
Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

PRETRAINING REWARD-FREE REPRESENTATIONS FOR
DATA-EFFICIENT REINFORCEMENT LEARNING

Max Schwarzer∗∗1,2, Nitarshan Rajkumar∗1,2, Michael Noukhovitch1,2, Ankesh Anand1,2

Laurent Charlin1,3, Devon Hjelm1,4, Philip Bachman1,4, Aaron Courville1,2
1Mila, 2Université de Montréal, 3HEC Montréal, 4Microsoft Research

ABSTRACT

Data efficiency poses a major challenge for deep reinforcement learning. We
approach this issue from the perspective of self-supervised representation learn-
ing, leveraging reward-free exploratory data to pretrain encoder networks. We
employ a novel combination of latent dynamics modelling and goal-reaching ob-
jectives, which exploit the inherent structure of data in reinforcement learning. We
demonstrate that our method scales well with network capacity and pretraining
data. When evaluated on the Atari 100k data-efficiency benchmark, our approach
significantly outperforms previous methods combining unsupervised pretraining
with task-specific finetuning, and approaches human-level performance.

1 INTRODUCTION

Figure 1: Median Human-Normalized Scores over
26 games in the Atari-100k data-efficiency bench-
mark. Our proposed SGI methods (red) use reward-
free data for pretraining.

In deep reinforcement learning (RL), it is stan-
dard to train networks tabula rasa from random
initializations, using only value learning based
on task-specific rewards as supervision. Model-
free RL algorithms which follow this approach
typically suffer from severe overfitting (Zhang
et al., 2018) and poor sample efficiency com-
pared to humans (Tsividis et al., 2017).

Unsupervised pretraining can be used to learn a
strong prior (Erhan et al., 2010), and in RL can
lead to better sample-efficiency when reward-
based feedback becomes available. Particularly
in real-world settings, unsupervised RL pretrain-
ing brings obvious benefits when the reward
function is difficult to define or evaluate dur-
ing training, such as when it depends on human
feedback (Christiano et al., 2017).

One approach to pretraining is to collect mas-
sive amounts of exploratory data (Hansen et al.,
2020; Liu & Abbeel, 2021), but this is impractical for real-world systems which impose physical
limits on interaction: agents cannot be run faster than real-time, and only a limited number can be
run in parallel. Furthermore, in safety-critical domains like autonomous driving where an agent is
capable of causing serious harm, exploratory policies would require significant human oversight and
intervention. It is thus important to develop algorithms that can accelerate learning but are pretrained
with practical quantities of reward-free data.

Self-supervised learning has emerged as a promising approach for pretraining on unlabelled data
and then fine-tuning on downstream tasks with limited labelled data, in settings such as computer
vision (Grill et al., 2020; Chen et al., 2020a) and NLP (Devlin et al., 2019; Brown et al., 2020). We
draw inspiration from this pretrain-then-finetune paradigm and apply it to the context of RL – our
contributions are summarized below:

∗{max.schwarzer, nitarshan}@mila.quebec

1

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

Unsupervised Pre-Training

Task-Specific RL

 online
 encoder

 target
 encoder

exponential
moving avg.

conv. transition
 model

 Cosine
Similarity Loss

 target
 projection

prediction online
 projection

Inverse Model
 Loss

 target
 projection

prediction online
 projection

sampled goal

compute distance
 to goal

compute distance
 to goal

Q-Learning Loss q-learning
 head

Shared Torso

1. SPR

2. Inverse Modelling

3. Goal-conditioned RL

Q-Learning Loss

SPR Loss

+ aug.

+ aug.

Figure 2: A schematic diagram showing our two stage pretraining-then-finetune method. All
unsupervised training losses and task-specific RL use the shared torso on the left.

RL-aligned representation learning objectives We formulate a novel representation learning task
by combining latent dynamics modeling using SPR (Schwarzer et al., 2021), unsupervised goal-
conditioned reinforcement learning, and inverse dynamics modeling. We refer to our method as SGI
(SPR, Goal-conditioned RL and Inverse modeling), and provide a visual overview of it in Figure 2.

Significant advances for pre-training data-efficiency in visual domains SGI learns representa-
tions that, even without further fine-tuning, significantly advance performance on the Atari 100k
data-efficiency benchmark (Kaiser et al., 2019), as shown in Figure 1. These results surpass those
from exploration-based approaches which require orders of magnitude more unsupervised data.

Scalability with data quality and model size SGI surpasses the performance of prior work even
when trained with limited data from weak or even entirely random behavioral policies. When
increasing the amount of data and the quality of the behavioural policy, SGI’s performance scales
straightforwardly. Additionally, where larger models fail to provide any benefit in online RL, we find
that using them for unsupervised pretraining with SGI substantially improves performance.

2 RELATED WORK

Self-Supervised Learning Computer vision has seen a series of dramatic advances in self-
supervised representation learning, including contrastive methods (Oord et al., 2018; Hjelm et al.,
2019; Bachman et al., 2019; He et al., 2020; Chen et al., 2020a) as well as purely predictive ones (Grill
et al., 2020). Variants of these approaches have also been shown to improve performance when
coupled with a small quantity of labeled data, in a semi-supervised setting (Chen et al., 2020b; Hénaff
et al., 2019), and several self-supervised methods have been designed specifically for this case (for
example, Sohn et al., 2020; Tarvainen & Valpola, 2017).

SGI draws from this tradition, but incorporates objectives specifically designed to exploit additional
structure inherent to the interactive data used in reinforcement learning.

Data-Efficient RL In order to address data efficiency in RL, Kaiser et al. (2019) introduced the
Atari 100k benchmark, in which agents are limited to 100,000 steps of environment interaction, and
proposed SimPLe, a model-based algorithm that substantially outperformed previous model-free
methods. However, van Hasselt et al. (2019) and Kielak (2020) found that simply modifying the
hyperparameters of existing model-free algorithms allowed them to exceed SimPLe’s performance.
Later, DrQ (Kostrikov et al., 2021) found that adding mild image augmentation to model-free
methods dramatically enhanced their sample efficiency, while SPR (Schwarzer et al., 2021) proposed
to combine data augmentation with an auxiliary self-supervised learning objective.

2

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

SGI extends SPR to offline pretraining, and demonstrates that this leads to further improvements to
performance in data-efficient RL.

Pretraining in RL A number of recent works have sought to improve reinforcement learning via
the addition of an unsupervised pretraining stage, in which the agent improves its representations
prior to beginning learning on the target task. One common approach has been to allow the agent
a period of fully-unsupervised interaction with the environment, during which the agent is trained
to maximize the diversity of the states it encounters, as in APT (Liu & Abbeel, 2021), or to learn a
set of skills associated with different paths through the environment, as in DIAYN (Eysenbach et al.,
2018), VISR (Hansen et al., 2020), and DADS (Sharma et al., 2019). Others have proposed to use
self-supervised objectives to generate intrinsic rewards encouraging agents to visit new states; e.g.
Pathak et al. (2017) uses the loss of an inverse dynamics model like that used in SGI, while Sekar
et al. (2020) uses the disagreement between an ensemble of latent-space dynamics models.

Many of these methods are used to pretrain agents that are later adapted to specific reinforcement
learning tasks. However, SGI differs in that it can be used offline and is agnostic to the offline
data-collection strategy. As such, if operating in a setting where offline data is not available, one
could use one of the methods above either to generate a dataset for SGI or in conjunction with SGI in
an online exploratory setting.

Representation Learning for RL Recent advances in representation learning in computer vision
have spurred similar growth in methods aimed specifically at improving performance in RL. We
refer the reader to Lesort et al. (2018) for a review of earlier methods, including inverse dynamics
modeling which is used in SGI. More recently, research has focused on leveraging latent-space
dynamics modeling as an auxiliary task. Gelada et al. (2019) propose a simple next-step prediction
task, coupled with reward prediction, but found it to be prone to latent space collapse and needed to
use an auxiliary reconstruction loss in experiments on Atari. Guo et al. (2020) use a pair of networks
for both forward and backward prediction, and show improved performance in extremely large-data
multi-task settings. Mazoure et al. (2020) use a temporal contrastive objective for representation
learning, and show improvement on the continual RL setting of Procgen (Cobbe et al., 2020). Con-
currently, SPR (Schwarzer et al., 2021) proposed a multi-step latent prediction task with similarities
to BYOL (Grill et al., 2020).

The works most similar to ours, Anand et al. (2019) and Stooke et al. (2020), both propose to use
reward-free temporal-contrastive methods to pretrain representations. Anand et al. (2019) show
that representations from encoders trained with ST-DIM contain a great deal of information about
environment states, but they do not examine whether or not representations learned via their method
are, in fact, useful for reinforcement learning. Meanwhile, Stooke et al. (2020) focus solely on the
large-data regime and find only minor improvements in performance compared to standard baselines.
Additionally, they only evaluate their method on 8 Atari games, limiting the degree to which their
performance can be compared to other algorithms.

Offline RL SGI’s use of a goal-conditioned reinforcement learning objective on offline data
connects it to work in offline (or batch) RL (see for example Agarwal et al., 2020; Kumar et al.,
2020), in which the agent is trained on an entirely fixed dataset without any environment interactions.
However, unlike these methods, SGI does not assume that its offline data includes rewards, or that the
data collection agent was solving the same task.

3 REPRESENTATION LEARNING OBJECTIVES

Self-supervised methods require careful design of pretext tasks to exploit the inherent structure
present in unlabelled data. We propose to combine three representation learning tasks suitable for
the RL setting, designed to leverage the particular agent-centric and temporal nature of MDPs. We
provide an overview of our objectives below; detailed pseudocode is available in Appendix C.

As the core of our algorithm, we employ SPR (Schwarzer et al., 2021), which currently achieves
state-of-the-art performance on the data-efficient Atari 100k benchmark when combined with a
Rainbow-based DQN. Based on an intuition that the success of SPR is partially due to the interplay
between the SPR and RL objectives, we propose to replace the standard RL task with a self-supervised

3

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

goal-conditioned RL objective, optimized entirely off-policy. Finally, as a shield against possible
representational collapse, we also employ an inverse modeling task (Lesort et al., 2018), in which we
learn a model of the distribution p(at|st, st+1).

3.1 SELF-PREDICTIVE REPRESENTATIONS

SPR (Schwarzer et al., 2021) is a representation learning algorithm developed for data-efficient
reinforcement learning. SPR learns a latent-space transition model, directly predicting represen-
tations of future states without reconstruction or negative samples. As in Rainbow, SPR learns
a convolutional encoder, denoted as fo, which produces representations of states as zt = fo(st).
SPR then uses a dynamics model h to recursively estimate the representations of future states,
as ẑt+k+1 = h(ẑt+k, at+k), beginning from ẑt , zt. These representations are projected to a
lower-dimensional space by a projection function po to produce ŷt+k , po(ẑt+k).

Simultaneously, SPR uses a target encoder fm to produce target representations z̃t+k , fm(st+k),
which are further projected by a target projection function pm to produce ỹt+k , pm(z̃t+k). SPR
then maximizes the cosine similarity between these predictions and targets, using a learned linear
prediction function q to translate from ŷ to ỹ:

LSPR
θ (st:t+K , at:t+K) = −

K∑
k=1

q(ŷt+k) · ỹt+k
||q(ŷt+k)||2 · ||ỹt+k||2

. (1)

The parameters of these target modules θm are defined as an exponential moving average of the
parameters θo of fo and po: θm = τθm + (1− τ)θo.
However, like BYOL (Grill et al., 2020), SPR is nominally vulnerable to collapse, and in Schwarzer
et al. (2021) this risk was mitigated by the presence of a second objective. Moreover, while objectives
such as BYOL and SimCLR are capable all-purpose representation learning algorithms, they depend
on heavy data augmentation (see ablations in Grill et al., 2020; Chen et al., 2020a), which has thus
far not been found promising in DRL (Kostrikov et al., 2021).

3.2 GOAL-CONDITIONED REINFORCEMENT LEARNING

Inspired by works such as Dabney et al. (2021) that show that modeling many different value functions
is a useful representation learning objective, we propose to augment SPR with an unsupervised goal-
conditioned reinforcement learning objective. We define goals g to be normalized vectors of the same
size as the output of the agent’s convolutional encoder (3,136- or 4,704-dimensional vectors, for the
architectures we consider). We use these goals to annotate transitions with synthetic rewards, and
train a modified version of Rainbow (Hessel et al., 2018) to estimate Q(st, a, g), the expected return
from taking action a in state st to reach goal g if optimal actions are taken in subsequent states.

We select goals using a scheme based on hindsight experience replay (Andrychowicz et al., 2017)
combined with noise, seeking to generate goal vectors that are both semantically meaningful and
highly diverse; using purely random goal vectors would likely violate the former goal, while pure
hindsight experience replay might violate the latter. We generate goals in a three-stage process: a
goal g for state st is initially chosen to be the target representation of a state sampled uniformly
from the near future, g ← z̃t+i, i ∼ Uniform(50), before being combined with a normalized vector
of isotropic Gaussian noise n as g ← αn + (1 − α)g, where α ∼ Uniform(0, 0.5). Finally, we
exchange goal vectors between states in the minibatch with probability 0.2, to ensure that some goals
correspond to states reached in entirely different trajectories.

3.2.1 GOAL-CONDITIONED REWARDS

In defining our synthetic goal-conditioned rewards, we take inspiration from potential-based reward
shaping (Ng et al., 1999). Using the target representations z̃t , fm(st) and z̃t+1 , fm(st+1), we
define the reward as follows:

R(z̃t, z̃t+1, g) = d(z̃t, g)− d(z̃t+1, g) (2)

d(z̃t, g) = exp

(
2

z̃t · g
||z̃||2 · ||g||2

− 2

)
. (3)

4

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

As this reward function depends on the target encoder fm, it changes throughout training, although
using the slower-moving fm rather than the online encoder fo may provide some measure of stability.
Like SPR, however, this objective is technically vulnerable to collapse. If all representations z̃t
collapse to a single constant vector then all rewards will be 0, allowing the task to be trivially solved.

We estimate Q(st, at, g) using FiLM (Perez et al., 2018) to condition the DQN on the goal g, which
we found to be more robust than simple concatenation. A FiLM generator j produces per-channel
biases βc and scales γc, which then modulate features through a per-channel affine transformation:

FiLM(Fc|γc, βc) = γcFc + βc (4)

We use these parameters to replace the learned per-channel affine transformation in a layer norm
layer (Ba et al., 2016), which we insert immediately prior to the final linear layer in the DQN head.

3.3 INVERSE DYNAMICS MODELING

We propose to use an inverse dynamics modeling task, in which the model is trained to predict at
from st and st+1. This has a long history in representation learning for RL (Lesort et al., 2018;
Hansen et al., 2021). Because this is a classification task (in discrete control) or regression task
(continuous control), it is naturally not prone to representational collapse, which may complement
and stabilize our other objectives. We directly integrate inverse modeling into the rollout structure of
SPR, modeling p(at+k|ŷt+k, ỹt+k+1) for each k ∈ (0, . . . ,K−1), using a two-layer MLP trained by
cross-entropy.

4 EXPERIMENTAL DETAILS

We base our work on the code released for SPR (Schwarzer et al., 2021), which in turn is based on
rlpyt (Stooke & Abbeel, 2019), and makes use of NumPy (Harris et al., 2020) and PyTorch (Paszke
et al., 2019). Implementation details are provided in Appendix F

4.1 ENVIRONMENT & EVALUATION

We focus our experimentation on the Atari 100k benchmark introduced by Kaiser et al. (2019), in
which agents are allowed only 100k interactions with their environment1. This is roughly equivalent
to the two hours human testers were given to learn these games by Mnih et al. (2015), providing
a baseline of human sample-efficiency. In this setting, agents are typically evaluated by human-
normalized score, defined as agent score−random score

human score−random score . We report both mean and median human-
normalized scores across games, as well as on how many games the agent achieves super-human
performance. We evaluate agents by averaging scores over 100 trajectories at the end of training.

4.2 PRETRAINING DATASET

SGI can be applied to any offline dataset. To assess how SGI’s performance depends on its pretraining
data, we create several pretraining datasets varying in both quantity and quality. While it would
be ideal to use data gathered by an usupervised method such as APT (Liu & Abbeel, 2021) or
VISR (Hansen et al., 2020), neither these methods nor their results datasets have been made publicly
available at this time. Instead, we propose to use the DQN Replay dataset (Agarwal et al., 2020),
which contains the experience gathered during the training of standard DQN agents (Mnih et al.,
2015) for 50M steps (across all 57 games and five different random seeds). This dataset, besides
being publicly available, has the advantage of allowing us to easily vary both the quality and quantity
of the data used to train SGI. We thus propose the follow datasets:

• Random Finally, to assess SGI’s performance near the lower limit of data quality, we use a
random policy to gather a dataset of 6M transitions for each game. To encourage the agent
to venture further from the starting state, we execute each action for a random number of
steps sampled from a Geometric(13) distribution.

1Note that sticky actions are disabled under this benchmark.

5

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

• Exploratory Data To investigate performance with exploratory data, we employ the algo-
rithm proposed by Burda et al. (2018), specifically the IDF (inverse dynamics) variant. We
log the first 6M steps from an agent trained in each game.

• Weak Agent By selecting the first 1M steps for each agent (a total of 5M steps are available,
across all random seeds), we are able to create a dataset gathered by an agent substan-
tially worse than that learned by APT or VISR during pretraining, with a median human-
normalized score of roughly 0.031 (Castro et al., 2018). Although this is comparable to
that of the IDF exploration policy above, this data has above-random performance on more
games (22 vs 18), suggesting that it is encountering more task-relevant transitions.

• Competent Agent To assess SGI when using data gathered from more competent policies,
we concatenate multiple checkpoints evenly spread throughout training, creating a small
dataset using 3M steps of data and a large dataset using 6M steps.

Note that even our largest dataset is quite small compared to the amounts of data gathered by
unsupervised exploration methods (see the “Data” column in Table 4.4). We show the performance
of the non-random data collection policies in Table 1 (note that a fully-random policy has a score of 0
by definition).

4.3 SGI VARIANTS

We refer to agents by the model architecture and dataset type used: Agents pretrained on the Random,
Exploratory and Weak datasets are denoted by SGI-W, SGI-E and SGI-R respectively. For the
Competent dataset, we additionally vary the architecture used - we denote variants of SGI that employ
the standard Mnih et al. (2015) encoder as SGI-C/S (for small), variants that employ our standard
ResNet as simply SGI-C and variants that employ the enlarged ResNet as SGI-C/L (for large)2.
For SGI-C/L we also double the amount of pretraining data used. We refer to agents without any
pretraining as SGI-None.

4.4 TRAINING

SPR ATC SGI-R SGI-E SGI-W SGI-S SGI SGI-L
Algorithm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Hu
m

an
-N

or
m

al
ize

d
Sc

or
e

Figure 3: A boxplot of human-normalized scores
across the 26 Atari100k games after fine-tuning.
Each datapoint is the human-normalized score on
a game, averaged across 10 random seeds. Values
are clipped to a maximum of 3 for visual clarity.

We optimize our three representation learning
objectives jointly during pretraining, while dur-
ing fine-tuning we optimize only the reinforce-
ment learning and SPR losses:

LPretrain
θ = LGCRL

θ + λSPRLSPR
θ + λIMLIM

θ (5)

LFinetune
θ = LRL

θ + λSPRLSPR
θ (6)

We set λSPR = 2 and λIM = 1 during pre-
training. Unless otherwise noted, all settings
match SPR during fine-tuning, including batch
size, replay ratio, target network update period,
and λSPR.

We use a batch size of 256 during pre-training
to maximize throughput, and update both the
SPR and goal-conditioned RL target network
target networks with an exponential moving av-
erage with τ = 0.99. We pre-train for a number
of gradient steps equivalent to 10 epochs over
6M samples, no matter the amount of data used.
Due to the cost of pretraining, we pre-train a
single encoder per game for each configuration
tested. However, we use 10 random seeds at
fine-tuning time, allowing us to average over
variance due to exploration and data order. Fi-
nally, we reduce fine-tuning learning rates for

2See Appendix F for details on these networks

6

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

pretrained encoders and dynamics models by a factor of 100, and by a factor of 3 for other pretrained
weights. We find this crucial to SGI’s performance, and discuss it in detail in Section 5.

Table 1: Human-normalized score across the 26
Atari100k games (Kaiser et al., 2019). Methods
use varying amounts of pre-training data (right col-
umn) but all use 100k environment steps of online
interaction. SGI variants are defined in Section 4.3.
Full per-game results are presented in Appendix D.

Method Median Mean >H >0 Data

SimPLe 0.144 0.443 2 26 0
DER 0.161 0.285 2 26 0
DrQ 0.268 0.357 2 24 0
SPR 0.415 0.704 7 26 0
VISR 0.095 1.281 7 21 250M
APT 0.435 0.621 7 26 250M

Data-collection

IDF 0.039 0.042 0 18 6M
DQN 0.031 0.026 0 22 1M
DQN 1.008 2.675 13 26 50M

Offline Pre-Training

ATC (ours) 0.204 0.780 5 26 3M
SGI-R 0.326 0.888 5 26 6M
SGI-E 0.456 0.838 6 26 6M
SGI-W 0.589 1.144 8 26 5M
SGI-C/S 0.423 0.914 8 26 3M
SGI-C 0.679 1.149 9 26 3M
SGI-C/L 0.753 1.598 9 26 6M

ATC To make a controlled comparison, we
adapt code for ATC (Stooke et al., 2020) to work
with SGI’s larger network architectures. Details
are available in Appendix H

5 RESULTS AND DISCUSSION

We find that pre-training with SGI robustly im-
proves performance. When using a dataset
of 6M pretraining steps gathered by a compe-
tent agent, SGI-C/L achieves a median human-
normalized score of 0.753, an improvement of
81% over SPR. With a dataset of 3M steps, SGI-
C achieves a median human-normalized score of
0.679, an improvement of 64% over SPR. SGI-
C also greatly outperforms ATC, a comparable
method for offline pre-training, in a controlled
comparison. Meanwhile, SGI-E, which is di-
rectly comparable with works in the benchmark
proposed by Hansen et al. (2020), achieves me-
dian performance robustly higher than compet-
ing methods in this setting, APT (Liu & Abbeel,
2021) and VISR (Hansen et al., 2020). We
present aggregate measures in Table 1, and full
per-game results in Appendix D. These results
show that the strongest SGI setting outperforms all comparable methods except the recently proposed
CPT (Campos et al., 2021), which uses several orders of magnitude more pretraining data than SGI.

Data quality matters Although SGI can in principle be used with any offline dataset, not all
datasets are made equal. Even near the lower bound of data quality where all actions are selected
randomly, pretraining with SGI (SGI-R) still provides some benefit, improving over an otherwise-
identical randomly-initialized agent (SGI-None) on 16 out of 26 games, and increasing its mean
score by 57%. In settings with more realistic-quality data, we find that data from an exploratory
policy (SGI-E) substantially improves median performance, exceeding that of APT (Liu & Abbeel,
2021), which used 40 times more pre-training data. Using data from a poorly-performing non-
exploratory policy (SGI-W) has an even larger effect, allowing a 72% improvement over median
human-normalized score compared to training the same model from scratch, while data from a good
policy (SGI-C) allows a 98% improvement.

The large gap between SGI-W and SGI-E is notable. The similar mean and median scores of their
data-collection policies suggests that it is the degeneracy of the pre-training data is critical. The IDF
agents used to generate data for SGI-E have sub-random performance on twice as many games as the
1M-step DQN agents, suggesting a broader failure to engage with task-relevant behaviors.

Combining SSL objectives improves performance We test all possible combinations of our three
SSL objectives, denoted by combinations of the letters S, G and I to indicate which objectives they
employ. We present results in Table 2, where we see that performance monotonically increases
as more objectives are used, with inverse dynamics modeling combined with either of the other
objectives performing respectably well. We note that including inverse modeling appears to be critical
to avoiding representational collapse, with S, G and S+G all exhibiting poor performance and at least
partial collapse; more details are shown in Appendix B.

Representation learning requires larger networks The three-layer network introduced by Mnih
et al. has become a fixture of deep reinforcement learning, and has been employed by previous works
examining pretraining in this field (e.g., Liu & Abbeel, 2021; Stooke et al., 2020). However, we find

7

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

that representational pretraining with this network (SGI-C/S) provides only minor benefits, with a
median score identical to SPR’s and a mean only 30% higher than SPR. With larger networks (SGI-C
and SGI-C/L), representational pretraining via SGI performs qualitatively differently, offering large
improvements in performance – despite that these larger networks harm performance on the Atari100k
task without pretraining (SGI-None in Table 2, has a median score 17% below regular SPR).

Table 2: Human-normalized score on Atari for
various controlled comparisons to SGI-C.

Method Mdn Mean >H > SPR

Ablated Pre-training

None 0.343 0.565 3 10
S 0.009 -0.054 0 1
G 0.060 0.181 1 1
I 0.411 0.943 7 18
S+G 0.029 0.098 0 1
G+I 0.512 1.004 9 20
S+I 0.629 0.978 8 19

Ablated Fine-Tuning

Naive 0.429 0.845 8 14
Frozen 0.499 0.971 8 15
No SPR 0.452 1.114 8 14
All Losses 0.397 1.011 8 17

SGI-C 0.679 1.149 9 20

This finding is consistent with recent work in un-
supervised representation learning for classifica-
tion, which has observed that unsupervised pre-
training benefits disproportionately from larger net-
works (Chen et al., 2020a). Although large net-
works can perform well in deep reinforcement
learning without pretraining in the very large data
regime (Schrittwieser et al., 2021; Espeholt et al.,
2018), SGI provides a simple way to extend these
benefits to data-efficient RL.

Naively fine-tuning ruins pretrained representa-
tions We find that even high-quality pretrained
representations provide little benefit if they are
not used properly in fine-tuning. Using pretrained
weights as an initialization while allowing them
to change freely during fine-tuning leads to perfor-
mance only somewhat better than initializing from
scratch (denoted as Naive SGI in Table 2). Surpris-
ingly, entirely freezing the SGI pre-trained encoder during fine-tuning (denoted as Frozen SGI) leads
to better performance than both the naive baseline and SPR. SGI’s approach, using significantly
reduced learning rates for pre-trained parameters during fine-tuning, leads to superior performance
(compare SGI, Frozen SGI and Naive SGI in Table 2). Interestingly, we also find that SGI’s use
of SPR at pretraining time substantially improves performance, even with these tweaks (compare
SGI and No SPR in Table 2) and we hypothesize that using an auxiliary self-supervised learning
loss may stabilize representational adaptation. However, we found no benefit to including the other
self-supervised losses used by SGI during pre-training, suggesting that this effect may have sharp
diminishing returns (All Losses in Table 2).

To explain these results, we hypothesize that representations learned by SGI are being disrupted
by gradients early in fine-tuning, in a phenomenon analogous to catastrophic forgetting (Zenke
et al., 2017; Hadsell et al., 2020) seen in continual learning. As representations do not automatically
generalize between value functions at different stages of training (Dabney et al., 2021), allowing
the encoder to strongly adapt to early value functions may make it worse at modeling later value
functions, compared to the neutral initialization provided by SGI.

6 CONCLUSION

We presented SGI, a fully self-supervised (reward-free) approach to representation learning for
reinforcement learning, which uses a combination of pretraining objectives to encourage the agent
to learn multiple aspects of environment dynamics. We demonstrated that SGI enables significant
improvements on the Atari 100k data-efficiency benchmark, especially in comparison to unsupervised
exploration approaches which require orders of magnitude more pretraining data. We additionally
investigated the various components of SGI, finding that it scales robustly with higher-quality
behavioural data and larger models, that all three of the self-supervised objectives contribute to the
success of this approach, and that careful reduction of fine-tuning learning rates is critical to optimal
performance.

We hope that these findings demonstrate the value of explicit representation learning as an approach
to moving away from tabula-rasa learning and towards imbuing agents with useful priors about the
environments they will inhabit.

8

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In ICML, 2020.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R Devon
Hjelm. Unsupervised state representation learning in atari. In NeurIPS, 2019.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In Advances in neural information processing systems, pp. 5048–5058, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing
mutual information across views. In NeurIPS, 2019.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. ICML, 2017.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A. Efros.
Large-scale study of curiosity-driven learning, 2018.

Vı́ctor Campos, Pablo Sprechmann, Steven Stenberg Hansen, Andre Barreto, Charles Blundell, Alex
Vitvitskyi, Steven Kapturowski, and Adria Puigdomenech Badia. Coverage as a principle for
discovering transferable behavior in reinforcement learning, 2021. URL https://openrevi
ew.net/forum?id=INhwJdJtxn6.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.
Dopamine: A Research Framework for Deep Reinforcement Learning. 2018. URL http:
//arxiv.org/abs/1812.06110.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. ICML, 2020a.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hinton. Big
self-supervised models are strong semi-supervised learners. In NeurIPS, 2020b.

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems, volume 30, pp. 4299–4307, 2017.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pp.
2048–2056. PMLR, 2020.

Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G Bellemare, and
David Silver. The value-improvement path: Towards better representations for reinforcement
learning. 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In ACL, 2019.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learning? 11(19):625–660, 2010.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IM-
PALA: scalable distributed deep-rl with importance weighted actor-learner architectures. CoRR,
abs/1802.01561, 2018. URL http://arxiv.org/abs/1802.01561.

9

https://openreview.net/forum?id=INhwJdJtxn6
https://openreview.net/forum?id=INhwJdJtxn6
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1802.01561

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In International Conference on Learning
Representations, 2018.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deepmdp:
Learning continuous latent space models for representation learning. ICML, 2019.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. In NeurIPS,
2020.

Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-bastien Grill, Florent Altché, Rémi Munos, and Mo-
hammad Gheshlaghi Azar. Bootstrap latent-predictive representations for multitask reinforcement
learning. In ICML, 2020.

Raia Hadsell, Dushyant Rao, Andrei A. Rusu, and Razvan Pascanu. Embracing change: Continual
learning in deep neural networks. Trends in Cognitive Sciences, 2020. doi: https://doi.org/10.1016/
j.tics.2020.09.004. URL http://www.sciencedirect.com/science/article/pi
i/S1364661320302199.

Nicklas Hansen, Yu Sun, Pieter Abbeel, Alexei A. Efros, Lerrel Pinto, and Xiaolong Wang. Self-
supervised policy adaptation during deployment. In ICLR, 2021.

Steven Hansen, Will Dabney, Andre Barreto, David Warde-Farley, Tom Van de Wiele, and Volodymyr
Mnih. Fast task inference with variational intrinsic successor features. In ICLR, 2020.

Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern’andez
del R’ıo, Mark Wiebe, Pearu Peterson, Pierre G’erard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2.
URL https://doi.org/10.1038/s41586-020-2649-2.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020.

Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, SM Eslami, and
Aaron van den Oord. Data-efficient image recognition with contrastive predictive coding. arXiv
preprint arXiv:1905.09272, 2019.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In AAAI, 2018.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. ICLR, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model based
reinforcement learning for atari. In ICLR, 2019.

Kacper Piotr Kielak. Do recent advancements in model-based deep reinforcement learning really
improve data efficiency?, 2020. URL https://openreview.net/forum?id=Bke9u1
HFwB.

10

http://www.sciencedirect.com/science/article/pii/S1364661320302199
http://www.sciencedirect.com/science/article/pii/S1364661320302199
https://doi.org/10.1038/s41586-020-2649-2
https://openreview.net/forum?id=Bke9u1HFwB
https://openreview.net/forum?id=Bke9u1HFwB

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In ICLR, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv e-prints, pp. arXiv–2006, 2020.

Timothée Lesort, Natalia Dı́az-Rodrı́guez, Jean-Franois Goudou, and David Filliat. State representa-
tion learning for control: An overview. Neural Networks, 108, 2018.

Hao Liu and Pieter Abbeel. Unsupervised active pre-training for reinforcement learning, 2021. URL
https://openreview.net/forum?id=cvNYovr16SB.

Bogdan Mazoure, Remi Tachet des Combes, Thang Doan, Philip Bachman, and R Devon Hjelm.
Deep reinforcement and infomax learning. In NeurIPS, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540), 2015.

Andrew Y Ng, Daishi Harada, and Stuart J Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In ICML, 1999.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In NeurIPS, 2019.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In ICML. PMLR, 2017.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C Courville. Film: Visual
reasoning with a general conditioning layer. In AAAI, 2018.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 2021.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bachman.
Data-efficient reinforcement learning with self-predictive representations. In ICLR, 2021.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In ICML, 2020.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. In International Conference on Learning Representations, 2019.

Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D Cubuk, Alex
Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. arXiv preprint arXiv:2001.07685, 2020.

Adam Stooke and Pieter Abbeel. rlpyt: A research code base for deep reinforcement learning in
pytorch. arXiv preprint arXiv:1909.01500, 2019.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning, 2020.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

11

https://openreview.net/forum?id=cvNYovr16SB
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International Conference on Machine Learning, pp. 6105–6114, 2019.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. In NeurIPS, 2017.

Pedro Tsividis, Thomas Pouncy, Jaqueline L. Xu, Joshua B. Tenenbaum, and Samuel J. Gershman.
Human learning in atari. In AAAI Spring Symposia, 2017.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In AAAI, 2016.

Hado P van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in
reinforcement learning? In NeurIPS, 2019.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere, 2020.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In ICML, 2016.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In ICML, 2017.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018.

12

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

A REINFORCEMENT LEARNING BACKGROUND

We focus on reinforcement learning in a Markov decision process (MDP). An agent interacts with
an environment, taking actions a and observing states s and rewards r. Interactions are broken up
into episodes, series of states, actions and rewards that ultimately terminate. We denote the t-th state,
action and reward as st, at and rt respectively, following the convention that rt is the reward received
by the agent after taking action at in state st. In the control problem examined here, the agent seeks
to maximize a discounted sum of rewards Gt =

∑
i≥t γ

iri, where γ ∈ [0, 1] is a discount factor
balancing current and future rewards (Sutton & Barto, 2018).

Deep Q-Learning One common approach to this problem is to estimate Q(st, a) = Eπ∗ [Gt|at =
a]. Assuming that Q is known exactly, the problem of acting optimally is reduced to finding
maxaQ(st, a) in each state st the agent encounters, which is trivial in environments that possess
only a small number of possible actions. In practice, the true Q can be iteratively approximated by a
parameterized Qθ with a semi-gradient method, minimizing

LDQNθ = (rt + γmax
a

Qξ(st+1, a)−Qθ(st, at))2 (7)

where Qξ denotes an older version of Qθ. This method has proven extremely successful when used
with deep learning, a setting referred to as Deep Q-Networks (DQN) (Mnih et al., 2015), and more
broadly is a common class of deep reinforcement learning (DRL) algorithms.

A number of variants of DQN have been proposed, including those that predict full distributions of
future rewards (Bellemare et al., 2017), modifications to the max operation to reduce value overes-
timation (Van Hasselt et al., 2016), and architectural modifications to how Qθ is predicted (Wang
et al., 2016). We employ a somewhat modified (Schwarzer et al., 2021) version of Rainbow (Hessel
et al., 2018), an algorithm that combines many of these innovations.

B REPRESENTATIONAL COLLAPSE

We plot the average cosine similarity between representations yt of different states for several
pretraining methods in Fig. 4, using our ResNet encoder. We observe that pretraining with SPR
(S) alone leads to almost-total representational collapse, with average cosine similarity nearly 1,
indicating that representations of different states are nearly identical. All configurations that include
inverse dynamics modeling avoid representational collapse, as does ATC, whose contrastive loss
implicitly optimizes for representational diversity (Wang & Isola, 2020).

Intriguingly, we observe that increased representational diversity does not automatically improve
performance during fine-tuning. For example, SGI’s representations are less diverse than those from
several other methods, including ATC, G+I and I, although SGI outperforms all of these methods by
various margins in fine-tuning. Finally, we observe that adding SPR to a configuration appears to
consistently pull representations towards collapse (see S+I and I, S+G and G, and SGI and G+I); how
SPR does this while improving performance is an interesting question for future work.

13

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

0 25000 50000 75000 100000 125000 150000 175000 200000
Training step

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
co

sin
e

sim
ila

rit
y

S
G
I
S+G
S+I
G+I
SGI
ATC

Figure 4: A plot of the average cosine similarity between representations of different states over
the course of pre-training, using our ResNet encoder and several different pretraining algorithms,
averaged across the 26 Atari games under consideration. An average cosine similarity of 1 indicates
that representations are entirely identical, while 0 indicates perfect dissimilarity.

14

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

C PSEUDOCODE

Algorithm 1: Pre-Training with SGI
Denote parameters of online encoder fo, projection po and Q-learning head as θo;
Denote parameters of target encoder fm, projection pm and Q-learning target head as θm;
Denote parameters of transition model h, predictor q, inverse model I as φ;
Denote the maximum prediction depth as K, batch size as N ;
Denote distance function in goal RL reward as d;
initialize offline dataset D;
while Training do

sample a minibatch of sequences of (st, a, s+ t+ 1) ∼ D ; // sample unlabeled
data
/* sample goals */
for i in range(0, N) do

si ← augment(si); s′i ← augment(s′i) ; // augment input images
j ∼ Discrete Uniform(1, 50) ; // sample hindsight goal states
gi ← fm(snj) ; // encode goal states
α ∼ Uniform(0, 0.5), n ∼ Normal(0, 1) ; // sample noise parameters
gi ← αgi + (1− α)n ; // apply noise
/* Permute to make some goals very challenging to reach */
permute ∼ Bernoulli(0.2)
if permute then

j ∼ Discrete Uniform(N)
gi ← gj ; // permute goal

/* compute SGI loss */
for i in range(0, N) do

ẑi0 ← fθ(s
i
0) ; // compute online representations

li ← 0;
/* compute SPR loss */
for k in (1, . . . , K) do

ẑik ← h(ẑik−1, a
i
k−1) ; // latent states via transition model

z̃ik ← fm(sik) ; // target representations
ŷik ← q(po(ẑ

i
k)), ỹ

i
k ← gm(z̃ik) ; // projections

li ← li − λSPR
(

ỹik
||ỹik||2

)> (
ŷik
||ŷik||2

)
; // SGI loss at step k

/* compute inverse modeling loss */
for k in (1, . . . , K) do

li ← λIM · Cross-entropy loss(aik−1, I(ŷk−1, ỹk))

/* compute goal RL loss */
ri ← d(gi, z̃t)− d(gi, z̃t+1) ; // Calculate goal RL reward

li ← li + RL loss(si, ai, ri, s′i) ; // Add goal RL loss for batch

l← 1
N

∑N
i=0 l

i ; // average loss over minibatch
θo, φ← optimize((θo, φ), l) ; // update online parameters
θm ← τθo + (1− τ)θm ; // update target parameters

return (θo, φ) ; // return parameters for fine-tuning

15

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

D FULL RESULTS ON ATARI100K

We report full scores for SGI agents across all 26 games in Table 3. We do not reproduce the per-game
scores for APT and VISR provided by Liu & Abbeel (2021), as we believe that the scores in the
currently-available version of their paper may contain errors.3

Table 3: Mean return per episode for the 26 Atari100k games (Kaiser et al., 2019) after 100k steps.
Agents are evaluated at the end of training, and scores for all methods are averaged over 10 random
seeds. We reproduce scores for SPR from Schwarzer et al. (2021), whereas ATC scores are from our
implementation.

Random Human SPR ATC SGI-R SGI-E SGI-W SGI-C/S SGI-C SGI-C/L

Alien 227.8 7127.7 801.5 699.0 1034.5 857.6 1043.8 1070.5 1101.7 1184.0
Amidar 5.8 1719.5 176.3 95.4 154.8 166.8 206.7 185.9 168.2 171.2
Assault 222.4 742.0 571.0 509.8 446.6 583.1 759.5 632.4 905.1 1326.5
Asterix 210.0 8503.3 977.8 454.1 754.6 953.6 1539.1 651.8 835.6 567.2
Bank Heist 14.2 753.1 380.9 534.9 397.4 514.8 426.3 547.4 608.4 567.8
Battle Zone 2360.0 37187.5 16651.0 13683.8 4439.0 16417.0 7103.0 12107.0 13170.0 14462.0
Boxing 0.1 12.1 35.8 16.8 57.7 33.6 50.2 40.0 36.9 73.9
Breakout 1.7 30.5 17.1 16.9 23.4 17.8 35.4 23.8 42.8 251.9
Chopper Command 811.0 7387.8 974.8 870.8 784.7 1136.2 1040.1 1042.7 1404.0 1037.9
Crazy Climber 10780.5 35829.4 42923.6 74215.5 50561.2 76356.3 81057.4 75542.1 88561.2 94602.2
Demon Attack 152.1 1971.0 545.2 524.6 2198.7 357.5 1408.5 1135.5 968.1 5634.8
Freeway 0.0 29.6 24.4 5.7 2.1 15.1 26.5 12.5 30.0 28.6
Frostbite 65.2 4334.7 1821.5 222.6 349.3 981.4 247.7 861.1 741.3 927.8
Gopher 257.6 2412.5 715.2 946.2 1033.9 964.9 1846.0 1172.4 1660.4 2035.8
Hero 1027.0 30826.4 7019.2 6119.4 7875.2 6863.7 7503.9 7090.4 7474.0 9975.9
Jamesbond 29.0 302.8 365.4 272.6 263.9 383.8 425.1 413.2 366.4 394.8
Kangaroo 52.0 3035.0 3276.4 603.1 923.8 1588.9 598.6 1236.8 2172.8 1887.5
Krull 1598.0 2665.5 3688.9 4494.7 5672.6 4070.7 5583.2 6161.3 5734.0 5862.6
Kung Fu Master 258.5 22736.3 13192.7 11648.2 13349.2 11802.1 14199.7 16781.8 16137.8 17340.7
Ms Pacman 307.3 6951.6 1313.2 848.9 411.0 1278.3 1970.8 1519.5 1520.0 2218.0
Pong -20.7 14.6 -5.9 -13.5 -3.9 4.2 4.7 9.7 7.6 7.7
Private Eye 24.9 69571.3 124.0 95.0 95.3 100.0 100.0 84.7 90.0 83.8
Qbert 163.9 13455.0 669.1 572.2 595.0 717.6 855.6 804.7 709.8 702.6
Road Runner 11.5 7845.0 14220.5 7989.3 5476.0 9195.2 18011.9 12083.5 18370.2 18306.8
Seaquest 68.4 42054.7 583.1 415.7 735.3 615.2 656.1 728.2 728.4 1979.3
Up N Down 533.4 11693.2 28138.5 84361.2 67968.1 63612.9 84551.4 42165.6 79228.8 46083.3

Median HNS 0.000 1.000 0.415 0.204 0.326 0.456 0.589 0.423 0.679 0.755
Mean HNS 0.000 1.000 0.704 0.780 0.888 0.838 1.144 0.914 1.149 1.590

#Games > Human 0 0 7 5 5 6 8 6 9 9
#Games > 0 0 26 26 26 25 26 26 26 26 26

E TRANSFERRING REPRESENTATIONS BETWEEN GAMES

One advantage of pretraining representations is the possibility of representations being useful across
games. Intuitively, we expect better transfer between similar games so we chose five “cliques” of
games with similar semantics and visual elements. The cliques are shown in Table 6. We pretrain on
a dataset of 750k frames from each game in a clique (i.e. 3M frames for a clique of 4) and fine-tune
on a single game. To show whether pretraining on other games is beneficial, we compare to a baseline
of pretraining on just the 750k frames from the single Atari 100k game we use for fine-tuning.

Our results in Table 7 show that pretraining with the extra frames from the clique games is mostly
unhelpful to fine-tune performance. Only Kangaroo shows a modest improvement, a few games show
no difference in performance, and most games show a decrease in performance when pretraining
with other games. We believe that Atari may not be as suitable to transferring representations as
other domains, and previous work using Atari to learn transferable representations has also had
negative results (Stooke et al., 2020). Though game semantics can be similar, we note that even small
differences in rule sets and visual cues can make transfer difficult.

3In particular, we observed that multiple methods are claimed to have scores below −21 on Pong, which is
impossible with standard settings.

16

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

Table 4: Mean return per episode for the 26 Atari100k games (Kaiser et al., 2019) after 100k steps
for versions of SGI with modified fine-tuning, as discussed in Section 5. Agents are evaluated at the
end of training, and scores for all methods are averaged over 10 random seeds. We reproduce scores
for SPR from Schwarzer et al. (2021).

Random Human SGI-None Naive Frozen No SPR Full SSL SGI-C

Alien 227.8 7127.7 835.9 1049.3 1242.8 1060.7 1117.6 1101.7
Amidar 5.8 1719.5 107.6 133.6 147.7 154.2 206.0 168.2
Assault 222.4 742.0 657.7 752.1 869.2 756.3 1145.2 905.1
Asterix 210.0 8503.3 832.9 1029.3 433.1 575.5 603.1 835.6
Bank Heist 14.2 753.1 613.2 726.5 273.6 365.8 323.4 608.4
Battle Zone 2360.0 37187.5 13490.0 15708.0 11754.0 13692.0 11689.8 13170.0
Boxing 0.1 12.1 6.6 24.0 61.5 34.7 42.7 36.9
Breakout 1.7 30.5 12.1 29.3 34.0 43.0 62.6 42.8
Chopper Command 811.0 7387.8 1085.2 1081.2 916.5 925.5 965.8 1404.0
Crazy Climber 10780.5 35829.4 19707.6 55002.4 65220.0 69505.6 69052.0 88561.2
Demon Attack 152.1 1971.0 778.8 850.0 1329.4 981.7 1783.8 968.1
Freeway 0.0 29.6 17.2 28.1 24.4 13.2 10.9 30.0
Frostbite 65.2 4334.7 1475.8 662.1 1045.4 482.1 1664.9 741.3
Gopher 257.6 2412.5 438.2 626.1 2214.1 1561.7 1998.7 1660.4
Hero 1027.0 30826.4 6472.0 5538.3 6353.3 5249.6 8715.4 7474.0
Jamesbond 29.0 302.8 157.4 324.2 358.2 346.8 407.6 366.4
Kangaroo 52.0 3035.0 3802.8 3091.6 800.0 685.6 999.5 2172.8
Krull 1598.0 2665.5 3954.0 5202.7 6073.7 5722.8 5323.9 5734.0
Kung Fu Master 258.5 22736.3 7929.4 11952.2 19374.6 15039.8 18123.2 16137.8
Ms Pacman 307.3 6951.6 990.2 1276.4 1663.3 1753.3 1779.3 1520.0
Pong -20.7 14.6 -4.4 -4.2 3.8 3.9 -0.1 7.6
Private Eye 24.9 69571.3 62.8 385.9 96.7 90.5 90.0 90.0
Qbert 163.9 13455.0 720.0 664.8 587.6 681.3 3015.8 709.8
Road Runner 11.5 7845.0 5428.4 14629.7 14311.9 17036.5 13998.2 18370.2
Seaquest 68.4 42054.7 577.8 509.0 1054.4 1397.8 989.4 728.4
Up N Down 533.4 11693.2 46042.6 48856.6 29938.4 105466.9 45023.5 79228.8

Median HNS 0.000 1.000 0.343 0.425 0.499 0.452 0.397 0.679
Mean HNS 0.000 1.000 0.565 0.849 0.971 1.114 1.011 1.149
#Games > Human 0 0 3 8 8 8 8 9
#Games > SPR 0 19 10 14 15 14 17 20

F IMPLEMENTATION

In addition to the standard three-layer CNN encoder introduced by Mnih et al. (2015), we experiment
with larger residual networks (He et al., 2016). We use the design proposed by Espeholt et al.
(2018) as a starting point, while still adopting innovations used in more modern architectures such as
EfficientNets (Tan & Le, 2019) and MobileNetv2 (Sandler et al., 2018). In particular, we use inverted
residual blocks with an expansion ratio of 2, and batch normalization (Ioffe & Szegedy, 2015) after
each convolutional layer. We use three groups of three residual blocks with 32, 64 and 64 channels
each, downscaling by a factor of three in the first group and two in each successive group. This
yields a final representation of shape 64× 7× 7 when applied to 84× 84-dimensional Atari frames,
identical to that of the standard CNN encoder. In our scaling experiment with a larger network, we
increase to five blocks per group, with 48, 96 and 96 channels in each group, as well as using a larger
expansion ratio of 4, producing a representation of shape 96 × 7 × 7. This enlargement increases
the number of parameters by roughly a factor of 5. Finally, our DQN head has 512 hidden units, as
opposed to 256 in SPR.

Goal Conditioning and Normalization We apply FiLM after the first layer in the DQN’s MLP
head. We parameterize our FiLM generator j as a small convolutional network, which takes the goal
g (viewed as a 64× 7× 7 spatial feature map) as input and applies two 128-channel convolutions
followed by a flatten and linear layer to produce the FiLM parameters γ and β.

Image Augmentation We use the same image augmentations as used in SPR (Schwarzer et al.,
2021), which itself used the augmentations used in DrQ (Kostrikov et al., 2021), in all experiments,
including during both pretraining and fine-tuning. Specifically, we employ random crops (4 pixel
padding and 84x84 crops) in combination with image intensity jittering.

17

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

Table 5: Mean return per episode for the 26 Atari100k games (Kaiser et al., 2019) after 100k steps for
various combinations of SGI’s pretraining objectives, as discussed in Section 5. Agents are evaluated
at the end of training, and scores for all methods are averaged over 10 random seeds.

Random Human None S G I G+I S+G S+I SGI

Alien 227.8 7127.7 835.9 278.7 964.3 1161.6 571.2 1172.3 1203.0 1101.7
Amidar 5.8 1719.5 107.6 37.8 54.8 198.1 58.0 210.5 175.4 168.2
Assault 222.4 742.0 657.7 517.9 512.3 868.1 567.2 813.5 820.3 905.1
Asterix 210.0 8503.3 832.9 292.6 416.1 475.6 431.8 506.3 648.5 835.6
Bank Heist 14.2 753.1 613.2 3.1 115.2 357.6 57.2 423.3 547.5 608.4
Battle Zone 2360.0 37187.5 13490.0 4665.0 3336.0 14807.0 3249.0 12528.0 15491.0 13170.0
Boxing 0.1 12.1 6.6 -21.8 12.5 40.1 -0.4 42.9 38.3 36.9
Breakout 1.7 30.5 12.1 0.9 2.1 24.1 3.2 41.0 41.6 42.8
Chopper Command 811.0 7387.8 1085.2 799.7 813.1 973.1 923.7 1097.2 978.3 1404.0
Crazy Climber 10780.5 35829.4 19707.6 243.3 17760.3 51203.9 581.0 66228.5 83995.4 88561.2
Demon Attack 152.1 1971.0 778.8 668.9 316.9 1524.6 756.4 1008.4 1286.6 968.1
Freeway 0.0 29.6 17.2 15.2 17.7 2.6 19.3 30.5 29.1 30.0
Frostbite 65.2 4334.7 1475.8 427.2 523.3 395.0 215.4 530.5 463.3 741.3
Gopher 257.6 2412.5 438.2 60.7 129.0 1966.1 99.0 1747.4 1778.7 1660.4
Hero 1027.0 30826.4 6472.0 2381.2 3590.2 7177.6 3998.7 8251.2 7366.2 7474.0
Jamesbond 29.0 302.8 157.4 41.8 236.0 373.1 183.6 365.6 378.4 366.4
Kangaroo 52.0 3035.0 3802.8 129.8 401.6 1041.4 222.6 830.8 760.2 2172.8
Krull 1598.0 2665.5 3954.0 720.1 1241.4 5859.8 1582.4 5778.8 5808.6 5734.0
Kung Fu Master 258.5 22736.3 7929.4 79.7 453.7 16914.7 686.2 17825.1 14681.9 16137.8
Ms Pacman 307.3 6951.6 990.2 418.7 528.5 1620.1 293.3 1847.1 1715.9 1520.0
Pong -20.7 14.6 -4.4 -20.9 -20.4 -3.0 -21.0 0.9 1.7 7.6
Private Eye 24.9 69571.3 62.8 -20.7 89.4 100.0 12.7 98.2 100.0 90.0
Qbert 163.9 13455.0 720.0 201.0 277.4 706.5 215.2 650.5 601.9 709.8
Road Runner 11.5 7845.0 5428.4 780.3 5592.9 17698.4 2617.8 18229.4 17443.5 18370.2
Seaquest 68.4 42054.7 577.8 105.7 193.2 965.3 118.8 1115.0 792.1 728.4
Up N Down 533.4 11693.2 46042.6 892.2 4399.7 58142.0 1313.4 52772.9 39771.3 79228.8
Median HNS 0.000 1.000 0.343 0.009 0.060 0.411 0.029 0.512 0.629 0.679
Mean HNS 0.000 1.000 0.565 -0.054 0.181 0.943 0.098 1.004 0.978 1.149
#Games > Human 0 0 3 0 1 7 0 9 8 9
#Games > SPR 0 19 10 1 1 18 1 20 19 20

Table 6: Cliques of semantically similar games
space Space Invaders, Assault, Demon Attack, Phoenix
pacman MsPacman, Alien, Bank Heist, Wizard Of Wor
platformer Montezuma Revenge, Hero, Kangaroo, Tutankham
top scroller Crazy Climber, Up N Down, Skiing, Journey Escape
side scroller Chopper Command, James Bond, Kung Fu Master, Private Eye

G SELF-SUPERVISED LEARNING DURING FINE-TUNING

In addition to SGI’s use of SPR during fine-tuning, we experiment with a variant that optimizes only
the standard DQN objective during fine-tuning. As we still employ augmentation, this method is
roughly equivalent to using DrQ (Kostrikov et al., 2021) with DQN hyperparameters set to match
SGI. In this case, we find that pre-training with SGI dramatically improves performance, as training
without pre-training is greatly harmed by the omission of SPR (compare None and SPR Only entries
in Table 8.) Notably, SGI without SPR manages to achieve roughly the same mean human-normalized
score as SGI with SPR, although removing SPR harms performance on performance on 19 out of
26 games and reduces median normalized score by roughly 33%. We also consider a variant that
uses all of SGI’s constituent objectives during fine-tuning (All Losses in Table 8), but find no benefit
to doing so compared to using SPR alone. However, we do not modify the weights of these losses
from their values during pre-training, and it is possible that results might be improved by tuning these
hyperparameters.

H EXPERIMENTS WITH ATC

As ATC (Stooke et al., 2020) was not tested on the Atari100k setting, and as its hyperparameters
(including network size and fine-tuning scheme) are very different from those used by SGI, we

18

Self-Supervision for Reinforcement Learning Workshop - ICLR 2021

Table 7: Mean return per episode for clique games in Atari100k (Kaiser et al., 2019) after 100k steps.
Agents are evaluated at the end of training, and scores for all methods are averaged over 10 random
seeds. Games in the same clique are placed together.

Game Single Clique

Assault 738.5 554.1
Demon Attack 1171.8 695.0

Alien 1183.9 830.2
Bank Heist 448.8 303.0
Ms Pacman 1595.8 1352.1

Kangaroo 489.2 994.0

Crazy Climber 52036.0 21829.8
Up N Down 18974.7 13493.9

James Bond 397.6 325.4
Kung Fu Master 16402.6 16499.0
Chopper Command 933.6 854.6

Table 8: Human-normalized score across the 26 Atari100k games (Kaiser et al., 2019) for algorithms
using various combinations of self-supervised losses during fine-tuning, with and without SGI
pre-training.

Fine-Tuning SSL Mdn Mean >H > SPR

Without SGI Pre-Training

None 0.161 0.315 2 1
SPR Only 0.343 0.565 3 10

With SGI Pre-Training

No SPR 0.452 1.114 8 14
All Losses 0.397 1.011 8 17
SPR Only 0.679 1.149 9 20

modify its code4 to allow it to be fairly compared to SGI. We replace the convolutional encoder
with that used by SGI, and use the same optimizer settings, image augmentation, pre-training data,
and number of pre-training epochs as in SGI. However, we retain ATC’s mini-batch structure (i.e.,
sampling 32 subsequences of eight consecutive time steps, for a total batch size of 512), as this
structure defines the negative samples used by ATC’s InfoNCE loss. During fine-tuning, we transfer
the ATC projection head to the first layer of the DQN MLP head, as in SPR; we otherwise fine-tune
identically to SGI, including using SPR.

4https://github.com/astooke/rlpyt/tree/master/rlpyt/ul

19

https://github.com/astooke/rlpyt/tree/master/rlpyt/ul

	Introduction
	Related Work
	Representation Learning Objectives
	Self-Predictive Representations
	Goal-Conditioned Reinforcement Learning
	Goal-Conditioned Rewards

	Inverse Dynamics Modeling

	Experimental Details
	Environment & Evaluation
	Pretraining Dataset
	SGI Variants
	Training

	Results and Discussion
	Conclusion
	Reinforcement Learning Background
	Representational Collapse
	Pseudocode
	Full Results on Atari100k
	Transferring Representations between Games
	Implementation
	Self-Supervised Learning During Fine-Tuning
	Experiments with ATC

