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Abstract

Policy gradient methods have recently been
shown to enjoy global convergence at a Θ(1/t)
rate in the non-regularized tabular softmax setting.
Accordingly, one important research question is
whether this convergence rate can be further im-
proved, with only first-order updates. In this pa-
per, we answer the above question from the per-
spective of momentum by adapting the celebrated
Nesterov’s accelerated gradient (NAG) method
to reinforcement learning (RL), termed Acceler-
ated Policy Gradient (APG). To demonstrate the
potential of APG in achieving faster global con-
vergence, we start from the bandit setting and
formally show that with the true gradient, APG
with softmax policy parametrization converges to
an optimal policy at a Õ(1/t2) rate. To the best of
our knowledge, this is the first characterization of
the global convergence rate of NAG in the context
of RL. Notably, our analysis relies on one interest-
ing finding: Regardless of the initialization, APG
could end up reaching a locally-concave regime,
where APG could benefit significantly from the
momentum, within finite iterations. By means of
numerical validation, we confirm that APG ex-
hibits Õ(1/t2) rate in the bandit setting and still
preserves the Õ(1/t2) rate in various Markov de-
cision process instances, showing that APG could
significantly improve the convergence behavior
over the standard policy gradient.
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1. Introduction
Policy gradient (PG) is a fundamental technique utilized
in the field of reinforcement learning (RL) for policy op-
timization. It operates by directly optimizing the RL ob-
jectives to determine the optimal policy, employing first-
order derivatives similar to the gradient descent algorithm
in the conventional optimization problems. Notably, PG has
demonstrated empirical success (Mnih et al., 2016; Wang
et al., 2016; Silver et al., 2014; Lillicrap et al., 2016; Schul-
man et al., 2017; Espeholt et al., 2018) and is supported by
strong theoretical guarantees (Agarwal et al., 2021; Fazel
et al., 2018; Liu et al., 2020; Bhandari & Russo, 2019; Mei
et al., 2020; Wang et al., 2021; Mei et al., 2021; 2022; Xiao,
2022). In a recent study by (Mei et al., 2020), they character-
ized the convergence rate of Θ(1/t) in the non-regularized
tabular softmax setting. This convergence behavior aligns
with that of the gradient descent algorithm for optimizing
convex functions, despite that the RL objectives lack convex
characteristics. Consequently, one critical open question
arises as to whether this Θ(1/t) convergence rate can be fur-
ther improved solely with first-order updates. In the realm
of optimization, Nesterov’s Accelerated Gradient (NAG)
method, introduced by (Nesterov, 1983), is a first-order
method originally designed for convex functions in order
to improve the convergence rate to O(1/t2). Over the past
decades since its introduction, to the best of our knowledge,
NAG has never been formally analyzed or evaluated in the
context of RL for its global convergence, mainly due to the
non-concavity of the RL objective. Therefore, it is natu-
ral to ask the following research question: Could Nesterov
acceleration further improve the global convergence rate
beyond the Θ(1/t) rate achieved by PG in RL?

To answer this question, this paper introduces Accelerated
Policy Gradient (APG), which utilizes Nesterov acceleration
to address the policy optimization problem of RL. Despite
the existing knowledge about the NAG methods from previ-
ous research (Beck & Teboulle, 2009a;b; Ghadimi & Lan,
2016; Krichene et al., 2015; Li & Lin, 2015; Su et al., 2014;
Muehlebach & Jordan, 2019; Carmon et al., 2018), there
remain several fundamental challenges in establishing the
global convergence in the context of RL: (i) NAG conver-
gence results under nonconvex problems: Although there
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is a plethora of theoretical works studying the convergence
of NAG under general nonconvex problems, these results
only establish convergence to a stationary point. Under
these conditions, we cannot determine global convergence
in RL. Furthermore, it is not possible to assess whether the
convergence rate improves beyond Θ(1/t) based on these
results. (ii) The absence of monotonic improvement due to
Nesterov acceleration: Nesterov acceleration utilizes the
momentum to enhance the convergence rate. Nevertheless,
because of the presence of the momentum term, APG does
not guarantee monotonic improvement in every iteration.
This is a notable distinction from the standard PG, which
exhibits monotonic improvement and ensures the existence
of a limiting value function. Without monotonicity, the be-
havior of value functions in the limit remains uncertain. (iii)
Inherent characteristics of the momentum term: From an
analytical perspective, the momentum term demonstrates
intricate interactions with the previous updates. As a result,
accurately quantifying the specific impact of momentum
during the execution of APG poses a considerable challenge.
Moreover, despite the valuable insights provided by the non-
uniform Polyak-Łojasiewicz (PL) condition in the field of
RL proposed by (Mei et al., 2020), the complex influences
of the momentum term present a significant obstacle in de-
termining the convergence rate of APG. (iv) The nature of
the unbounded optimal parameter under softmax parameter-
ization: A crucial factor in characterizing the sub-optimality
gap in the theory of optimization is the norm of the distance
between the initial parameter and the optimal parameter
(Beck & Teboulle, 2009a;b; Jaggi, 2013; Ghadimi & Lan,
2016). However, in the case of softmax parameterization,
the parameter of the optimal action tends to approach infin-
ity. As a result, the norm involved in the sub-optimality gap
becomes infinite, thereby hindering the characterization of
the desired convergence rate.

Our Contributions. Despite the above challenges, we
present an affirmative answer to the research question de-
scribed above and provide the first characterization of the
global convergence rate of NAG in the context of RL. As
an important and highly non-trivial first step, we start from
the bandit setting (i.e., single-state MDPs), which serves
as a stylish setting subject to all the above technical chal-
lenges (i)-(iv), and establish that APG could achieve global
convergence at a rate of Õ(1/t2). Specifically, we present
useful insights and novel techniques to tackle the technical
challenges: Regarding (i), we show that the RL objective
enjoys local concavity in the proximity of the optimal policy,
despite its non-concave global landscape. To better illus-
trate this, we start by presenting a motivating two-action
bandit example, which demonstrates the local concavity
directly via the corresponding sigmoid-type characteristic.
Subsequently, we show that this intuitive argument could
be extended to the general multi-action case. Regarding (ii)

and (iii), we show that the locally-concave region is absorb-
ing in the sense that even with the effect of the momentum
term, the policy parameter could stay in the locally-concave
region indefinitely once it enters this region. This result
is obtained by carefully quantifying the cumulative effect
of each momentum term. Regarding (iv), we introduce
the concept of effective domain, which essentially captures
the growth rate of the norm of the policy parameters, and
thereby characterize the effective domain of APG.

We summarize the contributions of this paper as follows:

• We propose APG, which leverages the Nesterov’s mo-
mentum scheme to accelerate the convergence perfor-
mance of PG for RL.

• To demonstrate the potential of achieving fast global
convergence, we start from the bandit setting and for-
mally establish that APG enjoys a Õ(1/t2) convergence
rate under softmax policy parameterization1. To achieve
this, we present several novel insights into RL and APG,
including the local concavity property as well as the
absorbing behavior and the effective domain of APG.
Moreover, we further show that the derived rate for
APG is tight (up to a logarithmic factor) by providing a
Ω(1/t2) lower bound of the sub-optimality gap.

• Through numerical validation on both bandit and MDP
problems, we confirm that APG exhibits Õ(1/t2) rate
and hence substantially improves the convergence be-
havior over the standard PG.

2. Related Work
Policy Gradient. Policy gradient (Sutton et al., 1999) is
a popular reinforcement learning technique that directly
optimizes the objective function by computing and using
the gradient of the expected return with respect to the pol-
icy parameters. It has several popular variants, such as
the REINFORCE algorithm (Williams, 1992), actor-critic
methods (Konda & Tsitsiklis, 1999), trust region policy op-
timization (TRPO) (Schulman et al., 2015), and proximal
policy optimization (PPO) (Schulman et al., 2017). Re-
cently, policy gradient methods have been shown to enjoy
global convergence. The global convergence of standard
policy gradient methods under various settings has been
proven by (Agarwal et al., 2021). Furthermore, (Mei et al.,
2020) characterizes a O(1/t) convergence rate of policy
gradient based on a Polyak-Lojasiewicz condition under the
non-regularized tabular softmax parameterization. More-
over, (Fazel et al., 2018; Liu et al., 2020; Wang et al., 2021;
Xiao, 2022) conduct theoretical analyses of several variants
of policy gradient methods under various policy parame-
terizations and establish the global convergence guarantees

1Note that this result does not contradict the Ω(1/t) lower
bound of the sub-optimality gap of PG in (Mei et al., 2020). Please
refer to Section 6.2 for a detailed discussion.
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for these methods. In our work, we rigorously establish
the accelerated Õ(1/t2) convergence rate for the proposed
APG method under softmax parameterization.

Accelerated Gradient. Accelerated gradient methods (Nes-
terov, 1983; 2005; Beck & Teboulle, 2009b) play a piv-
otal role in the optimization literature due to their ability
to achieve faster convergence rates when compared to the
conventional gradient descent algorithm. Notably, in the
convex regimes, the accelerated gradient methods enjoy a
convergence rate as fast as O(1/t2), surpassing the limited
convergence rate O(1/t) offered by the gradient descent
algorithm. The superior convergence behavior could also be
characterized from the perspective of ordinary differential
equations (Su et al., 2014; Krichene et al., 2015; Muehle-
bach & Jordan, 2019). Additionally, in order to enhance the
performance of accelerated gradient methods, several vari-
ants have been proposed. For instance, (Beck & Teboulle,
2009a) proposes a variant of the proximal accelerated gra-
dient method which incorporates monotonicity to further
improve its efficiency. (Ghadimi & Lan, 2016) presents
a unified analytical framework for a family of accelerated
gradient methods that can be applied to solve convex, non-
convex, and stochastic optimization problems. Moreover,
(Li & Lin, 2015) proposes a monotone accelerated gradient
approach with sufficient descent, providing convergence
guarantees to stationary points for non-convex problems.
The above list of works is by no means exhaustive and
is only meant to provide a brief overview of the acceler-
ated gradient methods. Our paper introduces APG, a novel
approach that combines accelerated gradient methods and
policy gradient methods for RL. This integration enables a
substantial acceleration of the convergence rate compared
to the standard policy gradient method.

3. Preliminaries
Markov Decision Processes. For a finite set X , we use
∆(X ) to denote a probability simplex over X . We con-
sider that a finite Markov decision process (MDP)M =
(S,A,P, r, γ, ρ) is determined by: (i) a finite state space
S, (ii) a finite action space A, (iii) a transition kernel
P : S × A → ∆(S), determining the transition proba-
bility P(s′|s, a) from each state-action pair (s, a) to the
next state s′, (iv) a reward function r : S × A → R, (v) a
discount factor γ ∈ [0, 1), and (vi) an initial state distribu-
tion ρ ∈ ∆(S). Given a policy π : S → ∆(A), the value of
state s under π is defined as

V π(s) := E
[ ∞∑

t=0

γtr(st, at)

∣∣∣∣π, s0 = s

]
. (1)

The goal of the learner (or agent) is to search for a pol-
icy that maximizes the following objective function as
V π(ρ) := Es∼ρ[V

π(s)]. The Q-value (or action-value) and

the advantage function of π at (s, a) ∈ S ×A are defined as

Qπ(s, a) := r(s, a) + γ
∑
s′

P(s′|s, a)V π(s′) , (2)

Aπ(s, a) := Qπ(s, a)− V π(s), (3)

where the advantage function reflects the relative benefit
of taking the action a at state s under policy π. The (dis-
counted) state visitation distribution of π is defined as

dπs0(s) := (1− γ)

∞∑
t=0

γtPr(st = s|s0, π,P), (4)

which reflects how frequently the learner would visit the
state s under policy π. And we let dπρ (s) := Es0∼ρ

[
dπs0(s)

]
be the expected state visitation distribution under the initial
state distribution ρ. Given ρ, there exists an optimal policy
π∗ such that

V π∗
(ρ) = max

π:S→∆(A)
V π(ρ). (5)

For ease of exposition, we denote V ∗(ρ) := V π∗
(ρ).

Although obtaining the true initial state distribution ρ in
practical problems is challenging, it is fortunate that this
challenge can be eased by considering other surrogate initial
state distribution µ that are strictly positive for every state
s ∈ S . Notably, it can be demonstrated in the following the-
oretical proof that even in the absence of knowledge about
ρ, convergence guarantees for V ∗(ρ) can still be obtained
under the condition of strictly positive µ. Hence, we make
the following assumption, which has also been adopted by
(Agarwal et al., 2021) and (Mei et al., 2020).
Assumption 1. (Strict positivity of surrogate initial state
distribution). The surrogate initial state distribution satis-
fies mins µ(s) > 0.

Since S ×A is finite, without loss of generality, we assume
that the one-step reward is bounded in the [0, 1] interval:
Assumption 2. (Bounded reward). r(s, a) ∈ [0, 1],∀s ∈
S, a ∈ A.

For simplicity, we assume that the optimal action is unique.
This assumption can be relaxed by considering the sum of
probabilities of all optimal actions in the theoretical results.

Assumption 3. (Unique optimal action). There is a unique
optimal action a∗ for each state s ∈ S.

Softmax Parameterization. For unconstrained θ ∈ R|S||A|,
the softmax parameterization of θ is defined as πθ(·|s) :=
softmax(θs,·), where for all a ∈ A. We use the shorthand
for denoting the optimal policy π∗ := πθ∗ , where θ∗ is the
optimal policy parameter.

πθ(a|s) =
exp(θs,a)∑

a′∈A exp(θs,a′ )
. (6)
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Algorithm 1 Policy Gradient (PG) in (Mei et al., 2020)
Input: Learning rate η = 1

L , where L is the Lipschitz
constant of the objective function V πθ (µ).
Initialize: θ1(s, a) for all (s, a).
for t = 1 to T do

θt+1 ← θt + η∇θV
πθ (µ)

∣∣∣
θ=θ(t)

(7)

end for

Policy Gradient. Policy gradient (Sutton et al., 1999) is
a policy search technique that involves defining a set of
policies parametrized by a finite-dimensional vector θ and
searching for an optimal policy π∗ by exploring the space of
parameters. This approach reduces the search for an optimal
policy to a search in the parameters space. In policy gradient
methods, the parameters are updated by the gradient of the
function f : θ → V πθ (µ) that maps policy parameters
to the expected cumulative reward under an initial state
distribution µ ∈ ∆(S). The following Algorithm 1 presents
the pseudo code of PG provided by (Mei et al., 2020).

Nesterov’s Accelerated Gradient (NAG). Nesterov’s Ac-
celerated Gradient (NAG) (Nesterov, 1983) is an optimiza-
tion algorithm that utilizes a variant of momentum known
as Nesterov’s momentum to expedite the convergence rate.
Specifically, it computes an intermediate ”lookahead” esti-
mate of the gradient by evaluating the objective function at a
point slightly ahead of the current estimate. We provide the
pseudo code of NAG method as Algorithm 4 in Appendix A.

Notations. Throughout the paper, we use ∥x∥ to denote the
L2 norm of a real vector x.

4. Methodology
In this section, we present our proposed algorithm, Accel-
erated Policy Gradient (APG), which integrates Nesterov
acceleration with gradient-based reinforcement learning al-
gorithms. In Section 4.1, we introduce our central algorithm,
APG. Subsequently, in Section 4.2, we provide a motivating
example in the bandit setting to illustrate the convergence
behavior of APG. Additionally, in Section 4.3, we under-
line the main technical challenges involved in our analysis,
particularly the absence of monotonic improvement that is
typically observed in standard policy gradient methods.

4.1. Accelerated Policy Gradient

We propose Accelerated Policy Gradient (APG) and present
the pseudo code of our algorithm in Algorithm 2. Our al-
gorithm design draws inspiration from the renowned and
elegant Nesterov’s accelerated gradient updates as intro-

duced in (Su et al., 2014). For the sake of comparison, we
include the pseudo code of the approach in (Su et al., 2014)
as Algorithm 4 in Appendix A. We adapt these updates to
the reinforcement learning objective, specifically V πθ (µ).
It is important to note that we will specify the learning rate
η(t) in Lemma 2, as presented in Section 5.

In Algorithm 2, the gradient update is performed in (8).
Following this, (9) calculates the momentum for our param-
eters, which represents a fundamental technique employed
in accelerated gradient methods. It is worth noting that in
(8), the gradient is computed with respect to ω(t−1), which
is the parameter that the momentum brings us to, rather than
θ(t) itself. This distinction sets apart (8) from the standard
policy gradient updates (Algorithm 1).

Algorithm 2 Accelerated Policy Gradient (APG)

Input: Learning rate η(t) > 0.
Initialize: θ(0) ∈ R|S||A|, τ (0) = 0, ω(0) = θ(0).
for t = 1 to T do

θ(t) ← ω(t−1) + η(t)∇θV
πθ (µ)

∣∣∣
θ=ω(t−1)

(8)

ω(t) ← θ(t) +
t− 1

t+ 2
(θ(t) − θ(t−1)) (9)

end for

4.2. A Motivating Example of APG

Prior to the exposition of convergence analysis, we aim to
provide further insights into why APG has the potential to
attain a convergence rate of Õ(1/t2), especially under the
intricate non-concave objectives in reinforcement learning.

Consider a simple two-action bandit with actions a∗, a2 and
reward function r(a∗) = 1, r(a2) = 0. Accordingly, the
objective we aim to optimize is Ea∼πθ

[r(a)] = πθ(a
∗). By

deriving the Hessian matrix with respect to our policy pa-
rameters θa∗ and θa2

, we could characterize the curvature of
the objective function around the current policy parameters,
which provides useful insights into its local concavity. Upon
analyzing the Hessian matrix, we observe that it exhibits
concavity when πθ(a

∗) ≥ 0.5. The detailed derivation is
provided in Appendix E. The aforementioned observation
implies that the objective function demonstrates local con-
cavity when πθ(a

∗) ≥ 0.5. Since π∗(a∗) = 1, it follows
that the objective function exhibits local concavity for the
optimal policy π∗. As a result, if one initializes the policy
with a high probability assigned to the optimal action a∗,
then the policy would directly fall in the locally concave
part of the objective function. This allows us to apply the
theoretical findings from the existing convergence rate of
NAG in (Nesterov, 1983), which has demonstrated conver-
gence rates of O(1/t2) for convex problems. Based on this
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insight, we establish the global convergence rate of APG in
the general multi-action bandit setting in Section 5.

4.3. Non-Monotonic Improvement Under APG

In this subsection, we illustrate the difficulties involved in an-
alyzing the convergence of APG, compared to the standard
policy gradient methods through a numerical experiment.
In contrast to the standard policy gradient (PG) method,
which exhibits monotonic improvement, Accelerated Policy
Gradient (APG) could experience non-monotonic progress
as a result of the momentum term, which could lead to
negative performance changes. To further demonstrate this
phenomenon, we conduct a 3-action bandit experiment with
a highly sub-optimal initialization, where the weight of the
optimal action of the initial policy is extremely small. The
detailed configuration is provided in Appendix E. As shown
in Figure 1, the one-step improvement becomes negative
around epoch 180 and provides nearly zero improvement
after that point. Notably, the asymptotic global convergence
of the standard PG is largely built on the monotonic improve-
ment property, as shown in (Agarwal et al., 2021). With that
said, the absence of monotonic improvement in APG poses
a fundamental challenge in analyzing and achieving global
convergence to an optimal policy.

Figure 1. The one-step improvement of APG on a three-action
bandit problem.

5. Convergence Analysis
In this section, we take an important first step towards un-
derstanding the convergence behavior of APG and discuss
the theoretical results of APG in the bandit setting under
softmax parameterization. In the subsequent analysis, we
assume that Assumption 1, 2, 3 are satisfied. Due to the
space limit, we defer the proofs of the following theorems
to Appendix C, D.

5.1. Asymptotic Convergence of APG

In this subsection, we will formally present the asymptotic
convergence result of APG. This necessitates addressing
several key challenges outlined in the introduction section.
We highlight the features in our analysis as follows:

(C1) Lack of monotonic improvement under APG: Re-
call from Section 4.3 that APG is not guaranteed to achieve
monotonic improvement in each iteration due to the mo-
mentum. This is one salient difference from the stan-
dard PG, which inherently enjoys strict improvement and
hence the existence of the limiting value functions (i.e.,
limt→∞ V π

θ(t) (s)) by Monotone Convergence Theorem
(Agarwal et al., 2021). Without monotonicity, it remains un-
known if the limiting value functions even exist. To establish
the existence of the limiting value function, we demonstrate
that the value will always converge to the reward of one of
the arms, even in the scenario where monotonic improve-
ment is lacking. Please see refer to Lemma 10 for further
details.

(C2) The existing results of first-order stationary points
under NAG are not directly applicable: Note that the
asymptotic convergence of standard PG is built on the stan-
dard convergence result of gradient descent for non-convex
problems (i.e., convergence to a first-order stationary point),
as shown in (Agarwal et al., 2021). While it appears natu-
ral to follow the same approach for APG, one fundamental
challenge is that the existing results of NAG for non-convex
problems hold under the assumption of a bounded domain
(e.g., see Theorem 2 of (Ghadimi & Lan, 2016)), which does
not hold under the softmax parameterization in RL as the
domain of the policy parameters and the optimal θ could be
unbounded. This is yet another salient difference between
APG and PG. To address the issue of possibly unbounded
domain , we need to characterize the effective domain, by
considering the maximum growth rate of ∥θ∥ under APG.
Please refer to Appendix B.2 for more comprehensive infor-
mation.

(C3) Characterization of the cumulative effect of each
momentum term: Based on (C1), even if the limiting value
functions exist, another crucial obstacle is to precisely quan-
tify the memory effect of the momentum term on the policy’s
overall evolution. To address this challenge, we thoroughly
examine the cumulation of the gradient and momentum
terms, as well as the APG updates, to offer an accurate
characterization of the momentum’s memory effect on the
policy.

Despite the above, we are still able to tackle all the three
challenges and establish the asymptotic global convergence
of APG as follows. Recall that optimal objective is defined
by (5).

Theorem 1. (Global convergence under softmax param-
eterization) Consider a tabular softmax parameterized
policy πθ. Under APG with η(t) = t

t+1 ·
1
5 , we have

V π
(t)
θ (s)→ V ∗(s) as t→∞, for all s ∈ S.

The complete proof is provided in Appendix C. Specifically,
we address the challenge (C1) in Appendix C.1, (C2) in
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Appendix B.2, and (C3) in Appendix B.1 and C.2-C.3.
Remark 1. Note that Theorem 1 suggests the use of a time-
varying learning rate η(t). This choice is related to one
inherent issue of NAG: the choices of learning rate are typi-
cally different for the convex and the non-convex problems
(e.g., (Ghadimi & Lan, 2016)). Recall from Section 4.2 that
the RL objective could be locally concave around the opti-
mal policy despite its non-concavity of the global landscape.
To enable the use of the same learning rate scheme through-
out the whole training process, we find that incorporating
the ratio t/(t+ 1) could achieve the best of both world.

5.2. Convergence Rate of APG

In this subsection, we leverage the asymptotic convergence
of APG and proceed to characterize the convergence rate of
APG in the bandit setting under softmax parameterization.
In this case, (1) reduces to maximizing the expected reward
Ea∼πθ

[r(a)] = π⊤
θ r.

Recall from Section 4.2, the objective function Ea∼πθ
[r(a)]

can exhibit local concavity. In order to attain this regime
of local concavity, we establish the sufficient condition in
Lemma 1.
Lemma 1. (Local Concavity; Informal). The function
θ → π⊤

θ r is concave if θa∗ − θa > δ for some δ > 0, for
all a ̸= a∗.

The information regarding the time-independent constant δ
mentioned in Lemma 1 is provided in Appendix D.
Remark 2. In simpler terms, Lemma 1 states that when
the action probability of the optimal action a∗ significantly
outweighs the probability of the other actions, the objective
function in the bandit setting enters a region of local con-
cavity. It is crucial to emphasize that this lemma provides
a sufficient condition for the objective function to demon-
strate the local concavity. This condition is not specific to
APG and can actually be applicable to other algorithms or
scenarios as well.

After deriving Lemma 1, our goal is to investigate whether
APG can reach the local concavity regime within a fi-
nite number of time steps. To address this, we establish
Lemma 2, which guarantees the existence of a finite time
T such that our policy will indeed achieve local concavity
through the APG updates and remain within this region
without exiting.
Lemma 2. Consider a tabular softmax parameterized pol-
icy πθ. Under APG with η(t) = t

t+1 ·
1
5 , given any δ > 0,

there exists a finite time T such that for all t > T , we have
θa∗ − θa > δ, for all a ̸= a∗.

In the proof of Lemma 2, it is crucial to require that the
partial derivative is nonnegative for the optimal action and
nonpositive for the sub-optimal action within finite time.

This demands that our value function does not converge be-
low any sub-optimal reward in the bandit setting. Therefore,
we introduce Lemma 3 to assure that the optimal action
parameter increases before our value function surpasses
sub-optimal rewards.

Lemma 3. Under APG, we have inft≥0 π
(t)
θ (a∗) > 0.

Remark 3. While (Mei et al., 2020) presents a similar
argument to Lemma 3, it is crucial to highlight that the ap-
plication and utilization of this argument vary between our
proof and theirs. In their proof, they establish a lower bound
on the one-step improvement using the PL condition and
take the telescoping sum over multiple time steps, necessitat-
ing the characterization of the infimum of the probability of
the optimal action over time. However, due to the intrinsic
behavior of momentum in our approach, we are not allowed
to characterize the improvement in the same manner as they
do. Instead, we utilize this result to ensure that our policy
can satisfy Lemma 2 and attain local concavity. This allows
us to establish the convergence properties of our approach.

With the results of Lemma 1, 2 and 3, we are able to establish
the main result in the bandit setting for APG under softmax
parameterization, which is an Õ(1/t2) convergence rate.

Theorem 2. Consider a tabular softmax parameterized
policy πθ. Under APG with η(t) = t

t+1 ·
1
5 , there exists a

finite time T such that for all t > T , we have:(
π∗ − π

(t)
θ

)⊤
r ≤ |A | − 1

(t− T )2 + | A | − 1
(10)

+
10(2 + T )

(∥∥θ(T )
∥∥+ 2 ln(t− T )

)2
t(t+ 1)

.

(11)

Remark 4. It is important to note that the logarithmic factor
in the sub-optimality gap is a consequence of the unbounded
nature of the optimal parameter in softmax parameterization.
Furthermore, the finite time T mentioned in Theorem 2 guar-
antees that the policy enters the local concavity regime as
established in Lemma 2. Therefore, for a concave function,
we could utilize the O(1/t2) results of the original NAG.

5.3. Lower Bounds

In this subsection, we further present a lower bound of sub-
optimality gap for APG as follows.

Theorem 3. Consider a simple two-armed bandit with ac-
tions a∗, a2, reward function r(a∗) = 1, r(a2) = 0, and
initial policy parameters θ(0)a∗ = θ

(0)
a2 = 0. Under APG with

η(t) = t
t+1 ·

1
5 , for all t > 0, we have:

(
π∗ − π

(t)
θ

)⊤
r = Ω(

1

t2
) (12)
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(a) (b) (c) (d)

Figure 2. A comparison between the performance of APG and PG under a 3-armed bandit with uniform initialization (θ(0) = [0, 0, 0])
and hard initialization (θ(0) = [1, 3, 5] and hence the optimal action has the smallest initial probability): (a)-(b) show the sub-optimality
gaps of APG and PG under uniform and hard initializations, respectively; (c)-(d) show the one-step improvements of APG from the

momentum (i.e., π(t)
ω

⊤
r − π

(t)
θ

⊤
r) and the gradient (i.e., π(t+1)

θ

⊤
r − π

(t)
ω

⊤
r) under uniform and hard initializations, respectively.

The above lower bound indicates that the Õ(1/t2) conver-
gence rate of APG in Theorem 2 is actually tight up to a
logarithmic factor.

Remark 5. Notably, Theorem 3 suggests that the lower
bound Ω(1/t2) of APG holds for some MDPs (and not
necessarily for all MDPs). This result is in essence different
from the lower bound of PG in (Mei et al., 2020), which
shows that the lower bound Ω(1/t) of PG holds for any
MDP. On the other hand, as the lower bound in Theorem
3 focuses on APG, one interesting research question is to
explore whether there exists any first-order method that
could achieve a convergence rate beyond Õ(1/t2) under
softmax policies.

6. Discussions
6.1. Numerical Validation of the Convergence Rates

In this subsection, we empirically validate the conver-
gence rate of APG by conducting experiments on a 3-
armed bandit as well as an MDP with 5 states and 5
actions. The detailed configuration is provided in Ap-
pendix E. Codes are available at https://github.
com/NYCU-RL-Bandits-Lab/APG.

(Bandit) To validate the convergence rate of both APG
and PG, we first conduct a 3-armed bandit experiment with
both a uniform initialization (θ(0) = [0, 0, 0]) and a hard
initialization (θ(0) = [1, 3, 5] and hence the optimal ac-
tion has the smallest initial probability). First, upon plot-
ting the sub-optimality gaps of PG and APG under uni-
forma initialization on a log-log graph in Figure 2(a), we
observe that they exhibit a slope of approximately 1 and
2, respectively, matching the convergence rate of O(1/t)
and Õ(1/t2) shown in Theorem 2. Under the hard initial-
ization, Figure 2(b) shows that APG could escape from
sub-optimality much faster than PG and thereby enjoys fast
convergence. Moreover, Figure 2(c)-2(d) further show that

the momentum term in APG does contribute substantially
in terms of policy improvement, under both initializations.

(MDP) We proceed to validate the convergence rate on
an MDP with 5 states and 5 actions: (i) Uniform initial-
ization: The training curves of value functions and sub-
optimality gap for both APG and PG are depicted in Fig-
ure 3. As shown by the log-log graph in Figure 3(a), the
sub-optimality gap curve of APG exhibits a remarkable
alignment with the Õ(1/t2) curve. Moreover, Figures 3(b)
and 3(c) present the training curves of the value functions
for APG and PG. Notably, the scale of the required train-
ing steps in Figure 3(b) is considerably smaller than that
of Figure 3(c), highlighting the significantly faster conver-
gence of APG compared to PG. 3(d) further confirms that
the momentum term in APG still contributes substantially in
terms of policy improvement in the MDP case. The above
observations demonstrate the potential and efficacy of the
Nesterov acceleration employed in Algorithm 2. (ii) Hard
initialization: We also evaluate APG and PG under a hard
policy initialization. Figure 4 shows that APG could still
escape from sub-optimality much faster than PG in the MDP
case. This further showcases APG’s superiority over PG.

6.2. Lower Bounds of Policy Gradient

Regarding the fundamental capability of PG, (Mei et al.,
2020) has presented a lower bound of sub-optimality gap
for PG. For ease of exposition, we restate the theorem in
(Mei et al., 2020) as follows.
Theorem 4. (Lower bound of sub-optimality gap for PG
in Theorem 10 of (Mei et al., 2020)). Take any MDP. For
large enough t ≥ 1, using Algorithm 1 with η ∈ (0, 1],

V ∗(µ)− V π
(t)
θ (µ) ≥ (1− γ)5 · (∆∗)2

12 · t
, (13)

where ∆∗ := mins∈S,a ̸=a∗(s){Q∗(s, a∗(s))−Q∗(s, a)} >
0 is the optimal value gap of the MDP.

https://github.com/NYCU-RL-Bandits-Lab/APG
https://github.com/NYCU-RL-Bandits-Lab/APG
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(a) (b) (c) (d)

Figure 3. A comparison between the performance of APG and PG under an MDP with 5 states, 5 actions, and uniform policy initialization:
(a) shows the sub-optimality gap of APG and PG via a log-log plot; (b)-(c) show the per-state value functions of APG and PG (and the

optimal objective value V ∗(ρ) ≈ 9.41); (d) presents the one-step improvement of APG from the momentum (i.e., V π
(t)
ω (ρ)− V π

(t)
θ (ρ))

and the gradient (i.e., V π
(t+1)
θ (ρ)− V π

(t)
ω (ρ)).

(a) (b) (c) (d)

Figure 4. A comparison between the performance of APG and PG under an MDP with 5 states, 5 actions, and a hard policy initialization
(and the detailed captions of (a)-(d) exactly follow those in Figures 3(a)-3(d)).

Recall that PG has been shown to have a O(1/t) conver-
gence rate (Mei et al., 2020). Therefore, Theorem 4 indi-
cates that the O(1/t) convergence rate achievable by PG
cannot be further improved.

On the other hand, despite the lower bound shown in The-
orem 4 by (Mei et al., 2020), our results of APG do not
contradict theirs. Specifically, while both APG and PG are
first-order methods that rely solely on first-order derivatives
for updates, it is crucial to highlight that APG encompasses
a broader class of policy updates with the help of the mo-
mentum term in Nesterov acceleration. This allows APG to
utilize the gradient with respect to parameters that PG can-
not attain. As a result, APG exhibits improved convergence
behavior compared to PG. Our findings extend beyond the
scope of PG, demonstrating the advantages of APG in terms
of convergence rate and overall performance.

6.3. Challenges of Convergence Analysis of APG for the
General MDPs

Notably, our analysis in Section 5 paves the way towards
characterizing the convergence rate of APG for general

MDPs. We expect that the key steps and challenges include:
(i) Showing that the limiting value functions exist: This
could be done via showing convergence to stationary points,
under a good characterization of the effective domain of
APG. (ii) Establishing the asymptotic convergence for the
MDP case: With (i), this could be achieved by reusing the
arguments in Appendices C.2-C.3. (iii) Establishing the
convergence rate for the MDP case: With (ii), this could be
achieved by extending the local concavity to the Q-functions.
That said, the challenge lies in that the ordering of the Q-
values could vary continuously during learning.

7. Concluding Remarks
The Nesterov’s Accelerated Gradient method, proposed in
the optimization literature almost four decades ago, pro-
vides a powerful first-order scheme for fast convergence
under a broad class of optimization problems. Over the
past decades since its introduction, NAG has never been
formally analyzed or evaluated in the context of RL for
its global convergence, mainly due to the non-concavity of
the RL objective. In this paper, we propose APG and take
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an important first step towards understanding NAG in RL.
We rigorously show that APG can converge to a globally
optimal policy at a Õ(1/t2) rate in the multi-action bandit
setting. This demonstrates the potential of APG in attaining
fast convergence in RL.

On the other hand, our work also leaves open several inter-
esting research questions: (i) Given the convergence rate in
the bandit setting, one important future work would be to
extend the result in Section 5 to the MDP case. (ii) Given
that our convergence rate is tight up to a logarithmic factor,
it remains open whether this limitation could be addressed
by closing this logarithmic gap. (iii) As this paper mainly
focuses on the exact gradient setting, another promising
research direction is to extend our results of APG to the
stochastic gradient setting, where the advantage function as
well as the gradient are estimated from sampled transitions.
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Appendix
A. Supporting Algorithm
For ease of exposition, we restate the accelerated gradient algorithm stated in (Ghadimi & Lan, 2016) as follows. Note that
we’ve made several revisions so that one could easily compare Algorithm 2 and Algorithm 3: (i) We have exchanged the
positions of the superscript and subscript. (ii) We’ve replaced the original gradient symbol with the gradient of our objective
(i.e. ∇θV

πθ (µ)). (iii) We’ve replaced the time variable k with t. (iv) We’ve changed the algorithm into ascent algorithm (i.e.
the sign in (15) and (16) is plus instead of minus.)

Algorithm 3 The Accelerated Policy Gradient (APG) Algorithm Revised From (Ghadimi & Lan, 2016)

Input: θ(0) ∈ Rn, {α(t)} s.t. α(1) = 1 and α(t) ∈ (0, 1) for any t ≥ 2, {β(t) > 0}, and {λ(t) > 0}.
0. Set the initial points θ(0)ag = θ(0) and t = 1.
1. Set

θ
(t)
md = (1− α(t))θ(t−1)

ag + α(t)θ(t−1). (14)

2. Compute ∇Ψ(θ
(t)
md) and set

θ(t) = θ(t−1) + λ(t)∇θV
πθ (µ)

∣∣∣
θ=θ

(t)
md

, (15)

θ(t)ag = θ
(t)
md + β(t)∇θV

πθ (µ)
∣∣∣
θ=θ

(t)
md

. (16)

3. Set t← t+ 1 and go to step 1.

Lemma 4. (Equivalence between Algorithm 2 and Algorithm 3) Using Algorithm 2 and setting α(t)λ(t) = β(t) and
α(t) = 2

t+1 ,∀t ≥ 1 leads to Algorithm 3 where η(t) = β(t).

Remark 6. Lemma 4 shows that our Algorithm 2 is equivalent to Algorithm 3 so that one can leverage the theoretical result
stated in (Ghadimi & Lan, 2016) and adopt the general accelerated algorithm simultaneously.

Proof of Lemma 4. Since α(t)λ(t) = β(t), by subtracting (16) from α(t) times (15), we have:

α(t)θ(t) − θ(t)ag = α(t)θ(t−1) − θ
(t)
md. (17)

Then, substituting θ
(t)
md in (17) by (14), we have:

θ(t) =
θ
(t)
ag + (1− α(t))θ

(t−1)
ag

α(t)
. (18)

Plugging (18) back into (14), we get:

θ
(t)
md = (1− α(t))θ(t−1)

ag + α(t)θ(t−1) (19)

= (1− α(t))θ(t−1)
ag + α(t) θ

(t−1)
ag + (1− α(t−1))θ

(t−2)
ag

α(t−1)
(20)

= θ(t−1)
ag +

α(t)(1− α(t−1))

α(t−1)
(θ(t−1)

ag − θ(t−2)
ag ). (21)

So by (14) and (21), we could simplify Algorithm 3 into a two variables update:

θ
(t)
md = θ(t−1)

ag +
α(t)(1− α(t−1))

α(t−1)
(θ(t−1)

ag − θ(t−2)
ag ) (22)

θ(t)ag = θ
(t)
md − β(t)∇θV

πθ (µ)
∣∣∣
θ=θ

(t)
md

(23)
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Finally, by plugging α(t) = 2
t+1 and β(t) = η(t), we reach our desired result:

θ
(t)
md = θ(t−1)

ag +
t− 2

t+ 1
(θ(t−1)

ag − θ(t−2)
ag ) (24)

θ(t)ag = θ
(t)
md − η(t)∇θV

πθ (µ)
∣∣∣
θ=θ

(t)
md

(25)

Note that we’ve rearranged the ordering of (24) and (25) to reach our Algorithm 2. In summary, θmd, θag in (24) and (25)
corresponds to ω, θ in Algorithm 2 respectively. And also we’ve turned the first step (24) into initializing ω in Algorithm 2
and follow the residual update.

Algorithm 4 Nesterov’s Accelerated Gradient (NAG) algorithm in (Su et al., 2014)
Input: Learning rate s = 1

L , where L is the Lipschitz constant of the objective function f .
Initialize: x0 and y0 = x0.
for t = 1 to T do

xk = yk−1 − s∇f(yk−1) (26)

yk = xk +
k − 1

k + 2
(xk − xk−1) (27)

end for
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B. Supporting Lemmas
B.1. Useful Properties

For ease of notation, we use ∇(t)
s,a as the shorthand for ∂V πθ (µ)

∂θs,a

∣∣
θ=ω(t) . Moreover, in the sequel, for ease of exposition, for

any pair of positive integers (j, t), we define

G(j, t) :=



1 , if t = j,

1 + j
j+3 , if t = j + 1,

1 + j
j+3 + (j+1)j

(j+4)(j+3) , if t = j + 2,

1 + j
j+3 + (j+1)j

(j+4)(j+3) +
(j+2)(j+1)j

(j+5)(j+4)(j+3) , if t = j + 3,

1 + j
j+3 + (j+1)j

(j+4)(j+3) +
(j+2)(j+1)j

(j+5)(j+4)(j+3) +
∑t−j

k=4
(j+2)(j+1)j

(j+k+2)(j+k+1)(j+k) , if t ≥ j + 4

0 , otherwise.

(28)

Lemma 5. Under APG, we could express the policy parameter as follows:

a) For t ∈ {1, 2, 3, 4}, we have

θ(1)s,a =η(1)∇(0)
s,a + θ(0)s,a, (29)

θ(2)s,a =η(2)∇(1)
s,a + η(1)∇(0)

s,a + θ(0)s,a (30)

θ(3)s,a =η(3)∇(2)
s,a + η(2)(1 +

1

4
)∇(1)

s,a + η(1)∇(0)
s,a + θ(0)s,a (31)

θ(4)s,a =η(4)∇(3)
s,a + η(3)(1 +

2

5
)∇(2)

s,a + η(2)(1 +
1

4
+

2 · 1
5 · 4

)∇(1)
s,a + η(1)∇(0)

s,a + θ(0)s,a (32)

b) For t ≥ 4, we have

θ(t+1)
s,a =η(t+1)∇(t)

s,a + η(t)
(
1 +

t− 1

t+ 2

)
∇(t−1)

s,a + η(t−1)
(
1 +

t− 2

t+ 1
+

(t− 1)(t− 2)

(t+ 2)(t+ 1)

)
∇(t−2)

s,a (33)

+

t−3∑
j=1

η(j+1)
(
1 +

j

j + 3
+

(j + 1)j

(j + 4)(j + 3)
+

(j + 2)(j + 1)j

(j + 5)(j + 4)(j + 3)
+

t−j∑
k=4

(j + 2)(j + 1)j

(j + k + 2)(j + k + 1)(j + k)

)
∇(j)

s,a

(34)

+η(1)∇(0)
s,a + θ(0)s,a (35)

=

t∑
j=1

G(j, t) · η(j+1)∇(j)
s,a + η(1)∇(0)

s,a + θ(0)s,a. (36)

Proof of Lemma 5. Regarding a), one could verify (29)-(32) by directly using the APG update in Algorithm 2. Regarding
b), we prove this by induction. Specifically, suppose (33)-(36) hold for all iterations up to t. By the APG update, we know

θ(t+1)
s,a = θ(t)s,a + η(t+1)∇(t)

s,a +
t− 1

t+ 2
(θ(t)s,a − θ(t−1)

s,a ). (37)

By plugging into (37) the expressions of θ(t)s,a and θ
(t−1)
s,a as suggested by (33)-(36), we could verify that (33)-(36) into hold

for iteration t+ 1.

Lemma 6. (Vector Composition Lemma in (Boyd et al., 2004)). Let f = h (g1(x), g2(x), · · · , gk(x)) where h : Rk →
R, gi : Rn → R. Then, f is concave in x if h is concave and non-decreasing in each argument and gi are concave.

Lemma 7 (Performance Difference Lemma in (Kakade & Langford, 2002)). For each state s0, the difference in the value of
s0 between two policies π and π′ can be characterized as:

V π (s0)− V π′
(s0) =

1

1− γ
Es∼dπ

s0
Ea∼π(·|s)

[
Aπ′

(s, a)
]
. (38)
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Lemma 8. (Lemma 1. in (Mei et al., 2020)). Softmax policy gradient w.r.t. θ is

∂V πθ (µ)

∂θs,a

∣∣∣
θ=θ

=
1

1− γ
· dπθ

µ (s) · πθ(a|s) ·Aπθ (s, a). (39)

Lemma 9. (Lemma 2. in (Mei et al., 2020)). ∀r ∈ [0, 1]| A |, θ → π⊤
θ r is 5/2-smooth.
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B.2. Convergence to First-Order Stationary Points Under APG

For ease of exposition, we restate several theoretical results stated in (Ghadimi & Lan, 2016) as follows. Note that we have
made a minor modification to ensure that Theorem 5 and Theorem 6 from the convex regime can be easily applied to the
concave regime without any loss of generality. This modification also allows for the use of a unified symbol across both
regimes, providing a streamlined and consistent approach.

Theorem 5. (Theorem 1 in (Ghadimi & Lan, 2016) with a slight modification). Let
{
θ
(t)
md, θ

(t)
ag

}
t≥1

be computed by

Algorithm 3 and Γt be defined by:

Γ(t) :=

{
1, t = 1

(1− α(t))Γ(t−1), t ≥ 2
(40)

Given a convex set X such that V πθ (ρ) is concave in X . Suppose
{
θ
(t)
md, θ

(t)
ag

}
t≥1

always remain in the set X , for all t. If

α(t), β(t), λ(t) are chosen such that

α(t)λ(t) ≤ β(t) ≤ 1

L
, (41)

α(1)

λ(1)Γ(1)
≥ α(2)

λ(2)Γ(2)
≥ · · · , (42)

where L is the Lipschitz constant of the objective. Then for any t ≥ 1 and any θ∗∗, we have

V πθ∗∗ (µ)− V π
(t)
θ (µ) ≤

Γ(t)
∥∥θ(0) − θ∗∗

∥∥2
2λ(1)

. (43)

Corollary 1. (Corollary 1 in (Ghadimi & Lan, 2016) with a slight modification). Suppose that
{
α(t)

}
,
{
λ(t)
}

and
{
β(t)

}
in Algorithm 3 are set to

α(t) =
2

(t+ 1) + c
, λ(t) =

(t+ 1) + c

2
· β(t), β(t) =

t+ c

(t+ 1) + c
· 1

2L
, where c > 0. (44)

Given a convex set X such that V πθ (ρ) is concave in X . Suppose
{
θ
(t)
md, θ

(t)
ag

}
t≥1

always remain in the set X , for all t.

Then, for any t ≥ 1 and any θ∗∗, we have

V πθ∗∗ (µ)− V πθt (µ) ≤
4L(2 + c)

∥∥θ(0) − θ∗∗
∥∥2

(t+ c+ 1)(t+ c)
= O(

1

t2
). (45)

Remark 7. Note that we have made the following minor modifications: (i) We have introduced a constant c since our
objective is not concave initially and hence the theoretical result had to be revised to account for the shifted initial learning
rate. (ii) We have adjusted lambda from t

2 to t+1
2 and β from 1

2L to t+c
(t+1)+c ·

1
2L to ensure the applicability of both Lemma 4

and Theorem 5 results.
Remark 8. Note that Theorem 5 and Corollary 1 are built on the local concavity of the objective function. In Appendix D,
we formally show that such local concavity indeed holds under APG in the multi-action bandit setting.

Proof of Corollary 1. We leverage Theorem 5 to reach our desired result. And it remains to show that the chosen of{
α(t), λ(t), β(t)

}
in (44) satisfy (41) and (42). Note that α(t) · λ(t) = β(t), (41) easily holds. And by the definition of Γ(t),

we have:

Γ(t) =
(2 + c)(1 + c)

((t+ 1) + c)(t+ c)
. (46)

Hence we have:

α(t)

λ(t)Γ(t)
=

2
(t+1)+c

(t+1)+c
2 · t+c

(t+1)+c ·
1
2L ·

(2+c)(1+c)
((t+1)+c)(t+c)

=
8L

(2 + c)(1 + c)
, (47)

which makes the condition (42) holds. And hence we reach the desired result by plugging Γ(t) and λ(1) into (43).
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Theorem 6. (Theorem 2 in (Ghadimi & Lan, 2016) with a slight modification). Suppose that α(t), β(t), λ(t) are chosen
such that (41)-(42) hold. Then for any t ≥ 1 and any θ∗∗, we have

min
k=1,2,··· ,t

∥∥∥∇θV
πθ (µ)

∣∣∣
θ=θ(t)

∥∥∥ (48)

≤ 2

[
t∑

k=1

1

Γ(k)
β(k)(1− Lβ(k))

]−1 [∥∥θ(0) − θ∗∗
∥∥

2λ(1)
+

L

Γ(t)
(∥θ∗∗∥2 + max

k=1,2,··· ,t

∥∥∥θ(t)∥∥∥2) + |V π
θ(t) (µ)− V πθ∗∗ (µ)|

Γ(t)

]
.

(49)

Remark 9. Note that we have made the following minor modifications: (i) Instead of the bounded domain X stated in
(Ghadimi & Lan, 2016), we consider an unbounded domain R|S||A|. (ii) Consequently, we replace the bounded domain
constant M with the norm of the parameters without loss of generality. (iii) As the domain is unbounded, the problem reduces
to an unconstrained optimization problem where G(xmd

k ,∇Ψ(xmd
k ), βk) = ∇Ψ(xmd

k ), which represents the gradient norm
and LΨ = Lf = L where L is the Lipschitz constant of the objective.

Proof of Theorem 6. The proof is identical to the one in (Ghadimi & Lan, 2016) until equation (2.53). However, instead of
letting x∗ = x, we choose a surrogate optimal solution x∗∗ = x. Hence, we have:

Ψ(xag
N )−Ψ(x∗∗)

ΓN
+

N∑
k=1

1− LΨβk

2βkΓk

∥∥xag
k − xmd

k

∥∥2 ≤ ∥x0 − x∗∗∥
2λ1

+
Lf

ΓN
(∥x∗∗∥2 +M2), (50)

where, for ease of exposition, we continue to use the same symbols. By rearranging (50) and incorporating the modifications
we have made, we obtain the desired result:

min
k=1,2,··· ,N

∥∥G(xmd
k ,∇Ψ(xmd

k ), βk)
∥∥2( N∑

k=1

βk(1− LΨβk)

2Γk

)
≤

N∑
k=1

βk(1− LΨβk)

2Γk

∥∥G(xmd
k ,∇Ψ(xmd

k ), βk)
∥∥2 (51)

=

N∑
k=1

1− LΨβk

2βkΓk

∥∥xag
k − xmd

k

∥∥2 (52)

≤ ∥x0 − x∗∗∥
2λ1

+
Lf

ΓN
(∥x∗∗∥2 +M2) (53)

+
|Ψ(xag

N )−Ψ(x∗∗)|
ΓN

. (54)

Under APG, our objective function is the value function and since we use the time index t instead of N , Ψ(xag
N ) will be the

value function under θ(t), i.e., V π
θ(t) (µ). Similarly, Ψ(x∗∗) will be V πθ∗∗ (µ). Hence, we obtain the results.

Corollary 2. (Corollary 2 in (Ghadimi & Lan, 2016) with a slight modification). Suppose that
{
α(t)

}
,
{
λ(t)
}

and
{
β(t)

}
in Algorithm 3 are set to

α(t) =
2

t+ 1
, λ(t) =

t+ 1

2
· β(t), β(t) =

t

t+ 1
· 1

2L
, (55)

Then for any t ≥ 1 and any θ∗∗, we have

min
k=1,2,··· ,t

∥∥∥∇θV
πθ (µ)

∣∣∣
θ=θ(t)

∥∥∥ ≤ 192L2

∥∥θ(0) − θ∗∗
∥∥

t(t+ 1)(2t+ 1)
+

48L2

2t+ 1
(∥θ∗∗∥2 + max

k=1,2,··· ,t

∥∥∥θ(t)∥∥∥2) (56)

+
48L · |V π

θ(t) (µ)− V πθ∗∗ (µ)|
2t+ 1

. (57)

Proof of Corollary 2. The results directly follow by plugging the value of Γ(t) = 2
t(t+1) defined in (40), β(k), λ(1) defined

in (55) into (49):

min
k=1,2,··· ,t

∥∥∥∇θV
πθ (µ)

∣∣∣
θ=θ(t)

∥∥∥ (58)
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≤ 2

[
t∑

k=1

1

Γ(k)
β(k)(1− Lβ(k))

]−1 [∥∥θ(0) − θ∗∗
∥∥

2λ(1)
+

L

Γ(t)
(∥θ∗∗∥2 + max

k=1,2,··· ,t

∥∥∥θ(t)∥∥∥2) + |V π
θ(t) (µ)− V πθ∗∗ (µ)|

Γ(t)

]
(59)

= 2

[
t∑

k=1

k(k + 1)

2
· k

2L(k + 1)
· (1− L · k

2L(k + 1)
)

]−1

(60)

·
[
2L
∥∥∥θ(0) − θ∗∗

∥∥∥+ L · t(t+ 1)

2
(∥θ∗∗∥2 + max

k=1,2,··· ,t

∥∥∥θ(t)∥∥∥2) + t(t+ 1) · |V π
θ(t) (µ)− V πθ∗∗ (µ)|

2

]
(61)

≤ 2

[
t∑

k=1

k2

4L
· 1
2

]−1

(62)

·
[
2L
∥∥∥θ(0) − θ∗∗

∥∥∥+ L · t(t+ 1)

2
(∥θ∗∗∥2 + max

k=1,2,··· ,t

∥∥∥θ(t)∥∥∥2) + t(t+ 1) · |V π
θ(t) (µ)− V πθ∗∗ (µ)|

2

]
(63)

= 192L2

∥∥θ(0) − θ∗∗
∥∥

t(t+ 1)(2t+ 1)
+

48L2

2t+ 1
(∥θ∗∗∥2 + max

k=1,2,··· ,t

∥∥∥θ(t)∥∥∥2) + 48L · |V π
θ(t) (µ)− V πθ∗∗ (µ)|
2t+ 1

. (64)
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C. Asymptotic Convergence
For ease of exposition, we restate the bandit case setting as follows:

Bandit Case. A bandit case is a special case of the reinforcement learning problem in which there is only one single state.
Given a bandit case with |A| actions

[
a∗, a2, · · · , a|A|

]
and rewards r =

[
r(a∗), r(a2), · · · , r(a|A|)

]
. We parametrized the

policy under softmax, (i.e. we define πθ = softmax(θ) where θ = [θa∗ , θa2
, · · · , θa|A| ]. Without loss of generality and for

simplicity, we assume that the optimal action a∗ is unique and r(a∗) > r(a2) > · · · > r(a|A|). The uniqueness assumption
can be lifted with a little extra work.

C.1. Existence of Limiting Value Functions

As mentioned in Section 5.1, one fundamental challenge of the convergence analysis of APG lies in the lack of monotonic
improvement. As a result, it remains unknown if the limiting value functions even exist. Despite this, we are able to show
that the limiting value functions indeed exist in the general multi-action bandit setting.

Lemma 10. Under APG, in the bandit setting, the limits limt→∞ V π
(t)
θ (s), limt→∞ Qπ

(t)
θ (s, a), and limt→∞ Aπ

(t)
θ (s, a)

all exist, for all state s ∈ S.

Proof of Lemma 10.

Claim 1. The proof can be completed by making the following claims:

a) If the gradient vector and the momentum vector share identical signs, then we have V π
(t+1)
θ (µ) ≥ V π

(t)
θ (µ).

b) In the bandit setting, if r(ai) > V π
(Tai

−1)

θ (s) > r(ai+1) and r(ai−1) > V π
(Tai

)

θ (s) > r(ai) for some Ta, then we have
V π

(t)
θ (s) > r(ai) for all t ≥ Tai

where i = 2, 3, · · · , | A |.

c) Under APG, in the bandit setting, there exists a finite time T0 after which V πθ (µ) either consistently increases or
converges at a stationary point. Hence, there may be two distinct situations:

• V π
(t+1)
θ (µ) ≥ V π

(t)
θ (µ) for all t > T0.

• V π
(t)
θ (µ)→ r(a′) as t→∞ for some a′ ∈ A.

d) In both situations, since V πθ (µ) is bounded above, by the monotone convergence theorem, we conclude that the limits
limt→∞ V π

(t)
θ (s), limt→∞ Qπ

(t)
θ (s, a), and limt→∞ Aπ

(t)
θ (s, a) all exist for all states s ∈ S.

Claim a). We show the desired result by leveraging Lemma 7. According to Performance Difference Lemma, in order to
show that V π

(t+1)
θ (µ) ≥ V π

(t)
θ (µ), it is sufficient to show that:∑

a∈A
π
(t+1)
θ (a|s)Aπ

(t)
θ (s, a) > 0, ∀s ∈ S. (65)

To reach (65), we have ∀s ∈ S:∑
a∈A

π
(t+1)
θ (a|s)Aπ

(t)
θ (s, a) =

∑
a∈A

exp(θ
(t+1)
s,a )∑

a∈A θ
(t+1)
s,a

Aπ
(t)
θ (s, a) (66)

=

∑
a∈A θ

(t)
s,a∑

a∈A θ
(t+1)
s,a

∑
a∈A

exp(θ
(t+1)
s,a )∑

a∈A θ
(t)
s,a

Aπ
(t)
θ (s, a) (67)

>

∑
a∈A θ

(t)
s,a∑

a∈A θ
(t+1)
s,a

∑
a∈A

exp(θ
(t)
s,a)∑

a∈A θ
(t)
s,a

Aπ
(t)
θ (s, a) (68)

=

∑
a∈A θ

(t)
s,a∑

a∈A θ
(t+1)
s,a

∑
a∈A

πm(a|s)Aπ
(t)
θ (s, a) (69)

= 0, (70)
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where (68) holds based on the assumption that the gradient vector and the momentum vector share identical signs and the
fact that θ(t+1)

s,a ≥ θ
(t)
s,a if Aπ

(t)
θ (s, a) ≥ 0 and θ

(t+1)
s,a ≤ θ

(t)
s,a if Aπ

(t)
θ (s, a) ≤ 0 as shown in Lemma 8.

Claim b). By Algorithm 2, the momentum vector at time t is t−1
t+2 (θ

(t) − θ(t−1)). Hence we have that the gradient and
the momentum can exhibit opposite signs exclusively when there is a change in the sign of the gradient. So given the

fact that r(ai) > V π
(Tai

−1)

θ (s) > r(ai+1) and r(ai−1) > V π
(Tai

)

θ (s) > r(ai), we have that the gradient ∂V π
(t)
θ (µ)

∂θs,ai
and the

momentum t−1
t+2 (θ

(t)
s,ai − θ

(t−1)
s,ai ) might exhibit opposite signs while other element in the gradient vector must be identical to

the sign with the corresponding element in the momentum.

Hence, by Lemma 7, we have for all T (ai−1) > t > T (ai):

V π
(t+1)
θ (s)− V π

(t)
θ (s) =

∑
a∈A

π
(t+1)
θ (a|s)Aπ

(t)
θ (s, a) (71)

=
∑
a∈A

exp(θ
(t+1)
s,a )∑

a∈A exp(θ
(t+1)
s,a )

Aπ
(t)
θ (s, a) (72)

=

∑
a∈A exp(θ

(t)
s,a)∑

a∈A exp(θ
(t+1)
s,a )

∑
a∈A

exp(θ
(t+1)
s,a )∑

a∈A exp(θ
(t)
s,a)

Aπ
(t)
θ (s, a) (73)

≥
∑

a∈A exp(θ
(t)
s,a)∑

a∈A exp(θ
(t+1)
s,a )

∑
a∈A

exp(θ
(t)
s,a)∑

a∈A exp(θ
(t)
s,a)

Aπ
(t)
θ (s, a) +

exp(θ
(t+1)
s,ai )− exp(θ

(t)
s,ai)∑

a∈A exp(θ
(t+1)
s,a )

Aπ
(t)
θ (s, ai)

(74)

≥
∑

a∈A exp(θ
(t)
s,a)∑

a∈A exp(θ
(t+1)
s,a )

∑
a∈A

πm(a|s)Aπ
(t)
θ (s, a) +

exp(θ
(t+1)
s,ai )∑

a∈A exp(θ
(t+1)
s,a )

Aπ
(t)
θ (s, ai) (75)

≥ 0 +Aπ
(t)
θ (s, ai) (76)

= Aπ
(t)
θ (s, ai), (77)

where (74) holds based on the assumption that the gradient vector and the momentum vector share identical signs for all
a ̸= ai and the fact that θ(t+1)

s,a ≥ θ
(t)
s,a if Aπ

(t)
θ (s, a) ≥ 0 and θ

(t+1)
s,a ≤ θ

(t)
s,a if Aπ

(t)
θ (s, a) ≤ 0 as shown in Lemma 8.

Claim c). By Algorithm 2, the momentum vector at time t is t−1
t+2 (θ

(t) − θ(t−1)). Hence we have that the gradient and
the momentum can exhibit opposite signs exclusively when there is a change in the sign of the gradient. That said, the
gradient and the momentum can exhibit opposite signs at time t exclusively when there exists a time Ta < t such that
V π

(Ta)
θ (s) > r(a) > V π

(Ta−1)
θ (s) for some a ∈ A and also the gradient and the momentum exhibit opposite signs for all

t′ ∈ [Ta, t].

Additionally, by Claim (b), we have that there exist at most | A | − 1 time such that V π
(Ta)
θ (s) > r(a) > V π

(Ta−1)
θ (s) for

some a ∈ A. Hence we discuss two possible case:

• Case 1. For all Ta such that once V π
(Ta)
θ (s) > r(a) > V π

(Ta−1)
θ (s), there exists a finite time Ta

′ > Ta such that the
gradient vector and the momentum vector share identical signs at t = Ta

′:

Since the gradient vector and the momentum vector share identical signs at t = Ta
′, we have that V π

(t)
θ (µ) enjoys

monotonic improvement if Ta′ > t > Ta
′ where Ta′ is the next time step such that the sign of the gradient has changed

again. Moreover, since there only exist at most | A | − 1 time such that V π
(Ta)
θ (s) > r(a) > V π

(Ta−1)
θ (s) for some

a ∈ A, we have that after time T0 = maxa Ta
′, the gradient vector and the momentum vector share identical signs. And

so by Claim (a), we have that V π
(t+1)
θ (µ) ≥ V π

(t)
θ (µ) for all t ≥ T0.

• Case 2. There exists some Ta such that once V π
(Ta)
θ (s) > r(a) > V π

(Ta−1)
θ (s), the gradient and the momentum exhibit

opposite signs for all t ≥ Ta:
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Since the magnitude of the momentum is bounded above, we have that the gradient and the momentum exhibit opposite
signs for all t ≥ Ta if and only if ∂π⊤

θ r
∂θa

∣∣∣
θ=ω(t)

→ 0. Based on the converging gradient and the fact that the gradient and

the momentum exhibit opposite signs, we can conclude that π⊤
θ r → r(a), which also leading to the stationary point of

the objective.
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C.2. Supporting Lemmas for Asymptotic Convergence of APG

In the sequel, we use A(t)(s, a), Q(t)(s, a), and V (t)(s) as the shorthand of Aπ(t)
ω (s, a), Qπ(t)

ω (s, a), and V π(t)
ω (s), respec-

tively. For ease of exposition, we divide the action space into the following subsets based on the advantage function:

I+s := {a ∈ A : lim
t→∞

A(t)(s, a) > 0} (78)

I−s := {a ∈ A : lim
t→∞

A(t)(s, a) < 0} (79)

I0s := {a ∈ A : lim
t→∞

A(t)(s, a) = 0} (80)

Note that the above action sets are well-defined as the limiting value functions exist by Lemma 10. Moreover, we would like
to highlight that the theoretical results in Appendix C.2 and C.3 are directly applicable to the general MDP case as long as
the limiting value functions exist.

For ease of notation, for each state s, we define

∆s := min
a∈I+

s ∪I−
s

|A(t)(s, a)|. (81)

Accordingly, we know that for each state s ∈ S, there must exist some T̄s such that the following hold :

• (i) For all a ∈ I+s , we have

A(t)(s, a) ≥ +
∆s

4
, for all t ≥ T̄s, (82)

• (ii) For all a ∈ I−s , we have

A(t)(s, a) ≤ −∆s

4
, for all t ≥ T̄s. (83)

• (iii) For all a ∈ I0s , we have

|A(t)(s, a)|≤ ∆s

4
, for all t ≥ T̄s. (84)

Lemma 11. For any state s ∈ S, we have
∑

a∈I+
s ∪I−

s
π
(t)
θ (a|s) → 0, as t → ∞. As a result, we also have∑

a∈I0
s
π
(t)
θ (a|s)→ 1, as t→∞.

Proof of Lemma 11. Given that the limiting value functions exist as well as the fact that dπθ
µ (s) ≥ µ(s)

1−γ > 0, we know that
for any state-action pair (s, a),

π
(t)
θ (a|s)Aπ

(t)
θ (s, a)→ 0, as t→∞. (85)

• For any a ∈ I+s , by definition we have limt→∞ Aπ
(t)
θ (s, a) > 0. By (85), this implies that π(t)

θ (a|s)→ 0, as t→∞.

• Similarly, for any a ∈ I−s , by definition we have limt→∞ Aπ
(t)
θ (s, a) < 0. Again, by (85), this property implies that

π
(t)
θ (a|s)→ 0, as t→∞.

Hence, we have
∑

a∈I+
s ∪I−

s
π
(t)
θ (a|s)→ 0, as t→∞.

Lemma 12. Under APG, for any iteration k and any state-action pair (s, a), we have∑
a∈A

θ(k)s,a =
∑
a∈A

θ(0)s,a. (86)

Proof of Lemma 12. We prove this by induction and show the following two claims:

Claim a).
∑

a∈A θ
(1)
s,a =

∑
a∈A θ

(0)
s,a and

∑
a∈A θ

(2)
s,a =

∑
a∈A θ

(0)
s,a.
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Note that under APG, we have

θ(1)s,a = ω(0)
s,a + η(1)

∂V πθ (µ)

∂θs,a

∣∣∣
θ=ω(0)

= θ(0)s,a + η(1) · 1

1− γ
dπ

(0)
θ (s)π

(0)
θ (a|s)Aπ

(0)
θ (s, a), (87)

where the second equality holds by the initial condition of APG (i.e., ω(0) = θ(0)) as well as the softmax policy gradient
in Lemma 8. By taking the sum of (87) over all the actions, we have

∑
a∈A θ

(1)
s,a =

∑
a∈A θ

(0)
s,a due to the fact that∑

a∈A πθ(a|s)Aπθ (s, a) = 0, for any θ. Similarly, we have

θ(2)s,a = ω(1)
s,a + η(2) · ∂V

πθ (µ)

∂θs,a

∣∣∣
θ=ω(1)

(88)

= θ(1)s,a +
0

3
· (θ(1)s,a − θ(0)s,a) + η(2) · 1

1− γ
dπ

(1)
ω (s)π(1)

ω (a|s)Aπ(1)
ω (s, a). (89)

By taking the sum of (89) over all the actions, we have
∑

a∈A θ
(2)
s,a =

∑
a∈A θ

(0)
s,a by

∑
a∈A θ

(1)
s,a =

∑
a∈A θ

(0)
s,a and the fact

that
∑

a∈A πθ(a|s)Aπθ (s, a) = 0, for all θ.

Claim b). If
∑

a∈A θ
(k)
s,a =

∑
a∈A θ

(0)
s,a for all k ∈ {1, · · · ,M}, then

∑
a∈A θ

(M+1)
s,a =

∑
a∈A θ

(0)
s,a.

We use an argument similar to (89). That is,

θ(M+1)
s,a = ω(M)

s,a + η(M+1) · ∂V
πθ (µ)

∂θs,a

∣∣∣
θ=ω(M)

(90)

= θ(M)
s,a +

M − 1

M + 2
· (θ(M)

s,a − θ(M−1)
s,a ) + η(M+1) · 1

1− γ
dπ

(M)
ω (s)π(M)

ω (a|s)Aπ(M)
ω (s, a). (91)

By taking the sum of (91) over all the actions, we could verify that
∑

a∈A θ
(M+1)
s,a =

∑
a∈A θ

(0)
s,a.

Lemma 13. Let a be an action in I+s . Under APG, θ(t)s,a and ω
(t)
s,a must be bounded from below, for all t.

Proof of Lemma 13. Recall that we define ∆s := mina∈I+
s ∪I−

s
|Aπ(t)

ω (s, a)|. Then, there must exist T0 ∈ N such that

Aπ(t)
ω (s, a) ≥ ∆s

4 , for all t ≥ T0.

For ease of notation, we let δT0
:= θ

(T0)
s,a − θ

(T0−1)
s,a . By a similar argument, for any M ∈ N, we have

θ(T0+M)
s,a = ω(T0+M−1)

s,a + η(T0+M) · ∂V
πθ (µ)

∂θs,a

∣∣∣
θ=ω(T0+M−1)︸ ︷︷ ︸
≥0

(92)

≥ θ(T0+M−1)
s,a +

T0 +M − 2

T0 +M + 1
(θ(T0+M−1)

s,a − θ(T0+M−2)
s,a ) (93)

≥ θ(T0)
s,a +

T0 − 1

T0 + 2
δT0

+
T0(T0 − 1)

(T0 + 3)(T0 + 2)
δT0

+ · · ·+ (T0 +M − 2) · · · (T0 − 1)

(T0 +M + 1) · · · (T0 + 2)
δT0

(94)

= θ(T0)
s,a +

[T0 − 1

T0 + 2
+

T0(T0 − 1)

(T0 + 3)(T0 + 2)
+

M∑
τ=2

(T0 + 1)T0(T0 − 1)

(T0 + τ + 2)(T0 + τ + 1)(T0 + τ)

]
δT0 . (95)

Note that for any M ∈ N,
M∑
τ=2

(T0 + 1)T0(T0 − 1)

(T0 + τ + 2)(T0 + τ + 1)(T0 + τ)
(96)

= (T0 + 1)T0(T0 − 1)

M∑
τ=2

1

2

( 1

(T0 + τ)(T0 + τ + 1)
− 1

(T0 + τ + 1)(T0 + τ + 2)

)
(97)

= (T0 + 1)T0(T0 − 1) · 1
2

( 1

(T0 + 2)(T0 + 3)
− 1

(T0 +M + 1)(T0 +M + 2)

)
(98)

≤ T0

2
. (99)
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Therefore, we know that for any M ∈ N,

θ(T0+M)
s,a ≥ θ(T0)

s,a − (2 +
T0

2
)|δT0

|. (100)

Hence, θ(t)s,a ≥ θ
(T0)
s,a − (2 + T0

2 )|δT0
|, for all t ≥ T0. As the gradient under softmax parameterization is always bounded,

this also implies that ω(t)
s,a is bounded from below, for all t.

Lemma 14. Let a be an action in I−s . Under APG, θ(t)s,a and ω
(t)
s,a must be bounded from above, for all t.

Proof of Lemma 14. To prove this, we could follow the same procedure as that in Lemma 13. Again, for ease of notation,
we define ∆s := mina∈I+

s ∪I−
s
|Aπ(t)

ω (s, a)| and define δT0
:= θ

(T0)
s,a − θ

(T0−1)
s,a . Accordingly, there must exist T0 ∈ N such

that Aπ(t)
ω (s, a) ≤ −∆s

4 , for all t ≥ T0. Moreover, by the update scheme of APG, we have

θ(T0+1)
s,a = ω(T0)

s,a + η(T0+1) · ∂V
πθ (µ)

∂θs,a

∣∣∣
θ=ω(T0)︸ ︷︷ ︸

≤0

≤ ω(T0)
s,a = θ(T0)

s,a +
T0 − 1

T0 + 2
(θ(T0)

s,a − θ(T0−1)
s,a ). (101)

Similarly, for any M ∈ N, we have

θ(T0+M)
s,a = ω(T0+M−1)

s,a + η(T0+M) · ∂V
πθ (µ)

∂θs,a

∣∣∣
θ=ω(T0+M−1)︸ ︷︷ ︸
≤0

(102)

≤ θ(T0+M−1)
s,a +

T0 +M − 2

T0 +M + 1
(θ(T0+M−1)

s,a − θ(T0+M−2)
s,a ) (103)

≤ θ(T0)
s,a +

T0 − 1

T0 + 2
δT0

+
T0(T0 − 1)

(T0 + 3)(T0 + 2)
δT0

+ · · ·+ (T0 +M − 2) · · · (T0 − 1)

(T0 +M + 1) · · · (T0 + 2)
δT0

(104)

= θ(T0)
s,a +

[T0 − 1

T0 + 2
+

T0(T0 − 1)

(T0 + 3)(T0 + 2)
+

M∑
τ=2

(T0 + 1)T0(T0 − 1)

(T0 + τ + 2)(T0 + τ + 1)(T0 + τ)

]
δT0

. (105)

By (96)-(99), we know
∑M

τ=2
(T0+1)T0(T0−1)

(T0+τ+2)(T0+τ+1)(T0+τ) ≤
T0

2 . As a result, for any M ∈ N,

θ(T0+M)
s,a ≤ θ(T0)

s,a + (2 +
T0

2
)|δT0 |. (106)

Hence, θ(t)s,a ≤ θ
(T0)
s,a + (2 + T0

2 )|δT0
|, for all t ≥ T0. As the gradient under softmax parameterization is always bounded,

this also implies that ω(t)
s,a is bounded from above, for all t.

Lemma 15. Under APG, if I+s is non-empty, then we have maxa∈I0
s
θ
(t)
s,a →∞, as t→∞.

Proof. By Lemma 11, we know
∑

a∈I0
s
π
(t)
θ (a|s)→ 1, as t→∞. Moreover, by Lemma 13, we know θ

(t)
s,a is bounded from

below, for all a ∈ I+s . Therefore, under the softmax policy parameterization, we must have maxa∈I0
s
θ
(t)
s,a →∞.

Recall from (83) that for all a ∈ I−s , we have A(t)(s, a) ≤ −∆s

4 for all t ≥ T̄s.

Lemma 16. Under APG, if I+s is non-empty, then for any a ∈ I−s , we have θ
(t)
s,a → −∞, as t→∞.

Proof of Lemma 16. We prove this contradiction. Motivated by the proof of Lemma C11 in (Agarwal et al., 2021), our
proof here extends the argument to the case with the momentum by considering the cumulative effect of all the gradient
terms on the policy parameter.
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Specifically, given an action a ∈ I−s , suppose that there exists ϑ such that θ(t)s,a > ϑ, for all t ≥ T̄s. Then, by Lemma 12
and Lemma 15, we know there must exist an action a′ ∈ A such that lim inft→∞ θ

(t)
s,a′ = −∞. Let δ > 0 be some positive

scalar such that θ(T̄s)
s,a ≥ ϑ− δ. For each t ≥ T̄s, define

ν(t) := max{τ : θ
(τ)
s,a′ ≥ ϑ− δ, T̄s ≤ τ ≤ t}, (107)

which is essentially the latest iteration at which θ
(τ)
s,a′ crosses ϑ− δ from the above. Moreover, we define an index set

J (t) :=
{
τ :

∂V (τ)(µ)

∂θs,a′
< 0, ν(t) < τ < t

}
. (108)

Define the cumulative effect (up to iteration t) of the gradient terms from those iterations in J (t) as

Z(t) :=
∑

t′∈J (t)

η(t
′+1) · ∂V

(t′)(µ)

∂θs,a′
·G(t′, t), (109)

where G(t, t′) is the function defined in (28). Note that if J (t) = ∅, we define Z(t) = 0. Accordingly, we know that for
any t > T̄s, we have

Z(t) ≤
∑

t′∈J (t)

η(t
′+1) · ∂V

(t′)(µ)

∂θs,a′
·G(t′, t) +

∑
t′:t′ /∈J (t),ν(t)<t′<t

η(t
′+1) · ∂V

(t′)(µ)

∂θs,a′
·G(t′, t)︸ ︷︷ ︸

≥0,by the definition of J (t)

(110)

+
∑

t′≤ν(t)

η(t
′+1) ·

(∂V (t′)(µ)

∂θs,a′
+

1

(1− γ)2
)
·G(t′, t)︸ ︷︷ ︸

≥0,by the fact that |∂V (t′)(µ)/∂θs,a′ |≤1/(1−γ)2

(111)

≤ (θ
(t)
s,a′ − θ(1)s,a) +

∑
t′≤ν(t)

η(t
′+1) 1

(1− γ)2
G(t′, t), (112)

where (112) holds by the update scheme of APG as in Algorithm 2. Note that as lim inft→∞ θ
(t)
s,a′ = −∞, then ν(t) must

be finite, for all t. This also implies that
∑

t′≤ν(t) η
(t′+1) 1

(1−γ)2G(t′, t) is finite, for all t. Therefore, by taking the limit
infimum on both sides of (112), we know

lim inf
t→∞

Z(t) = −∞. (113)

Now we are ready to quantify θ
(t)
s,a for the action a ∈ I−s . For all t′ ∈ J (t), we must have

|∂V (t′)(µ)/∂θs,a|
|∂V (t′)(µ)/∂θs,a′ |

=

∣∣∣∣ π(t′)(a|s)A(t′)(s,a)

π(t′)(a′|s)A(t′)(s,a′)

∣∣∣∣ ≥ exp(ϑ− θ
(t′)
s,a′) ·

(1− γ)∆s

4
≥ exp(δ) · (1− γ)∆s

4
, (114)

where the first inequality follows from that |A(t′)(s, a)| ≤ 1/(1− γ) and that A(t′)(s, a) ≤ −∆s/4, and the second equality
holds by the definition of ν(t). For any J (t) ̸= ∅, we have

θ(t)s,a − θ(1)s,a =
∑

t′:1≤t′<T̄s

η(t
′+1) · ∂V

(t′)(µ)

∂θs,a
·G(t′, t) +

∑
t′:t′≥T̄s

η(t
′+1) · ∂V

(t′)(µ)

∂θs,a
·G(t′, t) (115)

≤
∑

t′:1≤t′<T̄s

η(t
′+1) · ∂V

(t′)(µ)

∂θs,a
·G(t′, t) +

∑
t′:t′∈J (t)

η(t
′+1) · ∂V

(t′)(µ)

∂θs,a
·G(t′, t) (116)

≤
∑

t′:1≤t′<T̄s

η(t
′+1) · ∂V

(t′)(µ)

∂θs,a
·G(t′, t)

︸ ︷︷ ︸
<∞ and does not depend on t

+exp(δ) · (1− γ)∆s

4

∑
t′:t′∈J (t)

η(t
′+1) · ∂V

(t′)(µ)

∂θs,a′
·G(t′, t)

︸ ︷︷ ︸
≡Z(t)

,

(117)

where (116) holds by the fact that A(t)(s, a) < 0 for all t ≥ T̄s and (117) is a direct result of (114). Therefore, by taking the
limit infimum on both sides of (117), we have lim inft→∞ θ

(t)
s,a = −∞, which leads to contradiction.
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For ease of notation, we define ∆θ
(t)
s,a := θ

(t)
s,a − θ

(t−1)
s,a , for each state-action pair s, a and t ∈ N.

Lemma 17. Consider any state s with non-empty I+s . Let a+ ∈ I+s and a ∈ I0s . Suppose θ(τ)s,a+ > θ
(τ)
s,a and ∆θ

(τ)
s,a+ > ∆θ

(τ)
s,a ,

then we also have θ
(t)
s,a+ > θ

(t)
s,a and ∆θ

(t)
s,a+ > ∆θ

(t)
s,a, for all t > τ .

Proof of Lemma 17. We prove this by induction. Suppose at some time τ > T̄s, we have θ(τ)s,a+ > θ
(τ)
s,a and ∆θ

(τ)
s,a+ > ∆θ

(τ)
s,a .

Then, we have

ω(τ)
s,a+

= θ(τ)s,a+
+

τ − 1

τ + 2
(θ(τ)s,a+

− θ(τ−1)
s,a+

) > θ(τ)s,a +
τ − 1

τ + 2
(θ(τ)s,a − θ(τ−1)

s,a ) = ω(τ)
s,a (118)

Recall that we use A(t)(s, a), Q(t)(s, a) and V (t)(s) as the shorthand of Aπ(t)
ω (s, a), Qπ(t)

ω (s, a) and V π(t)
ω (s), respectively.

Note that

∂V (t)(s)

∂θs,a+

=
1

1− γ
· dπω(t)

µ (s) · π(t)
ω (a+|s) · (Q(t)(s, a+)− V (t)(s)) (119)

>
1

1− γ
· dπω(t)

µ (s) · π(t)
ω (a|s) · (Q(t)(s, a)− V (t)(s)) (120)

=
∂V (t)(s)

∂θs,a
, (121)

where (120) holds by (118) and the fact that τ > T̄s implies A(t)(s, a+) ≥ A(t)(s, a). Therefore, by (118)-(121), we must
have

θ(τ+1)
s,a+

= ω(τ)
s,a+

+ η(t+1) ∂V
(t)(s)

∂θs,a+

> ω(τ)
s,a + η(t+1) ∂V

(t)(s)

∂θs,a
= θ(τ+1)

s,a , (122)

∆θ(τ+1)
s,a+

=
τ − 1

τ + 2
(θ(τ)s,a+

− θ(τ−1)
s,a+

) +
∂V (t)(s)

∂θs,a+

>
τ − 1

τ + 2
(θ(τ)s,a − θ(τ−1)

s,a ) +
∂V (t)(s)

∂θs,a
= ∆θ(τ+1)

s,a . (123)

By repeating the above argument, we know θts,a+
> θts,a and ∆θts,a+

> ∆θts,a, for all t > τ .

Next, we take a closer look at the actions in I0s . We further decompose I0s into two subsets as follows: For any state with
non-empty I+s , for any a ∈ I+s , we define

B0
s (a+) :=

{
a ∈ I0s : For any t ≥ T̄s, either θ(t)s,a ≥ θ(t)s,a+

or ∆θ(t)s,a ≥ ∆θ(t)s,a+

}
(124)

We use B̄0
s (a+) to denote the complement of B0

s (a+). As a result, we could write B̄0
s (a+) as

B̄0
s (a+) :=

{
a ∈ I0s : θ(t)s,a < θ(t)s,a+

and ∆θ(t)s,a < ∆θ(t)s,a+
, for some t ≥ T̄s

}
. (125)

Lemma 18. Under APG, if I+s is not empty, then:

a) For any a+ ∈ I+s , we have ∑
a∈B0

s(a+)

π
(t)
θ (a|s)→ 1, as t→∞. (126)

b) For any a+ ∈ I+s , we have
max

a∈B0
s(a+)

θ(t)s,a →∞, as t→∞. (127)

c) For any a+ ∈ I+s , we have ∑
a∈B0

s(a+)

θ(t)s,a →∞, as t→∞. (128)
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Proof of Lemma 18. Regarding (a), by the definition of B̄0
s (a+), for each a ∈ B0

s (a+), there must exist some T ′ ≥ T̄s such
that θ(T

′)
s,a+ > θ

(T ′)
s,a and ∆θ

(T ′)
s,a+ > ∆θ

(T ′)
s,a . Then, by Lemma 17, we know

θ(t)s,a+
> θ(t)s,a and ∆θ(t)s,a+

> ∆θ(t)s,a, for all t ≥ T ′. (129)

Moreover, by Lemma 11 and that a+ ∈ I+s , we have π(t)(a+|s)→ 0 as t→∞. Based on (129), this shall further imply
that π(t)(a+|s)→ 0 as t→∞, for any a ∈ B̄0

s (a+). Hence, we conclude that∑
a∈B̄0

s(a+)

π(t)(a|s)→ 1, as t→∞. (130)

Regarding (b), based on the result in (a), we could leverage exactly the same argument as that of Lemma 15 and obtain that
maxa∈B0

s(a+) θ
(t)
s,a →∞, as t→∞.

Regarding (c), let us consider any action a ∈ B̄0
s (a+). By the definition of B0

s (a+), at each iteration t ≥ T̄s, either
θ
(t)
s,a ≥ θ

(t)
s,a+ or ∆θ

(t)
s,a ≥ ∆θ

(t)
s,a+ holds. As a result, by Lemma 13, we know that θ(t)s,a must also be bounded from below, for

all t. Therefore, based on the result in (b), we know
∑

a∈B0
s(a+) θ

(t)
s,a →∞, as t→∞.

Lemma 19. Under APG, for any a+ ∈ I+s , the following two properties about B̄0
s (a+) shall hold:

(a) There must exist some Ta+
such that for all a ∈ B̄0

s (a+),

π(t)(a+|s) > π(t)(a|s) for all t > Ta+
. (131)

(b) There must exist some T †
a+

such that for all a ∈ B̄0
s (a+),

|A(t)(s, a)| < π(t)(a+|s)
π(t)(a|s)

· ∆s

16|A|
, for all t > T †

a+
. (132)

Moreover, this also implies that∑
a∈B̄0

s(a+)

π(t)(a|s)|A(t)(s, a)| < π(t)(a+|s) ·
∆s

16
, for all t > T †

a+
. (133)

Proof of Lemma 19. Regarding (a), for each a ∈ B̄0
s (a+), we define

ua(a+) := inf{τ ≥ T̄s : θ
(τ)
s,a+

> θ(τ)s,a and ∆θ(τ)s,a+
> ∆θ(τ)s,a}. (134)

By the definition of B̄0
s (a+), we know the following two facts: (i) ua(a+) is finite, for any a ∈ B̄0

s (a+). (ii) By Lemma 17,
for all t ≥ ua(a+), we must have θ(t)s,a+ > θ

(t)
s,a and ∆θ

(t)
s,a+ > ∆θ

(t)
s,a. Therefore, by choosing Ta+

:= maxa∈B̄0
s(a+) ua(a+),

we must have π(t)(a+|s) > π(t)(a|s), for all t > Ta+
.

Regarding (b), as π(t)(a+|s)
π(t)(a|s) > 1 for all t > Ta+

(this is a direct result of (a)), we know that for each a ∈ B̄0
s (a+) ⊆ I0s ,

there must exist some finite t′a > Ta+
such that

|A(t)(s, a)| < π(t)(a+|s)
π(t)(a|s)

· ∆s

16|A|
, for all t ≥ t′a. (135)

As a result, by choosing T †
a+

:= maxa∈B̄0
s(a+) t

′
a, we conclude that (132)-(133) indeed hold.

Lemma 20. If I+s is non-empty, then for any a+ ∈ I+s , there exists some finite T̃a+ such that∑
a∈I−

s

π(t)(a|s)A(t)(s, a) > −π(t)(a+|s)
∆s

16
, for all t ≥ T̃a+

. (136)
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Proof. Let a+ ∈ I+s and a− ∈ I−s . By Lemma 13 and Lemma 16, we know θ
(t)
s,a+ is always bounded from below and

θ
(t)
s,a− →∞, as t→∞. This implies that π(t)(a−|s)/π(t)(a+|s)→ 0, as t→∞. Therefore, there must exist some finite
t′a−

such that
π(t)(a−|s)
π(t)(a+|s)

<
∆s(1− γ)

16|A|
, for all t ≥ t′a−

. (137)

By choosing T̃a+ := maxa−∈I−
s
t′a−

, we know (136) holds for all t ≥ T̃a+ .
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C.3. Putting Everything Together: Asymptotic Convergence of APG

Now we are ready to put everything together and prove Theorem 1. For ease of exposition, we restate Theorem 1 as follows.

Theorem 1. (Global convergence under softmax parameterization) Consider a tabular softmax parameterized policy πθ.
Under APG with η(t) = t

t+1 ·
1
5 , we have V π

(t)
θ (s)→ V ∗(s) as t→∞, for all s ∈ S.

Proof of Theorem 1. We prove this by contradiction. Suppose there exists at least one state s ∈ S with a non-empty I+s .
Consider an action a+ ∈ I+s . Recall the definitions of T̄s, Ta+

, T †
a+

, and T̃a+
from (82)-(84), Lemma 19, and Lemma 20,

respectively. We define Tmax := max{T̄s, Ta+
, T †

a+
, T̃a+

}. Note that for all t > Tmax, we have

0 =
∑

a∈B0
s(a+)

π(t)(a|s)A(t)(s, a) +
∑

a∈B̄0
s(a+)

π(t)(a|s)A(t)(s, a)

︸ ︷︷ ︸
>−π(t)(a+|s)∆s

16 by Lemma 19

+
∑
a∈I+

s

π(t)(a|s)A(t)(s, a)

︸ ︷︷ ︸
≥π(t)(a+|s)∆s

4

+
∑
a∈I−

s

π(t)(a|s)A(t)(s, a)

︸ ︷︷ ︸
>−π(t)(a+|s)∆s

16 by Lemma 20

(138)

>
∑

a∈B0
s(a+)

π(t)(a|s)A(t)(s, a) +
1

8
· π(t)(a+|s)∆s (139)

>
∑

a∈B0
s(a+)

π(t)(a|s)A(t)(s, a). (140)

Note that (140) implies
∑

a∈B0
s(a+)

∂V (t)(µ)
∂θs,a

< 0, for all t > Tmax. Moreover, we have∑
a∈B0

s(a+)

θ(t)s,a − θ(1)s,a (141)

=
∑

a∈B0
s(a+)

t∑
t′=1

η(t
′+1) · ∂V

(t′)(µ)

∂θs,a′
·G(t′, t) (142)

=

t∑
t′=1

η(t
′+1)G(t′, t) ·

( ∑
a∈B0

s(a+)

∂V (t′)(µ)

∂θs,a′

)
(143)

=

Tmax∑
t′=1

η(t
′+1)G(t′, t) ·

( ∑
a∈B0

s(a+)

∂V (t′)(µ)

∂θs,a′

)
︸ ︷︷ ︸

<∞ and does not depend on t

+

t∑
t′=Tmax+1

η(t
′+1)G(t′, t) ·

( ∑
a∈B0

s(a+)

∂V (t′)(µ)

∂θs,a′

)
.

︸ ︷︷ ︸
<0 by (140)

(144)

By taking the limit of the both sides of (144), we know that the left-hand side of (144) shall go to positive infinity by Lemma
18, but the right-hand side of (144) is bounded from above. This leads to contradiction and hence completes the proof.



Accelerated Policy Gradient: On the Nesterov Momentum for Reinforcement Learning

D. Convergence Rates of APG: The Multi-Action Bandit Case
D.1. Õ(1/t2) Convergence Rate of APG

Theorem 2. Consider a tabular softmax parameterized policy πθ. Under APG with η(t) = t
t+1 ·

1
5 , there exists a finite time

T such that for all t > T , we have:(
π∗ − π

(t)
θ

)⊤
r ≤ |A | − 1

(t− T )2 + | A | − 1
(10)

+
10(2 + T )

(∥∥θ(T )
∥∥+ 2 ln(t− T )

)2
t(t+ 1)

. (11)

Proof of Theorem 2.

Claim 2. The proof can be completed by making the following claims:

a) By Lemma 1, the function θ → π⊤
θ r is concave if θa∗ − θa > δ for all a ̸= a∗ where δ = ln r(a2)(| A |−1)

r(a∗)−r(a2)
+ ln(1 +(| A |−1

2

)
)− ln(d(a∗)− d(ai)).

b) By Lemma 2, given such δ, there exists a finite time T such that θ(t)a∗ − θ
(t)
a > δ holds for all t > T , a ̸= a∗.

c) APG enjoys the convergence rate of Õ( 1
t2 ) after time T .

Claim c). As the objective π⊤
θ r enters a locally concave region after time T , it is necessary to account for a shift in the

initial learning rate due to the passage of time T . In other words, if we divide the update process into two phases based on
time T , the latter phase will commence with a modified learning rate. Hence, by Corollary 1 and Lemma 9 with c = T and
θ∗∗ = θ(t)∗∗, we have that for all t > T :

π
(t)
θ∗∗

⊤
r − π

(t)
θ

⊤
r ≤

4L(2 + T )
∥∥θ(0) − θ(t)∗∗

∥∥2
(t+ T + 1)(t+ T )

(145)

=
10(2 + T )

∥∥θ(T ) − θ(t)∗∗
∥∥2

(t+ T + 1)(t+ T )
(146)

=
10(2 + T )

(∥∥θ(T )
∥∥+ 2 ln(t− T )

)2
(t+ T + 1)(t+ T )

, (147)

where θ(t)∗∗ := [2 ln(t − T ), 0, 0, · · · , 0] is a chosen surrogate optimal solution at time t. Additionally, we have the
sup-optimality gap between the original optimal solution and the surrogate optimal solution can be bounded as:

π∗⊤r − π
(t)
θ∗∗

⊤
r = r(a∗)− π

(t)
θ∗∗

⊤
r (148)

≤ r(a∗)
(
1− π

(t)
θ∗∗(a

∗)
)

(149)

= r(a∗)

(
1− exp(2 ln(t− T ))

exp(2 ln(t− T )) + exp(0) · (| A | − 1)

)
(150)

= r(a∗)

(
| A | − 1

(t− T )2 + | A | − 1

)
(151)

≤ |A | − 1

(t− T )2 + | A | − 1
, (152)

where (149) holds since we ignore the terms π(t)
θ∗∗(a) · r(a) ≥ 0 for every a ̸= a∗ .Combining (145-152), we get our desired

result.

Remark 10. It is crucial to highlight that we consider the surrogate optimal solution θ(t)∗∗ instead of the original optimal
solution θ∗ due to the unbounded optimal solution of softmax parameterization.
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Lemma 1. (Local Concavity; Informal). The function θ → π⊤
θ r is concave if θa∗ − θa > δ for some δ > 0, for all a ̸= a∗.

Proof of Lemma 1.

Claim 3. The proof can be completed by making the following claims:

a) The function θ → πθ(a
∗) is concave and the functions θ → πθ(a) are convex if θa∗ − θa > δ for all a ̸= a∗ where

δ = ln r(a2)(| A |−1)
r(a∗)−r(a2)

+ ln(1 +
(| A |−1

2

)
)− ln(d(a∗)− d(ai)).

b) The function θ → π⊤
θ r

′ is concave if θa∗−θa > δ for all a ̸= a∗, where r′ = [r(a∗)−r(a2), r(a2)−r(a2), · · · , r(a|A|)−
r(a2)] is the shifted reward function.

c) The update of the objective π⊤
θ r under the original reward r is equivalent to the update of the objective π⊤

θ r
′ under any

shifted reward function r′ =
[
r(a∗)− c, r(a2)− c, · · · , r(a|A|)− c

]
, where c ∈ R is a constant.

d) Combining (a)-(c),we can conclude that the objective function π⊤
θ r will undergo an update identical to that of the concave

function π⊤
θ r

′ if θa − θa > δ for all a ̸= a.

Claim a). We establish the convexity of the function θ → πθ(a) for all a ̸= a∗ by demonstrating that if θa∗ − θa >

ln r(a2)(| A |−1)
r(a∗)−r(a2)

+ ln(1 +
(| A |−1

2

)
)− ln(d(a∗)− d(ai)) for all a ̸= a∗, then the function is convex. Following that, since

πθ(a
∗) = 1−

∑
a̸=a∗ πθ(a) can be viewed as a summation of concave functions, it follows that θ → πθ(a

∗) is concave.

Given an action ai ̸= a∗, since the concavity is determined by the behavior of a function on arbitrary line on its domain, it is
sufficient to show that the following function is concave (i.e. the second derivative is non-positive) when k → 0:

f(k) =
eθai

+k·di

eθa∗+k·d1 + eθa2
+k·d2 + · · ·+ e

θa|A|+k·d| A |
(153)

=
1

e(θa∗−θai
)+k·(d1−di) + e(θa2−θai

)+k·(d2−di) + · · ·+ e
(θa|A|−θai

)+k·(d| A |−di)
(154)

:=
1

m(k)
, (155)

where d = [d1, d2, · · · , d| A |] is any unit vector on the domain.

By taking the second derivative of f(k), we have:

f
′′
(k) =

2(m
′
(k))2

m(k)3
− m

′′
(k)

m(k)2
. (156)

And so, we have the second derivative of f(k) when k → 0 is:

f
′′
(0) =

1

m(0)2

(
2(m

′
(0))2

m(0)
−m

′′
(0)

)
. (157)

Note that since m(k) ≥ 0 for all k, we have that f
′′
(0) > 0 (convex) if and only if:

2(m
′
(0))2 −m

′′
(0) ·m(0) > 0, (158)

where m′(0) =
∑

a̸=ai
(d(a)− d(ai)) exp(θa − θai) and m′′(0) =

∑
a ̸=ai

(d(a)− d(ai))
2 exp(θa − θai).

By plugging m(0),m′(0),m′′(0) into (158) we have:

2(m′(0))2 −m
′′
(0) ·m(0) = 2

∑
a̸=ai

(d(a)− d(ai))
2 exp(2θa − 2θai

) (159)
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+ 2
∑

a,a′ ̸=ai,a ̸=a′

2(d(a)− d(ai))(d(a
′)− d(ai)) exp(θa + θa′ − 2θai) (160)

−
∑
a̸=ai

(d(a)− d(ai))
2 exp(2θa − 2θai) (161)

−
∑

a,a′ ̸=ai,a̸=a′

(
(d(a)− d(ai))

2 + (d(a′)− d(ai))
2
)
exp(θa + θa′ − 2θai) (162)

−
∑
a̸=ai

(d(a)− d(ai))
2 exp(θa − θai

) (163)

=
∑
a̸=ai

(d(a)− d(ai))
2 (exp(2θa − 2θai

)− exp(θa − θai
)) (164)

+
∑

a,a′ ̸=ai,a̸=a′

2(d(a)− d(ai))(d(a
′)− d(ai)) exp(θa + θa′ − 2θai

) (165)

−
∑

a,a′ ̸=ai,a̸=a′

(d(a)2 + d(a′)2) exp(θa + θa′ − 2θai
) (166)

≥ (d(a∗)− d(ai)) (exp(2θa∗ − 2θai)− exp(θa∗ − θai)) (167)

−
∑

a,a′ ̸=ai,a ̸=a′

(d(a)2 + d(a′)2) exp(θa + θa′ − 2θai
) (168)

≥ (d(a∗)− d(ai)) exp(2θa∗ − 2θai
) (169)

−
(
1 +

(
| A | − 1

2

))
max

a,a′ ̸=ai,a ̸=a′
exp(θa + θa′ − 2θai) (170)

> 0, if θa∗ − θa > ln(1 +

(
| A | − 1

2

)
)− ln(d(a∗)− d(ai)) for all a ̸= a∗. (171)

To ensure − ln(d(a∗)− d(ai)) is bounded, we can introduce a tighter bound by considering δ = ln r(a2)(| A |−1)
r(a∗)−r(a2)

+ ln(1 +(| A |−1
2

)
) − ln(d(a∗) − d(ai)). This choice of δ ensures that π⊤

θ r > r(a2), which guarantees that the domain for d1 is
positive, while the domains for the other di values, where i = 2, 3, . . . , |A|, are negative.

Claim b) Since the sum of several concave functions is itself concave, we separate our proof into 2 steps and leverages
Lemma 6 to show that the function θ → πθ(a)(r(a)− r(a2)) is concave for all a ∈ A if θa∗ − θa > δ, for all a ̸= a∗:

• The function θ → πθ(a
∗)(r(a∗)− r(a2)) is concave if θa∗ − θa > δ, for all a ̸= a∗:

Since we’ve already shown the concavity of the function θ → πθ(a
∗), it remains to show the concavity and the non-

decrease of the function πθ(a
∗)→ πθ(a

∗)·(r(a∗)−r(a2)). And this property directly hold since πθ(a
∗)·(r(a∗)−r(a2))

is a linear function of πθ(a
∗) with ∂πθ(a

∗)·(r(a∗)−r(a2))
∂πθ(a∗) = r(a∗)− r(a2) > 0 and ∂2πθ(a

∗)·(r(a∗)−r(a2))
∂π(a∗)2 = 0.

• The function θ → πθ(ai)(r(ai)− r(a2)) is concave for all i = 2, 3, · · · , | A |, if θa∗ − θa > δ, for all a ̸= a∗:
Since r(ai)− r(a2) ≤ 0 for all i = 2, 3, · · · , | A |, we have θ → πθ(ai)(r(ai)− r(a2)) = −πθ(ai) · |r(ai)− r(a2)|.
Also by the convexity of the function θ → πθ(a), we have the function θ → −πθ(a) is concave. And it remains to
show the concavity and the non-decrease of the function πθ(ai) → πθ(a

∗) · |r(ai) − r(a2)|. This property directly
hold since πθ(ai) · |r(ai)− r(a2)| is a linear function of πθ(a

∗) with ∂πθ(ai)·|r(ai)−r(a2)|
∂πθ(ai)

= |r(ai)− r(a2)| ≥ 0 and
∂2πθ(ai)·|r(ai)−r(a2)|

∂πθ(ai)2
= 0.

Claim c) To reach the equivalent update result, it is sufficient to show that the gradient of the original objective π⊤
θ r is equal

to the shifted objective π⊤
θ r

′ under all θ. By Lemma 8, we have for all a ∈ A:

∂π⊤
θ r

∂θa

∣∣∣∣
θ=θ

= πθ(a) · (r(a)− π⊤
θ r) = πθ(a) · ((r(a)− c)− (π⊤

θ r − c)) =
∂π⊤

θ r
′

∂θa

∣∣∣∣
θ=θ

, (172)

which complete our proof.
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Lemma 2. Consider a tabular softmax parameterized policy πθ. Under APG with η(t) = t
t+1 ·

1
5 , given any δ > 0, there

exists a finite time T such that for all t > T , we have θa∗ − θa > δ, for all a ̸= a∗.

Proof of Lemma 2.

Claim 4. The proof can be completed by making the following claims:

a) Under APG, the gradient norm will not converge at the sub-optimal policy, i.e. we have
inf

t≥0,π
(t)⊤
θ r∈[0,r(a2)]

∥∥∥∂π⊤
θ r

∂θ

∣∣∣
θ=θ(t)

∥∥∥ ≥ inft≥0 π
(t)
θ (a∗) · (r(a∗)− r(a2)) > 0.

b) Given any δ > 0, there exist an ϵ > 0 such that if
∥∥∥∂π⊤

θ r
∂θ

∣∣∣
θ=θ(t)

∥∥∥ < ϵ, then θa∗ − θa > δ for all a ̸= a∗.

c) Given any ϵ > 0, there exist a finite time T such that
∥∥∥∂π⊤

θ r
∂θ

∣∣∣
θ=θ(T )

∥∥∥ < ϵ, leading to the fact that θ(T )
a∗ − θ

(T )
a > δ for all

a ̸= a∗ at time T .

d) We have θ
(t)
a∗ − θ

(t)
a > δ for all a ̸= a∗, t ≥ T .

Claim a) To reach the desired result, we leverage Lemma 3 to ensure the gradient norm is bounded away from 0 before
achieving optimal policy: ∥∥∥∥∂π⊤

θ r

∂θ

∣∣∣
θ=θ(t)

∥∥∥∥ =

√∑
a∈A

π
(t)
θ (a)2 · (r(a)− π

(t)⊤
θ r)2 (173)

≥
√
π
(t)
θ (a∗)2 · (r(a∗)− π

(t)⊤
θ r)2 (174)

= π
(t)
θ (a∗) · (r(a∗)− π

(t)⊤
θ r) (175)

≥ inf
t≥0

π
(t)
θ (a∗) · (r(a∗)− r(a2)) (176)

> 0, for all π(t)⊤
θ r ∈ [0, r(a2)], (177)

where (173) is followed by Lemma 8 and (177) is by Lemma 3.

Claim b) By choosing ϵ with:

ϵ = min

{
inf

t≥0,π
(t)⊤
θ r∈[0,r(a2)]

∥∥∥∥∂π⊤
θ r

∂θ

∣∣∣
θ=θ(t)

∥∥∥∥ , (178)

1

eδ + | A | − 1
· inf
t≥0,a̸=a∗,π

(t)⊤
θ r∈(r(a2),r(a∗)]

|r(a)− π
(t)⊤
θ r|

}
> 0, (179)

we could ensure that the minimum must occur at π⊤
θ r ∈ [r(a∗), r(a2)). And so we have

inf
t≥0,a ̸=a∗,π

(t)⊤
θ r∈(r(a2),r(a∗)]

|r(a)− π
(t)⊤
θ r| > 0.

Hence, by Lemma 8, we have for all a ∈ A:

inf
t≥0,a ̸=a∗,π

(t)⊤
θ r∈(r(a2),r(a∗)]

|r(a)− π
(t)⊤
θ r|

eδ + (| A | − 1)
>
∥∥∇θπ

⊤
θ r
∥∥ ≥ πθ(a) · |r(a)− π⊤

θ r| (180)

by rearranging (180), we get:

1

eδ + (| A | − 1)
≥

inf
t≥0,a̸=a∗,π

(t)⊤
θ r∈(r(a2),r(a∗)]

|r(a)− π
(t)⊤
θ r|

|r(a)− π⊤
θ r|

· 1

eδ + (| A | − 1)
> πθ(a) (181)

for all a ̸= a∗, leading to our desired result.

Claim c) By Theorem 1, we have that there exist a finite time T0 such that θ
(t)
a∗ > θ

(t)
a for all a ̸= a∗ and θ

(t)
a

will be decreasing for all a ̸= a∗ for all t ≥ T0. If we run K iterations, the above statement leads to the fact that

maxk=1,2,··· ,K
∥∥θ(k)∥∥2 ≤ maxt′≤T0

∥∥∥θ(t′)∥∥∥2 + | A |(θ(K)
a∗ )2. We discuss two possible cases as follows:
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• Case 1: θ(K)
a∗ ≤ 2 ln(K) + maxt′≤T0,a ̸=a∗{θ(t

′)
a }+ ln(| A | − 1):

By Corollary 2 with the surrogate optimal solution θ∗∗ := θ(K)∗∗ := [2 ln(K), 0, 0, · · · , 0], we have:

min
k=1,2,··· ,K

∥∥∥∥∂π⊤
θ r

∂θ

∣∣∣
θ=θ(k)

∥∥∥∥ ≤ 192L2

∥∥θ(0) − θ(K)∗∗
∥∥

K(K + 1)(2K + 1)
+

48L2

2K + 1
(4| ln(K)|2 + max

k=1,2,··· ,K

∥∥∥θ(k)∥∥∥2) (182)

+
48L · |V π

θ(K) (µ)− V πθ∗∗ (µ)|
2K + 1

(183)

≤ 192L2

∥∥θ(0)∥∥+ 2| ln(K)|
K(K + 1)(2K + 1)

(184)

+
48L2

2K + 1
(4| ln(K)|2 + max

t′≤T0

∥∥∥θ(t′)∥∥∥2 + | A |(2 ln(K) + max
t′≤T0,a ̸=a∗

{θ(t
′)

a }+ ln(| A | − 1))2)

(185)

+
48L · |V π

θ(K) (µ)− V πθ∗∗ (µ)|
2K + 1

(186)

= Õ(
1

K
). (187)

Hence the result directly holds by choosing (by changing variable from K to t),

T = inf

{
t : ϵ ≥ 192L2

∥∥θ(0)∥∥+ 2| ln(t)|
t(t+ 1)(2t+ 1)

(188)

+
48L2

2t+ 1
(4| ln(t)|2 +max

t≤T0

∥∥∥θ(t)∥∥∥2 + | A |(2 ln(t) + max
t≤T0,a ̸=a∗

{θa}+ ln(| A | − 1))2) (189)

+
48L · |V π

θ(t) (µ)− V πθ∗∗ (µ)|
2t+ 1

}
. (190)

• Case 2: θ(K)
a∗ > 2 ln(K) + maxt′≤T0,a ̸=a∗{θ(t

′)
a }+ ln(| A | − 1):

Given such θ
(K)
a∗ , we have:

π
(K)
θ (a∗) =

exp(θ
(K)
a∗ )∑

a∈A exp(θ
(K)
a )

>
exp(2 ln(K))

exp(2 ln(K)) +
∑

a̸=A exp(− ln(| A | − 1))
≥ K2

K2 + 1
. (191)

And hence we have: ∥∥∥∥∂π⊤
θ r

∂θ

∣∣∣
θ=θ(K)

∥∥∥∥ =

√∑
a∈A

π
(K)
θ (a)2 · (r(a)− π

(K)⊤
θ r)2 (192)

≤
√

(r(a∗)− π
(K)⊤
θ r)2 +

∑
a ̸=a∗

π
(K)
θ (a)2 (193)

≤

√
1

(K2 + 1)2
+

1

(K2 + 1)2
(194)

≤
√
2

K2 + 1
. (195)

Hence the result directly holds by choosing (by changing variable from K to t),

T = inf

{
t : ϵ ≥

√
2

t2 + 1

}
. (196)
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Claim d) We elaborate on each action a ̸= a∗ separately. For a fix a ̸= a∗, since there exists a finite T such that
θ
(T )
a∗ − θ

(T )
a > δ provided by Claim (c), there is a Ta such that Ta ≤ T , θ(Ta)

a∗ − θ
(Ta)
a > δ, and θ

(Ta−1)
a∗ − θ

(Ta−1)
a ≤ δ.

Then, we have
θ
(Ta)
a∗ − θ

(Ta−1)
a∗ > θ(Ta)

a − θ(Ta−1)
a (197)

We first show two useful properties:

(i) If θ(t)a∗ − θ
(t)
a > δ and ω

(t)
a∗ − θ

(t)
a∗ ≥ ω

(t)
a − θ

(t)
a , then ∂π⊤

θ r
∂θa∗

∣∣∣
θ=ω(t)

≥ ∂π⊤
θ r

∂θa

∣∣∣
θ=ω(t)

.

Since θ
(t)
a∗ − θ

(t)
a > δ > 0, it follows that

ω
(t)
a∗ = θ

(t)
a∗ + (ω

(t)
a∗ − θ

(t)
a∗ ) (198)

> θ(t)a + (ω(t)
a − θ(t)a ) (199)

= ω(t)
a . (200)

By Lemma 8, we have

∂π⊤
θ r

∂θa∗

∣∣∣∣
θ=ω(t)

= πω(t)(a∗) · (r(a∗)− π⊤
ω(t)r) (201)

≥ πω(t)(a) · (r(a)− π⊤
ω(t)r) (202)

=
∂π⊤

θ r

∂θa

∣∣∣∣
θ=ω(t)

, (203)

where (202) holds because of that ω(t)
a∗ > ω

(t)
a and thus πω(t)(a∗) > πω(t)(a), and r(a∗) > r(a).

(ii) If θ
(t)
a∗ − θ

(t)
a > δ, ω(t)

a∗ − θ
(t)
a∗ ≥ ω

(t)
a − θ

(t)
a , and ∂π⊤

θ r
∂θa∗

∣∣∣
θ=ω(t)

≥ ∂π⊤
θ r

∂θa

∣∣∣
θ=ω(t)

, then θ
(t+1)
a∗ − θ

(t+1)
a > δ and

ω
(t+1)
a∗ − θ

(t+1)
a∗ ≥ ω

(t+1)
a − θ

(t+1)
a .

For θ(t+1)
a∗ − θ

(t+1)
a > δ,

θ
(t+1)
a∗ − θ(t+1)

a =

(
θ
(t)
a∗ + (ω

(t)
a∗ − θ

(t)
a∗ ) + η(t+1) · ∂π

⊤
θ r

∂θa∗

∣∣∣∣
θ=ω(t)

)
−
(
θ(t)a + (ω(t)

a − θ(t)a ) + η(t+1) · ∂π
⊤
θ r

∂θa

∣∣∣∣
θ=ω(t)

)
(204)

≥ θ
(t)
a∗ − θ(t)a > δ. (205)

For ω(t+1)
a∗ − θ

(t+1)
a∗ ≥ ω

(t+1)
a − θ

(t+1)
a ,

ω
(t+1)
a∗ − θ

(t+1)
a∗ =

t

t+ 3
(θ

(t+1)
a∗ − θ

(t)
a∗ ) (206)

=
t

t+ 3

(
ω
(t)
a∗ − θ

(t)
a∗ + η(t+1) ∂π⊤

θ r

∂θa∗

∣∣∣∣
θ=ω(t)

)
(207)

≥ t

t+ 3

(
ω(t)
a − θ(t)a + η(t+1) ∂π⊤

θ r

∂θa

∣∣∣∣
θ=ω(t)

)
(208)

=
t

t+ 3
(θ(t+1)

a − θ(t)a ) (209)

= ω(t+1)
a − θ(t+1)

a , (210)

where (208) is followed by the given hypotheses ω(t)
a∗ − θ

(t)
a∗ ≥ ω

(t)
a − θ

(t)
a and ∂π⊤

θ r
∂θa∗

∣∣∣
θ=ω(t)

≥ ∂π⊤
θ r

∂θa

∣∣∣
θ=ω(t)

.

By the above two properties, it suffices to show that there is T ′ such that θ(T
′)

a∗ −θ
(T ′)
a > δ and ω

(T ′)
a∗ −θ

(T ′)
a∗ ≥ ω

(T ′)
a −θ

(T ′)
a ,

then we will obtain that θ(t)a∗ − θ
(t)
a > δ for any t ≥ T ′.
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We claim that T ′ = Ta. Since Ta satisfies θ(Ta)
a∗ − θ

(Ta)
a > δ, we only need to show that ω(Ta)

a∗ − θ
(Ta)
a∗ ≥ ω

(Ta)
a − θ

(Ta)
a . To

check the condition, we directly expand ω
(Ta)
a∗ − θ

(Ta)
a∗ , we obtain

ω
(Ta)
a∗ − θ

(Ta)
a∗ =

Ta − 1

Ta + 2
(θ

(Ta)
a∗ − θ

(Ta−1)
a∗ ) (211)

>
Ta − 1

Ta + 2
(θ(Ta)

a − θ(Ta−1)
a ) (212)

= ω(Ta)
a − θ(Ta)

a , (213)

where (211), (213) use the update of APG, and (212) holds by (197). Therefore, we show that θ(Ta)
a∗ − θ

(Ta)
a > δ and

ω
(Ta)
a∗ − θ

(Ta)
a∗ ≥ ω

(Ta)
a − θ

(Ta)
a . Hence, θ(t)a∗ − θ

(t)
a > δ for any t ≥ Ta.

Since the above statement holds for any action a ̸= a∗, we obtain that θ(t)a∗ − θ
(t)
a > δ for all a ̸= a∗, t ≥ maxa ̸=a∗ Ta.

Additionally, T ≥ maxa̸=a∗ Ta, so θ
(t)
a∗ − θ

(t)
a > δ for all a ̸= a∗, t ≥ T .

Lemma 3. Under APG, we have inft≥0 π
(t)
θ (a∗) > 0.

Remark 11. Inspired by the proof of (Mei et al., 2020), we consider two “nice regions” in terms of time: one region (we
call it “gradient region”) characterized by a positive partial derivative with respect to the optimal action and the negative
partial derivatives of all other actions, and another region (we call it “momentum region”) characterized by the maximum
momentum of the optimal action. If our training process enters these regions, we can ensure that the probability of selecting
the optimal action does not decrease. Consequently, the infimum of π(t)

θ (a∗) will remain greater than zero. It is important to
highlight that our approach selects a more aggressive gradient region compared to the one chosen in (Mei et al., 2020). By
doing so, we are able to streamline their proof to some extent without oversimplifying it.

Proof of Lemma 3. Firstly, we define two sets consisting of time indices with great properties of gradient and momentum.

R1 =

{
t :

∂π⊤
θ r

∂θa∗

∣∣∣∣
θ=ω(t)

≥ 0 ≥ ∂π⊤
θ r

∂θa

∣∣∣∣
θ=ω(t)

, for all a ̸= a∗
}
, (214)

R2 =
{
t : ω

(t)
a∗ − θ

(t)
a∗ ≥ ω(t)

a − θ(t)a , for all a ̸= a∗
}
. (215)

Inspired by (Mei et al., 2020), we make the following claims, and then prove these claims immediately as follows.

Claim 5. The following hold:

a) There exists a finite T1 such that if t ≥ T1, then π
(t)
θ (a∗) ≥ r(a2)

r(a∗) and π
(t)
ω (a∗) ≥ r(a2)

r(a∗) .

b) If t ≥ T1, then t ∈ R1.

c) There exists a finite T2 ≥ T1 such that if t ≥ T2, then t ∈ R2.

d) If t ≥ T2, then t ∈ R1 ∩R2. Moreover, we have π
(t+1)
θ (a∗) ≥ π

(t)
θ (a∗). Hence, it follows that

inf
t≥0

π
(t)
θ (a∗) = min

0≤t≤T2

π
(t)
θ (a∗). (216)

Claim a). By the asymptotic global convergence in Theorem 1, we have that π(t)
θ (a∗)→ 1 and π

(t)
ω (a∗)→ 1 as t→∞.

Since a∗ is unique, r(a2)
r(a∗) < 1. According to the ϵ− δ argument of limit, there exists a finite T1 such that if t ≥ T1, then

π
(t)
θ (a∗) ≥ r(a2)

r(a∗) and π
(t)
ω (a∗) ≥ r(a2)

r(a∗) .

Claim b). Given t ≥ T1, by Lemma 8, we have

∂π⊤
θ r

∂θa∗

∣∣∣∣
θ=ω(t)

= π(t)
ω (a∗)(r(a∗)− π(t)⊤

ω r) ≥ 0, (217)
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where (217) holds by r(a∗) is always greater than or equal to the convex combination of rewards. Regarding the sub-optimal
actions a ̸= a∗,

∂π⊤
θ r

∂θa

∣∣∣∣
θ=ω(t)

= π(t)
ω (a)(r(a)− π(t)⊤

ω r) (218)

≤ π(t)
ω (a)(r(a)− π(t)

ω (a∗)r(a∗)) (219)

≤ π(t)
ω (a)(r(a)− r(a2)) (220)

≤ 0, (221)

where (219) holds since we ignore the terms π(t)
ω (a)r(a) ≥ 0 for every a ̸= a∗, and (220) holds because t ≥ T1, we have

π
(t)
ω (a∗) ≥ r(a2)

r(a∗) . Combining (217-221), we obtain t ∈ R1.

Claim c). Part (i): We show that for t ≥ T1 and any a ∈ A, if ω(t)
a∗−θ(t)a∗ ≥ ω

(t)
a −θ(t)a , then ω(t+1)

a∗ −θ(t+1)
a∗ ≥ ω

(t+1)
a −θ(t+1)

a .
By combining the updates (8) and (9), we have

θ(t+1)
a ← θ(t)a + (ω(t)

a − θ(t)a ) + η(t+1) ∂π⊤
θ r

∂θa

∣∣∣∣
θ=ω(t)

. (222)

By using the update (9) of APG with respect to the action a∗ and (222),

ω
(t+1)
a∗ − θ

(t+1)
a∗ =

t

t+ 3
(θ

(t+1)
a∗ − θ

(t)
a∗ ) (223)

=
t

t+ 3

(
ω
(t)
a∗ − θ

(t)
a∗ + η(t+1) ∂π⊤

θ r

∂θa∗

∣∣∣∣
θ=ω(t)

)
(224)

≥ t

t+ 3

(
ω(t)
a − θ(t)a + η(t+1) ∂π⊤

θ r

∂θa

∣∣∣∣
θ=ω(t)

)
(225)

=
t

t+ 3
(θ(t+1)

a − θ(t)a ) (226)

= ω(t+1)
a − θ(t+1)

a , (227)

where (225) is followed by the hypothesis ω(t)
a∗ − θ

(t)
a∗ ≥ ω

(t)
a − θ

(t)
a and t ≥ T1 so ∂π⊤

θ r
∂θa∗

∣∣∣
θ=ω(t)

≥ ∂π⊤
θ r

∂θa

∣∣∣
θ=ω(t)

. We finish
the proof of Part (i).

Part (ii): We show that there exists a finite T2 ≥ T1 such that if t ≥ T2, then t ∈ R2. We prove it by contradiction. Suppose
that there is no such T2. Thus, there are infinitely many t ≥ T1 such that there is an action a violating the condition of lying
in R2 at time t, i.e., ω(t)

a∗ − θ
(t)
a∗ < ω

(t)
a − θ

(t)
a , as the definition (215) of R2. Since our action space is finite, there is an

action ã such that ω(t)
a∗ − θ

(t)
a∗ < ω

(t)
ã − θ

(t)
ã holds for infinitely many t ≥ T1.

We claim that there is a T̃ ≥ T1 such that for all t ≥ T̃ , ω(t)
a∗ − θ

(t)
a∗ < ω

(t)
ã − θ

(t)
ã . If not, there is a t0 ≥ T1 such

that ω(t0)
a∗ − θ

(t0)
a∗ ≥ ω

(t0)
a − θ

(t0)
a , then by Part (i), ω(t)

a∗ − θ
(t)
a∗ ≥ ω

(t)
a − θ

(t)
a holds for every t ≥ t0, which contradicts

to ω
(t)
a∗ − θ

(t)
a∗ < ω

(t)
ã − θ

(t)
ã holds for infinitely many t ≥ T1. Thus, there is a T̃ ≥ T1 such that for all t ≥ T̃ ,

ω
(t)
a∗ − θ

(t)
a∗ < ω

(t)
ã − θ

(t)
ã .

To meet the contradiction, for any N > T̃ , we consider

θ
(N)
a∗ = θ

(T̃ )
a∗ +

N−1∑
t=T̃

(θ
(t+1)
a∗ − θ

(t)
a∗ ) (228)

= θ
(T̃ )
a∗ +

N−1∑
t=T̃

t+ 3

t
(ω

(t+1)
a∗ − θ

(t+1)
a∗ ) (229)

< θ
(T̃ )
a∗ +

N−1∑
t=T̃

t+ 3

t
(ω

(t+1)
ã − θ

(t+1)
ã ) (230)
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= θ
(T̃ )
a∗ +

N−1∑
t=T̃

t+ 3

t

[
t

t+ 3
(θ

(t+1)
ã − θ

(t)
ã )

]
(231)

= θ
(T̃ )
a∗ +

N−1∑
t=T̃

(θ
(t+1)
ã − θ

(t)
ã ) (232)

= θ
(T̃ )
a∗ − θ

(T̃ )
ã + θ

(N)
ã , (233)

where (228) uses a simple telescope argument, (229) uses the update (9) of APG, (230) holds since t ≥ T̃ , (231) uses the
update (9).

Since (233) holds for arbitrary N > T̃ , we obtain θ
(N)
a∗ < θ

(T̃ )
a∗ −θ(T̃ )

ã +θ
(N)
ã for any N > T̃ , which contradicts π(t)

θ (a∗)→ 1
as t→∞, i.e., the asymptotic global convergence theorem. Hence, there is a T2 ≥ T1 such that if t ≥ T2, then t ∈ R2.

Claim d). Given t ≥ T2, we have t ∈ R2. In addition, since T2 ≥ T1, we also have t ∈ R1. Thus, t ∈ R1 ∩R2. Then, to
show that π(t+1)

θ (a∗) ≥ π
(t)
θ (a∗), we have

π
(t+1)
θ (a∗) =

exp{θ(t+1)
a∗ }∑

a∈A exp{θ(t+1)
a }

(234)

=
exp

{
θ
(t)
a∗ + (ω

(t)
a∗ − θ

(t)
a∗ ) + η(t+1) ∂π⊤

θ r
∂θa∗

∣∣∣
θ=ω(t)

}
∑

a∈A exp
{
θ
(t)
a + (ω

(t)
a − θ

(t)
a ) + η(t+1) ∂π⊤

θ r

∂θa

∣∣∣
θ=ω(t)

} (235)

≥
exp

{
θ
(t)
a∗ + (ω

(t)
a∗ − θ

(t)
a∗ ) + η(t+1) ∂π⊤

θ r
∂θa∗

∣∣∣
θ=ω(t)

}
∑

a∈A exp
{
θ
(t)
a∗ + (ω

(t)
a∗ − θ

(t)
a∗ ) + η(t+1) ∂π⊤

θ r

∂θa∗

∣∣∣
θ=ω(t)

} (236)

=
exp{θ(t)a∗ }∑

a∈A exp{θ(t)a }
= π

(t)
θ (a∗), (237)

where (235) holds by (222) and (236) leverages the properties ofR1 andR2 as the definitions (214) and (215). Therefore,
π
(t)
θ (a∗) is non-decreasing after T2. Hence, it follows that

inf
t≥0

π
(t)
θ (a∗) = min

0≤t≤T2

π
(t)
θ (a∗) > 0. (238)
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D.2. Lower Bound of Sub-Optimality Under APG

Theorem 3. Consider a simple two-armed bandit with actions a∗, a2, reward function r(a∗) = 1, r(a2) = 0, and initial
policy parameters θ(0)a∗ = θ

(0)
a2 = 0. Under APG with η(t) = t

t+1 ·
1
5 , for all t > 0, we have:(

π∗ − π
(t)
θ

)⊤
r = Ω(

1

t2
) (12)

Proof of Theorem 3. Given the reward function r(a∗) = 1, r(a2) = 0, we know π
(t)
θ

⊤
r = π

(t)
θ (a∗), and hence we could

focus on θ
(t)
a∗ . Moreover, by Lemma 12 and the initialization θ

(0)
a∗ = θ

(0)
a2 = 0, we know θ

(t)
a∗ + θ

(t)
a2 = 0, for all t. Under

APG, in this two-armed bandit case, we have

θ(t+1) = θ(t) +
t− 1

t+ 2
(θ(t) − θ(t−1)) + η(t+1) · ∇(π⊤

θ r)
∣∣
θ=ω(t) . (239)

Under the learning rate η(t) = t
t+1 ·

1
5 , one could iteratively verify that ln(t+ 1)− 2 ≤ θ

(t)
a∗ ≤ ln(t+ 1)− 1, for all t ≥ 2.

This implies that the sub-optimality gap is Ω( 1
t2 ).
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E. Detailed Explanation of the Motivating Example and the Experimental Configurations
4.2 Motivating Examples of APG

Consider a simple two-action bandit with actions a∗, a2 and reward function r(a∗) = 1, r(a2) = 0. Accordingly, the
objective we aim to optimize is Ea∼πθ

[r(a)] = πθ(a
∗). By deriving the Hessian matrix with respect to our policy parameters

θa∗ and θa2
, the Hessian matrix can be written as:

H =

 ∂2πθ(a
∗)

∂θa∗∂θa∗
∂2πθ(a

∗)
∂θa∗∂θa2

∂2πθ(a
∗)

∂θa2
∂θa∗

∂2πθ(a
∗)

∂θa2
∂θa2

 =

[
πθ(a

∗)(1− πθ(a
∗))(1− 2πθ(a

∗)) πθ(a
∗)(1− πθ(a

∗))(2πθ(a
∗)− 1)

πθ(a
∗)(1− πθ(a

∗))(2πθ(a
∗)− 1) πθ(a

∗)(1− πθ(a
∗))(1− 2πθ(a

∗))

]
, (240)

where the eigenvalue λ1 = 2πθ(a
∗)(πθ(a

∗)− 1)(2πθ(a
∗)− 1), λ2 = 0. So we have that if πθ(a

∗) ≥ 0.5, then λ1, λ2 ≤ 0,
leading to the fact that the Hessian is negative semi-definite. Additionally, we have that the Hessian is negative semi-definite
if and only if the objective Ea∼πθ

[r(a)] is concave, which complete our proof.

4.3 Non-Monotonic Improvement Under APG

We conduct a 3-action bandit experiment with actions A = [a∗, a2, a3], where the corresponding rewards are r =
[r(a∗), r(a2), r(a3)] = [1, 0.8, 0]. We initialize the policy parameters as θ(0) = [0, 3, 10], which represents a highly
sub-optimal initialization. Notably, the weight of the optimal action in the initial policy π(0) ≈ [0.00005, 0.00091, 0.99904]
is exceedingly small.

6.1 Numerical Validation of the Convergence Rates of APG

(Bandit) We conduct a 3-action bandit experiment with actions A = [a∗, a2, a3], where the corresponding rewards are
r = [r(a∗), r(a2), r(a3)] = [1, 0.99, 0]. We initialize the policy parameters with both a uniform initialization (θ(0) =
[0, 0, 0], π(0) = [1/3, 1/3, 1/3]) and a hard initialization (θ(0) = [1, 3, 5], π(0) = [0.01588, 0.11731, 0.86681] and hence
the optimal action has the smallest initial probability).

(MDP) We conduct an experiment on an MDP with 5 states and 5 actions under the initial state distribution ρ =
[0.3, 0.2, 0.1, 0.15, 0.25]. The reward, initial policy parameters, transition probability can be found in the following
Table 1-8.
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Table 1. Experimental settings: Reward function

r(s, a) a1 a2 a3 a4 a5

s1 1.0 0.8 0.6 0.7 0.4
s2 0.5 0.3 0.1 1.0 0.6
s3 0.6 0.9 0.8 0.7 1.0
s4 0.1 0.2 0.6 0.7 0.4
s5 0.8 0.4 0.6 0.2 0.9

Table 2. Experimental settings: Hard
initialization

θ
(0)
s,a a1 a2 a3 a4 a5

s1 1 2 3 4 5
s2 3 4 5 1 2
s3 5 2 3 4 1
s4 5 4 2 1 3
s5 2 4 3 5 1

Table 3. Experimental settings: Uni-
form initialization

θ
(0)
s,a a1 a2 a3 a4 a5

s1 0 0 0 0 0
s2 0 0 0 0 0
s3 0 0 0 0 0
s4 0 0 0 0 0
s5 0 0 0 0 0

Table 4. Experimental settings: Transition probability P (·|s0, ·)

P (s|s0, a) a1 a2 a3 a4 a5

s1 0.1 0.6 0.5 0.4 0.2
s2 0.5 0.1 0.1 0.3 0.1
s3 0.1 0.1 0.1 0.1 0.1
s4 0.2 0.1 0.2 0.1 0.1
s5 0.1 0.1 0.1 0.1 0.5

Table 5. Experimental settings: Transition probability P (·|s1, ·)

P (s|s1, a) a1 a2 a3 a4 a5

s1 0.1 0.4 0.1 0.4 0.2
s2 0.5 0.1 0.4 0.1 0.2
s3 0.2 0.2 0.3 0.1 0.2
s4 0.1 0.2 0.1 0.1 0.2
s5 0.1 0.1 0.1 0.3 0.2

Table 6. Experimental settings: Transition probability P (·|s2, ·)

P (s|s2, a) a1 a2 a3 a4 a5

s1 0.6 0.2 0.3 0.1 0.2
s2 0.1 0.4 0.3 0.4 0.1
s3 0.1 0.1 0.2 0.3 0.1
s4 0.1 0.2 0.1 0.1 0.1
s5 0.1 0.1 0.1 0.1 0.5

Table 7. Experimental settings: Transition probability P (·|s3, ·)

P (s|s3, a) a1 a2 a3 a4 a5

s1 0.6 0.1 0.2 0.4 0.5
s2 0.1 0.5 0.1 0.3 0.1
s3 0.1 0.1 0.1 0.1 0.1
s4 0.1 0.2 0.1 0.1 0.2
s5 0.1 0.1 0.5 0.1 0.1

Table 8. Experimental settings: Transition probability P (·|s4, ·)

P (s|s4, a) a1 a2 a3 a4 a5

s1 0.2 0.4 0.4 0.1 0.2
s2 0.2 0.1 0.1 0.4 0.5
s3 0.2 0.2 0.1 0.2 0.1
s4 0.2 0.2 0.3 0.1 0.1
s5 0.2 0.1 0.1 0.2 0.1


