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Abstract

Large Language Models (LLMs) have made001
significant strides in problem-solving by incor-002
porating reasoning processes. However, this003
enhanced reasoning capability results in an in-004
creased number of output tokens during infer-005
ence, leading to higher computational costs.006
To address this challenge, we propose TwT007
(Thinking without Tokens), a method that re-008
duces inference-time costs through habitual rea-009
soning distillation with multi-teacher guidance,010
while maintaining high performance. Our ap-011
proach introduces a Habitual Reasoning Dis-012
tillation method, which internalizes explicit013
reasoning into the model’s habitual behavior014
through a Teacher-Guided compression strat-015
egy inspired by human cognition. Additionally,016
we propose Dual-Criteria Rejection Sampling017
(DCRS), a technique that generates a high-018
quality and diverse distillation dataset using019
multiple teacher models, making our method020
suitable for unsupervised scenarios. Experi-021
mental results demonstrate that TwT effectively022
reduces inference costs while preserving su-023
perior performance, achieving up to a 13.6%024
improvement in accuracy with fewer output to-025
kens compared to other distillation methods,026
offering a highly practical solution for efficient027
LLM deployment.028

1 Introduction029

Large Language Models (LLMs) have demon-030

strated remarkable improvements in problem-031

solving by incorporating reasoning process (Brown032

et al., 2020; Wei et al., 2022; Chowdhery et al.,033

2023; Yao et al., 2024). It enhances the reason-034

ing capability of LLMs by breaking down complex035

tasks into intermediate steps, leading to better per-036

formance. However, reasoning capability comes037

at a significant cost: the reasoning process sub-038

stantially increases the number of output tokens039

during inference, resulting in higher inference-time040

computational costs(Snell et al., 2024; Wu et al.,041
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Figure 1: Overview of the Proposed Method. The
upper part of the figure illustrates the background prob-
lem: while generating more reasoning steps improves
the performance of LLMs, it also leads to significantly
higher computational costs. To mitigate this, we pro-
pose targeted strategies, shown in the lower part of the
figure. Our approach reduces the cost per token by dis-
tilling knowledge from large models into smaller ones
and minimizes the total number of tokens by gradually
shrinking intermediate reasoning paths.

2024). In practical deployments, computational 042

resources and budgets are often constrained, mak- 043

ing the reduction of inference-time computational 044

costs a pressing issue that requires effective solu- 045

tions (Zheng et al., 2022; Chung et al., 2024). 046

Recent research has primarily explored two key 047

approaches to addressing this issue: reducing the 048

cost per token and reducing the number of reason- 049

ing tokens as illustrated in Figure 7 (Wang et al., 050

2024a; Hsieh et al., 2023; Wang, 2024). A com- 051

mon strategy for reducing the cost per token is to 052

replace large models with smaller, more efficient 053

ones. However, directly using smaller models of- 054
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ten results in a significant drop in performance,055

particularly on complex reasoning tasks. To miti-056

gate this problem, knowledge distillation (Hinton,057

2015; Park et al., 2019) has emerged as an effec-058

tive solution, enabling student models to mimic the059

performance of larger teacher models (Tang et al.,060

2019; Hsieh et al., 2023). However, traditional061

knowledge distillation typically relies on expensive062

human-labeled data, limiting its practical applica-063

bility. Additionally, most distillation methods em-064

ploy only a single teacher model, restricting the di-065

versity of knowledge that could be leveraged from066

multiple teacher models. To overcome these limi-067

tations, we propose Dual-Criteria Rejection Sam-068

pling (DCRS), a method that first utilizes a multi-069

teacher strategy to generate pseudo-labels and then070

applies a two-stage selection process-Quality Se-071

lection and Diversity Selection-to construct a high-072

quality and diverse distillation dataset. This ap-073

proach not only enhances the efficiency of knowl-074

edge transfer but also enables our model to adapt075

effectively to unsupervised settings.076

For the other issue, the number of reasoning to-077

kens can be reduced by shrinking intermediate rea-078

soning paths (Wang et al., 2024a; Deng et al., 2024).079

While this effectively lowers token usage, it often080

comes at the cost of degraded model performance.081

Therefore, it is essential to develop a method that082

balances computational efficiency and model ac-083

curacy. Consider a real-world learning scenario084

where a teacher possesses a deep and comprehen-085

sive understanding of a concept, while a student086

may struggle to grasp the material fully. To bridge087

this gap, the teacher distills knowledge, extracting088

only the most essential and concise information089

to help the student learn more effectively. Over090

time, the student internalizes this reasoning pro-091

cess, enabling them to generate answers instantly092

upon encountering a question, without requiring093

explicit intermediate reasoning steps.094

Inspired by this human cognitive process, we095

propose Habitual Reasoning Distillation (HaRD), a096

method that internalizes explicit reasoning into the097

model’s habitual behavior through a multi-stage098

distillation process, thereby reducing the need for099

explicit reasoning during inference. HaRD follows100

a three-stage distillation strategy: (a) Full Reason-101

ing Distillation, where the student learns reason-102

ing patterns from complete reasoning paths gener-103

ated by teacher models; (b) Reasoning-Compressed104

Distillation, where the reasoning process is pro-105

gressively compressed, with teachers refining their106

outputs based on the student’s responses to create 107

reasoning paths aligned with the student’s capabili- 108

ties; and (c) Reasoning-Free Distillation, where the 109

student is trained without explicit reasoning steps, 110

relying only on final labels, allowing it to generate 111

high-quality answers directly. This process shifts 112

the computational burden from inference to train- 113

ing, enabling both high performance and low infer- 114

ence cost. 115

In this work, we propose TwT (Thinking with- 116

out Tokens), a method that achieves an optimal bal- 117

ance between inference-time computational cost 118

and performance. TwT follows a two-step process. 119

First, DCRS utilizes multi-teacher LLMs to gen- 120

erate pseudo-labels, enabling the model to adapt 121

to unsupervised settings. Then, HaRD applies a 122

multi-stage distillation approach to progressively 123

internalize explicit reasoning abilities into the stu- 124

dent model as inherent capabilities. Our key contri- 125

butions are summarized as follows: 126

• Novel Distillation Framework: We propose 127

TwT, a novel framework that aims to reduce 128

inference-time computational cost through 129

habitual reasoning distillation with multi- 130

teachers’ guidance while preserving high per- 131

formance. 132

• Unsupervised Sampling Strategy: We 133

propose Dual-Criteria Rejection Sampling 134

(DCRS), a method that selects high-quality 135

and diverse distillation data generated by 136

multi-teacher LLMs, enabling adaptation to 137

unsupervised settings. 138

• Efficient Reasoning Distillation: We design 139

a Habitual Reasoning Distillation (HaRD) 140

method that refines reasoning patterns through 141

a teacher-guided compression strategy, ensur- 142

ing better alignment with the student model’s 143

capabilities and ultimately integrates explicit 144

reasoning into the model’s inherent behavior. 145

• Comprehensive Empirical Validation: Ex- 146

perimental results demonstrate that our ap- 147

proach outperforms existing distillation tech- 148

niques, achieving up to a 13.6% improvement 149

in performance while generating fewer tokens. 150

2 Related Work 151

2.1 Knowledge Distillation for LLMs 152

Knowledge distillation (KD) (Hinton, 2015; Beyer 153

et al., 2022; West et al., 2021) transfers capabilities 154
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Figure 2: Method Framework. Our proposed TwT (Thinking without Tokens) framework consists of two stages:
Dual-Criteria Rejection Sampling (DCRS) and Habitual Reasoning Distillation (HaRD). In the first stage, DCRS
selects a high-quality and diverse reasoning distillation dataset generated by multiple teacher LLMs (e.g., T1,
T2, T3). In the second stage, HaRD progressively internalizes reasoning ability into the student model through a
three-stage distillation process.

from large LLMs to smaller ones using hard or soft155

labels from a teacher model. However, by rely-156

ing solely on final outputs, standard KD provides157

limited information. Reasoning distillation (Hsieh158

et al., 2023) addresses this by training students to159

understand both the final answer and the underly-160

ing reasoning. Recent work (Chen et al., 2023;161

Liu et al., 2023) has also focused on generating162

multiple rationales per query to enhance predic-163

tion robustness. Yet, deriving rationales from a164

single teacher can introduce biases and reduce di-165

versity. Multi-teacher strategies (Tian et al., 2024;166

Zhang et al., 2024) mitigate this by aggregating167

diverse reasoning paths, enriching the distillation168

dataset, and improving generalization. These meth-169

ods select higher-quality distilled data by compar-170

ing predictions with ground truth, which, however,171

requires labeled datasets that are often hard to ob-172

tain. Our work introduces a multi-teacher approach173

to incorporate diverse reasoning data and proposes174

a Dual-Criteria Rejection Sampling strategy to ob-175

tain a high-quality and diverse distillation dataset176

from unlabeled data.177

2.2 Reasoning and Inference-time Scaling178

Recent work enhances output diversity by improv-179

ing reasoning via structural methods (e.g., code180

parsing, problem decomposition (Gao et al., 2023;181

Zhou et al., 2022)) and by generating multiple rea-182

soning paths through techniques like majority vot-183

ing and reinforcement learning (Wei et al., 2022;184

Yao et al., 2023; Cao, 2024; Wang et al., 2022; Fu 185

et al., 2022; Huang et al., 2023; Trung et al., 2024; 186

Wang et al., 2024b). However, these supervised 187

approaches rely on a single model and labeled data, 188

limiting inherent diversity. Additionally, studies 189

such as (Snell et al., 2024; Wu et al., 2024) show 190

that adaptive inference-time strategies can signif- 191

icantly reduce compute costs, but model perfor- 192

mance will be reduced. To address these issues, we 193

propose a multi-teacher strategy, an unsupervised 194

approach for generating diverse, high-quality sam- 195

ples with habitual reasoning distillation for efficient 196

inference with explicit reasoning. 197

3 Method 198

In this section, we provide a detailed explanation of 199

the implementation of our TwT as illustrated in Fig. 200

2. First, we propose a Dual-Criteria Rejection Sam- 201

pling (DCRS) strategy to obtain high-quality and 202

diverse distillation samples (Section 3.1). Then, we 203

design a Habitual Reasoning Distillation (HaRD) 204

strategy that progressively internalizes the reason- 205

ing ability at each distillation stage, allowing the 206

reasoning capabilities of the teacher models to be 207

gradually internalized into the student model (Sec- 208

tion 3.2). 209

3.1 Dual-Criteria Rejection Sampling 210

To provide the student model with high-quality 211

and diverse reasoning paths, we propose a novel 212

paradigm termed Dual-Criteria Rejection Sampling 213
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Figure 3: Dual-Criteria Rejection Sampling Architecture. Our proposed DCRS method comprises two stages:
Quality Selection and Diversity Selection. The first stage filters samples using confidence scores, while the second
stage enhances diversity by selecting samples based on similarity. This approach ensures a high-quality and diverse
distillation dataset, enabling our method to effectively adapt to unsupervised scenarios.

(DCRS), which extends traditional rejection sam-214

pling(Gilks and Wild, 1992) by integrating two key215

selection metrics: confidence scores and similarity216

measures. Leveraging a multi-teacher strategy, we217

first prompt teacher LLMs to generate an initial218

pool of pseudo-labels. DCRS performs sample se-219

lection in two sequential steps: quality selection220

and diversity selection.221

3.1.1 Quality Selection222

As shown in Figure 3, we take use of CoT prompt-223

ing(Wei et al., 2022) to generate and extract reason-224

ing patterns from multi-teacher LLMs. Given an225

unlabeled dataset D = {xi}Ni=1, where each xi is a226

query, we first design a prompt template p to clar-227

ify the task solution method. The prompt instructs228

the LLM to produce the output Oi in the form of229

a triplet (ri, yi, ci), where yi is the predicted label230

for task xi, ri is the rationale provided by the LLM,231

and ci is the confidence score for the reasoning232

and predicted label, represented as a decimal in the233

range [0, 1]. To ensure that the confidence score234

is more reliable, we compute it using a weighted235

combination of multiple performance factors:236

ci =
n∑

j=1

wj ·mj (1)237

where wj denotes the weight assigned to the j-th238

factor and mj represents the corresponding fac-239

tor value. For example, in a code generation task,240

we let the large model assign a weighted score241

based on factors such as the reasoning process, 242

code readability, and robustness, yielding the final 243

confidence score. For k teacher models, we can 244

obtain a set of outputs Oi = {Oi1, Oi2, . . . , Oik} 245

for each query xi. Then, we set a confidence score 246

threshold s. For each output Oi, if its confidence 247

score ci ≥ s, the output sample is considered high- 248

quality and retained; otherwise, it is discarded. Sub- 249

sequently, diversity selection is performed on the re- 250

tained sample set H = {(xi, ri, yi, ci)}Pi=1, where 251

P is the total number of retained samples. 252

3.1.2 Diversity Selection 253

For the high-quality sample set H, if the outputs 254

Oi = {Oi1, Oi2, . . . , Oik} for the same query xi 255

come from three or more different teacher models 256

(i.e., k ≥ 3), we calculate the semantic similarity 257

between the rationales provided by these teacher 258

models. Specifically, we assume that rij denotes 259

the rationale generated by the j-th teacher for query 260

xi. Each rationale rij is then mapped into a fixed- 261

dimensional embedding E(rij) using a pre-trained 262

sentence embedding model. The cosine similarity 263

between any two rationales rip and riq is computed 264

as: 265

sim(rip, riq) =
E(rip) · E(riq)

∥E(rip)∥ ∥E(riq)∥
(2) 266

where rip and riq are rationales provided by two 267

distinct teacher models for the same question, with 268

1 ≤ p < q ≤ k. We calculate the cosine similarity 269
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for all unique pairs (rip, riq). To maximize diver-270

sity, we select the pair of rationales that yields the271

lowest similarity score. In our implementation, we272

directly select the pair of rationales that exhibits273

the minimum cosine similarity. For a given query274

xi, we define:275

(p∗, q∗) = arg min
1≤p<q≤k

sim
(
rip, riq

)
) (3)276

where (p∗, q∗) are the indices corresponding to277

the pair of rationales with the smallest similarity,278

thereby ensuring that the final distillation dataset279

G = {(xi, ri, yi)}Qi=1 is both high-quality and di-280

verse, where P is the total number of final distilla-281

tion samples.282

3.2 Habitual Reasoning Distillation283

In this section, we propose a novel distillation strat-284

egy to address the trade-off between inference-time285

computational cost and model performance. Our286

approach decomposes the distillation process into287

three sequential stages. In the first stage, the stu-288

dent model is distilled using data with full rea-289

soning, allowing it to fully absorb the teacher’s290

comprehensive thought process. During the sec-291

ond stage, the model is provided with data contain-292

ing compressed reasoning, encouraging it to solve293

problems using succinct and minimal explanations.294

Finally, in the third stage, distilling is conducted on295

data without any explicit reasoning, enabling the296

student to learn an end-to-end mapping from query297

to answer. Notably, in the second stage, we inte-298

grate a Teacher-Guided Compression method that299

tailors the complexity of the reasoning information300

to the student model’s capacity.301

Stage-1: Full Reasoning Distillation. In this302

stage, the student model is trained to learn the com-303

plete reasoning paths under the supervision of the304

teacher models’ full reasoning. The goal is to help305

the weak student model understand the logical steps306

involved in the task and build a solid foundation307

for further distillation.308

The teachers’ reasoning ability can be trans-309

ferred by fine-tuning the student model using the310

full demonstration G derived from high-quality and311

diversity sample selection. More specifically, the312

process of learning full reasoning paths through313

fine-tuning is defined as follows:314

L1 = EG [log Pf ([x; r; y])] (4)315

where f indicates the student model, EG is the316

expectation over the distillation dataset G, and317

Pf ([x; r; ŷ]) is the probability assigned by the stu- 318

dent model f to the joint input [x; r; ŷ]. 319

Stage-2: Reasoning-Compressed Distillation. 320

In this stage, we progressively simplify the rea- 321

soning paths of the teacher model, generating more 322

concise one by compressing the original reason- 323

ing paths. We observed that for the same problem, 324

the outputs of student models are often shorter and 325

feature more concise reasoning steps compared 326

to those of teacher models. Therefore, we adopt 327

a Teacher-Guided Compression approach that en- 328

sures the reasoning paths provided by the teacher 329

models are better aligned with the learning charac- 330

teristics of the student model, thereby enhancing 331

overall distillation performance. 332

Specifically, for a given query xi, the teacher 333

model generates the original reasoning ri, while 334

the student model produces the reasoning rs1i . We 335

design a prompt p′ to guide the teacher model in re- 336

fining its original reasoning ri based on the charac- 337

teristics of the student model’s output (e.g., output 338

length, complexity of understanding the problem). 339

This process can be represented as (p′, ri, rs1i ) 340

→ rTi . Subsequently, we replace the original rea- 341

soning ri in the dataset G = {(xi, ri, yi)}Ni=1 with 342

the refined reasoning rTi , resulting in the second- 343

stage distillation dataset G′ = {(xi, rTi , yi)}Ni=1. 344

The second stage fine-tuning can be defined as: 345

L2 = EG′ [log Pf ([x; r
T ; y])] (5) 346

Stage-3: Reasoning-Free Distillation. Finally, 347

we completely remove the reasoning paths and only 348

retain the final answer as the supervision signal. 349

The student model is trained to directly output the 350

correct answer without relying on any reasoning 351

chain. The goal of this stage is to enable the stu- 352

dent model to form a “habitual” ability, allowing 353

it to efficiently complete tasks without the need 354

for complex reasoning. After removing r, the new 355

dataset G′′ = {(xi, yi)}Ni=1 only contains the orig- 356

inal query xi and the label yi predicted by the 357

teacher model. The third stage fine-tuning can be 358

defined as: 359

L3 = EG′′ [log Pf ([x; y])] (6) 360

In summary, Stage 1 and Stage 2 use full reson- 361

ing distillation and reasoning-compressed distilla- 362

tion, respectively, to gradually familiarize the stu- 363

dent model with the complete reasoning chain and 364

establish a systematic reasoning pattern. This en- 365

ables the model to master the key problem-solving 366
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Method MBPP CQA MetaMath

Pass@1 Token Accuracy Token Accuracy Token

GPT-4 77.68% 493 83.27% 312 86.31% 512
GPT-4o-mini 77.14% 451 81.76% 301 87.03% 529
Mistral-large 73.83% 365 80.15% 288 86.33% 463

Mistral-7B-v0.3

Vanilla Student 42.90% 209 60.19% 171 30.12% 255
Standard KD 52.67% 53 63.63% 5 38.19% 7

Distilling 53.39% 170 64.47% 129 42.20% 397
Tinyllm 54.45% 175 67.39% 225 41.67% 226

TwT 57.11% (↑ 4.88%) 48 76.16% (↑ 13.01%) 6 47.94% (↑ 13.60%) 7

Phi-3.5mini

Vanilla Student 54.71% 199 64.15% 150 73.36% 279
Standard KD 61.71% 98 64.48% 6 78.16% 10

Distilling 62.03% 202 65.74% 148 78.19% 370
Tinyllm 64.44% 192 70.30% 144 78.23% 240

TwT 67.93% (↑ 5.42%) 105 76.42% (↑ 8.70%) 10 83.58% (↑ 6.84%) 15

Table 1: Quantitative results for baseline models. The top three rows show the inference results of our teacher
models, while “Distilling” is an abbreviation for “Distilling Step-by-Step.” The best and the second best results are
highlighted in bold and underlined respectively. The improvements of TwT over the second best results are shown
in green with an upward arrow.

steps at both conceptual and operational levels, ul-367

timately internalizing complex reasoning abilities368

and forming a stable reasoning mechanism. In369

Stage 3, we perform end-to-end training to further370

deepen the model’s understanding of the relation-371

ship between problems and their answers. Since372

the explicit reasoning chain has been embedded373

as an inherent capability in the previous stages,374

Stage 3 no longer relies on explicit reasoning paths375

but instead directly reinforces answer generation.376

This progressive strategy allows the student model377

to output correct answers without explicit reason-378

ing, thereby reducing inference-time computational379

cost while enhancing overall performance.380

4 Experiment381

4.1 Experiment Setup382

Datasets. We evaluate our TwT on 3 benchmark383

datasets for 3 different NLP tasks: MBPP(Austin384

et al., 2021) for NL to python code general-385

ization; CommonsenseQA (CQA)(Talmor et al.,386

2018) for commonsense question answering; Meta-387

MathQA (MetaMath)(Yu et al., 2023) for mathe-388

matical reasoning, which is augmented from the389

training sets of GSM8K(Cobbe et al., 2021) and390

MATH(Hendrycks et al., 2021).391

Models. We utilize GPT-4, GPT-4omini and392

Mistral-Large as our teacher models, which are393

accessed through OpenAI’s API and MistralAI’s394

API. For the student models, we use Mistral-7B-395

v0.3 and Phi-3.5mini. For the pre-trained sentence396

embedding model, we leverage all-mpnet-base-v2.397

Baselines. For our baselines, we evaluate three398

types of methods: teacher model’s performance, 399

vanilla student model’s performance, and knowl- 400

edge distillation based methods that containing 401

Standard-KD (Hinton, 2015), a general distillation 402

method that fine-tunes the student model using the 403

teacher model’s generated labels as ground-truth; 404

Distilling-Step-by-Step (Hsieh et al., 2023), which 405

leverages LLM-generated rationales as additional 406

supervision to train smaller models; TinyLLM 407

(Tian et al., 2024), a paradigm that distills diverse 408

reasoning paths from multiple teacher LLMs into a 409

student model. 410

Implementation Details. In our experimental 411

setup, we employed training with LoRA fine- 412

tuning, setting the LoRA rank to 8, a learning rate 413

of 1e-5, a batch size of 8, 4 training epochs, and a 414

context window of 4096 tokens. During inference, 415

we used a temperature of 0, max tokens set to 2048, 416

and a top-p value of 0.95. For the sampling process, 417

we selected a scoring threshold of s = 0.95. All ex- 418

periments were conducted on four NVIDIA A100 419

Tensor Core GPUs, enabling large-scale training 420

and efficient computation. The prompts for spe- 421

cific methods and a case study are provided in the 422

appendix. 423

4.2 Baseline Comparison 424

Across three specific-tasks, TwT consistently out- 425

performs other distillation methods as shown in Tab. 426

1. Compared with the best performing baseline, 427

TwT achieves an improvement of up to 13.60% 428

compared to the best-performing baseline, while re- 429

ducing the token number by 98.2% (token numbers 430

from 397 to 7 on MetaMath dataset), substantially 431
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Method
MBPP CQA MetaMath

Mistral-7B-v0.3 Phi-3.5mini Mistral-7B-v0.3 Phi-3.5mini Mistral-7B-v0.3 Phi-3.5mini

Pass@1 Token Pass@1 Token Accuracy Token Accuracy Token Accuracy Token Accuracy Token

TwT-stage1 54.83% 291 65.32% 310 73.31% 141 72.99% 138 46.48% 295 80.05% 313
TwT-stage2 56.48% 154 66.42% 184 74.89% 84 75.39% 73 47.02% 169 81.33% 196
TwT-stage3 57.11% 48 67.93% 105 76.16% 8 76.42% 10 47.94% 12 83.58% 15

Table 2: Quantitative results for three distillation stages. Accuracy and the number of output tokens were used to
evaluate the model performance. The best results were highlighted in bold.

Method
MBPP CQA MetaMath

Mistral-7B-v0.3 Phi-3.5mini Mistral-7B-v0.3 Phi-3.5mini Mistral-7B-v0.3 Phi-3.5mini

Pass@1 Token Pass@1 Token Accuracy Token Accuracy Token Accuracy Token Accuracy Token

TwT-stage1 54.83% 291 65.32% 310 73.31% 141 72.99% 138 46.48% 295 80.05% 313
TwT-stage2 56.48% 154 66.42% 184 74.89% 84 75.39% 73 47.02% 169 81.33% 196
TwT-stage3 56.94% 133 67.18% 161 75.44% 55 75.85% 64 47.41% 144 81.99% 172
TwT-stage4 57.49% 42 68.21% 100 76.29% 8 76.88% 9 48.37% 12 83.61% 13

Table 3: Quantitative results for four distillation stages. Accuracy and the number of output tokens were used to
evaluate the model performance. The best results were highlighted in bold.

Samping Method MBPP CQA MetaMath

Log probability-Based 74.83% 75.29% 72.19%
Hard Rejection Sampling-Based 72.29% 73.11% 70.26%

Confidence Score-Based 83.49% 84.90% 81.14%

Table 4: Quantitative results for sampling methods.
Accuracy was used to evaluate the model performance.
The best results were highlighted in bold.

lowering the inference cost. Typically, reducing432

inference tokens leads to a decline in performance;433

however, TwT overcomes this trade off by maintain-434

ing or even enhancing model performance while435

dramatically reducing token usage, thus achieving436

both high performance and low inference-time com-437

putational cost simultaneously. In addition, TwT438

effectively bridges the gap between the student and439

teacher models, significantly narrowing the perfor-440

mance disparity observed in vanilla student models.441

4.3 Distillation Stage Analysis442

In the Habitual Reasoning Distillation phase, we443

separately evaluated the student model’s perfor-444

mance at each fine-tuning stage and tracked the445

number of output tokens during inference, as shown446

in Table 2. The results indicate that TwT steadily447

improves with each stage, while the inference to-448

ken numbers gradually decrease. By leveraging449

our distillation strategy, the model successfully in-450

ternalizes the reasoning process as part of its own451

capabilities.452

Furthermore, we refined our three-stage proce- 453

dure by extending it to four stages, introducing an 454

additional step after the second stage in which the 455

teacher model further compresses the reasoning 456

process based on the student’s output. As shown 457

in Table 3, this refined approach yields a slight im- 458

provement but does not significantly outperform 459

the three-stage method. Consequently, our three- 460

stage process already achieves the intended effec- 461

tiveness. 462

4.4 Sampling and Compression Analysis 463

We evaluated the effectiveness of our DCRS 464

method’s confidence score selection for distilla- 465

tion data and our Teacher-Guided Compression ap- 466

proach for enhancing student model’s performance. 467

For sampling, we compared DCRS with two alter- 468

natives—selection based on log probability and 469

hard rejection sampling using Good, Medium, 470

Poor categories from LLM outputs—across three 471

datasets. As shown in Table 4, DCRS consistently 472

outperforms the alternatives with nearly a 10% 473

gain in accuracy, indicating that multi-dimensional 474

confidence scoring more effectively filters high- 475

quality examples. For compression, we compared 476

our Teacher-Guided Compression with fixed-length 477

compression and a compressor-based approach. As 478

detailed in Table 5, our method better aligns the 479

teacher’s outputs with the student model’s limited 480

capacity, enhancing both training efficiency and 481

overall performance. 482
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Compression Method MBPP CQA MetaMath

Mistral-7B-v0.3 Phi-3.5mini Mistral-7B-v0.3 Phi-3.5mini Mistral-7B-v0.3 Phi-3.5mini

Fixed-Length Compression 55.89% 64.94% 73.29% 72.92% 43.18% 80.62%
Compressor 56.01% 65.10% 73.61% 73.69% 45.22% 80.95%

Teacher-guided Compression 56.48% 66.42% 74.89% 75.39% 47.02% 81.33%

Table 5: Quantitative Results for Compression Methods. Accuracy was used to evaluate the model performance.
The best results were highlighted in bold.

Methods MBPP CQA MetaMath

Accuracy Token Accuracy Token Accuracy Token

w/o Multi-Teacher Strategy (GPT-4) 55.38% 54 74.64% 7 46.82% 15
w/o DCRS 55.42% 48 74.79% 9 47.11% 14

w/o Compression Distillation Stage 54.49% 93 72.19% 21 46.38% 48
TwT 57.11% 48 76.16% 8 47.94% 12

Table 6: Ablation Study for Model Components. Accuracy and the number of output tokens were used to evaluate
the model performance. The best results were highlighted in bold.

4.5 Ablation Study483

We further analyze the impact of each component484

on TwT’s performance through ablation studies.485

Specifically, w/o Multi-Teacher Strategy evaluates486

the effect of using a single teacher model, w/o487

DCRS assesses performance without filtering the488

distillation data, and w/o Compression Distillation489

Stage examines the impact of directly removing the490

reasoning step as shown in Tab. 6.491

When comparing TwT with the multi-teacher492

strategy against the single-teacher approach, we493

observe an average improvement of 1.4% in the494

distillation performance. This result highlights the495

effectiveness of the multi-teacher strategy, as it496

offers a more diverse set of reasoning paths for497

the student model, thereby facilitating its learn-498

ing process. Comparing TwT’s DCRS strategy to499

directly organizing the raw pseudo-labeled data500

genereated by teachers, TwT achieves an average501

improvement of 1.5%, underscoring the importance502

of performing high-quality and diverse data sam-503

pling before distillation. This step helps avoid the504

interference of low-quality data and boosts overall505

distillation performance. Finally, when compar-506

ing TwT’s multi-stage distillation approach with507

the strategy of simply removing the reasoning pro-508

cess (i.e., without any intermediate compression),509

TwT demonstrates an approximate 3.5% accuracy510

gain, while the uncompressed approach not only511

underperforms in accuracy but also increases the512

number of output tokens. This finding confirms the513

necessity of gradually internalizing the reasoning514

capability for optimal performance.515

5 Conclusion and Future Work 516

We introduced TwT, a novel distillation framework 517

that internalizes reasoning abilities into a student 518

model under multi-teacher guidance. It incorpo- 519

rates a Dual-Criteria Rejection Sampling stage to 520

obtain high-quality, diverse distillation datasets and 521

a staged distillation phase to gradually integrate 522

reasoning capabilities into the student model. TwT 523

achieves high performance with low inference cost 524

without relying on labeled data or an explicit rea- 525

soning process. In future work, we will continue to 526

explore whether subdividing the distillation stages 527

can bring further enhancements to our framework. 528

Limitations 529

Although our method has achieved excellent re- 530

sults, there are still some minor flaws here. One 531

limitation of our approach is that it currently only 532

works effectively on specific tasks and is not appli- 533

cable to datasets containing mixed tasks. Addition- 534

ally, the Dual-Criteria Rejection Sampling process 535

could consist of noise. The impact of this poten- 536

tial noise on performance is still undetermined. A 537

potential future direction is to investigate implicit 538

natural language reasoning by utilizing more ad- 539

vanced training strategies. While current tasks are 540

primarily focused on explicit reasoning, incorporat- 541

ing implicit reasoning mechanisms could improve 542

the model’s robustness and its ability to generalize 543

across different tasks. 544
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A Prompt728

A.1 Prompt for Teachers to Generate729

Pseudo-Labels on the MBPP Dataset730

Implement a Python function based on the following guidelines. Ensure that it
passes all three provided test cases which use assert statements for
validation.\n
Instructions:\n
1. Function Name: Use the exact function name provided in the test cases.\n
2. Input and Output: The function should accept the same number and types

of input arguments and return the same type of output as specified in the
test cases.\n

3. Function Behavior: The function should pass all three provided test cases
when executed.\n

4. Allowed Libraries: Youmay use any standard Python libraries.\n
5. Confidence Score: After completing the code, please assign a confidence

score between 0.00 and 1.00 to your code based on the following criteria:
(1)Correctness (50% weight):Whether the functionality is implemented
correctly and all test cases are passed.\n
(2)Readability (20% weight): Whether the code structure is clear, variable
and function names are meaningful.\n (3)Execution Efficiency (20%weight):
Whether the algorithm is efficient and there is unnecessary redundant
code.\n
(4)Test Coverage (10% weight): Whether possible edge cases and
exceptions are considered.\n Please assign a score for each category
based on the weight, then calculate the weighted total score. The final
score should be in the format score: 0.85. Please provide a clear numerical
value without any additional explanation.

6. Response Format: Your responsemust include three parts:
(1)Thinking: A detailed step-by-step explanation of your approach.
(2)Code: The Python code implementing the function, without additional
explanations.
(3)Score: Your confidence score as specified. \n Response Format
Example:```Thinking:(Your detailed explanation here.)```\n
```python(Your Python code goes here)```\n```score: 0.85（do not give
any explanation）```

Prompt for Teachers to Generate Pseudo-Labels on the MBPP Dataset

Figure 4: Prompt for Teachers to Generate Pseudo-
Labels on the MBPP Dataset.
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A.2 Prompt for Teachers to Generate731

Pseudo-Labels on the MetaMath Dataset732

You are a helpful assistant. Your task is to answer a math question. Please think
step by step to analyze the question carefully and give your clear thinking step
to solve the problem.\n
Instructions:\n
1. Confidence Score: After solving the problem, please assign a confidence

score between 0.00 and 1.00 to your answer based on the following:
(1)Correctness (50% weight): the answer is factually correct based on the
information or reasoning provided.\n
(2)Logical Reasoning (25% weight): Whether the analysis exhibits a clear,
reasonable thought process.\n
(3)Clarity (15% weight): The reasoning should be easy to follow, avoiding
unnecessary complexity. \n
(4)Completeness (10% weight): The analysis should cover all necessary
aspects of the question. Please assign a score for each category based on
the weight, then calculate the weighted total score. The final score should
be in the format score: 0.85.

2. Response Format: Your responsemust include three parts:
(1)Thinking: A detailed step-by-step explanation of your approach.
(2)Answer: The number for the problem, without additional explanations.
(3)Score: Your confidence score as specified. \n Response Format
Example:```Thinking:[your thinking process] ```; ```The answer is: [an
exact number]```; ```score: [an exact number, for example:0.85]```

Prompt for Teachers to Generate Pseudo-Labels on the MetaMath Dataset

Figure 5: Prompt for Teachers to Generate Pseudo-
Labels on the MetaMath Dataset.
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A.3 Prompt for Teachers to Generate733

Pseudo-Labels on the CQA Dataset734

You are a helpful assistant. Your task is to answer questions based on provided
options. Each input consists of a question and five answer choices.\n
Instructions:\n
1. Confidence Score: After giving the answer, please assign a confidence

score between 0.00 and 1.00 to your answer based on the following:
(1)Correctness (50%): The answer is factually correct.\n
(2)Logical Reasoning (25%): The explanation demonstrates clear and
reasonable reasoning.\n
(3)Clarity (15%): The response is easy to follow. \n
(4)Completeness (10%): All necessary aspects of the question are
addressed.

2. Response Format: Your responsemust include three parts:
(1)Thinking: A detailed step-by-step explanation of your approach.
(2)Answer: The answer choice without additional explanations.
(3)Score: Your confidence score as specified. \n Response Format
Example:```Thinking:[your thinking process] ```; ```The answer is:
[answer choice]```; ```score: [an exact number, for example:0.85]```

Prompt for Teachers to Generate Pseudo-Labels on the CQA Dataset

Figure 6: Prompt for Teachers to Generate Pseudo-
Labels on the CQA Dataset.
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B Case Study735

B.1 Query736

Q: A bad person places little value on being honest,737

acting without pretense or being what? Choices are:738

a: excellent, b: upright, c: premium, d: competent,739

e: sincere.740

B.2 Teacher’s Original Reasoning (Stage-1’s741

dataset)742

Reasoning Path: The question describes a person743

who lacks honesty and genuineness. The phrase744

“being what” suggests we need a quality that em-745

bodies authenticity. Among the options, “sincere”746

(option e) best fits this requirement, as it represents747

being genuine and truthful—qualities that the de-748

scribed person would likely disregard. The other749

options do not directly capture this concept. There-750

fore, the answer is e. (437 words)751

B.3 Stage2 Student’s inference752

Reasoning Path: The question asks for an antonym753

for a good or virtuous quality. In this case, the754

opposite of being honest, acting without pretense755

or being sincere would be insincere, dishonest, or756

deceitful. Among the given options, the most suit-757

able antonym is "sincere". The answer is e. (279758

words)759

B.4 Teacher’s refinement prompt760

B.5 Refined Reasoning (Stage-2’s dataset)761

Reasoning Path: The question asks for an antonym762

of a good or virtuous quality. A bad person would763

lack honesty or authenticity. The phrase “being764

what” points to a quality opposite to these virtues.765

Among the options, “sincere” fits best as it con-766

trasts with honesty and acting without pretense.The767

answer is e. (279 words)768

B.6 Stage-3’s dataset769

Only contains predicted labels.770
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-Please compare your previous output on this 
task with the student’s output in detail.\n
-After identifying any differences in style, tone, 
structure, and length, modify your original 
output to better align with the student’s 
preferences. \n
-Ensure that your revised output maintains a 
similar length and depth of content as the 
student’s version, while preserving all essential 
information.\n
-The goal is to harmonize your output with the 
student’s approach, creating consistency in 
both presentation and quality.\n

Prompt for Teacher’s Refinement On CQA dataset

Figure 7: Prompt for teacher’s refinement.
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