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Abstract

We present Claim-Dissector: a novel latent001
variable model for fact-checking and analysis,002
which given a claim and a set of retrieved evi-003
dences jointly learns to identify: (i) the relevant004
evidences to the given claim, (ii) the veracity005
of the claim. We propose to disentangle the006
per-evidence relevance probability and its con-007
tribution to the final veracity probability in an008
interpretable way — the final veracity proba-009
bility is proportional to a linear ensemble of010
per-evidence relevance probabilities. In this011
way, the individual contributions of evidences012
towards the final predicted probability can be013
identified. In per-evidence relevance probabil-014
ity, our model can further distinguish whether015
each relevant evidence is supporting (S) or re-016
futing (R) the claim. This allows to quantify017
how much the S/R probability contributes to the018
final verdict or to detect disagreeing evidence.019

Despite its interpretable nature, our system020
achieves results competetive with state-of-the-021
art on the FEVER dataset, as compared to typ-022
ical two-stage system pipelines, while using023
significantly fewer parameters. Furthermore,024
our analysis shows that our model can learn025
fine-grained relevance cues while using coarse-026
grained supervision, and we demonstrate it027
in 2 ways. (i) We show that our model can028
achieve competitive sentence recall while using029
only paragraph-level relevance supervision. (ii)030
Traversing towards the finest granularity of rel-031
evance, we show that our model is capable of032
identifying relevance at the token level. To do033
this, we present a new benchmark TLR-FEVER034
focusing on token-level interpretability — hu-035
mans annotate tokens in relevant evidences they036
considered essential when making their judg-037
ment. Then we measure how similar are these038
annotations to the tokens our model is focusing039
on. The code and dataset will be released.040

1 Introduction041

Today’s automated fact-checking systems are mov-042

ing from predicting the claim’s veracity by captur-043

ing the superficial cues of credibility, such as the 044

way the claim is written, the statistics captured in 045

the claim author’s profile, or the stances of its re- 046

spondents on social networks (Zubiaga et al., 2016; 047

Derczynski et al., 2017; Gorrell et al., 2019; Faj- 048

cik et al., 2019; Li et al., 2019) towards evidence- 049

grounded systems which, given a claim, identify 050

relevant sources and then use these to predict the 051

claim’s veracity (Thorne et al., 2018; Jiang et al., 052

2020; Park et al., 2022). In practice, providing pre- 053

cise evidence turns out to be at least as important 054

as predicting the veracity itself. Disproving a claim 055

without linking it to factual evidence often fails to 056

be persuasive and can even cause a “backfire” ef- 057

fect — refreshing and strengthening the belief into 058

an erroneous claim (Lewandowsky et al., 2012)1. 059

For evidence-grounded fact-checking, most of 060

the existing state-of-the-art systems (Jiang et al., 061

2021; Stammbach, 2021; Khattab et al., 2021) em- 062

ploy a 3-stage cascade approach; given a claim, 063

they retrieve relevant documents, rerank relevant 064

evidences (sentences, paragraphs or larger text 065

blocks) within these documents, and predict the 066

claim’s veracity from the top-k (usually k=5) rele- 067

vant evidences. 068

This comes with several drawbacks; firstly, the 069

multiple steps of the system lead to error propaga- 070

tion, i.e. the input to the last system might often be 071

too noisy to contain any information. Some previ- 072

ous work focused on merging evidence reranking 073

and veracity prediction into a single step (Ma et al., 074

2019; Schlichtkrull et al., 2021). Secondly, in open- 075

domain setting, number of relevant evidences can 076

be significantly larger than k2, especially when 077

there is a lot of repeated evidence. Thirdly, in open- 078

domain setting, sometimes there is both, supporting 079

and refuting evidence. The re-ranking systems of- 080

ten do not distinguish whether evidence is relevant 081

because it supports or refutes the claim, and thus 082

1Further discussion in Appendix F.
2e.g.,~3.7% of FEVER’s non-exhaustive annotations.
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may select the evidence from one group based on083

the in-built biases.084

To further strengthen the persuasive effect of085

the evidences and understand the model’s reason-086

ing process, some of these systems provide cues087

of interpretability (Popat et al., 2018; Liu et al.,088

2020). However, the interpretability in the men-089

tioned work was often considered a useful trait,090

which was evaluated only qualitatively, as the labor-091

intensive human evaluation was out of the scope of092

their focus.093

To this extent, we propose Claim-Dissector (CD),094

a latent variable model which:095

1. jointly ranks top-relevant, top-supporting and096

top-refuting evidences, and predicts veracity097

of the claim in an interpretable way, where the098

probability of the claim’s veracity is estimated099

using the linear combination of per-evidence100

probabilities (Subsection 2.2),101

2. can provide fine-grained (sentence-level or102

token-level evidence), while using only103

coarse-grained supervision (on block-level or104

sentence-level respectively),105

3. can be parametrized from a spectrum of106

language representation models (such as107

RoBERTa or DeBERTaV3 (Liu et al., 2019;108

He et al., 2021)).109

Finally, we collect a 4-way annotated dataset110

TLR-FEVER of per-token relevance annotations.111

This serves as a proxy for evaluating interpretabil-112

ity: we measure how similar are the cues provided113

by the model to the ones from humans. We be-114

lieve future work can benefit from our quantitative115

evaluation approach, while maintaining focus.116

2 Model Description117

We present a 2-stage system composed of the re-118

triever and the verifier. The documents are ranked119

via retriever. Each document is split into blocks.120

The blocks from top ranking documents are passed121

to verifier and jointly judged. Our interpretable CD122

verifier is capable of re-ranking documents for any123

granularity of relevant evidence (e.g., document,124

block, sentence, token). Jointly, the same model125

predicts the claim’s veracity. The overall schema126

of our approach is depicted in Figure 1.127

2.1 Retriever128

Given a claim c ∈ C from the set of all possi-129

ble claims C and the corpus D = {d1, d2, ..., dn}130
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Encode each block
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Queries Keys & Values
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Normalize & marginalize token-level
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normalized linear combination of 

per-sentence S/R/IRR probabilities

Figure 1: Diagram of Claim-Dissector’s workflow. Ab-
breviations S, R, IRR, NEI stand for support, refute,
irrelevant, not-enough-information. MLP function from
the figure is defined by equation 1.

composed of documents di, the retriever produces 131

a ranking using function rank : C × D → R 132

that assigns a claim-dependent score to each doc- 133

ument in the corpus. In this work, we focus 134

on the verifier; therefore, we take the strong re- 135

triever from Jiang et al. (2021). This retriever in- 136

terleaves documents ranked by BM25 (Robertson 137

and Zaragoza, 2009) (a1, a2, ...an) and Wikipedia 138

API (b1, b2, ...bm) following Hanselowski et al. 139

(2018) as (a1, b1, a2, b2, ...), while skipping dupli- 140

cate articles. Each document is then split into non- 141

overlapping blocks of size Lx, respecting sentence 142

boundaries3. Our verifier then computes its verac- 143

ity prediction from top-K1 such blocks. To keep up 144

with similar approaches (Hanselowski et al., 2018; 145

Stammbach and Neumann, 2019), we also exper- 146

iment with expanding evidence with documents 147

hyperlinked to the top retrieved articles. We rank 148

these documents according to rank and sequential 149

order in the document they were hyperlinked from. 150

We then process these extra ranked documents the 151

same way as retrieved documents, adding top-K2 152

blocks to the verifier’s input. As discussed more 153

closely in Stammbach and Neumann (2019), some 154

relevant documents are impossible to retrieve using 155

just claim itself, as their relevance is conditioned 156

on other relevant documents. However, we stress 157

3Every block contains as many sentences as can fit into Lx

tokens, considering verifier’s tokenization.
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that such approaches also mimic the way FEVER158

dataset was collected, and thus the improvements159

of such approach on “naturally collected” datasets160

might be negligible if any.161

2.2 Verifier162

The verifier first processes each block indepen-163

dently using a language representation model164

(LRM) and then aggregates cross-block informa-165

tion via multi-head attention (Vaswani et al., 2017),166

computing matrix M . This matrix is used to com-167

pute both, the probability of each evidence’s rele-168

vance and the probability of the claim’s veracity.169

Furthermore, the way the model is constructed al-170

lows learning a linear relationship between these171

probability spaces.172

Formally given a claim c and K = K1 + K2173

blocks, K input sequences xi for each block i are174

constructed as175

[CLS] <claim> c [SEP] <title> t176

<passage> s1 <sentence> s2177

<sentence>...s#<sentence> [SEP],178

where [CLS] and [SEP] are transformer special179

tokens used during the LRM pre-training (Devlin180

et al., 2019). Each block is paired with its arti-181

cle’s title t and split into sentences s1, s2, ..., s#.182

Symbols c, t, s1, s2, ..., s# thus each denote a se-183

quence of tokens. We further introduce new special184

tokens <claim>, <title>, <passage>,185

<sentence> to separate different input parts.186

Crucially, every sentence is appended with a187

<sentence> token. Their respective embeddings188

are trained from scratch. Each input xi is then189

encoded via LRM Ei = LRM(xi) ∈ RLB×d,190

where LB is an input sequence length, and d is191

LRM’s hidden dimensionality. The representations192

of every block are then concatenated into E =193

[E1;E2; ...;EK ] ∈ RL×d, where L is the num-194

ber of all tokens in the input sequences from all195

retrieved blocks. Then we index-select all rep-196

resentations from E corresponding to positions197

of sentence tokens in s1, s2, ..., s# into score ma-198

trix Es ∈ RLe×d, where Le corresponds to the199

number of all tokens in all input sentences (with-200

out special tokens). Similarly, we index-select all201

representations at the same positions as the spe-202

cial <sentence> tokens at the input from E into203

matrix S ∈ RLS×d, where LS ≪ Le is the to-204

tal number of sentences in all inputs xi. The ma-205

trix M ∈ RLe×3 is then given as206

M = SLP(MHAtt(Es,S,S))W . (1)207

The MHAtt : . . . → RLe×d operator is a multi- 208

head attention with queries Es, and keys and val- 209

ues S. The SLP operator is a single layer percep- 210

tron with layer norm, dropout, and GeLU activation 211

(details in Appendix D) and W ∈ Rd×3 is a linear 212

transformation, projecting resulting vectors to the 213

desired number of classes (3 in case of FEVER). 214

To compute the per-evidence probabilities we 215

split the matrix M according to tokens belong- 216

ing to each evidence. For instance, for sentence- 217

level evidence granularity we do split M = 218

[M s1,1;M s2,1; ...;M s#,K ] along dimension Le 219

into submatrix representations corresponding to 220

sentence s1 in block 1 up to last sentence s# in 221

block K. We then independently normalize each 222

such matrix of i-th evidence of j-th block as4: 223

Pi,j(w, y) =
expM i,j

w,y∑
w′

∑
y′ expM

i,j
w′,y′

. (2) 224

Note that w ∈ {1, 2, ..., |si,j |} is a token index 225

in the (i,j)-th evidence and y ∈ {S, R, NEI} is 226

the class label. Then we marginalize over latent 227

variable w to obtain the marginal log-probability 228

per evidence. 229

log Pi,j(y) = log
∑
w′

Pi,j(y, w′) (3) 230

Then objective LR is computed for evidences anno- 231

tated in label set A = {(y∗1, (i1, j1)), ...} (usually 232

|A| ≪ LS) for a single claim5. 233

LR =
1

|A|
∑

y∗,(i,j)∈A

log Pi,j(y∗) (4) 234

In training, A contains the same amount of rele- 235

vant and irrelevant labels. For relevant, the log- 236

probability log Pi,j(y = y∗) is maximized, based 237

the overall claim’s veracity label y∗ ∈ {S,R}. 238

For irrelevant evidences, y∗ = IRR is maximized. 239

As FEVER contains only annotation of relevant 240

sentences, we follow the heuristic of Jiang et al. 241

(2021) and sample irrelevant sentences ranked be- 242

tween 50 and 200, in order to avoid maximiz- 243

ing the objective for false negatives. In test-time, 244

we rank the evidence (i, j) according to its com- 245

bined probability of supporting or refuting rele- 246

vance scorei,j =
∑

y∈{S,R} P
i,j(y). 247

4Note that the probability also depends on input se-
quences {xi}i∈{1,2,...,K}, but we omit this dependency for
brevity.

5If example has NEI veracity in FEVER, LR = 0.
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Next, we compute the probability of the claim’s248

veracity y ∈ {S, R, NEI}. First notice that scores249

in M are logits (proof in Appendix O)250

M i,j
w,y = log(Ci,j Pi,j(w, y)). (5)251

Therefore, we use a learnable extra non-negative252

degree of freedom Ci,j to compute a linear ensem-253

ble6 producing the final probability254

P(y) =

∑
i,j,w Ci,j Pi,j(w, y)∑

y′
∑

i,j,w Ci,j Pi,j(w, y′)
. (6)255

Lastly, we bias the model to focus only on some256

tokens in each evidence by enforcing an L2 penalty257

over the scores in M by258

L2 =
1

Le
||M ||2F , (7)259

where || · ||F denotes Frobenius norm. We show260

empirically that this objective leads to significantly261

better weakly-supervised token-level interpretabil-262

ity (Section 5). Therefore the final per-sample loss263

with hyperparameters λR, λ2 is264

L = − log P(y)− λRLR + λ2L2. (8)265

2.3 Baseline266

Apart from previous work, we propose a baseline267

bridging the proposed system and the recent work268

of Schlichtkrull et al. (2021). In order to apply269

this recent work for FEVER, we introduce a few270

necessary modifications7. We normalize all scores271

in M to compute joint probability across all blocks272

P(w, y) =
expMw,y∑

w′
∑

y′ expMw′,y′
. (9)273

First, we marginalize out per-token probabilities in274

each evidence si,j .275

P(si,j , y) =
∑

w′∈si,j

P(w′, y) (10)276

Using this sentence probability formulation, the277

objective is computed for every relevant evidence.278

Lb0 =
1

|Ap|
∑

si,j ,y∈Ap

log P(si,j , y) (11)279

Second, unlike Schlichtkrull et al. (2021), we280

interpolate objective Lb0 with objective281

Lb1 = log P(y) = log
∑
si,j

P(si,j , y) (12)282

6Assuming y=IRR=NEI.
7The necessity of these is explained in Appendix P.

by computing their mean. Like CD, we use Lb1 283

objective to take advantage of examples from NEI 284

class for which we have no annotation in Ap (and 285

thus Lb0 is virtually set to 0). Unlike CD, the an- 286

notations Ap in Lb0 contain only relevant labels 287

where y∗ ∈ {S,R}8. 288

In order to not penalize non-annotated false 289

negatives, we compute global distribution in Lb0 290

during training only from representations of to- 291

kens from labeled positive and negative sentences 292

in M . In test time, we rank evidences ac- 293

cording to scorei,j =
∑

y∈{S,R} P(si,j , y), and 294

predict claim’s veracity according to P(y) = 295∑
si,j

P(si,j , y). We also considered different 296

model parametrizations discussed in Appendix E. 297

2.4 Transferring Supervision to Higher 298

Language Granularity 299

The proposed model can benefit from annotation on 300

the coarser granularity of the language than tested. 301

For example, evidence annotation can be done at 302

the document, block, paragraph, or token level. In 303

Section 5, we show despite the fact that the model 304

is trained on coarse granularity level, the model 305

still shows moderate performance of relevance pre- 306

diction when evaluated on finer granularity. We 307

demonstrate this with two experiments. 308

First, the model is trained with sentence-level 309

supervision and it is evaluated on a token-level 310

annotation. For this we leave model as it is — 311

reminding that prior over per-token probabilities 312

enforced by the objective L2 is crucial (Table 4). 313

Secondly, we assume only block-level annota- 314

tion is available in training and we evaluate on 315

sentence-level annotation. Here, we slightly alter 316

the model, making it rely more on its sentence- 317

level representations. In Section 5, we show this 318

simple alteration significantly improves the perfor- 319

mance at sentence-level. To compute block-level 320

probability, the block is the evidence, therefore the 321

evidence index can be dropped. The probability of 322

the j-th block bj is obtained by marginalizing out 323

the per-token/per-sentence probabilities. 324

8Maximizing NEI class for irrelevant sentences leads to
inferior accuracy. This makes sense, since it creates “tug-of-
war” dynamics between Lb0 and Lb1. The former objective
tries to allocate mass of joint space in NEI class, since most
documents are irrelevant, whereas the latter objective tries to
allocate the mass in the dimension of labeled veracity class.
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P(bj , y) =
∑

si,j∈bj

P(si,j , y) =∑
si,j∈bj

∑
w′∈si,j

P(w′, y)
(13)325

In practice, we found it helpful to replace the326

block-level probability P(bj , y) with its lower-327

bound P(si,j , y) computed for 1 sentence sampled328

from the relevant sentence likelihood.329

P(bj , y) ≈ P(si,j , y); si,j ∼ p(si,j , y ∈ {S,R})
(14)330

Intuitively, making a single sentence estimate331

(SSE) forces the model to invest the mass into a332

few sentence-level probabilities. This is similar to333

HardEM9. In LR we then maximize the probabili-334

ties of positive blocks computed as in equation 14,335

and negative sentences10 computed (and normal-336

ized) on sentence level as in equation 4.337

2.4.1 Baseline for Token-level Rationales338

Similarly to Shah et al. (2020); Schuster et al.339

(2021), we train a masker — a model which learns340

to replace the least amount of token embeddings at341

the Claim-Dissector’s input with a single learned342

embedding in order to maximize the NEI class343

probability. We compare the unsupervised ratio-344

nales given by the masker with the unsupervisedly345

learned rationales provided by the Claim-Dissector346

on-the-fly. Our masker follows the same architec-347

ture as Claim-Dissector. We provide an in-depth348

description of our masker model and its implemen-349

tation in Appendix G.350

3 Related Work351

Datasets. Previous work in supervised open-352

domain fact-checking often focused on large353

datasets with evidence available in Wikipedia such354

as FEVER (Thorne et al., 2018), FEVER-KILT355

(Petroni et al., 2021), FAVIQ (Park et al., 2022),356

HoVer (Jiang et al., 2020) or TabFact (Chen et al.,357

2020). We follow this line of work and selected358

FEVER because of its sentence-level annotation, 3359

levels of veracity (into S/R/NEI classes), and con-360

trolled way of construction — verification should361

not require world knowledge, everything should362

9In preliminary experiments, we also tried HardEM, but
the results over multiple seeds were unstable.

10Indices of irrelevant sentences are mined automatically
(see Section 2.1), therefore this supervision comes “for free”.

be grounded on trusted, objective, and factual evi- 363

dence from Wikipedia. 364

Open-Domain Fact-Checking (ODFC) Unlike 365

this work, most of the previous work includes 3- 366

stage systems that retrieve evidence, rerank each 367

document independently, and then make a verac- 368

ity decision from top-k documents (Thorne et al., 369

2018; Nie et al., 2019; Zhong et al., 2020). 370

Jiang et al. (2021) particularly distinguished the 371

line of work which aggregates the final decision 372

from independently computed per-sentence verac- 373

ity probabilities (Zhou et al., 2019; Soleimani et al., 374

2020; Pradeep et al., 2021b, inter alia) and the 375

line of work where the top-relevant sentences are 376

judged together to compute the final veracity prob- 377

ability (Stammbach and Neumann, 2019; Pradeep 378

et al., 2021a, inter alia). Jiang et al. (2021) com- 379

pares similar system against these two assumptions, 380

showing that joint judgment of relevant evidence 381

is crucial when computing final veracity. We stress 382

that our system falls into joint judgment category. 383

Although relevance is computed per sentence, these 384

probabilities along with linear combination coeffi- 385

cients are computed jointly, with the model condi- 386

tioned on hundreds of input sentences. 387

To deal with multi-hop evidence (evidence 388

which is impossible to mark as relevant with- 389

out other evidence) Subramanian and Lee (2020); 390

Stammbach (2021) iteratively rerank evidence sen- 391

tences to find minimal evidence set, which is passed 392

to verifier. Our system jointly judges sentences 393

within a block, while multi-head attention layer 394

could propagate cross-block information. Our over- 395

all peformance results suggest that our system is 396

about on-par with these iterative approaches, while 397

requiring only single forward computation. How- 398

ever, further analysis shows our model underper- 399

forms on multi-hop evidence (more in Section 5). 400

Interpretability Popat et al. (2018); Liu et al. 401

(2020) both introduced systems with an inter- 402

pretable attention design and demonstrated their 403

ability to highlight important words through a case 404

study. In our work, we take a step further and 405

propose a principled way to evaluate our system 406

quantitatively. We note that Schuster et al. (2021) 407

proposed a very similar quantitative evaluation of 408

token-level rationales, for data from the VitaminC 409

dataset. The dataset, constructed from factual revi- 410

sions on Wikipedia, assumed that the revised part 411

of facts is the most salient part of the evidence. In 412

contrast, we instruct annotators to manually anno- 413
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tate terms important to their judgment (Section 4.1).414

The VitaminC dataset is not accompanied by the415

evidence corpus, thus we deemed it as unsuitable416

for open-domain knowledge processing.417

Krishna et al. (2022) proposed a system that418

parses evidence sentences into natural logic based419

inferences (Angeli and Manning, 2014). These420

provide deterministic proof of the claim’s veracity.421

Authors verify the interpretability of the generated422

proofs by asking humans to predict veracity verdict423

from them. However, the model is evaluated only424

on FEVER dataset and its derivatives, which con-425

tain potential bias to their approach — the claims426

in this dataset were created from fact through "mu-427

tations" according to natural logic itself.428

Joint Reranking and Veracity Prediction429

Schlichtkrull et al. (2021) proposed a system simi-430

lar to our work for fact-checking over tables. The431

system computes a single joint probability space432

for all considered evidence tables. The dataset how-433

ever contains only claims with true/false outcomes,434

typically supported by a single table. While our435

work started ahead of its publication, it can be seen436

as an extension of this system.437

4 Experimental Setup438

Unless said otherwise, we employ DeBERTaV3439

(He et al., 2021) as LRM. In all experiments, we440

firstly pre-train model on MNLI (Williams et al.,441

2018). We use maximum block-length Lx = 500.442

Our recipe for implementation and model training443

is closely described in Appendix J.444

4.1 Datasets445

FEVER. We validate our approach on FEVER446

(Thorne et al., 2018) and our newly collected447

dataset of token-level rationales. FEVER is com-448

posed from claims constructed from Wikipedia.449

Each annotator was presented with an evidence450

sentence, and first sentence of articles from hyper-451

linked terms. In FEVER, examples in development452

set contain multi-way annotation of relevant sen-453

tences, i.e., each annotator selected set of sentences454

(evidence group) they considered relevant. To an-455

alyze performance of our components on samples456

that need multi-hop reasoning, we further created457

subsets of training/development set. FEVERMH458

contains only examples where all annotators agreed459

on that more than 1 sentence is required for verifi-460

cation, whereas FEVERMHART
contains only ex-461

amples, where all annotators agreed that sentences462

FEVER FEVERMH FEVERMHART

Train 145,449 12,958 (8.91%) 11,701 (8.04%)
Dev 19,998 1204/19998 (6.02%) 1059/19998 (5.30%)
Test 19,998 - -

Table 1: FEVER dataset and its subsets.

from different articles are required for verification. 463

As majority of examples of FEVERMH are from 464

FEVERMHART
, we only evaluate on FEVERMH . 465

We include the subset statistics in Table 1. 466

TLR-FEVER To validate token-level rationales, 467

we collect our own dataset on random subset of val- 468

idation set (only considering examples with gold 469

sentence annotation). We collect 4-way annotated 470

set of token-level rationales. The annotators were 471

the colleagues with NLP background from our lab. 472

We instruct every annotator via written guidelines, 473

and then we had 1-on-1 meeting after annotating a 474

few samples, verifying that contents of the guide- 475

lines were understood correctly. We let annotators 476

annotate 100 samples, resolve reported errors man- 477

ually, obtaining 94 samples with fine-grained token- 478

level annotation. In guidelines, we simply instruct 479

annotators to highlight minimal part of text they 480

find important for supporting/refuting the claim. 481

There should be such part in every golden sentence 482

(unless annotation error happened). The complete 483

guidelines are available in Appendix I. 484

To establish performance of average annotator, 485

we compute the performance of each annotator 486

compared to other annotators on the dataset, and 487

then compute the average annotator performance. 488

We refer to this as human baseline lower-bound, as 489

each annotator was compared to only 3 annotations, 490

while the system is compared to 4 annotations. We 491

measure performance via F1 metric. 492

Other Datasets. We further validate our approach 493

on FAVIQ-A: a more realistic dataset for fact- 494

checking (Appendix B), where it achieves state-of- 495

the-art results and HoVer (Appendix M), where we 496

demonstrate its limitations on multi-hop evidence. 497

4.2 Evaluation 498

Accuracy (A). The proportion of correctly classi- 499

fied samples, disregarding the predicted evidence. 500

Recall@5 (R@5). The proportion of samples for 501

which any annotated evidence group is matched 502

within top-5 ranked sentences. 503

FEVER-Score (FS). The proportion of samples 504

for which (i) any annotated evidence group is 505
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System FS A R@5 HA #θ
D

ev
el

op
m

en
tS

et
TwoWingOS (Yin and Roth, 2018) 54.3 75.9 53.8 ✕ ?
HAN (Ma et al., 2019) 57.1 72.0 53.6 ✓ ?
UNC (Nie et al., 2019) 66.5 69.7 86.8 ✓ 408M
HESM (Subramanian and Lee, 2020) 73.4 75.8 90.5 ✓ 39M
KGAT[OR] (Liu et al., 2020) 76.1 78.3 94.4 ✕ 465M
DREAM (Zhong et al., 2020) - 79.2 90.5 ✓? 487M
T5 (Jiang et al., 2021) 77.8 81.3 90.5 ✕ 5.7B
LF+DXL (Stammbach, 2021) - - 90.8 ✕ 1.2B
LF2−iter+DXL (Stammbach, 2021) - - 93.6 ✓ 1.2B
ProofVer-MV (Krishna et al., 2022) 78.2 80.2 - ✓ 515M
ProofVer-SB (Krishna et al., 2022) 79.1 80.7 93.6 ✓ 765M

Baselinejoint 75.2 79.8 90.0 ✕ 187M
Claim-DissectorRoBERTa 74.6 78.6 90.4 ✕ 127M
Claim-DissectorRoBERTaL 75.1 79.1 90.6 ✕ 360M
Claim-DissectorRoBERTaL \w HE 76.1 79.4 91.7 ✓ 360M
Claim-Dissector 76.2 79.5 91.5 ✕ 187M
Claim-Dissector \w HE 76.9 79.8 93.0 ✓ 187M
Claim-DissectorL 76.9 80.4 91.8 ✕ 439M
Claim-DissectorL \w HE 78.0 80.8 93.3 ✓ 439M
Claim-DissectorL \w HE [OR] 78.9 81.2 94.7 ✓ 439M

Te
st

Se
t

KGAT (Liu et al., 2020) 70.4 74.1 - ✕ 465M
DREAM (Zhong et al., 2020) 70.6 76.9 - ✓? 487M
HESM (Subramanian and Lee, 2020) 71.5 74.6 - ✓ 58M
ProofVer-MV (Krishna et al., 2022) 74.4 79.3 - ✓ 515M
T5 (Jiang et al., 2021) 75.9 79.4 - ✕ 5.7B
LF2−iter+DXL (Stammbach, 2021) 76.8 79.2 - ✓ 1.2B
ProofVer-SB (Krishna et al., 2022) 76.8 79.5 - ✓ 765M

Claim-DissectorRoBERTaL 73.1 76.4 - ✕ 360M
Claim-DissectorRoBERTaL \w HE 74.3 77.8 - ✓ 360M
Claim-DissectorL 74.7 78.5 - ✕ 439M
Claim-DissectorL \w HE 76.5 79.3 - ✓ 439M

Table 2: Performance on dev and test splits of FEVER.
#θ denotes number of parameters in the model. Model
names suffixed with [OR](as Oracle) inject missing
golden evidence into its input. Models using any kind
of hyperlink-augmentation (HA) are marked. Our mod-
els with hyperlink expansion are suffixed with (\w HE).
Overall best and our best result are in bold and under-
lined respectively (disregarding oracle results).

matched within top-5 ranked sentences, and (ii)506

the correct class is predicted.507

F1 Score measures unigram overlap between pre-508

dicted tokens and reference tokens, disregarding509

articles. Having multiple references, the maximum510

F1 between prediction and any reference is con-511

sidered per-sample. Our implementation closely512

follows Rajpurkar et al. (2016).513

In practice, both CD and masker model infer514

continuous scores capturing relevance for every515

token11. When evaluating F1, we select only tokens516

with scores greater than threshold τ . We tune the517

optimal threshold τ w.r.t. F1 on TLR-FEVER.518

5 Results519

We report results of base-sized models based on520

3-checkpoint average. We train only a single large521

model. We further evaluate retrieval in Appendix522

H as it is a non-essential part of our contribution.523

11We consider mask-class logits as scores for masker.

FEVER FEVERMH

System FS A R@5 FS A R@5
CDLARGE \w HE [OR] 78.9 81.2 94.8 50.3 81.9 58.9
CDLARGE \w HE 78.0 80.8 93.4 44.7 81.2 53.1
CD \w HE 76.9 79.8 93.2 41.3 80.8 49.9
CD \w HE \wo MH 76.5 79.5 93.0 41.7 80.8 50.2
Baseline 75.2 79.8 90.0 28.9 80.9 34.7
CD 76.2 79.6 91.7 30.0 79.2 36.4
CD \wo L2 76.0 79.7 91.6 30.4 79.5 36.2
CD \wo VC - - 91.9 - - 37.8
CD \wo RC - 79.9 - - 81.5 -

Table 3: Ablation Study. Minor differences to Table 2
are caused by different early-stopping (Appendix J).

Performance. We compare the performance of our 524

system with previous work in Table 2. Results 525

marked with ? were unknown/uncertain, and uncon- 526

firmed by authors. We note that, apart from HAN 527

(Ma et al., 2019), all previous systems were con- 528

sidering two separate systems for reranking and ve- 529

racity prediction. Next, we note that only ProofVer 530

system uses additional data. It leverages rewritten- 531

claim data for fact-correction paired with original 532

FEVER claims (Thorne and Vlachos, 2021). 533

We observe that (i) even our base-sized 534

RoBERTa-based CD model outperforms base-sized 535

HESM on dev data, and its large version outper- 536

forms large-sized KGAT, DREAM and HESM 537

on test data, (ii) our base sized DebertaV3-based 538

CD model matches large-based DREAM and 539

even KGAT with oracle inputs on dev set, (iii) 540

model version with hyperlink expansion (suffixed 541

\w HE) further improves the overall performance, 542

(iv) using larger model improves mostly its ac- 543

curacy, (v) Claim-DissectorL \w HE achieves bet- 544

ter FEVER score than T5-based approach (with 545

two 3B models) and better accuracy than Long- 546

Former+DebertaXL, but it is not pareto optimal to 547

these previous SOTA, (vi) our model is outmatched 548

by recent ProofVer-SB, though it is more efficient 549

as ProofVer-SB requires two rounds of reranking 550

and autoregressive decoding. We still consider 551

this a strong feat, as our system was focusing on 552

modeling reranking and veracity prediction jointly 553

in an interpretable way. Finally, we inject blocks 554

with missing golden evidence into inputs of Claim- 555

DissectorL \w HE at random positions and measure 556

oracle performance. We observe that items missed 557

by retrieval are still beneficial to the performance. 558

Ablations. We ablate components of Claim- 559

Dissector (CD) in Table 3. Firstly, we resort to 560

single-task training. We drop veracity classification 561

(VC) objective log P(y) or relevance classification 562

(RC) objective LR from the loss. We observe an 563
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System F1
Select All Tokens 52
Select Claim Overlaps 63
Masker 71
Claim-Dissector \wo L2 60
Claim-Dissector 77
Human Performance LB 85

Table 4: Token-level relevance on TLR-FEVER.

overall trend — single-task model performs slightly564

better to multi-task model. The advantages of multi-565

task model, however, lie in its efficiency and ability566

to provide explanations between per-evidence rele-567

vances and final conclusion. Next, we observe that568

dropping the L2 objective doesn’t affect the perfor-569

mance significantly. Further, we study the effect of570

hyperlink expansion (HE) and the effect of multi-571

head (MH) attention layer. As expected, hyperlink572

expansion dramatically increases performance on573

FEVERMH . The multi-head attention also brings574

marginal improvements to results on FEVER. How-575

ever, contrary to our expectations, there is no effect576

of the MH layer on FEVERMH , the improvements577

happened in non-multihop part. Additional exper-578

iments with CD on HoVer dataset (Appendix M)579

confirm this, CD does not work well on examples580

with cross-article multihop evidence. Improving581

cross-article reasoning was not our aim, and we582

leave the investigation to our future research.583

Transferring sentence-level supervision to to-584

ken-level performance. We evaluated the perfor-585

mance of token-level rationales12 on our dataset in586

Table 4. We considered two baselines. The first was587

to select all tokens in golden evidences (Select All588

Tokens). The second was to select only tokens that589

overlap with claim tokens (Select Claim Overlaps).590

We found that our model with weakly-supervised591

objective produces token-level rationales signifi-592

cantly better13 than the masker — a separate model593

trained explicitly to identify tokens important to594

model’s prediction. Furthermore, the results also595

demonstrate the importance of L2 objective. How-596

ever, human performance is still considerably be-597

yond the performance of our approach.598

Transferring block-level supervision to sen-599

tence-level performance. The performance of our600

model on the sentence-level evidences is evaluated601

in Table 5. We notice that even our vanilla Claim-602

Dissector trained with block supervision reaches603

12We visualized predicted token-level rationales on 100
random dev set examples in supplementary material.

13See Appendix K for our F1 significance testing protocol.

Model FS A R@5
Full Supervision 76.2 79.5 91.5
Block Supervision 65.5 76.9 77.8
Block Supervision + SSE 69.7 78.1 83.0

Table 5: Sentence-level performance on FEVER dev set
under different kinds of supervision.

competitive recall@5 on sentence-level. However, 604

adding SSE from equation 14 leads to further im- 605

provements both in recall, but also in accuracy. 606

We expected the recall will be improved, because 607

model now focuses on assigning high probability 608

mass only to some sentences within block, since 609

high-entropy of the per-sentence distribution would 610

be penalized in loss. However, we have not fore- 611

seen the damaging effect on accuracy, which block- 612

level supervision causes. Interestingly, the accu- 613

racy without any evidence supervision reported in 614

last row of Table 3 was increased. 615

6 Conclusion 616

In this work, we proposed Claim-Dissector, an in- 617

terpretable probabilistic model for fact-checking 618

and fact-analysis. Our model jointly predicts the 619

supporting/refuting evidence and the claim’s ve- 620

racity. It achieves state-of-the-art results, while 621

providing three layers of interpretability. Firstly, it 622

identifies salient tokens important for the final pre- 623

diction. Secondly, it allows disentangling ranking 624

of relevant evidences into ranking of supporting 625

evidence and ranking of refuting evidence. This 626

allows detecting bipolar evidence without being 627

exposed to such bipolar evidence sets during train- 628

ing (Appendix C). Thirdly, it combines the per- 629

token relevance probabilities via linear combina- 630

tion into final veracity assessment. Therefore it 631

can be identified to what extent the relevance of 632

each token/sentence/block/document contributes 633

to final assessment. Conveniently, this allows to 634

differentiate between the concept of evidence rele- 635

vance and its contribution to the final assessment. 636

Our work was however limited in experiments with 637

these coefficients, and we would like to analyze 638

what they can learn, and how to inject features, 639

such as satire assessment or source trustworthiness, 640

through these coefficients in our future work. 641

Finally, it was shown that a hierarchical structure 642

of our model allows making predictions on even 643

finer language granularity, than the granularity the 644

model was trained on. We believe the technique 645

we proposed is transferable beyond fact-checking. 646
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Ethical Considerations647

We built the system with the intended use for fact-648

checking support, providing rationales at various649

level to user for ease of understanding. These ra-650

tionales include supporting and refuting evidences651

in the corpus. We see potential misuse of system652

might lie in spreading of fake news and propaganda653

by e.g., automatic detection of sources, which sup-654

port or refute certain claims from the narrative.655

This could be followed by subsequent glorifica-656

tion/discreditation of statements in these sources.657

This could influence the human population, but also658

poison retrieval databases of similar fact-checking659

systems, influencing their decisions. Future work660

in this direction, such as Du et al. (2022), needs661

to study disinformation attacks and how to prevent662

them.663

References664

Gabor Angeli and Christopher D. Manning. 2014. Nat-665
uralLI: Natural logic inference for common sense666
reasoning. In Proceedings of the 2014 Conference on667
Empirical Methods in Natural Language Processing668
(EMNLP), pages 534–545, Doha, Qatar. Association669
for Computational Linguistics.670

Akari Asai, Matt Gardner, and Hannaneh Ha-671
jishirzi. 2022. Evidentiality-guided generation for672
knowledge-intensive NLP tasks. In Proceedings of673
the 2022 Conference of the North American Chap-674
ter of the Association for Computational Linguistics:675
Human Language Technologies, pages 2226–2243,676
Seattle, United States. Association for Computational677
Linguistics.678

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-679
ton. 2016. Layer normalization. arXiv preprint680
arXiv:1607.06450.681

Christopher M. Bishop. 2006. Pattern Recognition and682
Machine Learning. Springer.683

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai684
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and685
William Yang Wang. 2020. Tabfact : A large-scale686
dataset for table-based fact verification. In Inter-687
national Conference on Learning Representations688
(ICLR), Addis Ababa, Ethiopia.689

Leon Derczynski, Kalina Bontcheva, Maria Liakata,690
Rob Procter, Geraldine Wong Sak Hoi, and Arkaitz691
Zubiaga. 2017. SemEval-2017 task 8: RumourEval:692
Determining rumour veracity and support for ru-693
mours. In Proceedings of the 11th International694
Workshop on Semantic Evaluation (SemEval-2017),695
pages 69–76, Vancouver, Canada. Association for696
Computational Linguistics.697

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 698
Kristina Toutanova. 2019. BERT: Pre-training of 699
deep bidirectional transformers for language under- 700
standing. In Proceedings of the 2019 Conference of 701
the North American Chapter of the Association for 702
Computational Linguistics: Human Language Tech- 703
nologies, Volume 1 (Long and Short Papers), pages 704
4171–4186, Minneapolis, Minnesota. Association for 705
Computational Linguistics. 706

Yibing Du, Antoine Bosselut, and Christopher D. Man- 707
ning. 2022. Synthetic disinformation attacks on 708
automated fact verification systems. Proceedings 709
of the AAAI Conference on Artificial Intelligence, 710
36(10):10581–10589. 711

Martin Fajcik, Pavel Smrz, and Lukas Burget. 2019. 712
BUT-FIT at SemEval-2019 task 7: Determining the 713
rumour stance with pre-trained deep bidirectional 714
transformers. In Proceedings of the 13th Inter- 715
national Workshop on Semantic Evaluation, pages 716
1097–1104, Minneapolis, Minnesota, USA. Associa- 717
tion for Computational Linguistics. 718

Genevieve Gorrell, Elena Kochkina, Maria Liakata, Ah- 719
met Aker, Arkaitz Zubiaga, Kalina Bontcheva, and 720
Leon Derczynski. 2019. SemEval-2019 task 7: Ru- 721
mourEval, determining rumour veracity and support 722
for rumours. In Proceedings of the 13th International 723
Workshop on Semantic Evaluation, pages 845–854, 724
Minneapolis, Minnesota, USA. Association for Com- 725
putational Linguistics. 726

Cyril Goutte and Eric Gaussier. 2005. A probabilistic 727
interpretation of precision, recall and f-score, with 728
implication for evaluation. In European conference 729
on information retrieval, pages 345–359. Springer. 730

Andreas Hanselowski, Hao Zhang, Zile Li, Daniil 731
Sorokin, Benjamin Schiller, Claudia Schulz, and 732
Iryna Gurevych. 2018. Ukp-athene: Multi-sentence 733
textual entailment for claim verification. In Proceed- 734
ings of the First Workshop on Fact Extraction and 735
VERification (FEVER), pages 103–108. 736

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021. 737
Debertav3: Improving deberta using electra-style pre- 738
training with gradient-disentangled embedding shar- 739
ing. 740

Dan Hendrycks and Kevin Gimpel. 2016. Gaus- 741
sian error linear units (gelus). arXiv preprint 742
arXiv:1606.08415. 743

Gautier Izacard and Edouard Grave. 2021. Leveraging 744
passage retrieval with generative models for open do- 745
main question answering. In Proceedings of the 16th 746
Conference of the European Chapter of the Associ- 747
ation for Computational Linguistics: Main Volume, 748
pages 874–880, Online. Association for Computa- 749
tional Linguistics. 750

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate- 751
gorical reparametrization with gumble-softmax. In 752
International Conference on Learning Representa- 753
tions (ICLR 2017). OpenReview. net. 754

9

https://doi.org/10.3115/v1/D14-1059
https://doi.org/10.3115/v1/D14-1059
https://doi.org/10.3115/v1/D14-1059
https://doi.org/10.3115/v1/D14-1059
https://doi.org/10.3115/v1/D14-1059
https://doi.org/10.18653/v1/2022.naacl-main.162
https://doi.org/10.18653/v1/2022.naacl-main.162
https://doi.org/10.18653/v1/2022.naacl-main.162
https://doi.org/10.18653/v1/S17-2006
https://doi.org/10.18653/v1/S17-2006
https://doi.org/10.18653/v1/S17-2006
https://doi.org/10.18653/v1/S17-2006
https://doi.org/10.18653/v1/S17-2006
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1609/aaai.v36i10.21302
https://doi.org/10.1609/aaai.v36i10.21302
https://doi.org/10.1609/aaai.v36i10.21302
https://doi.org/10.18653/v1/S19-2192
https://doi.org/10.18653/v1/S19-2192
https://doi.org/10.18653/v1/S19-2192
https://doi.org/10.18653/v1/S19-2192
https://doi.org/10.18653/v1/S19-2192
https://doi.org/10.18653/v1/S19-2147
https://doi.org/10.18653/v1/S19-2147
https://doi.org/10.18653/v1/S19-2147
https://doi.org/10.18653/v1/S19-2147
https://doi.org/10.18653/v1/S19-2147
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74


Kelvin Jiang, Ronak Pradeep, and Jimmy Lin. 2021. Ex-755
ploring listwise evidence reasoning with t5 for fact756
verification. In Proceedings of the 59th Annual Meet-757
ing of the Association for Computational Linguistics758
and the 11th International Joint Conference on Natu-759
ral Language Processing (Volume 2: Short Papers),760
pages 402–410, Online. Association for Computa-761
tional Linguistics.762

Yichen Jiang, Shikha Bordia, Zheng Zhong, Charles763
Dognin, Maneesh Singh, and Mohit Bansal. 2020.764
HoVer: A dataset for many-hop fact extraction and765
claim verification. In Findings of the Association766
for Computational Linguistics: EMNLP 2020, pages767
3441–3460, Online. Association for Computational768
Linguistics.769

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick770
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and771
Wen-tau Yih. 2020. Dense passage retrieval for open-772
domain question answering. In Proceedings of the773
2020 Conference on Empirical Methods in Natural774
Language Processing (EMNLP), pages 6769–6781,775
Online. Association for Computational Linguistics.776

Omar Khattab, Christopher Potts, and Matei Zaharia.777
2021. Baleen: Robust multi-hop reasoning at scale778
via condensed retrieval. Advances in Neural Infor-779
mation Processing Systems, 34.780

Amrith Krishna, Sebastian Riedel, and Andreas Vlachos.781
2022. Proofver: Natural logic theorem proving for782
fact verification. Transactions of the Association for783
Computational Linguistics, 10:1013–1030.784

Stephan Lewandowsky, Ullrich KH Ecker, Colleen M785
Seifert, Norbert Schwarz, and John Cook. 2012. Mis-786
information and its correction: Continued influence787
and successful debiasing. Psychological science in788
the public interest, 13(3):106–131.789

Quanzhi Li, Qiong Zhang, and Luo Si. 2019. even-790
tAI at SemEval-2019 task 7: Rumor detection on791
social media by exploiting content, user credibility792
and propagation information. In Proceedings of the793
13th International Workshop on Semantic Evalua-794
tion, pages 855–859, Minneapolis, Minnesota, USA.795
Association for Computational Linguistics.796

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-797
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,798
Luke Zettlemoyer, and Veselin Stoyanov. 2019.799
Roberta: A robustly optimized bert pretraining ap-800
proach. arXiv preprint arXiv:1907.11692.801

Zhenghao Liu, Chenyan Xiong, Maosong Sun, and802
Zhiyuan Liu. 2020. Fine-grained fact verification803
with kernel graph attention network. In Proceedings804
of the 58th Annual Meeting of the Association for805
Computational Linguistics, pages 7342–7351.806

Ilya Loshchilov and Frank Hutter. 2017. Decou-807
pled weight decay regularization. arXiv preprint808
arXiv:1711.05101.809

Jing Ma, Wei Gao, Shafiq Joty, and Kam-Fai Wong. 810
2019. Sentence-level evidence embedding for claim 811
verification with hierarchical attention networks. In 812
Proceedings of the 57th Annual Meeting of the Asso- 813
ciation for Computational Linguistics, pages 2561– 814
2571, Florence, Italy. Association for Computational 815
Linguistics. 816

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and 817
Luke Zettlemoyer. 2020. AmbigQA: Answering am- 818
biguous open-domain questions. In Proceedings of 819
the 2020 Conference on Empirical Methods in Nat- 820
ural Language Processing (EMNLP), pages 5783– 821
5797, Online. Association for Computational Lin- 822
guistics. 823

Yixin Nie, Haonan Chen, and Mohit Bansal. 2019. 824
Combining fact extraction and verification with neu- 825
ral semantic matching networks. In Proceedings of 826
the Thirty-Third AAAI Conference on Artificial In- 827
telligence and Thirty-First Innovative Applications 828
of Artificial Intelligence Conference and Ninth AAAI 829
Symposium on Educational Advances in Artificial 830
Intelligence, pages 6859–6866. 831

Jungsoo Park, Sewon Min, Jaewoo Kang, Luke Zettle- 832
moyer, and Hannaneh Hajishirzi. 2022. FaVIQ: FAct 833
verification from information-seeking questions. In 834
Proceedings of the 60th Annual Meeting of the As- 835
sociation for Computational Linguistics (Volume 1: 836
Long Papers), pages 5154–5166, Dublin, Ireland. As- 837
sociation for Computational Linguistics. 838

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 839
2013. On the difficulty of training recurrent neural 840
networks. In International conference on machine 841
learning, pages 1310–1318. PMLR. 842

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick 843
Lewis, Majid Yazdani, Nicola De Cao, James Thorne, 844
Yacine Jernite, Vladimir Karpukhin, Jean Maillard, 845
Vassilis Plachouras, Tim Rocktäschel, and Sebastian 846
Riedel. 2021. KILT: a benchmark for knowledge 847
intensive language tasks. In Proceedings of the 2021 848
Conference of the North American Chapter of the 849
Association for Computational Linguistics: Human 850
Language Technologies, pages 2523–2544, Online. 851
Association for Computational Linguistics. 852

Kashyap Popat, Subhabrata Mukherjee, Andrew Yates, 853
and Gerhard Weikum. 2018. DeClarE: Debunking 854
fake news and false claims using evidence-aware 855
deep learning. In Proceedings of the 2018 Confer- 856
ence on Empirical Methods in Natural Language 857
Processing, pages 22–32, Brussels, Belgium. Associ- 858
ation for Computational Linguistics. 859

Ronak Pradeep, Xueguang Ma, Rodrigo Nogueira, and 860
Jimmy Lin. 2021a. Scientific claim verification with 861
VerT5erini. In Proceedings of the 12th International 862
Workshop on Health Text Mining and Information 863
Analysis, pages 94–103, online. Association for Com- 864
putational Linguistics. 865

Ronak Pradeep, Xueguang Ma, Rodrigo Nogueira, and 866
Jimmy Lin. 2021b. Vera: Prediction techniques for 867

10

https://doi.org/10.18653/v1/2021.acl-short.51
https://doi.org/10.18653/v1/2021.acl-short.51
https://doi.org/10.18653/v1/2021.acl-short.51
https://doi.org/10.18653/v1/2021.acl-short.51
https://doi.org/10.18653/v1/2021.acl-short.51
https://doi.org/10.18653/v1/2020.findings-emnlp.309
https://doi.org/10.18653/v1/2020.findings-emnlp.309
https://doi.org/10.18653/v1/2020.findings-emnlp.309
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/S19-2148
https://doi.org/10.18653/v1/S19-2148
https://doi.org/10.18653/v1/S19-2148
https://doi.org/10.18653/v1/S19-2148
https://doi.org/10.18653/v1/S19-2148
https://doi.org/10.18653/v1/S19-2148
https://doi.org/10.18653/v1/S19-2148
https://doi.org/10.18653/v1/P19-1244
https://doi.org/10.18653/v1/P19-1244
https://doi.org/10.18653/v1/P19-1244
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://doi.org/10.18653/v1/2022.acl-long.354
https://doi.org/10.18653/v1/2022.acl-long.354
https://doi.org/10.18653/v1/2022.acl-long.354
https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.18653/v1/D18-1003
https://doi.org/10.18653/v1/D18-1003
https://doi.org/10.18653/v1/D18-1003
https://doi.org/10.18653/v1/D18-1003
https://doi.org/10.18653/v1/D18-1003
https://aclanthology.org/2021.louhi-1.11
https://aclanthology.org/2021.louhi-1.11
https://aclanthology.org/2021.louhi-1.11


reducing harmful misinformation in consumer health868
search. In Proceedings of the 44th International869
ACM SIGIR Conference on Research and Develop-870
ment in Information Retrieval, pages 2066–2070.871

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and872
Percy Liang. 2016. SQuAD: 100,000+ questions for873
machine comprehension of text. In Proceedings of874
the 2016 Conference on Empirical Methods in Natu-875
ral Language Processing, pages 2383–2392, Austin,876
Texas. Association for Computational Linguistics.877

Stephen Robertson and Hugo Zaragoza. 2009. The878
probabilistic relevance framework: BM25 and be-879
yond. Foundations and Trends in Information Re-880
trieval, 3(4):333–389.881

Michael Sejr Schlichtkrull, Vladimir Karpukhin, Bar-882
las Oguz, Mike Lewis, Wen-tau Yih, and Sebastian883
Riedel. 2021. Joint verification and reranking for884
open fact checking over tables. In Proceedings of the885
59th Annual Meeting of the Association for Compu-886
tational Linguistics and the 11th International Joint887
Conference on Natural Language Processing (Vol-888
ume 1: Long Papers), pages 6787–6799, Online. As-889
sociation for Computational Linguistics.890

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021.891
Get your vitamin C! robust fact verification with892
contrastive evidence. In Proceedings of the 2021893
Conference of the North American Chapter of the894
Association for Computational Linguistics: Human895
Language Technologies, pages 624–643, Online. As-896
sociation for Computational Linguistics.897

Colleen M Seifert. 2002. The continued influence of898
misinformation in memory: What makes a correction899
effective? In Psychology of learning and motivation,900
volume 41, pages 265–292. Elsevier.901

Darsh Shah, Tal Schuster, and Regina Barzilay. 2020.902
Automatic fact-guided sentence modification. In Pro-903
ceedings of the AAAI Conference on Artificial Intelli-904
gence, volume 34, pages 8791–8798.905

Amir Soleimani, Christof Monz, and Marcel Worring.906
2020. Bert for evidence retrieval and claim veri-907
fication. In European Conference on Information908
Retrieval, pages 359–366. Springer.909

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,910
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.911
Dropout: a simple way to prevent neural networks912
from overfitting. The journal of machine learning913
research, 15(1):1929–1958.914

Dominik Stammbach. 2021. Evidence selection as a915
token-level prediction task. In Proceedings of the916
Fourth Workshop on Fact Extraction and VERifica-917
tion (FEVER), pages 14–20, Dominican Republic.918
Association for Computational Linguistics.919

Dominik Stammbach and Guenter Neumann. 2019.920
Team DOMLIN: Exploiting evidence enhancement921
for the FEVER shared task. In Proceedings of the922

Second Workshop on Fact Extraction and VERifica- 923
tion (FEVER), pages 105–109, Hong Kong, China. 924
Association for Computational Linguistics. 925

Shyam Subramanian and Kyumin Lee. 2020. Hierar- 926
chical Evidence Set Modeling for automated fact 927
extraction and verification. In Proceedings of the 928
2020 Conference on Empirical Methods in Natural 929
Language Processing (EMNLP), pages 7798–7809, 930
Online. Association for Computational Linguistics. 931

James Thorne and Andreas Vlachos. 2021. Evidence- 932
based factual error correction. In Proceedings of the 933
59th Annual Meeting of the Association for Compu- 934
tational Linguistics and the 11th International Joint 935
Conference on Natural Language Processing (Vol- 936
ume 1: Long Papers), pages 3298–3309, Online. As- 937
sociation for Computational Linguistics. 938

James Thorne, Andreas Vlachos, Christos 939
Christodoulopoulos, and Arpit Mittal. 2018. 940
FEVER: a large-scale dataset for fact extraction 941
and VERification. In Proceedings of the 2018 942
Conference of the North American Chapter of 943
the Association for Computational Linguistics: 944
Human Language Technologies, Volume 1 (Long 945
Papers), pages 809–819, New Orleans, Louisiana. 946
Association for Computational Linguistics. 947

Joseph E Uscinski and Ryden W Butler. 2013. The 948
epistemology of fact checking. Critical Review, 949
25(2):162–180. 950

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 951
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 952
Kaiser, and Illia Polosukhin. 2017. Attention is all 953
you need. In Advances in Neural Information Pro- 954
cessing Systems, volume 30. Curran Associates, Inc. 955

Adina Williams, Nikita Nangia, and Samuel Bowman. 956
2018. A broad-coverage challenge corpus for sen- 957
tence understanding through inference. In Proceed- 958
ings of the 2018 Conference of the North American 959
Chapter of the Association for Computational Lin- 960
guistics: Human Language Technologies, Volume 1 961
(Long Papers), pages 1112–1122. Association for 962
Computational Linguistics. 963

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 964
Chaumond, Clement Delangue, Anthony Moi, Pier- 965
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 966
et al. 2019. Huggingface’s transformers: State-of- 967
the-art natural language processing. arXiv preprint 968
arXiv:1910.03771. 969

Wenpeng Yin and Dan Roth. 2018. TwoWingOS: A 970
two-wing optimization strategy for evidential claim 971
verification. In Proceedings of the 2018 Conference 972
on Empirical Methods in Natural Language Process- 973
ing, pages 105–114, Brussels, Belgium. Association 974
for Computational Linguistics. 975

Wanjun Zhong, Jingjing Xu, Duyu Tang, Zenan Xu, Nan 976
Duan, Ming Zhou, Jiahai Wang, and Jian Yin. 2020. 977
Reasoning over semantic-level graph for fact check- 978
ing. In Proceedings of the 58th Annual Meeting of 979

11

https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2021.acl-long.529
https://doi.org/10.18653/v1/2021.acl-long.529
https://doi.org/10.18653/v1/2021.acl-long.529
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.18653/v1/2021.fever-1.2
https://doi.org/10.18653/v1/2021.fever-1.2
https://doi.org/10.18653/v1/2021.fever-1.2
https://doi.org/10.18653/v1/D19-6616
https://doi.org/10.18653/v1/D19-6616
https://doi.org/10.18653/v1/D19-6616
https://doi.org/10.18653/v1/2020.emnlp-main.627
https://doi.org/10.18653/v1/2020.emnlp-main.627
https://doi.org/10.18653/v1/2020.emnlp-main.627
https://doi.org/10.18653/v1/2020.emnlp-main.627
https://doi.org/10.18653/v1/2020.emnlp-main.627
https://doi.org/10.18653/v1/2021.acl-long.256
https://doi.org/10.18653/v1/2021.acl-long.256
https://doi.org/10.18653/v1/2021.acl-long.256
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://doi.org/10.18653/v1/D18-1010
https://doi.org/10.18653/v1/D18-1010
https://doi.org/10.18653/v1/D18-1010
https://doi.org/10.18653/v1/D18-1010
https://doi.org/10.18653/v1/D18-1010
https://doi.org/10.18653/v1/2020.acl-main.549
https://doi.org/10.18653/v1/2020.acl-main.549
https://doi.org/10.18653/v1/2020.acl-main.549


the Association for Computational Linguistics, pages980
6170–6180, Online. Association for Computational981
Linguistics.982

Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu, Lifeng983
Wang, Changcheng Li, and Maosong Sun. 2019.984
GEAR: Graph-based evidence aggregating and rea-985
soning for fact verification. In Proceedings of the986
57th Annual Meeting of the Association for Compu-987
tational Linguistics, pages 892–901, Florence, Italy.988
Association for Computational Linguistics.989

Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geraldine990
Wong Sak Hoi, and Peter Tolmie. 2016. Analysing991
how people orient to and spread rumours in social992
media by looking at conversational threads. PloS993
one, 11(3):e0150989.994

A Limitations995

By manual analysis, we found that claim-dissector996

suffers from overconfidence in blocks with at least997

1 relevant evidence. Then it seeks to select more998

relevant evidences inside, even when they are not.999

We believe this is connected to how irrelevant neg-1000

atives are mined in FEVER — they originate only1001

from blocks without relevant evidences.1002

On real data, the system often struggles to rec-1003

ognize what facts are refuting, and what are irrele-1004

vant (especially when applied out-of-domain). We1005

demonstrate this in a case study on downstream ap-1006

plication, where we replaced retrieval on Wikipedia1007

with news-media in test-time. We tried to verify1008

the claim "Weapons are being smuggled into Esto-1009

nia". Our system discovered article with facts about1010

"Weapons being smuggled into Somalia", and used1011

it as a main refuting evidence to predict REFUTE1012

veracity.1013

Lastly, CD is trained with evidence from1014

Wikipedia, and do not considers other factors im-1015

portant for relevance assessment in practice, such1016

as credibility of source, its reliability, or its narra-1017

tive. This is the area of active research, as human1018

fact-checkers also need to deal with lies (Uscinski1019

and Butler, 2013).1020

B Performance on FAVIQ-A1021

To asses more realistic performance of our system,1022

we study its performance on FAVIQ-A (Park et al.,1023

2022). We use the silver passage supervision from1024

Asai et al. (2022), and feed the model with top-1025

20 passages retrieved via DPR system (Karpukhin1026

et al., 2020). We keep all the hyperparameters1027

same as for FEVER, and use dev set only for early-1028

stopping. We compare to evidentiality-guided gen-1029

erator (EGG), a t5-based Fusion-in-Decoder (FiD)1030

Test Dev ∆ θ

BARTLARGE (Park et al., 2022) 64.9 66.9 2.0 374M
FiD (Asai et al., 2022) 65.7 69.6 3.9 336M
CDRoBERTa 58.6 69.8 11.2 127M
CDRoBERTaL 66.9 73.3 6.4 360M
CD 69.8 76.3 6.5 187M
CDLARGE 72.0 79.7 7.7 439M

Table 6: Performance on FAVIQ-A.

(Izacard and Grave, 2021) with two decoders from 1031

Asai et al. (2022). We use hyperparameters from 1032

FEVER. The results are shown in Table 6. Our 1033

DebertaV3-based Claim-Dissector reaches state-of- 1034

the-art results on the dataset. The domain mismatch 1035

(measured by difference ∆) between development 1036

and test set is likely caused by the domain shift 1037

of NaturalQuestions test set, from which FAVIQ’s 1038

test set was created (see Appendix B in Min et al. 1039

(2020)). However, despite our best efforts, we have 1040

not uncovered the cause of massive degradation be- 1041

tween dev and test set for roberta-base based 1042

Claim-Dissector (the standard deviation on test set 1043

was only ±0.4 accuracy points).14 1044

C Detection of examples with bipolar 1045

evidence. 1046

We manually analyzed whether we can take ad- 1047

vantage of model’s ability to distinguish between 1048

evidence, which is relevant because it supports the 1049

claim, and the evidence which is relevant because it 1050

refutes the claim. To do so, we try to automatically 1051

detect examples from the validation set, which con- 1052

tain both, supporting and refuting evidence (which 1053

we refer to as bipolar evidence). We note that there 1054

were no examples with explicitly annotated bipolar 1055

evidence in the training data. 1056

We select all examples where model predicted 1057

at least 0.9 probability for any supporting and any 1058

refuting evidence. We found that out of 72 such 1059

examples, 66%(48) we judged as indeed having the 1060

bipolar evidence15. We observed that about half 1061

(25/48) of these examples had bipolar evidence 1062

because of the entity ambiguity caused by open- 1063

domain setting. E.g., claim “Bones is a movie” was 1064

supported by sentence article “Bones (2001 film)” 1065

but also refuted by sentence from article “Bones 1066

(TV series)” and “Bone” (a rigid organ). 1067

14Author’s note: We would like to add these results to the
9-page version of the main paper, if reviewers would agree.

15Annotations are available as supplementary material.
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D Structure of Single-layer Perceptron1068

Given a vector x, the structure of single-layer per-1069

ceptron from equation 1 is the following:1070

SLP (x) = GELU(dp(W ′ lnorm(x))). (15)1071

The operator dp denotes the dropout (Srivastava1072

et al., 2014) used in training, W ′ is a trainable1073

matrix, GELU is the Gaussian Error Linear Unit1074

(Hendrycks and Gimpel, 2016) and lnorm is the1075

layer normalization (Ba et al., 2016).1076

E Experiments with Different Model1077

Parametrizations1078

Apart from parametrizations provided in the main1079

paper, we experimented with several different1080

parametrizations described below. We keep the1081

training details the same as for our baseline (Sec-1082

tion 2.3). Starting off with a baseline system formu-1083

lation, we will consider replacing Lb0 with different1084

objective functions.1085

Lb2 =
1

|A|
∑

si,j ,y∈A
log P(si,j , y) (16)1086

With Lb2, the annotation set A contains both1087

relevant and irrelevant annotations. We found in1088

practice this does not work - recall@5 during train-1089

ing stays at 0. This makes sense since if annotation1090

exists, the final class is likely support or refute.1091

Drifting the probability mass towards NEI for irrel-1092

evant annotations is adversarial w.r.t. total veracity1093

probability.1094

Lb3 = log
∑

si,j ,y∈Ap

P(si,j , y) (17)1095

Instead of maximizing the multinomial probabil-1096

ity, Lb3 objective marginalizes over relevant anno-1097

tations.1098

Lb4 = log
∑

si,j∈Ap

∑
y

P(si,j , y) (18)1099

Additionally to Lb3, Lb4 also marginalizes out the1100

class label y.1101

The results in Table 7 reveal only minor differ-1102

ences. Comparing Lb3 and Lb4, marginalizing out1103

label improves the accuracy, but damages the re-1104

call. Baseline parametrization achieves best accu-1105

racy but the worst recall. Claim-Dissector seems1106

to work the best in terms of FS, but the difference1107

to Lb3 is negligible, if any.1108

FEVER
Model FS A R@5
CD 76.2 79.5 91.5
Baseline 75.2 79.8 90.0
Lb3 76.0 79.0 91.2
Lb4 75.7 79.7 90.4

Table 7: Different model parametrizations.

F The Continued Influence Effect: 1109

Retractions Fail to Eliminate the 1110

Influence of Misinformation 1111

Lewandowsky et al. (2012) summarizes research 1112

paradigm, which focuses on credible retractions in 1113

neutral scenarios, in which people have no reason 1114

to believe one version of the event over another. In 1115

this paradigm, people are presented with a factious 1116

report about an event unfolding over time. The 1117

report contain a target piece of information (i.e. a 1118

claim). For some readers, the claim is retracted, 1119

whereas for readers in a control condition, no cor- 1120

rection occurs. Then the readers are presented with 1121

a questionnare to assess their understanding of the 1122

event and the number of clear and uncontroverted 1123

references to the claim’s veracity. 1124

In particular, a stimulus narrative commonly 1125

used within this paradigm involves a warehouse 1126

fire, that is initially thought to have been caused by 1127

gas cylinders and oil paints there were negligently 1128

stored in a closet. A proportion of participants is 1129

then presented with a retraction such as "the closet 1130

was actually empty". A comprehension test fol- 1131

lows, and number of references to the gas and paint 1132

in response to indirection inference questions about 1133

the event (e.g., "What caused the black smoke?") 1134

is counted. 1135

Research using this paradigm has consistently 1136

found that retractions rarely, if ever, had the in- 1137

tended effect of eliminating reliance on misinfor- 1138

mation, even when people remember the retrac- 1139

tion, when later asked. Seifert (2002) have exam- 1140

ined whether clarifying the correction might reduce 1141

the continued influence effect. The correction in 1142

their studies was strengthened to include the phrase 1143

"paint and gas were never on the premises". Re- 1144

sults showed that this enhanced negation of the 1145

presence of flammable materials backfired, making 1146

people even more likely to rely on the misinforma- 1147

tion in their responses. Some other additions to the 1148

correction were found to mitigate to a degree, but 1149

not eliminate, the continued influence effect. For 1150

instance, when participants were given a rationale 1151
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about how misinformation originated, such as "a1152

truckers’ strike prevented the expected delivery of1153

the items", they were less likely to make references1154

to it. Even so, the influence of the misinforma-1155

tion could still be detected. The conclusion drawn1156

from studies on this phenomenon show that it is ex-1157

tremely difficult to return the beliefs to people who1158

have been exposed to misinformation to a baseline1159

similar to those of people who have never been ex-1160

posed to it. We recommend reading Lewandowsky1161

et al. (2012) for broader overview of the misinfor-1162

mation and its correction.1163

G Masker1164

Model Description. Our masker follows same1165

DeBERTaV3 architecture as Claim-Dissector, ex-1166

cept that the multiheaded layer from the equa-1167

tion (1) is omitted. It receives K1 blocks at1168

its input, encoded the very same way as for the1169

Claim-Dissector. Instead of computing matrix M—1170

which contains three logits per evidence token, the1171

masker predicts two logits [li0, l
i
1] — corresponding1172

to keep/mask probabilities [pi0, p
i
1] for i-th token1173

in evidence of every block. The mask [mi
0,m

i
1] is1174

then sampled for every token from concrete dis-1175

tribution via Gumbel-softmax (Jang et al., 2017).1176

During training, i-th token embedding ei at the1177

Claim-Dissector’s input e′i is replaced with a lin-1178

ear combination of itself and a learned mask-1179

embedding em ∈ Rd, tuned with the masker.1180

e′i = mi
0ei +mi

1em (19)1181

The masker is trained to maximize the Claim-1182

Dissector’s log-likehood of NEI class, while forc-1183

ing the mask to be sparse via L1 regularization.1184

Per-sample objective to maximize with sparsity1185

strength hyperparameter λS is given as1186

L = log P(y = NEI)− λS

Le

∑
i

|mi
0|. (20)1187

Training Details. We keep most hyperparameters1188

the same as for Claim-Dissector. The only dif-1189

ference is learning rate 2e − 6, adaptive schedul-1190

ing on Gumbel-softmax temperature τ and training1191

model/masker on different dataset split. Training1192

starts with temperature τ = 1 and after initial 1001193

steps, it is linearly decreasing towards τ = 0.1 at1194

step 700. Then we switch to hard Gumbel-softmax1195

— sampling 1-hot vectors in forward pass, while1196

computing gradients as we would use a soft sample1197

K1+K2 FEVER FEVERMH FEVERMHART
#SaI

35+0 94.2 52.0 45.8 239.9
100+0 95.1 58.5 53.1 649.4
35+10 95.2 61.9 57.0 269.6
35+20 95.9 69.0 65.2 309.0
35+30 96.7 77.5 74.7 388.6
35+35 97.5 84.1 82.3 506.7
35+50 97.7 86.5 85.0 624.3
35+100 98.4 93.0 92.4 1008.8
100+100 98.6 93.4 92.7 1431.0

Table 8: Retrieval performance in RaI on FEVER dev
set and its subsets.

with τ = 0.1 at backward pass. We randomly split 1198

training set and we train model on 75% of data, and 1199

masker on remaining 25% of data. 1200

H Retrieval Performance 1201

We evaluate the retrieval method from Jiang et al. 1202

(2021) and the proposed hyperlink expansion 1203

method in Table 8. We use two metrics: 1204

Recall@Input (RaI). We evaluate retrieval w.r.t. 1205

recall at model’s input while considering different 1206

amount of K1+K2 blocks at the input, i.e. the score 1207

hit counts iff any annotated evidence group was 1208

matched in K1+K2 input blocks. 1209

Number of Sentences@Input (#SaI) denotes av- 1210

erage number of sentences at model’s input under 1211

corresponding K1 +K2 setting. 1212

We focus on analyzing the effect of hyperlink ex- 1213

pansion, varying K2, while keeping K1 = 35 1214

in most experiments, which is setting similar to 1215

previous work — Jiang et al. (2021) considers 1216

reranking top-200 sentences. We observe that set- 1217

ting K1 + K2 = 35 + 10 already outperforms 1218

retrieval without hyperlink expansion and K1 = 1219

100 blocks. Such observation is thus consistent 1220

with previous work which used hyperlink signal 1221

(Hanselowski et al., 2018; Stammbach and Neu- 1222

mann, 2019). 1223

K1 Recall RecallMH RecallMHART
#SaI

10 90.4 40.1 33.0 68.8
20 93.4 48.0 41.5 132.9
30 94.1 51.3 45.0 196.8
35 94.2 52.0 45.8 239.9
50 94.5 54.3 48.4 325.4
100 95.1 58.5 53.1 649.4

Table 9: Retrieval performance on FEVER dev set.

An in-depth evaluation of retrieval method 1224

adopted from Jiang et al. (2021) is available in 1225

Table 9. 1226
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I Token-level Annotation Guidelines1227

Annotation Guidelines1228

Welcome to the “Pilot annotation phase” and thank1229

you for your help!1230

How to start annotate1231

If you haven’t done so, simply click on "Start1232

Annotation" button, and the annotation will start.1233

Annotation process & Guidelines1234

1235

• In pilot annotation, we are interested in anno-1236

tator’s disagreement on the task. So whatever1237

disambiguity you will face, do not contact the1238

organizers but judge it yourself.1239

• Your task is to annotate 100 samples. In each1240

case, you will be presented with list of sen-1241

tences divided by | character. The sentences1242

do not need to (and often do not) directly fol-1243

low each other in text. Be sure that in each1244

case you:1245

• read the claim (lower-right corner)1246

• read metadata - to understand the context, you1247

also have access to other metadata (lower-1248

right corner), such as1249

– titles - Wikipedia article names for every1250

sentence you are presented with, split1251

with character |,1252

– claim_label - Ground-truth judgment of1253

the claim’s veracity.1254

• highlight minimal part of text you find im-1255

portant for supporting/refuting the claim.1256

There should be such part in every sen-1257

tence (unless annotation error happened).1258

PLEASE DO NOT ANNOTATE ONLY1259

WHAT IS IMPORTANT IN THE FIRST1260

SENTENCE.1261

• Use "RELEVANT" annotation button high-1262

light the selected text spans.1263

• In some cases, you can find errors in the1264

ground-truth judgment, in other words, ei-1265

ther document is marked as supported and1266

it should be refuted according to your judg-1267

ment or vice-versa. If you notice so, please1268

annotate any part of the document with1269

CLAIM_ERROR annotation.1270

• In case you would like to comment on some 1271

example, use comment button (message icon). 1272

If the comment is example specific, please 1273

provide specific example’s id (available in- 1274

between metadata). 1275

FAQ 1276

1277

• The example does not contain enough 1278

information to decide whether it should be 1279

supported or refuted. Should I label it as a 1280

CLAIM_ERROR? 1281

No. In such case, please annotate parts of the 1282

input, which are at least partially supporting 1283

or refuting the claim. Please add comment 1284

to such examples. If there are no such 1285

input parts, only then report the example as 1286

CLAIM_ERROR. 1287

1288

That is it. Good luck! 1289

J Experimental Details 1290

We base our implementation of pre-trained lan- 1291

guage representation models on Huggingface (Wolf 1292

et al., 2019). Unless said otherwise, we em- 1293

ploy DeBERTaV3 (He et al., 2021) as LRM. In 1294

all experiments, we firstly pre-train model on 1295

MNLI (Williams et al., 2018). While we ob- 1296

served no significant improvement when using a 1297

MNLI-pretrained checkpoint, we found that with- 1298

out MNLI pretraining, our framework sometimes 1299

converges to poor performance. We train model on 1300

FEVER with minibatch size 64, learning rate 5e−6, 1301

maximum block-length Lx = 500. We schedule 1302

linear warmup of learning rate for first 100 steps 1303

and then keep constant learning rate. We use Adam 1304

with decoupled weight decay (Loshchilov and Hut- 1305

ter, 2017) and clip gradient vectors to a maximal 1306

norm of 1 (Pascanu et al., 2013). In all experi- 1307

ments, the model is trained and evaluated in mixed- 1308

precision. We keep λR = λ2 = 1. We use 8x 1309

Nvidia A100 40GB GPUs for training. We val- 1310

idate our model every 500 steps and select best 1311

checkpoint according to FEVER-Score (see Sub- 1312

section 4.2). We have not used any principled way 1313

to tune the hyperparameters. 1314

To train model with SSE, we decrease the 1315

strength of block-level supervised LR objective 1316

to λR = 0.7. We switch between vanilla objective 1317

and SSE objective randomly on per-sample basis. 1318

Training starts with replace probability psse = 0. 1319
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for first 1, 000 steps. The probability is then lin-1320

early increased up to psse = 0.95 on step 3, 000,1321

after which it is left constant.1322

All results except for Table 3 and Table 4 were1323

early-stopped based on the best FS. For Table 3,1324

we report best result for each metric early-stopped1325

independently, to be comparable with ablations1326

where FS was not available. For Table 4, we record1327

best F1 during training.1328

K Statistical Testing on F1 Measure1329

To compare CD with masker in F1, we follow1330

Goutte and Gaussier (2005), sum TPs, FPs, FNs1331

across the dataset, estimate recall (R) and preci-1332

sion (P) posteriors, and sample F1 distributions.1333

To obtain sample of average F1 from multiple1334

checkpoints, we estimate the P and R posteriors1335

for each checkpoint separately, sample F1 for each1336

checkpoint and then average these. We estimate1337

p ≈ P(F1a >F1b) via Monte-Carlo, and consider1338

significance level at p > 0.95.1339

L Development Performance in Training1340

0 0.2 0.4 0.6 0.8 1

·104

0.6

0.7

0.8
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&

F1

Average FS Average F1

Figure 2: Average FEVER-Score (FS) and F1 perfor-
mance on dev sets during training. Red dashed horizon-
tal line marks the F1 performance when selecting all
tokens (Select All Tokens) from Table 4. Opaque lines
show the performance of individual checkpoints.

In Figure 2, we analyze how the performance1341

on FEVER-Score and F1 changes over the course1342

of training on FEVER and TLR-FEVER sets. We1343

find our scores reach the top performance and then1344

quickly detoriate. It is thus necessary do the early1345

stopping on both, the performance metric and the1346

interpretability metric.1347

Hops Accuracy EM

B
al

ee
n

2 - 47.3
3 - 37.7
4 - 33.3
All 84.5 39.2

C
D

2 81.3 48.0
3 80.1 16.9
4 78.1 7.7
All 79.9 23.3

Table 10: Results on HoVer dataset (dev split).

M Multihop Experiments on HoVer 1348

To study how well our model can deal with claims, 1349

which require multihop information, we trained 1350

our system on HoVer (Jiang et al., 2020). In par- 1351

ticular, we follow the recipe for Baleen (Khattab 1352

et al., 2021) and retrieve 4×25 top articles using 1353

official quantized Baleen implementation16 (which 1354

achieves about 2% lower retrieval@100 on sup- 1355

ported samples than reported in paper). We split 5 1356

starting documents from each iteration into blocks, 1357

padding input with further documents from first 1358

retrieval iteration when necessary. We keep input 1359

size at K1 = 35, and we do not use hyperlink 1360

expansion. We compute the probability of not- 1361

supported class by summing NEI and REFUTE 1362

classes. Furthermore, we assume simplified con- 1363

ditions, we infuse inputs with oracle information 1364

when necessary (achieving RaI 100%) and pre- 1365

dict as many evidences, as there was annotated. 1366

We refer reader to Khattab et al. (2021) for further 1367

information about setup and evaluation metrics. 1368

Nevertheless, our system lags behind Baleen on 1369

3 and 4 hop examples, as shown in Table 10. We 1370

hyphothesize that, similarly to Baleen, autoregres- 1371

sive process is necessary to match its performance. 1372

We leave the question of interpretable multi-hop 1373

fact-checking with Claim-Dissector open for our 1374

future work. 1375

N Example of Predicted Rationales 1376

Interpretable refuting example (available between 1377

samples from supplementary material) is available 1378

in Figure 3. Example shows a top-6 refuting sen- 1379

tences ranked by their refuting relevance probabil- 1380

ity Pi,j(y = R). Each sentence is prefixed with its 1381

Wikipedia article title, refuting relevance probabil- 1382

ity (RS) and prediction score (PS). Prediction score 1383

16https://github.com/stanford-futuredata/Baleen

16

https://github.com/stanford-futuredata/Baleen


Figure 3: Example of interpretable refuting evidence
from Claim-Dissector for claim “American Sniper
(book) is about a sniper with 170 officially confirmed
kills.”.

is the corresponding non-negative linear coefficient1384

Ci,j max-normalized between 0 and 1 based on1385

maximum Ci,j for this sample. The token-level rel-1386

evance, sentence relevance, and sentence prediction1387

score are highlighted on red-to-black scale (low1388

relevance is black, high-relevance is red). Interest-1389

ingly, the prediction score is highest for sentences1390

containing crucial refuting evidence — number of1391

confirmed kills.1392

O Logit Proof1393

The link between equation 2 and equation 5 can be1394

easily proved as follows. Applying logarithm to1395

equation 2 we get1396

log Pi,j(w, y) = M i,j
w,y− log

∑
w′

∑
y′

expM i,j
w′,y′ .

(21)1397

Expressing M i,j
w,y, substituting Ci,j =1398 ∑

w′
∑

y′ expM
i,j
w′,y′ , and merging the logarithms,1399

we arrive to equation 5. We recommend Bishop1400

(2006), chapter 4.2 for further information.1401

P The Necessity of Baseline Modifications1402

The reason for the modification is that (i) the origi-1403

nal model (Schlichtkrull et al., 2021) (without Lb1)1404

could not benefit from NEI annotations present on1405

FEVER, resulting in unfair comparison with our1406

models and previous work, as TabFact does not1407

contain such annotations (ii) the original model is1408

not able to distinguish the attribution from the re-1409

peated relevant evidence, because equations (6)/(9)1410

in their work just sum the probabilities of relevant1411

items supervised independently — they do not use1412

the supervision of overall veracity for the claim. 1413

This is problematic especially in FEVER setting 1414

comparable to ours, where the relevance of hun- 1415

dreds of sentences is considered (many of them 1416

possibly relevant) as compared to TabFact where 1417

only top-5 retrieved tables were considered, and 1418

often only single is relevant. 1419
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