 3 (Agree)

Reason: While the reason-elements (“cold day”,
“careless”, “past can”, “quite possible”, “written
document”) don’t seem to have a clear relation to
the specific context of the question, the explanation
itself is still understandable, providing clear reason-
ing for why the model chose “spillage” as the most
likely outcome and why the other options were less
likely. The explanation is detailed, complete, and
aligns with common sense and real-world expecta-
tions about what might happen when someone is
not careful while setting a cup on a table.



