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Abstract
It is well-known that the Hessian of deep loss
landscape matters to optimization and general-
ization of deep learning. Previous studies re-
ported a rough Hessian structure in deep learn-
ing, which consists of two components, a small
number of large eigenvalues and a large number
of nearly-zero eigenvalues. To the best of our
knowledge, we are the first to report that a sim-
ple but overlooked power-law Hessian structure
exists in well-trained deep neural networks, in-
cluding Convolutional Neural Networks (CNNs)
and Large Language Models (LLMs). Moreover,
we provide a maximum-entropy theoretical in-
terpretation for the power-law Hessian structure
and theoretically demonstrate the existence of a
robust and low-dimensional subspace of deep neu-
ral networks. Our extensive experiments using the
proposed power-law spectral method demonstrate
that the power-law Hessian spectra critically re-
late to multiple important behaviors of deep learn-
ing, including optimization, generalization, and
overparameterization. Notably, we discover that
the power-law Hessian structure of a given LLM
can often predict generalization during training
in some occasions, while conventional sharpness-
based generalization measures which often work
well on CNNs largely fail as an effective general-
ization predictor of LLMs.

1. Introduction
It is well-known that the Hessian matters to optimization,
generalization, and even robustness of deep learning (Li
et al., 2020; Ghorbani et al., 2019; Jacot et al., 2019;
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Yao et al., 2018; Dauphin et al., 2014; Byrd et al., 2011).
Deep learning usually finds flat minima that generalize well
(Hochreiter & Schmidhuber, 1995; 1997). The Hessian is
one of the most important measures of the minima flatness
and directly relates to generalization in deep learning (Hof-
fer et al., 2017; Neyshabur et al., 2017; Dinh et al., 2017;
Wu et al., 2017). Jiang et al. (2019) reported that minima-
flatness-based generalization bound is still the most reliable
metric in extensive experiments. Wu et al. (2017) reported
that the low-complexity solutions that generalize well have
a small norm of Hessian matrix with respect to model pa-
rameters. Yao et al. (2018) reported that the spectrum of
the Hessian closely connects to large-batch training and
adversarial robustness.

A number of works empirically studied the Hessian structure
in Deep Neural Networks (DNNs). Some papers (Sagun
et al., 2016; 2017; Wu et al., 2017) empirically reported a
two-component structure that, in the context of deep learn-
ing, most Hessian eigenvalues are nearly zero, while a small
number of eigenvalues are large. Sankar et al. (2021) re-
vealed that the layer-wise Hessian spectrum is similar to the
entire Hessian spectrum. Zhang et al. (2024b) demonstrated
that SGD performs worse than Adam for Transformers when
Hessian spectra exhibit blockwise heterogeneity. Ormaniec
et al. (2024) theoretically studied one-layer Transformers’
Hessian in matrix derivatives while comparing them to clas-
sical networks in deep learning.

However, quantitative or statistical analysis of the Hessian
structure is still largely under-explored for modern neural
networks. Does an elegant statistical structure hide behind
the Hessian spectrum? Does such structure matter to CNNs
and LLMs? Our work provides a novel approach to under-
standing and analyzing the Hessian structure of deep loss
landscape from a statistical perspective. This work mainly
made three contributions.

First, to the best of our knowledge, we are the first to empir-
ically discover and statistically test the power-law Hessian
structure of deep loss landscape which has been overlooked
by previous studies. Such novel power-law structure widely
exist in DNNs, including CNNs and LLMs.

Second, we propose a framework of power-law spectral
analysis for quantitatively analyzing the Hessian structure
in deep learning. We not only reveal how the power-law
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Figure 1. The power-law structure of the Hessian spectrum in deep learning. Model: LeNet. We may clearly observe that the power-law
spectra generally hold for well-trained deep networks on various natural or artificial datasets, while do not hold for random neural
networks. We also report that a small number of outlier eigenvalues (∼10) slightly deviate from the fitted straight line.

spectra explain the theoretical origin of striking findings
but also empirically demonstrate multiple novel insights on
optimization, generalization, and scaling.

Third, we report that the power-law Hessian spectral anal-
ysis can sometimes predict generalization of LLMs during
training, particularly when conventional sharpness-based
generalization measures that often work well on CNNs be-
come nearly useless as a generalization predictor of LLMs.
This suggests that generalization measures for LLMs remain
to be deeply explored from a loss landscape perspective.

2. The Overlooked Hessian Structure
In this section, we demonstrate that the Hessian spectra
of well-trained deep neural networks have a simple power-
law structure overlooked by previous studies and how to
theoretically derive the power-law structure.

Notations. We denote the training dataset as {(x, y)} =
{(xj , yj)}Nj=1 drawn from the data distribution S, the
n model parameters as θ and the loss function over
one data sample {(xj , yj)} as l(θ, (xj , yj)). For sim-
plicity, we further denote the training loss as L(θ) =
1
N

∑N
j=1 l(θ, (xj , yj)) and denote its Hessian as H . We

write the descending ordered eigenvalues of the Hessian H
as {λ1, λ2, . . . , λn} and denote the spectral density as p(λ).

2.1. Visualizing the Power-Law Structure

Hessian has been studied as a measure of minima flatness
Dinh et al. (2017); Xie et al. (2021b) and loss curvature
Achille & Soatto (2019), while these works failed to reveal
its elegant statistical structure. To better understand the
distribution of the Hessian spectrum, we first visualize the
Hessian spectrum of a well-trained neural network and a
randomly initialized neural network by using the Lanczos
algorithm (Meurant & Strakoš, 2006; Yao et al., 2020) to
estimate the eigenvalues and spectral densities. In Figure 1,
we display the top 6000 eigenvalues and their corresponding
rank order. Both axes are log-scale. And we surprisingly

Table 1. The Kolmogorov-Smirnov statistics of the Hessian spectra
of LeNets on various datasets. The estimated power exponent β̂
and slope magnitude ŝ are also displayed.

Dataset Model Training dks dc Power-Law

MNIST LeNet Random 0.0796 0.0430 No
MNIST LeNet SGD 0.00900 0.0430 Yes

Fashion-MNIST LeNet Random 0.0971 0.0430 No
Fashion-MNIST LeNet SGD 0.0132 0.0430 Yes

CIFAR-10 LeNet Random 0.0663 0.0430 No
CIFAR-10 LeNet SGD 0.0279 0.0430 Yes

CIFAR-100 LeNet Random 0.0944 0.0430 No
CIFAR-100 LeNet SGD 0.0315 0.0430 Yes

discover an approximately straight line fits the Hessian spec-
trum of the well-trained neural network surprisingly well,
except that a small number of outliers (∼10) slightly deviate
from the fitted straight line. To the best of our knowledge,
these fitted power-law Hessian spectra were not empirically
discovered or theoretically discussed by previous papers for
neural networks in deep learning.

The well-fitted straight line means that the observed distri-
bution of the Hessian eigenvalues of trained neural networks
approximately obeys a power-law distribution,

p(λ) = Z−1
c λ−β , (1)

where Zc is the normalization factor. The observed eigen-
values can be considered as n samples from the power-law
distribution p(λ). We may also use a corresponding finite-
sample power law for describing the observed law as

fk =
λk

Tr(H)
= Z−1

d k−
1

β−1 , (2)

where f is the trace-normalized eigenvalue, k is the rank or-
der, the trace Tr(H) =

∑n
k=1 λk, and Zd =

∑n
k=1 k

− 1
β−1

is the normalization factor for the finite-sample power law.
Note that the finite-sample power law is also called Zipf’s
law. This can also be approximately written as

λk = λ1k
−s, (3)
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if we let s = 1
β−1 denote the power exponent of Zipf’s law.

2.2. A Maximum-Entropy Interpretation

In this subsection, we show that the maximum entropy prin-
ciple widely used in statistical physics may informally ex-
plain the power-law Hessian structure in deep learning.

The maximum entropy principle (Guiasu & Shenitzer, 1985),
also named the maximum entropy prior, states that the prob-
ability distribution which best represents the current state
of knowledge about a system at equilibrium is the one with
the highest entropy. This principle indicates that if we have
no prior knowledge for suspecting one state over any other,
then all states can be considered equally likely for a sys-
tem at equilibrium. The logarithmic space volume is often
regarded as a kind of entropy in statistical physics (Visser,
2013). Note that flat minima have larger space volume
reflected by det(H−1). It means maximizing the minima
space volume for better generalization may be regarded as a
kind of entropy maximization principle. Following Visser
(2013), we may explicitly write the volume entropy as

Svol = log det(H−1) = −
∫

p(λ) log λdλ (4)

and the spectral entropy as

Sp = −
∫

p(λ) log p(λ)dλ, (5)

which is the entropy of the spectral density distribution.

Theorem 1 (The Maximum-Entropy Interpretation). Sup-
pose we have the volume entropy Svol as Equation (4) and
the spectral entropy Sp as Equation (5). To find the optimal
distribution p⋆(λ) that maximizes the total entropy, where
Stotal = Sp + βvolSvol and βnorm is a Lagrange multiplier,
the optimal distribution p⋆(λ) can be solved as

p⋆(λ) = e−βnormλ−βvol . (6)

We leave the proof in Appendix A. We note that the result
in Theorem 1 has an amazingly similar form to (1) with
βnorm = logZc and β = βvol.

We may interpret the power-law structure of the Hessian
spectrum from two basic maximum entropy principles with
the spectral density normalization constraint. It roughly
means that simple rules can almost explain the power-law
Hessian spectrum in deep learning as well as statistical
physics (Visser, 2013). While previous work in the field of
deep learning has also interpreted the minima flatness of
neural networks from an entropy perspective (Baldassi et al.,
2020), the spectra have much simpler structures as shown
with our empirical results.

Interestingly, similar well-fitted power laws have been
widely discussed in neuroscience and biology (Reuveni

et al., 2008; Tang & Kaneko, 2020). This exactly moti-
vates us to further verify and study the power-law structure
of the Hessian spectrum in the context of deep learning. We
discover that the elegant power-law structure indeed exists
in well-trained deep neural networks just like bioactive pro-
teins. In contrast, random neural networks have no such
power-law structure, just like deactivated (denatured or un-
folded) proteins. Random neural networks which have no
functional ability on the given task, break the power-law
spectra similarly to deactivated proteins.

2.3. Goodness-of-fit Test

In this subsection, we are the first to conduct formal statisti-
cal tests on the Hessian structure. We also note that a recent
work (Xie et al., 2023a) follow our statistical spectral analy-
sis via KS Tests and only studied the structure of stochastic
gradients rather than the Hessian structure.

Following Alstott et al. (2014), we use Maximum Like-
lihood Estimation (MLE) for estimating the parameter β
of the fitted power-law distributions and the Kolmogorov-
Smirnov Test (KS Test) (Massey Jr, 1951; Goldstein et al.,
2004) for statistically testing the goodness of the fit. The KS
test statistic is the KS distance dks between the hypothesized
(fitted) distribution and the empirical data, which measures
the goodness of fitting. Mathematically, the KS distance is
defined as dks = supλ |F ⋆(λ)− F̂ (λ)|, where F ⋆(λ) is the
hypothesized cumulative distribution function and F̂ (λ) is
the empirical cumulative distribution function based on the
sampled data (Goldstein et al., 2004).

The estimated power exponent via MLE (Clauset et al.,

2009) can be written as β̂ = 1+K
[∑K

i=1 ln
(

λi

λcutoff

)]−1

,

where K is the number of tested samples and we set
λcutoff = λk. The Powerlaw library (Alstott et al., 2014)
provides a convenient tool to compute the KS distance, dks,
and estimate the power exponent.

According to the practice of KS Test, we first state the
power-law hypothesis that the tested spectrum is power-law.
If dks is lower than the critical value dc at the α = 0.05
significance level, the KS test statistically will support (not
reject) the power-law hypothesis. The test results associated
with Figure 1 are presented in Table 1. We leave the details
and more test results (e.g., ResNet18) in Appendix F.

When we say that a spectrum is (approximately) power-law
in this paper, we mean that the KS test provides positive
evidence to the power-law hypothesis instead of rejecting the
power-law hypothesis. Our KS test results reject the power-
law hypothesis for random neural networks and do not reject
the power-law hypothesis for well-trained neural networks.
Moreover, when the power-law hypothesis holds, the KS
distance is usually significantly smaller than the critical
value dc. For simplicity, the default α = 0.05 significance
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Figure 2. The power-law Hessian eigengaps. Model: LeNet. Dat-
sets: MNIST. Subfigure (a) displayed the eigengaps by original
rank indices sorted by eigenvalues. Subfigure (b) displayed the
eigengaps by rank indices re-sorted by eigengaps. We also present
the results of Fashion-MNIST in Figure 21 of Appendix D and
GPT2-small in Figure 30 of Appendix E.

level is abbreviated in the following.

Following related work on the Hessian of neural networks
(Thomas et al., 2020), our empirical analysis and statistical
tests mainly focused on the top (∼ 1000) large eigenval-
ues larger than some minimal cutoff value λcutoff for three
reasons. First, focusing on relatively large values is very rea-
sonable and common in various fields’ power-law studies,
as real-world distributions typically follow power laws only
after/larger than some cutoff values (Clauset et al., 2009) to
ensure the convergence of the probability distribution. Sec-
ond, researchers are usually more interested in significantly
large eigenvalues which contribute more to Hessian, minima
sharpness, or generalization bound (Thomas et al., 2020).
Third, empirically estimating a large number of nearly zero
eigenvalues is very inaccurate and expensive.

2.4. The Power-Law Hessian Eigengaps

In this subsection, we report that the overlooked eigengaps
of Hessian are also power-law and how the eigengaps sug-
gest a robust and low-dimensional learning subspace.

The empirical investigation of the Hessian eigengaps is
missing in previous works. Our experiments have closed
this gap. Our experiments show that top eigengaps dominate
other tailed eigengaps in deep learning. We visualize and
verify the approximate power-law eigengaps in Figure 2.

The phenomenon of low-dimensional learning subspace was
empirically reported recently (Gur-Ari et al., 2018; Ghor-
bani et al., 2019; Xie et al., 2021b) but still lacks theoretical
understanding. Does the phenomenon theoretically depend
on the Hessian structure? Our answer is yes. In the fol-
lowing part, we will demonstrate why the eigengaps of the
Hessian H may naturally lead to the phenomenon that learn-
ing dynamics mainly take place in a low-dimensional space
during the entire training process.
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Figure 3. The power-law spectra hold across optimizers. Moreover,
the slope magnitude ŝ is an indicator of minima sharpness and a
predictor of test performance. Model: LeNet. Dataset: MNIST.
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Figure 4. The slope magnitude ŝ closely correlates to the largest
Hessian eigenvalue and the Hessian trace. Model: LeNet. Dataset:
MNIST.

To quantitatively understand why learning subspace is ro-
bust1, we may use the angle between the original Hessian
eigenvector uk and the perturbed Hessian eigenvector ũk,
namely ⟨uk, ũk⟩. Suppose the original Hessian is H , the
perturbed Hessian is H̃ = H + ϵM , the i-th eigenvector of
H is ui , and its corresponding perturbed eigenvector is ũi.
Under the conditions of the Davis-Kahan Theorem and (13),
we have

sup sin⟨uk, ũk⟩ =
2ϵ∥M∥op

min(λk−1 − λk, λk − λk+1)

=
2ϵ∥M∥op(k + 1)s+1

λ1
, (7)

where ∥M∥op is the operator norm of the perturbation M .
In the derivation details, we applied Theorem 2, a useful
variant of the Davis-Kahan Theorem (Yu et al., 2015), di-
rectly to the Hessian in deep learning and demonstrate that
the eigenspace robustness (spanned by the eigenvectors)
is relatively tight for the top-learning eigenspace. To the
extent of our knowledge, we are the first to theoretically
explain the robust and low-dimensional learning subspace
using Hessian eigengaps. Formal theoretical analysis and
more discussion are available in Appendix B.

3. Empirical Analysis of CNNs
In this section, we conduct extensive experiments for ex-
ploring the behaviors of deep learning through the lens of
power-law spectral analysis.

1In this paper, robust space means that the space’s dimensions
are stable during training.
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Figure 5. The power-law spec-
trum holds well in overparam-
eterized deep models but disap-
pears in the underparameterized
single-layer FCN.
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Figure 6. The spectra of LeNet
on MNIST with respect to vari-
ous numbers of training samples.

Models: LeNet (LeCun et al., 1998), Fully Connected Net-
works (FCN), and ResNet18 (He et al., 2016).

Datasets: MNIST (LeCun, 1998), Fashion-MNIST (Xiao
et al., 2017), CIFAR-10/100 (Krizhevsky & Hinton, 2009),
and non-image Avila (De Stefano et al., 2018).

1. Optimization and Generalization. Figure 3 discovered
that the power-law spectrum consistently holds for vari-
ous popular optimizers, such as SGD, Vanilla SGD, Adam,
AMSGrad, AdaBound, Yogi, RAdam, Adai, PNM, Looka-
head, and DiffGrad, as long as the optimizers can train the
network well. We present the KS test results in Table 3.

It is known that sharpness-based generalization measures
are considered the most predictive generalization measures
in deep learning (Jiang et al., 2019). We discover that the
slope magnitude ŝ of the fitted straight line may serve as
a nice predictor of minima sharpness and generalization,
when the power-law Hessian structure is well fitted. Note
that it is common to measure minima’s sharpness by the
largest Hessian eigenvalue or the Hessian trace. A smaller
ŝ highly correlates to a smaller largest eigenvalue and a
smaller trace in Figure 4. The similar observation holds on
CIFAR-10 displayed in Figures 4 and 22 of Appendix D.

2. Overparameterization. Figure 5 shows that the power-
law spectrum holds well in overparameterized models, but
disappears in underparameterized models. Overparameter-
ization is necessary for the power-law spectrum in deep
learning. It will be interesting to study phase transition of
under-parameterization to over-parameterization in future.

3. The size of training data. We evaluate the Hessian
structure over various sized training data in Figure 6. The
model trained with limited training data would break the
power-law structure similarly as underparameterization, and
lead to many sharp directions in the loss landscape. We see
that data scaling and model scaling surprisingly exhibit very
similar Hessian structures.

4. Batch Size. We discover the three different phases for
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Figure 7. Batch size matters to the spectrum. We discover three
phases of the Hessian spectra for large-batch training. Model:
LeNet. Dataset: MNIST.
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Figure 8. The power-law Hessian structure exists in well-trained
LLMs but disappear in their random initializations (GPT2-nano) or
pretrained checkpoints (GPT2-small, GPT2-medium, GPT2-large).
The power-law Hessian structure emerged on well-trained LLMs
after training / fine-tuning.

large-batch training via the curves in Figure 7 and the KS
test results in Table D of the appendix. To our knowledge,
we are the first to report the phases and sharp phase transi-
tion for large-batch training. When we train CNNs with the
same training epochs and let the batch size increase from
640 to 768, the power-law structure suddenly breaks. We
see that inadequate training due to a large batch size exhibits
a Hessian structure similar to one with limited training data.
However, in Table D, training CNNs with the same itera-
tions, we observe that large-batch training can also lead to
power laws at the expense of more compute.

5. Supplementary Results. In Appendix D, we further
discussed various interesting empirical results and insights,
including studies on linear networks, modern architectures
(such as ResNet18), noisy labels, task transferability, and
the heavy-tail behavior of SGD.

4. Empirical Analysis of LLMs
In this section, we empirically studied how the power-law
Hessian structure of LLMs behaves differently.

Models: GPT-2 family (Radford et al., 2019): GPT2-nano
(11M), GPT2-small (124M), GPT2-medium (355M), and
GPT2-large (774M), and TinyLlama (Zhang et al., 2024a)
(1.1B-Chat-v1.0) with LoRA adapter (Hu et al., 2021).
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Table 2. The Kolmogorov-Smirnov statistics of the Hessian spectra
of various LLMs on various datasets.

Dataset Model Training dks dc Power-Law

OpenWebText GPT2-small Random 0.1168 0.0430 No
OpenWebText GPT2-small Trained 0.0418 0.0430 Yes

Shakespeare GPT2-nano Random 0.0969 0.0430 No
Shakespeare GPT2-nano Fine-tuned 0.0353 0.0430 Yes
Shakespeare GPT2-small Pretrained 0.1058 0.0430 No
Shakespeare GPT2-small Fine-tuned 0.0259 0.0430 Yes
Shakespeare GPT2-medium Pretrained 0.0787 0.0430 No
Shakespeare GPT2-medium Fine-tuned 0.0184 0.0430 Yes
Shakespeare GPT2-large Pretrained 0.0496 0.0430 No
Shakespeare GPT2-large Fine-tuned 0.0160 0.0430 Yes

MathQA Tinyllama (LoRA) Random 0.0552 0.0430 No
MathQA Tinyllama (LoRA) Fine-tuned 0.0249 0.0430 Yes
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Figure 9. In the pretraining experiment of GPT2, the power-law
Hessian structure emerged as training progressed in a two-stage
process. In the first stage, the Hessian eigenvalues decrease in mag-
nitude, indicating the discovery of a flat minimum. In the second
stage, the primal Hessian eigenvalues increase to form a power-law
distribution, reflecting a transition to a sharper minimum. Model:
GPT2-small. Dataset: OpenWebText.

Datasets: OpenWebText (Gokaslan et al., 2019), Shake-
speare (Karpathy, 2015), and MathQA (Amini et al., 2019).

1. Pre-training and Fine-tuning of LLMs. We empirically
investigate the Hessian structure of LLMs with pretraining
or fine-tuning. Figure 8 shows that well-trained LLMs af-
ter training/fine-tuning can exihibit the power-law Hessian
structures, similarly to CNNs, while randomly initialized or
pretrained models fail. Table 2 presents the KS test results
on the power-law Hessian spectra across various LLMs, in-
cluding GPT-2 series and TinyLlama-1b with LoRA adapter,
in the case of pretraining or fine-tuning on various tasks.

The emergence of the power-law Hessian structure is evi-
dent throughout both the pretraining experiment (in Figure 9
and 10) and the fine-tuning experiment (in Figure 11). Dur-
ing pretraining, the power-law structure gradually develops
as we optimize model parameters to capture the underlying
structure of the training data. Similarly, during fine-tuning,
the power-law structure adapts to reflect the specific charac-
teristics of the target dataset. These findings, combined with
empirical results from CNNs, suggest that the presence of
the hessian Power-law structure is not confined to a specific
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Figure 10. The KS distance dks may serve as an effective predictor
to language model’s generalization abilities with a Pearson corre-
lation coefficient up to 0.923. Model: GPT2-nano (trained from
random initialization). Dataset: Shakespeare.

model architecture or limited to either vision (Figure 14) or
text data (Figure 10). Further experiment results regarding
different problem setups are provided in the Appendix E.

2. Generalization Measure. We studied how the general-
ization of LLMs closely relates to the power-law Hessian
structure across different models and datasets.

We observed that for Figure 10 and Figure 11, minima sharp-
ness represented by the largest eigenvalue λ1 and Hessian
trace Tr(H) behaves poorly as a generalization measure for
LLMs, contradicting conventional beliefs in deep learning
(Jiang et al., 2019).

In the pretraining experiment of GPT2-nano, Figure 10
shows that pretraining can decrease the KS distance and
test loss effectively. However, surprisingly, we discover
that sharpness-based generalization measures become nearly
useless for predicting generalization. In contrast, the KS
distance can serve as an effective predictor to generalization
ability with the Pearson correlation coefficient up to 0.923.
Note that the KS distance dks metric quantifies the adher-
ence of a model’s power-law spectral properties to those
expected of a well-trained neural network.

In the fine-tuning experiment of GPT2-small in Figure 11,
we notice similar observations. Again, the sharpness-based
generalization measure fails, whereas the power-law good-
ness can work well. We can even see that the sharpness
increases significantly during iterations 50-5000, whereas
the test loss still drops quickly. Similar observation holds
in Figure 9. In contrast, during all 5000 iterations, the test
loss and the KS distance continuously drop synchronously
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Figure 11. The power-law Hessian structure also emerged in fine-
tuning tasks. The KS distance dks predicts the model’s gener-
alization abilities with a strong Pearson correlation coefficient
up to 0.980, while the sharpness-based generalization measures
obviously fail in predicting generalization of LLMs. Model: GPT2-
small. Dataset: Shakespeare.

with the Pearson correlation coefficient up to 0.98, while the
Pearson correlation coefficients for sharpness-based gener-
alization measures are even only -0.714 and 0.247, which
are harmful or nearly useless for predicting generalization.

We conjecture that the power-law Hessian structure and
the minima’s sharpness of the loss landscape can capture a
model’s generalization ability at different phases. Unlike
CNNs, LLMs are often extremely over-parameterized and
far from well-trained (e.g., many epochs). In the phase of
staying far from minima, the power-law Hessian structure
can better predict the generalization of LLMs. In contrast,
as people usually train CNNs for many epochs, well-trained
CNNs stay very close to minima. In the phase of stay-
ing close to minima, generalization can be captured by the
minima’s sharpness better, following conventional general-
ization theory. We believe a detailed generalization analysis
for LLMs remains an open area for future research.

3. Model Capacity and Scaling. Scaling law predicts that
the performance of LLMs typically follows power laws as
we scale model parameters, training data, or computing
(Bahri et al., 2024). We further investigate how the power-
law Hessian structure depends on model scaling.

Figures 12 and 13 present the results of various pretrain-
ing checkpoint (step = 5000) and pretrained GPT-2 models
trained and evaluated on OpenWebText. The results demon-
strate that as model parameters increase, the power-law Hes-
sian structure also becomes significantly more pronounced
for both training and pretrained checkpoints, accompanied
by improved model performance. The Pearson correlation
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(a) GPT-2 (Pretraining with 5000 steps)
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Figure 12. The power-law spectrum holds across GPT-2 models
with different model capacity. As we scale model parameters, the
Hessian power-law structure goodness and test performance both
improve. Subfigure (a) displays the eigenvalues of intermediate
pretraining checkpoints at 5000 steps; Subfigure (b) displays the
eigenvalues of the official pretrained GPT-2 models. Models:
GPT2-{small, medium, large}. Dataset: OpenWebText.

coefficients are higher than 0.99 for the intermediate check-
point and also high for the official pretrained models. This
observation further supports that a scaling law perspective
is reflected in the power-law Hessian structure of the LLM.

4. Vision Transformer. We also investigate the power-law
Hessian structure of Vision Transformer on vision datsets.
We analyze the pre-trained and fine-tuned ViT-base models
(Dosovitskiy et al., 2021) on the CIFAR-100 dataset. Figure
14 shows that the power-law Hessian structure is absent in
random ViT, and emerges in well-trained ViT models.

5. Supplementary Results. We present additional results
and discussion, including layer-wise Hessian analysis and
LoRA fine-tuning, in Appendix E. (1) In Figure 31, we ob-
serve that the power-law Hessian structure exists in various
layers of LLMs. The power-law Hessian structure of the first
and middle layers is often more pronounced than the last
layer. (2) In Figure 33, we discover that while fine-tuning
LLMs with LoRA can improve the performance of LLMs
on a specific task, LoRA cannot significantly affect the Hes-
sian structure of LLMs as full-parameter fine-tuning. The
power-law Hessian structure does not emerge with LoRA
fine-tuning. It suggests that full-parameter and LoRA fine-
tuning may have significant generalization abilities.
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Figure 13. Scaling law of the power-law goodness for the Hessian
structure. Larger models have a more precise power-law Hessian
structure. Left: Intermediate GPT-2 pretraining checkpoints at
5000 steps; Right: Official pretrained GPT-2 models. Models:
GPT2-{small, medium, large}. Dataset: OpenWebText.
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Figure 14. The power-law Hessian structure is absent in randomly
initialized Vision Transformers and emerges with training. Model:
ViT-base. Dataset: CIFAR-100.

5. Related Work
The Hessian structure of DNNs. A number of related
works analyzed the spectral distribution of the Hessian in
deep learning. Pennington & Bahri (2017) introduced an an-
alytical framework from random matrix theory and reported
that the shape of the spectrum depends strongly on the en-
ergy and the over-parameterization parameter, ϕ, which
measures the ratio of parameters to data points. However,
Pennington & Bahri (2017) mainly evaluated single-hidden-
layer networks, which limits the scope of the conclusion.
A followup work (Pennington & Worah, 2018) focused on
a single-hidden-layer neural network with Gaussian data
and weights in the limit of infinite width. Obviously, its
theoretical and empirical analysis is far from practical deep
models. Jacot et al. (2019) analyzed the limiting spectrum
of the Hessian in neural networks with infinite width. Fort
& Scherlis (2019) analyzed the Hessian spectra of initial-
ized neural networks. Papyan (2019) studied the three-level
hierarchical structure and outliers in Hessian spectra. Singh
et al. (2021) proved that the Hessian can be of very low
rank for DNNs with linear activations. Liao & Mahoney

(2021) studied the Hessian spectra of more realistic nonlin-
ear models. Kaur et al. (2023) studied the maximum Hessian
eigenvalue and its relation to generalization. Dauphin et al.
(2024) investigated the neglected Nonlinear Modeling Error
(NME) matrix part of the Hessian and its influence on gra-
dient penalties during training. While a number of works
studied the Hessian spectra, they failed to empirically or
theoretically discover the simple but important power-law
structure, nor reveal its connection to generalization.

Other power-law phenomena in deep learning. Hestness
et al. (2017) studied the power-law relation between model
performance and model size as well as data size. Mahoney
& Martin (2019) reported that the elements of weight ma-
trices may exhibit power-law heavy tails and studied the
trends of spectral decay. Lee et al. (2020); Velikanov &
Yarotsky (2021) reported the power-law decaying eigenval-
ues in kernel methods. Agrawal et al. (2022) studied the
eigenspectrum decaying of feature covariance with a theoret-
ical analysis of linear regression. Xie et al. (2023a) studied
the heavy-tailed structure of stochastic gradient covariance.
However, none of them reported the overlooked power-law
Hessian structure of DNNs.

6. Conclusion
While the Hessian of the deep loss landscape matters to
optimization and generalization of deep learning, the statis-
tical structure of the Hessian is still largely overlooked by
previous studies. To the best knowledge, we are the first to
report the overlooked power-law Hessian structure in deep
learning as well as formal statistical tests on the power-law
Hessian spectra. We provide a novel maximum-entropy
interpretation and explain why the learning space may be
low-dimensional and robust. While the main limitation of
our work is that we cannot include those state-of-the-art
LLMs in our experiments due to the extremely large mem-
ory and computational cost of Hessian analysis, our work
still goes much further beyond those previous qualitative
studies. The power-law Hessian structure provides a useful
and novel perspective to reveal and analyze multiple novel
behaviors of deep learning on optimization, generalization,
and over-parameterization. We particularly discovered that
while conventional sharpness-based generalization measures
are considered nice generalization predictors of CNNs, they
often completely fail to predict the generalization of LLMs.
Instead, the power-law goodness of the Hessian structure of-
ten correlates better with generalization on many deep learn-
ing occasions, while we also observe that it is not a robust
generalization measure. This suggests that generalization
theory and measures of LLMs lacks more exploration and
rethinking. We believe that our work will further inspire the-
ories and empirical advances toward a deeper understanding
of DNNs, loss landscape, and Hessian.
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A. Proof of Theorem 1
Proof. Considering the principle of maximum entropy with the two kinds of entropy, we need to maximize the total entropy
with the spectral density normalization constraint

Stotal =−
∫

p(λ) log p(λ)dλ− βvol

∫
p(λ) log λdλ (8)

− βnorm(

∫
p(λ)dλ− 1),

where Stotal = Sp + βvolSvol and βnorm is a Lagrange multiplier. To find the optimal distribution p⋆(λ) that maximizes the
total entropy, we require the following

∂Stotal

∂p(λ)
= − log p(λ)− βvol log λ− βnorm = 0. (9)

Thus, the optimal distribution p⋆(λ) can be solved as

p⋆(λ) = e−βnormλ−βvol . (10)

B. Robust and Low-Dimensional Learning Space
At first, we denote the ordered eigengap as δk = λk−λk+1, which means the difference between two neighbored eigenvalues.
According to (2), we have

δk = Tr(H)Z−1
d (k−

1
β−1 − (k + 1)−

1
β−1 ) (11)

= λk

[
1− (

k

k + 1
)s
]
. (12)

It shows that the eigengaps of Hessians also approximately exhibit a power-law distribution

δk = Tr(H)Z−1
d (k + 1)−(s+1) (13)

under the approximation s ≈ 1. The power exponent s+ 1 is larger than the one in (2) by 1.

The phenomenon of low-dimensional learning subspace was empirically reported by Gur-Ari et al. (2018). Ghorbani et al.
(2019) also investigated and reported that large isolated eigenvalues quickly appear in the spectrum during the optimization
process, along with a surprising concentration of the gradient in the corresponding eigenspace. However, they did not
theoretically explain this phenomenon. Xie et al. (2021b) theoretically demonstrated that learning dynamics mainly happens
along those principal eigenvectors of Hessian corresponding to large eigenvalues. Does the phenomenon theoretically
depend on the Hessian structure? Our answer is yes. In the following part, we will demonstrate why the eigengaps of the
Hessian H may naturally lead to the phenomenon that learning dynamics mainly takes place in a low-dimensional space
during the entire training process.

Previous papers only reported that top eigenvalues of Hessian are significantly larger than other tailed ones but did not
touch how top Hessian eigengaps dominate other tailed ones in deep learning. However, top large eigenvalues do not
imply their eigengaps are relatively large, too. Fortunately, we theoretically and empirically demonstrate that, as the rank
index increases, both eigenvalues and eigengaps decay following power laws. Moreover, the eigengaps decay faster than
eigenvalues. The theoretical implication behind the power-law eigengaps actually matters to deep learning dynamics.

We directly apply Theorem 2, a useful variant of Davis-Kahan Theorem (Yu et al., 2015), to the Hessian in deep learning.
Theorem 2 (A useful variant of Davis-Kahan Theorem (Yu et al., 2015)). Suppose the true Hessian is H , the perturbed
Hessian is H̃ = H + ϵM , the i-th eigenvector of H is ui , and its corresponding perturbed eigenvector is ũi. Under the
conditions of the Davis-Kahan Theorem, we have

sin⟨uk, ũk⟩ ≤
2ϵ∥M∥op

min(λk−1 − λk, λk − λk+1)
,

where ∥M∥op is the operator norm of M .
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Given the power-law eigengaps in Equation (13), the upper bound of eigenvector robustness can be written as

sup sin⟨uk, ũk⟩ =
2ϵ∥M∥op(k + 1)s+1

λ1
, (14)

which is relatively tight for top dimensions and very loose for tailed dimensions. A similar conclusion also holds given
Equation (11). This indicates that non-top eigenspace can be highly unstable during training, because δk can decay to nearly
zero for a large k. To the best of our knowledge, we are the first to demonstrate that the robustness of low-dimensional
learning space directly depends on the eigengaps of the Hessian H .

C. Experimental Settings
Computational environment. The image classification experiments are conducted on a computing cluster with NVIDIA®

V100/H800 GPUs and Intel® Xeon® CPUs.

C.1. Image Classification:

C.1.1. MODELS, DATASETS, AND OPTIMIZERS

Models: LeNet (LeCun et al., 1998), Fully Connected Networks (FCN), ResNet18 (He et al., 2016) and Vision Transformer
(Dosovitskiy et al., 2021). Particularly, we used one-layer FCN, two-layer FCN, four-layer FCN, which have 100 neurons
for each hidden layer and use ReLu activations.

Datasets: MNIST (LeCun, 1998), Fashion-MNIST (Xiao et al., 2017), CIFAR-10/100 (Krizhevsky & Hinton, 2009), and
non-image Avila (De Stefano et al., 2018).

Optimizers: SGD, Vanilla SGD, Adam (Kingma & Ba, 2015), AMSGrad (Reddi et al., 2019), AdaBound (Luo et al., 2019),
Yogi (Zaheer et al., 2018), RAdam (Liu et al., 2019), Adai (Xie et al., 2022), PNM (Xie et al., 2021c), Lookahead (Zhang
et al., 2019), and DiffGrad (Dubey et al., 2019).

C.1.2. IMAGE CLASSIFICATION ON MNIST AND FASHION-MNIST

Data Preprocessing For MNIST and Fashion-MNIST: We perform the common per-pixel zero-mean unit-variance
normalization.

Hyperparameter Settings: We select the optimal learning rate for each experiment from {0.0001, 0.001, 0.01, 0.1, 1, 10}
for SGD and use the default learning rate for adaptive gradient methods. In the experiments on MNIST and Fashion-MNIST:
η = 0.1 for SGD, Vanilla SGD, Adai, PNM, and Lookahead; η = 0.1 for Vanilla SGD;η = 0.001 for Adam, AMSGrad,
AdaBound, Yogi, RAdam, and DiffGrad.

We train neural networks for 50 epochs on MNIST and 200 epochs on Fashion-MNIST. For the learning rate schedule, the
learning rate is divided by 10 at the epoch of 40% and 80%. The batch size is set to 128 for MNIST and Fashion-MNIST,
unless we specify it otherwise.

The strength of weight decay defaults to λ = 0.0005 as the baseline for all optimizers unless we specify it otherwise.

We set the momentum hyperparameter β1 = 0.9 for SGD and adaptive gradient methods which involve in Momentum. As
for other optimizer hyperparameters, we apply the default settings directly.

C.1.3. IMAGE CLASSIFICATION ON CIFAR-10 AND CIFAR-100

Data Preprocessing For CIFAR-10 and CIFAR-100: We perform the common per-pixel zero-mean unit-variance
normalization, horizontal random flip, and 32× 32 random crops after padding with 4 pixels on each side.

Hyperparameter Settings: We select the optimal learning rate for each experiment from {0.0001, 0.001, 0.01, 0.1, 1, 10}
for SGD and use the default learning rate for adaptive gradient methods. In the experiments on CIFAF-10 and CIFAR-100:
η = 1 for Vanilla SGD, Adai, and PNM; η = 0.1 for SGD (with Momentum) and Lookahead; η = 0.001 for Adam,
AMSGrad, AdaBound, Yogi, RAdam, and DiffGrad. For the learning rate schedule, the learning rate is divided by 10 at
the epoch of {80, 160} for CIFAR-10 and {100, 150} for CIFAR-100, respectively. The batch size is set to 128 for both
CIFAR-10 and CIFAR-100, unless we specify it otherwise.
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The strength of weight decay is default to λ = 0.0005 as the baseline for all optimizers unless we specify it otherwise. Xie
et al. (2023b) found that popular optimizers with λ = 0.0005 often yields test results than λ = 0.0001 for training CNNs on
CIFAR-10 and CIFAR-100.

We set the momentum hyperparameter β1 = 0.9 for SGD with Momentum. As for other optimizer hyperparameters, we
apply the default hyperparameter settings directly.

C.1.4. LEARNING CNNS WITH NOISY LABELS

We trained LeNet via SGD (with Momentum) on corrupted MNIST with various (asymmetric) label noise. We followed the
setting of Han et al. (2018) for generating noisy labels for MNIST. The symmetric label noise is generated by flipping every
label to other labels with uniform flip rates {40%, 80%}. In this paper, when we talk about label noise, we mean symmetric
label noise.

We also randomly shuffle the labels of MNIST to produce MNIST with random labels, which has little knowledge behind
the pairs of instances and labels.

C.1.5. IMAGE CLASSIFICATION ON VISION TRANSFORMER

Data Preprocessing For CIFAR-100: We perform resizing of CIFAR-100 images to 224 × 224 pixels for compatibility
during training. We then perform horizontal random flip and the common per-pixel zero-mean unit-variance normalization.

Hyperparameter Settings: We fine-tuned the pretrained Vision Transformer (ViT-Base) on the CIFAR-100 dataset,
following the experimental setup of Dosovitskiy et al. (2021). We trained the pretrained ViT with a total batch size of 4096
for 200 steps using a learning rate of 1e-4 with linear decay. We employed the Adam optimizer with betas set to (0.9, 0.999)
and applied a weight decay strength of 0.1.

Hessian Spectra Computation: We utilized the Stochastic Lanczos Quadrature (SLQ) algorithm implementation from Yao
et al. (2020) for computing the Hessian eigenvalues for ViT, incorporating modifications for improved computational and
memory efficiency. To further reduce the computational cost of SLQ, we sampled 1000 samples in each run and approximate
the model’s Hessian on the target dataset. For all Hessian experiments on ViT, 3,000 eigenvalues were computed across
three repeated SLQ runs to mitigate bias, with only the top 1,000 eigenvalues displayed and used for evaluation, consistent
with the experiment setup for LLMs.

C.2. Text Generation:

C.2.1. MODELS, DATASETS AND OPTIMIZERS

Models: GPT-2 (Radford et al., 2019), Tinyllama (Zhang et al., 2024a). We use the code base of NanoGPT (Karpathy,
2022) for reproducing all GPT-2 models with pretraining and fine-tuning experiments.

Datasets: OpenWebText (Gokaslan et al., 2019), Shakespeare (Karpathy, 2015) (processed at the character level), and
MathQA (Amini et al., 2019).

Optimizer: AdamW (Loshchilov, 2017) is used for training and fine-tuning of all language models utilized in this study.

C.2.2. IMPLEMENTATION DETAILS ON HESSIAN SPECTRA COMPUTATION

To enable efficient computation of the Hessian spectra for LLMs, we applied the Stochastic Lanczos Quadrature algorithm
implementation provided by Yao et al. (2020) with alternations for computational and memory speedups. As computation
cost of SLQ is unaffordable on large-scale text dataset as discussed in Zhang et al. (2024b), we applied the same batch
sampling trick and used a fixed batch size of 256 in all of our text generation experiments to approximate model’s Hessian
evaluated on the target dataset. For all experiments conducted on LLMs, 3,000 eigenvalues were computed across 3 repeated
SLQ runs to minimize bias; Only the top 1,000 eigenvalues were displayed and used for evaluation in all Figures.

C.2.3. TRAINING CONFIGURATIONS

• GPT2-nano trained on Shakespeare. We utilized a smaller ‘baby GPT’ model with 6 layers, 6 attention heads, an
embedding size of 384, and 11M parameters provided in NanoGPT. We used the AdamW optimizer with a fixed
learning rate = 6× 10−4. We used a batch size = 65,536 tokens and weight decay = 0.1 for a total of 1,000 steps.
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Table 3. The Kolmogorov-Smirnov statistics of various optimizers for training LeNet on CIFAR-10.

Training dks dc Power-Law β̂ ± σ ŝ

Random 0.0663 0.0430 No
SGD 0.0279 0.0430 Yes 1.968± 0.031 1.033
Vanilla SGD 0.0276 0.0430 Yes 1.935± 0.030 1.069
Adam 0.0269 0.0430 Yes 1.806± 0.025 1.241
AMSGrad 0.0232 0.0430 Yes 1.786± 0.025 1.271
AdaBound 0.0297 0.0430 Yes 1.901± 0.028 1.110
Yogi 0.0184 0.0430 Yes 1.806± 0.025 1.241
RAdam 0.0163 0.0430 Yes 1.733± 0.023 1.363
Adai 0.0310 0.0430 Yes 1.918± 0.029 1.090
PNM 0.0347 0.0430 Yes 1.911± 0.029 1.098
Lookahead 0.0358 0.0430 Yes 1.964± 0.030 1.037
DiffGrad 0.0303 0.0430 Yes 1.803± 0.024 1.236

Table 4. The Kolmogorov-Smirnov statistics of the Hessian spectra for various batch sizes.

Dataset Model Training Batch Size dks dc Power-Law β̂ ± σ ŝ

MNIST LeNet SGD B = 128 0.00900 0.0430 Yes 1.991± 0.031 1.009
MNIST LeNet SGD B = 512 0.00787 0.0430 Yes 1.894± 0.028 1.119
MNIST LeNet SGD B = 640 0.0125 0.0430 Yes 1.838± 0.027 1.194
MNIST LeNet SGD B = 768 0.278 0.0430 No
MNIST LeNet SGD B = 1024 0.129 0.0430 No
MNIST LeNet SGD B = 16384 0.249 0.0430 No
MNIST LeNet SGD B = 32768 0.201 0.0430 No
MNIST LeNet SGD B = 50000 0.139 0.0430 No
MNIST LeNet SGD B = 60000 0.0936 0.0430 No

• GPT2-{small, medium, large} pretrained on OpenWebText. We used the AdamW optimizer with a learning rate =
6× 10−4, incorporating 2,000 warmup steps and a decay schedule down to 6× 10−5, following the experiment setup
in NanoGPT. We used a batch size = 65,536 tokens and weight decay = 0.1 for a total of 500,000 steps.

• GPT2-{small, medium, large} fine-tuned on OpenwebText / Shakespeare. We used the AdamW optimizer with a
learning rate = 1× 10−5, incorporating 1,000 warmup steps and a decay schedule down to 1× 10−6. We used a batch
size = 32,768 tokens and weight decay = 0.1 for a total of 5,000 steps.

• TinyLlama fine-tuned on MathQA. We fine-tuned the TinyLlama model with LoRA adapters, with rank = 16, alpha
= 32, dropout = 0.1 as specified in the original LoRA experiment (Hu et al., 2021). We used the AdamW optimizer
with a learning rate = 1× 10−4, incorporating 500 warmup steps and a decay schedule down to 1× 10−5. We used a
batch size = 32 and weight decay = 0.1 for 1,000 steps.

D. Supplementary Experiment Results of Convolutional Neural Networks
Three phases in large-batch training. In this section, we will further discuss the three phase changes in large-batch
image classification training. We followed the same experiment setup in Table D as stated in Appendix C.1.2. First, in
Phase I (B ≤ 640), moderately large-batch (B = 512) training indeed finds sharper minima than small-batch (B = 128)
training, while the power-law spectrum still holds well. Power laws may guarantee that the top eigenvalues of large-batch
trained networks are all larger than the corresponding eigenvalues of small-batch trained networks. The main challenge of
large-batch training in Phase I is consistent with the common belief that large-batch training suffers from sharp minima and,
thus, leads to bad generalization (Hoffer et al., 2017). The minima sharpness measured by ŝ increases with the batch size.

Second, in Phase II (768 ≤ B ≤ 50000), the spectrum of large-batch (B = 1024) trained networks does not exhibit power
laws but is visually similar to the spectrum of underparameterized models in Figure 5. In Phase II, large-batch trained
overparameterized models behave like underparameterized models from a spectral perspective, and, thus, can lead to bad
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generalization. The phase transition from Phase I to Phase II occurs in a narrow range of 640 < B < 768, which is visually
observable in Figure 7a and statistically observable in Table D.

Third, in Phase III (B ∼ 60000), extremely large-batch training (B = 60000) cannot optimize the training loss well or find
the Hessian spectra similarly to random initialized neural networks. Phase III indicates that, sometimes, bad convergence
rather than sharp minima can become the main performance bottleneck in large-batch training when the batch size is too
large.
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Figure 15. The spectrum in the presence of noisy labels. Top: MNIST Trainset. Bottom: MNIST Testset.

Our Hessian spectra analysis discovery differs from traditional beliefs that different phases exist in training. In phase 2, the
Hessian eigenvalue increases and breaks the power-law structure, while the model’s performance is much superior compared
to untrained neural networks. We may leave a deeper investigation for future work.
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Figure 16. The Hessian spectrum for various batch
sizes under the same number of training iterations.

Table 5. The Kolmogorov-Smirnov statistics of the Hessian spectra for various
batch sizes under the same number of training iterations.

Dataset Model Training Batch Size dks dc Power-Law

MNIST LeNet SGD B = 128 0.0527 0.0430 No
MNIST LeNet SGD B = 512 0.0934 0.0430 No
MNIST LeNet SGD B = 640 0.1138 0.0430 No
MNIST LeNet SGD B = 768 0.1242 0.0430 No
MNIST LeNet SGD B = 1024 0.0999 0.0430 No
MNIST LeNet SGD B = 16384 0.0271 0.0430 Yes

Clean and Random Labels. We presented the spectrum of learning with clean labels and random labels in Figure 17. The
number of top outliers obviously increases, because random labels make the dataset more complex. However, even if the
pairs of instances and labels have little knowledge, we still observe the power-law spectrum after the dozens of top outliers.
This may suggest that, even if the labels are random, neural networks can still learn useful knowledge from the instances
only.

Overfitting and Noisy Labels. As DNNs overfit noisy labels easily, previous papers choose learning with noisy labels as an
important setting for evaluating overfitting and generalization (Han et al., 2020; Xie et al., 2021a; He et al., 2022). Figure 15
shows that overfitting label noise makes the Hessian spectra less power-law on both the corrupted training dataset and the
clean test dataset. In contrast, in the absence of noisy labels, the power-law spectra exist on both the training dataset and the
test dataset.

Transferability. In transfer learning, people believe that a model pretrained on one dataset may learn useful representations
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Figure 17. (a) The spectrum of LeNet on (training and test) MNIST with randomly shuffled labels. (b) The spectrum of LeNet on Gaussian
data with randomly shuffled labels is highly similar to that MNIST with randomly shuffled labels.
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Figure 18. Transferability of the power-law Hessian structure. A LeNet which is pretrained on CIFAR-100 may still exhibit power-law
Hessian spectra when evaluated on CIFAR-10.

for relevant datasets or downstream tasks. When we pretrain a model on CIFAR-100 and evaluate its Hessian spectrum on
CIFAR-10, we surprisingly discover that the power-law Hessian structure successfully transfers. This may measures the
usefulness of learned representations.

Power Iteration vs. Lanczos Algorithm. We compared the spectra computed via Power Iteration Algorithm and Lanczos
Algorithm in Figure 19. It shows the top eigenvalues estimated via Power Iteration Algorithm are highly consistent with the
top eigenvalues via the Lanczos Algorithm. It also demonstrates that the power-law spectrum is caused by the properties of
deep learning rather than the stochasticity of Lanczos Algorithm.

We presented the power-law eigengaps on Fashion-MNIST in Figure 21. It shows that the power-law eigengaps on
Fashion-MNIST are highly consistent with the power-law eigengaps on MNIST.

We presented the power-law spectrum of the covariance matrix of stochastic gradient noise of FCN on MNIST in Figure
27. As the inverses of the power-law variables are power-law, the covariance spectrum shows heavy-tail properties. It
demonstrates that the heavy-tail property belongs to deep neural networks rather than SGD itself.

Avila Dataset We presented the power-law spectrum of two-layer FCN on Avila Dataset in Figure 20. It shows that the
power-law spectrum of neural networks may also generally exist in non-convolution neural networks trained on a non-image
dataset. Particularly, we note that the Avila Dataset has only ten attributes, including intercolumnar distance, upper margin,
lower margin, exploitation, row number, modular ratio, interlinear spacing, weight, peak number, and modular ratio/
interlinear spacing. These attributes are essentially different from the pixels in image datasets.

Supplementary Empirical Results on CIFAR-10. The spectra of LeNet on CIFAR-10 trained via various optimizers
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Figure 19. The spectrum via Power Iteration Algorithm is highly
consistent with the spectrum via Lanczos Algorithm. It also shows
that the power-law spectrum is caused by the properties of deep
learning rather than the stochasticity of Lanczos Algorithm.
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Figure 20. The spectrum of FCN on Avila Dataset. It shows that the
power-law spectrum of neural networks may also exist in non-image
datasets.
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Figure 22. The power-law spectra hold across optimizers. Moreover, the slope magnitude ŝ is an indicator of minima sharpness and a
predictor of test performance. Model:LeNet. Dataset: CIFAR-10.
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Figure 23. The slope magnitude ŝ closely correlates with the largest Hessian eigenvalue and the Hessian trace. Model:LeNet. Dataset:
CIFAR-10.

are showed in Figure 22. Figures 4 and 23 shows that the slope magnitude ŝ closely correlates with the largest Hessian
eigenvalue and the Hessian trace.

We presented the power-law spectra of ResNet18 on CIFAR-10 in Figure 24. It shows that the power-law spectra hold
for ResNet, a representative of the modern neural network architectures, as well as simple CNNs/FCNs. Due to the GPU
memory limit, we may only display the top 50 eigenvalues for ResNet18. However, the KS test still supports accepting the
power-law hypothesis.

We report the spectra of large-batch trained ResNet18 on CIFAR-10 in Figure 25. It indicates that the phase transition
behaviors of the spectra with respect to batch size generally exist. However, it seems that Phase II and Phase III merge into
one phase for ResNet18 on CIFAR-10.

Figure 26 shows that the small width of neural networks may also break the power-law spectrum like small depth. This also
supports that overparameterization or large model capacity is necessary for the power-law spectrum.

Rethinking the heavy-tail phenomenon in SGD. The heavy-tail property of SGD has been a hot and arguable topic recently
(Simsekli et al., 2019; Panigrahi et al., 2019; Gurbuzbalaban et al., 2021; Hodgkinson & Mahoney, 2021; Xie et al., 2021b;
Li et al., 2021). Note that the power-law distribution is one of the most common heavy-tail distributions in the real world.
We argue that the arguable heavy-tail property of SGD may depend on the power-law Hessian spectrum rather than SGD
itself, as gradient noise covariance critically depends on the Hessian. We present the power-law spectra of gradient noise
covariance in Figure 27.

We specifically study the Hessian spectrum of Linear Neural Networks (LNNs) which has no ReLu and BatchNorm. Figure
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Figure 24. The power-law spectra of ResNet18 on CIFAR-10. It
shows that the power-law spectrum of neural networks may also
exist in modern neural network architectures (ResNet) as well as
simple CNNs/FCNs.
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Figure 25. Batch size matters to the spectrum. Model:ResNet-18.
Dataset: CIFAR-10. The sharp phase transition occurs in 1152 <
B < 1280.
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Figure 26. The spectra are not power-law for neural networks with
a small width(∼ 10), but gradually become more power-law (more
straight in the log-log plot) as the width increases. This may also
suggest that the power-law spectrum depends on model capacity.
Model: Two-layer FCN. Dataset: MNIST.
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Figure 27. The power-law spectrum of gradient noise covariance
exists in deep learning for various batch sizes. Model: Fully Con-
nected Network(FCN). Dataset: MNIST.
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Figure 28. The spectrum of LNN with or without BatchNorm and
ReLu.
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Figure 29. The spectrum of LeNets trained with various epochs.

29 shows that the spectrum of LNNs is not power-law but more like spectra of underparameterized models. It may indicate
that nonlinearity and BatchNorm both help improve model capacity. LNNs equipped with ReLu or BatchNorm immediately
recover the power-law spectra again.

E. Supplementary Experiment Results of Large Language Models
E.1. Power-law Hessian Eigengaps in LLM

In this subsection, we report the power-law spectrum in Hessian eigengaps of fine-tuned GPT2-small. As previous results of
LeNet (Figure 2, 21), GPT2-small as a language model, demonstrated that learning dynamics similarly takes place in a
low-dimensional learning subspace as proved in Appendix B.
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Figure 30. The power-law Hessian eigengaps. Model: GPT2-small. Dataset: Shakespeare. Subfigure (a) displayed the eigengaps by
original rank indices sorted by eigenvalues. Subfigure (b) displayed the eigengaps by rank indices re-sorted by eigengaps.

E.2. Layer-wise Power-law Spectra

Due to computational constraints, we reported the Hessian spectra only using the parameters of the last layer in previous
sections. In this section, we will present and discuss the power-law spectrum at different layers of the fine-tuned GPT2-small
model. Figure 31 presented the power-law spectrum at 2, 5, 8, 11th layers of GPT2-small checkpoints fine-tuned on the
Shakespeare dataset. The phenomenon is clear: the power-law spectrum forms early in training, particularly in the
earlier layers, and the eigenvalue magnitudes decrease across layers.

E.3. Fine-tuning with Low-dimensional Adaptations (LoRA)

In this section, we report the Hessian eiganvalues of the low dimensional adapters (LoRA (Hu et al., 2021)) for efficient
fine-tuning of the pretrained TinyLlama-1B model on the MathQA dataset. The top 1000 eigenvalues are computed for
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(a) 2th Layer
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(b) 5th Layer
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(c) 8th Layer
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(d) 12th Layer

Figure 31. Power-law spectrum at different layers and checkpoints of the GPT2-small model. Dataset: Shakespeare.

the Hessian of all LoRA layers are displayed, and we may observe that a hessian Power-law structure is formed after 500
fine-tuning steps.

We then discuss how generalization of the fine-tuned LoRA adapters relate to the power-law Hessian structure. In Figure 32,
the KS distance (dks) calculated from the Hessian spectra of the adapters, initially increases during the first 100 steps of
fine-tuning before decreasing alongside the test loss. Although the largest eigenvalue λ1 increases at step 50 compared to its
random initialization, the Hessian trace Tr(H) consistently decreases throughout fine-tuning. This behavior suggests that
for pretrained models with good proficiency, the power-law spectra may diverge from expected patterns, and the Hessian
trace Tr(H) may be a more reliable indicator of generalization capability according to Figure 32.
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Figure 32. The behaviour of the Hessian spectrum of all LoRA adapters aligns similarity to the original model. LoRA adapters are
randomly initialized before fine-tuning. Model: LoRA Layers (adapted on TinyLlama). Dataset: MathQA.

We further computed the Hessian spectrum of the pretrained last layer of TinyLlama-base merged with the fine-tuned LoRA
Adapter in Figure 33. Due to the consistency in most parameters, there are no significant changes in behaviours of the
Hessian spectrum at different checkpoints of fine-tuning, nor the minima sharpness.
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Figure 33. Due to consistency in most parameters, the Hessian spectrum does not change significantly at different fine-tuning checkpoints
of the merged TinyLlama with LoRA adapter. The observation demonstrated the minimal impact to the original model when tuning with
Low-Rank Adaptations. Model: TinyLlama-1.1B-Chat-v1.0 (merged with LoRA adapter). Dataset: MathQA.
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F. Kolmogorov-Smirnov Goodness-of-Fit Test
In this section, we introduce how to conduct the Kolmogorov-Smirnov Goodness-of-Fit Test for the self-containedness
purpose.

As we mentioned above, our work used Maximum Likelihood Estimation (MLE) (Myung, 2003; Clauset et al., 2009) for
estimating the parameter β of the fitted power-law distributions and the Kolmogorov-Smirnov Test (KS Test) (Massey Jr,
1951; Goldstein et al., 2004) for statistically testing the goodness of the fit. The KS test statistic is the KS distance dks
between the hypothesized (fitted) distribution and the empirical data, which measures the goodness of fit. Mathematically,
the KS distance is defined as

dks = sup
λ

|F ⋆(λ)− F̂ (λ)|, (15)

where F ⋆(λ) is the hypothesized cumulative distribution function and F̂ (λ) is the empirical cumulative distribution function
based on the sampled data (Goldstein et al., 2004). The estimated power exponent via MLE (Clauset et al., 2009) can be
written as

β̂ = 1 +K

[
K∑
i=1

ln

(
λi

λcutoff

)]−1

, (16)

where K is the number of tested samples and we set λcutoff = λk. We note that the Powerlaw library (Alstott et al., 2014)
provides a convenient tool to compute the KS distance, dks, and estimate the power exponent.

According to the practice of KS Test (Massey Jr, 1951), we first state the power-law hypothesis that the tested spectrum is
power-law. If dks is higher than the critical value dc at the α = 0.05 significance level, the KS test statistically will support
the power-law hypothesis (we cannot reject the power-law hypothesis). We display the critical values in Table 6.

We conducted the KS tests for all of our studied spectra. We display the KS test statistics and the estimated power
exponents β̂ with standard errors σ as well as the corresponding ŝ in Tables 7, 8, 9, and 10. In the tables, we take the base
hyperparameter setting in Appendix C as the default setting. For better visualization, we color accepting the power-law
hypothesis in blue and color rejecting the power-law hypothesis (and the cause) in red.

Table 6. The Table of Kolmogorov-Smirnov Test Critical Values (Significance Level), which was first reported in Massey Jr (1951). If the
KS distance dks is lower than a critical value, such as 1.36√

K
, we would reject the null hypothesis and accept the power-law hypothesis at

the α = 0.05 significance level. Note that K is the number of tested eigenvalues.

Sample size α = 0.2 α = 0.15 α = 0.1 α = 0.05 α = 0.01

K > 35 1.07√
k

1.14√
k

1.22√
k

1.36√
k

1.63√
k

K = 50 0.151 0.161 0.173 0.192 0.231
K = 1000 0.0338 0.0360 0.0386 0.0430 0.0515
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Table 7. The Kolmogorov-Smirnov statistics of LeNet on MNIST and Fashion MNIST. The estimated power exponent β̂ and slope
magnitude ŝ are also displayed.

Dataset Model Training Sample size Setting dks dc Power-Law β̂ ± σ ŝ

MNIST LeNet Random 1000 - 0.0796 0.0430 No
MNIST LeNet SGD 1000 - 0.00900 0.0430 Yes 1.991± 0.031 1.009
MNIST LeNet Vanilla SGD 1000 - 0.0103 0.0430 Yes 1.914± 0.029 1.094
MNIST LeNet Adam 1000 - 0.00962 0.0430 Yes 1.873± 0.028 1.145
MNIST LeNet AMSGrad 1000 - 0.00987 0.0430 Yes 1.845± 0.027 1.184
MNIST LeNet AdaBound 1000 - 0.00889 0.0430 Yes 1.904± 0.029 1.106
MNIST LeNet Yogi 1000 - 0.00966 0.0430 Yes 1.834± 0.026 1.198
MNIST LeNet RAdam 1000 - 0.0164 0.0430 Yes 1.889± 0.028 1.125
MNIST LeNet Adai 1000 - 0.0101 0.0430 Yes 1.892± 0.028 1.122
MNIST LeNet PNM 1000 - 0.0127 0.0430 Yes 1.846± 0.027 1.181
MNIST LeNet Lookahead 1000 - 0.0101 0.0430 Yes 1.982± 0.031 1.018
MNIST LeNet DiffGrad 1000 - 0.0105 0.0430 Yes 1.834± 0.026 1.198

MNIST LeNet SGD 1000 B = 128 0.00900 0.0430 Yes 1.991± 0.031 1.009
MNIST LeNet SGD 1000 B = 512 0.00787 0.0430 Yes 1.894± 0.028 1.119
MNIST LeNet SGD 1000 B = 640 0.0125 0.0430 Yes 1.838± 0.027 1.194
MNIST LeNet SGD 1000 B = 768 0.278 0.0430 No
MNIST LeNet SGD 1000 B = 1024 0.129 0.0430 No
MNIST LeNet SGD 1000 B = 8192 0.240 0.0430 No
MNIST LeNet SGD 1000 B = 16384 0.249 0.0430 No
MNIST LeNet SGD 1000 B = 32768 0.201 0.0430 No
MNIST LeNet SGD 1000 B = 50000 0.139 0.0430 No
MNIST LeNet SGD 1000 B = 60000 0.0936 0.0430 No

MNIST LeNet SGD 1000 N = 600 0.205 0.0430 No
MNIST LeNet SGD 1000 N = 800 0.0399 0.0430 Yes 1.995± 0.031 1.004
MNIST LeNet SGD 1000 N = 1000 0.0198 0.0430 Yes 2.128± 0.036 0.886
MNIST LeNet SGD 1000 N = 3000 0.0159 0.0430 Yes 2.091± 0.034 0.917
MNIST LeNet SGD 1000 N = 6000 0.0151 0.0430 Yes 2.001± 0.032 0.999

MNIST LeNet SGD 1000 40% Label Noise 0.180 0.0430 No
MNIST LeNet SGD 1000 80% Label Noise 0.157 0.0430 No
MNIST LeNet SGD 1000 Random Labels 0.0482 0.0430 No

Fashion-MNIST LeNet Random 1000 - 0.0971 0.0430 No
Fashion-MNIST LeNet SGD 1000 - 0.0132 0.0430 Yes 1.939± 0.030 1.065

MNIST LeNet SGD 1000 Eigengap 0.0153 0.0430 Yes 1.550± 0.017 1.817
Fashion-MNIST LeNet SGD 1000 Eigengap 0.0240 0.0430 Yes 1.520± 0.017 1.922

MNIST LeNet SGD 1000 Epoch= 1 0.0321 0.0430 Yes 1.908± 0.029 1.102
MNIST LeNet SGD 1000 Epoch= 2 0.0298 0.0430 Yes 1.920± 0.029 1.087
MNIST LeNet SGD 1000 Epoch= 3 0.0354 0.0430 Yes 1.916± 0.031 1.092
MNIST LeNet SGD 1000 Epoch= 10 0.0291 0.0430 Yes 2.029± 0.033 0.972
MNIST LeNet SGD 1000 Epoch= 20 0.0268 0.0430 Yes 2.081± 0.034 0.925
MNIST LeNet SGD 1000 Epoch= 30 0.0068 0.0430 Yes 2.074± 0.034 0.930
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Table 8. The Kolmogorov-Smirnov statistics of LeNet on CIFAR-10 and CIFAR-100. The estimated power exponent β̂ and slope
magnitude ŝ are also displayed.

Dataset Model Training Sample size Setting dks dc Power-Law β̂ ± σ ŝ

CIFAR-10 LeNet Random 1000 - 0.0663 0.0430 No
CIFAR-10 LeNet SGD 1000 - 0.0279 0.0430 Yes 1.968± 0.031 1.033
CIFAR-10 LeNet Vanilla SGD 1000 - 0.0276 0.0430 Yes 1.935± 0.030 1.069
CIFAR-10 LeNet Adam 1000 - 0.0269 0.0430 Yes 1.806± 0.025 1.241
CIFAR-10 LeNet AMSGrad 1000 - 0.0232 0.0430 Yes 1.786± 0.025 1.271
CIFAR-10 LeNet AdaBound 1000 - 0.0297 0.0430 Yes 1.901± 0.028 1.110
CIFAR-10 LeNet Yogi 1000 - 0.0184 0.0430 Yes 1.806± 0.025 1.241
CIFAR-10 LeNet RAdam 1000 - 0.0163 0.0430 Yes 1.733± 0.023 1.363
CIFAR-10 LeNet Adai 1000 - 0.0310 0.0430 Yes 1.918± 0.029 1.090
CIFAR-10 LeNet PNM 1000 - 0.0347 0.0430 Yes 1.911± 0.029 1.098
CIFAR-10 LeNet Lookahead 1000 - 0.0358 0.0430 Yes 1.964± 0.030 1.037
CIFAR-10 LeNet DiffGrad 1000 - 0.0303 0.0430 Yes 1.803± 0.024 1.236

CIFAR-100 LeNet Random 1000 - 0.0944 0.0430 No
CIFAR-100 LeNet SGD 1000 - 0.0315 0.0430 Yes 1.908± 0.029 1.101
CIFAR-100 LeNet Vanilla SGD 1000 - 0.0379 0.0430 Yes 1.903± 0.029 1.108

CIFAR-100 LeNet SGD 1000 Evaluated on CIFAR-10 0.0306 0.0430 Yes 1.913± 0.029 1.095

Table 9. The Kolmogorov-Smirnov statistics of FCN. The estimated power exponent β̂ and slope magnitude ŝ are also displayed.

Dataset Model Training Sample size Setting dks dc Power-Law β̂ ± σ ŝ

Avila 2Layer-FCN SGD 50 - 0.0683 0.176 Yes 1.604± 0.085 1.656

MNIST 1Layer-FCN Random 1000 - 0.185 0.0430 No
MNIST 1Layer-FCN SGD 1000 - 0.241 0.0430 No
MNIST 2Layer-FCN Random 1000 - 0.129 0.0430 No
MNIST 2Layer-FCN SGD 1000 - 0.0112 0.0430 Yes 2.209± 0.038 0.827
MNIST 4Layer-FCN Random 1000 - 0.0628 0.0430 No
MNIST 4Layer-FCN SGD 1000 - 0.0141 0.0430 Yes 2.201± 0.038 0.833

MNIST 2Layer-FCN SGD 1000 Width=10 0.149 0.0430 No
MNIST 2Layer-FCN SGD 1000 Width=20 0.185 0.0430 No
MNIST 2Layer-FCN SGD 1000 Width=30 0.0656 0.0430 No
MNIST 2Layer-FCN SGD 1000 Width=50 0.0187 0.0430 Yes 2.138± 0.028 0.879
MNIST 2Layer-FCN SGD 1000 Width=70 0.0376 0.0430 Yes 2.271± 0.030 0.787
MNIST 2Layer-FCN SGD 1000 Width=100 0.0112 0.0430 Yes 2.209± 0.038 0.827
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Table 10. The Kolmogorov-Smirnov statistics of ResNet18. The estimated power exponent β̂ and slope magnitude ŝ are also displayed.

Dataset Model Training Sample size Setting dks dc Power-Law β̂ ± σ ŝ

CIFAR-10 ResNet18 Random 50 - 0.334 0.176 No
CIFAR-10 ResNet18 SGD 50 - 0.0803 0.176 Yes 2.146± 0.162 0.873
CIFAR-10 ResNet18 Vanilla SGD 50 - 0.0891 0.176 Yes 2.193± 0.169 0.838
CIFAR-10 ResNet18 Adam 50 - 0.0478 0.176 Yes 2.062± 0.149 0.950
CIFAR-10 ResNet18 AMSGrad 50 - 0.0542 0.176 Yes 2.041± 0.147 0.961
CIFAR-10 ResNet18 AdaBound 50 - 0.0588 0.176 Yes 2.029± 0.146 0.971
CIFAR-10 ResNet18 Yogi 50 - 0.116 0.176 Yes 1.915± 0.129 1.092
CIFAR-10 ResNet18 RAdam 50 - 0.168 0.176 Yes 1.794± 0.1112 1.259
CIFAR-10 ResNet18 Adai 50 - 0.103 0.176 Yes 2.183± 0.167 0.845
CIFAR-10 ResNet18 PNM 50 - 0.138 0.176 Yes 2.132± 0.160 0.884
CIFAR-10 ResNet18 Lookahead 50 - 0.110 0.176 Yes 2.098± 0.155 0.911
CIFAR-10 ResNet18 DiffGrad 50 - 0.068 0.176 Yes 2.055± 0.149 0.948

CIFAR-10 ResNet18 SGD 50 B = 512 0.0561 0.176 Yes 2.146± 0.151 0.936
CIFAR-10 ResNet18 SGD 50 B = 1024 0.0647 0.176 Yes 2.076± 0.152 0.929
CIFAR-10 ResNet18 SGD 50 B = 1152 0.0598 0.176 Yes 2.060± 0.150 0.944
CIFAR-10 ResNet18 SGD 50 B = 1280 0.331 0.176 No
CIFAR-10 ResNet18 SGD 50 B = 2048 0.334 0.176 No
CIFAR-10 ResNet18 SGD 50 B = 4096 0.334 0.176 No
CIFAR-10 ResNet18 SGD 50 B = 16384 0.343 0.176 No

CIFAR-100 ResNet18 Random 50 - 0.373 0.176 No
CIFAR-100 ResNet18 SGD 50 - 0.108 0.176 Yes 2.299± 0.184 0.770
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