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ABSTRACT

We present a conceptually simple framework for open-vocabulary semantic seg-
mentation, which accurately assigns a semantic label to each pixel in an image from
a set of arbitrary open-vocabulary texts. Our method, P-Seg, leverages pseudo-
mask and language to train a MaskFormer, and can be easily trained from publicly
available image-text datasets. Once trained, P-Seg generalizes well to multiple
testing datasets without requiring fine-tuning. Contrary to prior works, P-Seg
directly trains for pixel-level feature and language alignment. Without bells and
whistles, our method achieves state-of-the-art open-vocabulary semantic segmen-
tation results on three widely tested benchmarks (Pascal VOC, Pascal Context,
and COCO). In addition, P-Seg has the extra benefits of scalability with data and
consistently improving when augmented with self-training. We believe that our
simple yet effective approach will serve as a solid baseline for future research. Our
code and demo will be made publicly available soon.

1 INTRODUCTION
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Figure 1: P-Seg result on a web image. Our goal is to
segment and label every concept, including fictional characters
like minions.
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Figure 2: Our P-Seg framework leverages pseudo-mask and
language to train a MaskFormer. We show that our method of
directly training for pixel-level feature and language alignment
yields superior results.

In recent years, the vision community has
made significant strides in improving ob-
ject detection and image segmentation re-
sults, largely thanks to the development
of powerful frameworks such as Mask R-
CNN (He et al., 2017) and DETR (Carion
et al., 2020). These frameworks are known
for their intuitiveness, robustness, and flexi-
bility, allowing subcomponents to be easily
replaced with better models. In this work,
our goal is to develop a similarly enabling
framework for open-vocabulary semantic
segmentation.

Open-vocabulary semantic segmentation
presents a unique challenge as it requires
assigning accurate semantic labels to each
pixel in an image using arbitrary open-
vocabulary texts, rather than a fixed set of classes. This means that the model must be able to
segment and classify any arbitrary categories expressed in language. To accomplish this, we need
both a generalizable grouping model capable of segmenting any object class and a zero-shot classifier
capable of classifying objects in an open-vocabulary manner. Moreover, this problem is further
complicated by the commonly adopted weakly supervised learning setting where only image-text
pairs are used as supervision. Despite these challenges, we show that a surprisingly simple framework
can outperform prior state-of-the-art open-vocabulary methods.

Our approach, named P-Seg, is built on top of a MaskFormer model adapted for open-vocabulary
segmentation. One of the biggest challenges we face is finding the right supervision since annotated
masks and labels are not available. To address this issue, we propose to leverage pseudo-masks and
language to supervise MaskFormer. Our strategy involves using a pseudo-mask generator to provide
class-agnostic mask supervision by generating pseudo ground truth masks. We adopt a simple design
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Figure 3: Qualitative results of P-Seg, evaluated using all dataset classes as queries. Our model copes with
challenging situation, such as overlapping objects (col. 2) and small objects (col. 5). Our model is also capable
of handling “stuff” categories such as water and floor (col. 3, 4). Moreover, our P-Seg+ model is able to correct
small errors observed in the P-Seg method (col. 4). Finally, in the COCO dataset, which featured a significantly
higher number of objects, our model is still able to achieve high accuracy in its predictions.

that clusters image representations obtained through self-supervised representation learning methods
like DINO (Caron et al., 2021). Our experiments demonstrate that this approach delivers exceptional
performance, which is essential for high-quality supervision, as well as rapid processing speed, which
is necessary for efficient training. In addition, we use noisy web texts to provide semantic supervision.
The image-text dataset contains a wide range of concepts and has demonstrated impressive zero-shot
classification results (Radford et al., 2021). We utilize a straightforward image-text contrastive loss,
which has proven to be highly effective. Once trained, our model generalizes well to new categories
without requiring fine-tuning.

P-Seg is a simple and effective model that can be trained using publicly available image-text datasets,
such as Conceptual Captions (Sharma et al., 2018; Changpinyo et al., 2021). This makes it easy
to reproduce and extend for further research. Notably, our model does not require any manually
annotated segmentation or classification labels for training, nor does it rely on refining existing
large image-level alignment models like CLIP (Radford et al., 2021) and ALIGN (Li et al., 2022b).
Moreover, P-Seg directly trains a MaskFormer, a well-optimized segmentation model that can predict
segmentation maps directly. This is in contrast to many prior works (Zhou et al., 2022; Shin et al.,
2022; Luo et al., 2022) that use backbone models optimized primarily for classification (because
these algorithms rely on a pretrained image-level alignment model), which can lead to suboptimal
results in segmentation. In this work, we show that directly training for pixel-level feature and
language alignment yield superior results.

The P-Seg framework is also designed to be flexible with easily replaceable submodules. We prioritize
simplicity in our subcomponent selection to focus on the general design of our framework, while
remaining open to more advanced techniques that could result in further improvements. For instance,
we can leverage more advanced unsupervised segmentation models such as STEGO (Hamilton et al.,
2022) and COMUS (Zadaianchuk et al., 2023) to generate pseudo-masks, while more advanced
losses like fine-grained loss (Yao et al., 2021) can provide better semantic supervision. We can also
incorporate more advanced segmentation models like Mask2Former (Cheng et al., 2022) to further
enhance segmentation performance.

We conducted a thorough evaluation of P-Seg using multiple benchmark datasets, and the results are
encouraging. Without bells and whistles, P-Seg surpasses current state-of-the-art open-vocabulary
semantic segmentation results on three widely tested benchmarks (Pascal VOC, Pascal Context, and
COCO) by a significant margin (an average increase of 4.6% mIoU). In addition, pseudo-mask and
language provide scalable supervision and our model consistently improves in performance as more
data became available. Finally, we find adding an additional self-training step leads to an even greater
improvement to our model, with an average increase of 10.5% mIoU over the previous state-of-the-art
method, highlighting the effectiveness of our approach.

2 RELATED WORK

Open-vocabulary segmentation. The earliest efforts to employ language for image segmentation
can be traced back to Duygulu et al.’s seminal work (Duygulu et al., 2002), where the authors tackled
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Figure 4: Overview of P-Seg. A MaskFormer model computes masks and mask features from an image input.
A pseudo-mask generator produces segmentation maps to supervise mask predictions, while a text that describes
the image, encoded by a language model trained together with the MaskFormer, provides supervision for mask
features using image-text contrastive loss.

image segmentation by framing it as a machine translation problem. The approach employed an
EM algorithm to maximize the translation probability p(t|s) that maps image segments to natural
language descriptions. Recently, several researchers have explored the use of neural networks for
similar segment-word alignment problems (Gupta et al., 2020; Surı́s et al., 2020; Zhao et al., 2017).
Recent advancements in zero-shot approaches (Xian et al., 2019; Li et al., 2020a; Xu et al., 2021; Li
et al., 2022a; Ding et al., 2022) aim to develop segmentation models for unseen categories without
relying on their pixel-wise labels. However, these approaches still require learning with segmentation
labels for a significant number of seen categories, which normally make up 75% to 80% of all
categories (see e.g. (Li et al., 2022a)). Another line of research uses text as weak supervision and
leverages large-scale pre-trained models (Ranasinghe et al., 2022; Ghiasi et al., 2022; Xu et al., 2021;
Zhou et al., 2022; Shin et al., 2022) or specialized architectures (Xu et al., 2022; 2023). Our work
follows this line of work and only uses text as weak supervision, and differs from prior efforts in
three key ways: (1) we directly train a segmentation model, (2) we require no ground truth mask
annotation during training, and (3) we train our model without relying on large-scale pre-trained
models like CLIP (Radford et al., 2021) or ALIGN (Ghiasi et al., 2022).

Unsupervised image grouping. Unsupervised image grouping methods are designed to segment
images without the use of manually labeled segmentation masks. Early unsupervised image grouping
methods can be roughly categorized as low-level feature-based (Canny, 1986), clustering-based (Ka-
nungo et al., 2002), and graph-based (Shi & Malik, 2000). More recently, self-supervised learning-
based approaches (Ji et al., 2019; Cho et al., 2021; Hamilton et al., 2022; Van Gansbeke et al.,
2020; 2021; Hwang et al., 2019; Zadaianchuk et al., 2023) have shown superior performance in
unsupervised image grouping.

Vision-language understanding has generated fruitful research in recent years, largely due to the
abundance of image-text paired data. On the one hand, (Lu et al., 2019; Li et al., 2019; Su et al., 2019;
Tan & Bansal, 2019; Zhang et al., 2021; Li et al., 2020b; Chen et al., 2020) typically use transformer-
based multimodal fusion modules to model the interaction between image and text features and
finetune on downstream tasks like VQA (Antol et al., 2015) and NLVR22 (Suhr et al., 2018). They
achieve this by using objectives such as masked language/image modeling and image-text matching
loss. Alternatively, other works such as (Radford et al., 2021; Jia et al., 2021; Yao et al., 2021; Li
et al., 2022b; Mu et al., 2022; Li et al., 2021; Zhai et al., 2022) performs pre-training on large-scale
noisy web data using image-text contrastive loss. These models can be directly transferred to image
classification tasks with high accuracy.

3 APPROACH

Our proposed method, called P-Seg, is conceptually simple: we learn a MaskFormer model from
pseudo-mask and language. Our method leverages image-text pairs solely, without relying on ground
truth masks or large-scale preatrained models. Figure 4 provides a schematic layout of our approach.
In figure 17, we provide pseudocode for the core implementation of training P-Seg.

3.1 PROBLEM DEFINITION

We consider the problem of open-vocabulary semantic segmentation, where we aim to learn a function
f that maps an image I and a set of category names C = {ci} to a semantic segmentation map S,
where ci can be any category name expressed as open vocabulary texts.
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Our approach is based on previous works (Xu et al., 2022; Ranasinghe et al., 2022; Zhou et al., 2022),
and we adopt their problem setting. Specifically, we use a web dataset of image-text pairs (Ii, Ti)
during training, where Ti is a textual label that describes the content of the corresponding image Ii.
However, since the textual labels are gathered from the web, they may be noisy and contain errors.
We do not use any additional manual annotated segmentation or classification labels during training.

During testing, a set of category names C is provided, and the model is tasked with assigning a
semantic label ci ∈ C to each pixel in an unlabeled image. The performance of the model is evaluated
based on its mean Intersection over Union (mIoU) with the ground truth labels.

3.2 ADAPTING MASKFORMER

Our approach builds on top of MaskFormer (Cheng et al., 2021). Here, we begin by briefly review
MaskFormer and explain the adjustments we made.

The Maskformer model takes an image as input and generates N masks and mask features. First, the
input image passes through a backbone model to produce feature maps at different output resolutions.
These image features are then fed into a per-pixel encoder, which upsamples and aggregates them
into a set of feature maps with higher resolution. Meanwhile, a transformer decoder uses N learnable
queries to cross-attend to the set of features with the lowest resolution and gather global information
about each segment.

In the original Maskformer, a linear classifier and softmax activation were applied to the output of
the decoder to predict class probabilities for a fixed list of categories. However, as we do not have a
fixed list of categories, we remove this classifier branch and output the N raw mask features instead.

In addition to predicting mask features, the Maskformer also predicts N binary masks. To predict
each mask, a dot product is taken between the mask embedding, generated from mask features, and
the high resolution per-pixel feature.

Finally, a combination module takes the raw output, N mask-feature pairs, as input and generates a
semantic segmentation map as the output.

3.3 P-SEG

P-Seg employs MaskFormer as its segmentation model, but in our weakly-supervised learning setting
(where only texts are available), we face the challenge of not having annotated masks and labels. To
overcome this, we utilize pseudo labels and language to as supervision.

Our training framework is illustrated in Figure 4. We first generate a set of segmentation maps using
our pseudo-mask generator (Sec. 3.3.1) and use them as supervision for mask prediction. Meanwhile,
we use a language model to process input text and generate language embeddings. These embeddings
provide supervision for mask features by leveraging image-text contrastive loss (Sec. 3.3.2).
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Figure 5: Testing on P-Seg. During inference, P-Seg gen-
eralize to new categories by leveraging language features
generated from a list of candidate classes in text.

Notably, unlike the supervised learning set-
ting, where mask and label annotations are
coupled, we decouple mask and seman-
tic supervision. This enables us to utilize
pseudo-mask and language as two distinct
forms of supervision.

In the testing phase (as shown in figure 5),
the trained MaskFormer model predicts N
masks and mask features from the input
image. The language model takes as input
a list of candidate category names (repre-
sented as texts) and extracts a set of lan-
guage features. These features are then
used to classify the mask features. This process is similar to the one used in CLIP (Radford et al.,
2021), where the image and possible text inputs are encoded by their respective encoders to compute
feature embeddings. The cosine similarity between these embeddings is calculated and adjusted
by a learnable temperature parameter. The resulting values are normalized into a class probability
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distribution using a softmax function, and a combination module is used to takes N mask-class pairs
to produce the final segmentation map, similar to (Cheng et al., 2021).

Next, we will provide a detailed description of the subcomponents in our framework.

3.3.1 PSEUDO-MASK GENERATOR

DINO

ViT K-Means

Figure 6: Pseudo-mask generator generates pseudo-masks
to supervise predicted mask during training. This module
takes an image as its input, extracts its features using a DINO
pre-trained ViT, and then employs K-means clustering to
group the pixels into segments.

Oracle segmentPseudo mask

Figure 7: Example pseudo-masks. Our pseudo-mask gen-
erator is capable of generating high-quality artificial masks.
When provided with an oracle label, these masks demonstrate
a high degree of overlap with the ground truth annotations.

In our approach, we use a pseudo-mask
generator (fig. 6) to produce a class-
agnostic segmentation map from the input
image, which supervises the mask predic-
tion of our model.

To implement the pseudo-mask generator,
we adopt a simple strategy that involves
clustering tokens extracted from a self-
supervised pre-trained ViT. Specifically,
we use a DINO-pretrained ViT to compute
a set of featurized tokens from the input im-
age. We then apply a clustering algorithm
(K-Means in our case) to these tokens, as-
signing each token a label that corresponds
to the index of the cluster it belongs to. We
reshape the resulting label map into an im-
age and resize it to the original resolution
to supervise the mask prediction of our seg-
mentation model.

Despite its simplicity, our pseudo-mask
generator achieves both impressive perfor-
mance, which is crucial for high-quality su-
pervision, and fast processing speed, which
is essential for efficient training. We evalu-
ate its performance and compare against baseline methods, and the quantitative results are presented
in Table 1, with example predictions visualized in 7. Our method significantly outperforms simple
baselines such as K-Means and Spectral Clustering, which naively cluster image pixels, while running
two orders of magnitude faster. We also observed that clustering DINO representation outperforms
clustering ImageNet pre-trained ViT representation by a significant margin. Notably, our pseudo-mask
generator even outperforms GroupViT, which has already employed vision-language training.

Method Sup. PV↑ PC↑ Time(s)↓
Spectral Clus. (Shi & Malik, 2000)* none 49.2 43.2 0.543

K-Means (Kanungo et al., 2002)* none 49.5 43.3 0.188
ImageNet (Dosovitskiy et al., 2020) label 68.8 58.1 0.079

GroupViT (Xu et al., 2022) text 73.7 54.6 0.002
Ours self 78.8 66.3 0.002

Table 1: Our pseudo-mask generator achieves excellent oracle per-
formance with rapid speed, making it an ideal mask supervision. Pascal
VOC (PV) and Pascal Context (PC) are evaluated. We report amortised
running time on a batch of 128 samples, simulating training time sce-
nario. *We process downsampled image at H

8
× W

8
resolution to obtain

reasonable running time.

Since the predicted masks are
unordered, we need to match
the N predicted masks with K
pseudo ground truth masks. To
accomplish this, we utilize bi-
partite matching, as described
in (Carion et al., 2020; Cheng
et al., 2021), which assigns a
pseudo-mask to each predicted
mask such that the overall assign-
ment cost is minimal in all pos-
sible assignments. Since each
pseudo-mask is assigned to at
most one predicted mask, N−K
pseudo-masks are unassigned to no-object (Ø). Unlike MaskFormer (Cheng et al., 2021), we do not
penalize these no-object masks, nor do we use classification loss as an assignment cost. Finally, we
compute the mask loss between predicted masks and their corresponding pseudo-mask, utilizing a
combination of dice loss (Milletari et al., 2016) and focal loss (Lin et al., 2017).

Lmask = λdiceLdice + λfocalLfocal (1)
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Figure 8: Qualitative comparison with existing methods. CLIP (Radford et al., 2021) is primarily designed
for classification and does not perform well in segmentation. MaskCLIP (Zhou et al., 2022) adapts CLIP for
segmentation, although it produces noisy predictions and cannot handle background classes. GroupViT (Xu
et al., 2022) is a strong competitor, but it could struggle in challenging scenarios.

3.3.2 LANGUAGE SUPERVISION

Our model learns to classify open-vocabulary concepts from language supervision. To train the model,
we use an image-text contrastive loss (Radford et al., 2021; Ghiasi et al., 2022). Specifically, we view
N mask features as representation of the input image, each capturing information about a different
part of the image. We then compute a single feature that represents the entire image by taking the
average of these mask features. To encode the text, we use a text transformer (Vaswani et al., 2017)
and select the embedding corresponding to the [EOS] token, resulting in a textual feature. Since
the visual and textual features may have different dimensions, we project each representation into
a common embedding space using 2-layer MLPs. To compute the image-text contrastive loss, we
calculate the cosine similarity between the image embeddings and the text embeddings within the
same batch. Following common practice (Radford et al., 2021; Mu et al., 2022; Li et al., 2022b), we
decouple the image-text contrastive loss into two parts:

LI→T = − 1

N

N∑
i

log
exp(x⊺

i yi/σ)∑N
j=1 exp(x

⊺
i yj/σ)

(2)

LT→I = − 1

N

N∑
i

log
exp(y⊺i xi/σ)∑N
j=1 exp(y

⊺
i xj/σ)

(3)

where xi and yi are L2-normalized embedding of image and text of the i-th pair. N denotes batch
size and σ is a learnable temperature parameter optimized together with the rest of the model. The
total loss is the sum of these two losses, Lcontrastive = LI→T + LT→I . This loss function promotes
high similarity for positive pairs and low similarity for negative pairs. The loss is minimized when
the positive image-text pairs have the highest similarity. To increase the contrastive efficiency, we
aggregate negative samples from all nodes when we use distributed training, enabling more negative
samples to be compared against.

3.3.3 TRAINING LOSS

Overall, mask loss (Sec. 3.3.1) and image-text contrastive loss (Sec. 3.3.2) complete the necessary
mask and semantic supervision that is needed to train our model. The final loss is a weighted
combination of the two losses:

L = λmaskLmask + λcontrastiveLcontrastive (4)

In our experiment, we use λmask = 1.0, λcontrastive = 1.0, λdice = 1.0, λfocal = 20.0.
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3.3.4 SELF-TRAINING

In order to enhance our results, we introduce an optional step wherein we train a new model using
the predictions generated by our current model. This process of self-training results in an augmented
model, which we refer to as P-Seg+. More specifically, when we evaluate on a given dataset, we
generate pseudo labels for the unlabeled images in the training set. Subsequently, we employ these
pseudo labels to train a new segmentation model.

Self-training improves the accuracy by leveraging additional data (Xie et al., 2020), augmenta-
tion (Zoph et al., 2020), and bootstrapping (Grill et al., 2020). In our situation, self-training offers
even greater benefits since we can take advantage of additional information that is obtainable during
testing: unlabeled images and testing categories. We show that this additional step improves our
results significantly at no extra manual labelling cost.

4 EXPERIMENTS

In this section, we empirically evaluate our method and compare to existing approaches. We show
that, although our method is quite simple, it performs surprisingly well against more complex existing
methods. We evaluate the open-vocabulary semantic segmentation performance of P-Seg on the
validation set of three datasets: Pascal VOC 2012 (Everingham et al., 2009) (21 classes), Pascal
Context (Mottaghi et al., 2014) (60 classes) and COCO (Lin et al., 2014) (81 classes). For more
implementation details, please refer to our supplementary materials.

4.1 SIMPLE BASELINES

The high quality of pseudo-masks (as shown in Figure 6) may lead one to assume that the primary
challenge is simply classifying these masks, and that this can be accomplished by utilizing pre-existing
methods such as CLIP. To test this assumption, we first develop two simple baselines.

Baseline 1: Pseudo-mask + CLIP. Firstly, our pseudo label generator is utilized to obtain pseudo
segments. Then, we iterate through all the masks and apply the current mask to the original image.
Next, the masked image is fed to CLIP for classification and the resulting class label is assigned to
the corresponding segment.

Method P. VOC P. Context COCO

B1: pseudo-mask+CLIP 12.9 3.9 2.9
B2: pseudo-mask ViT 23.2 11.0 10.4

P-Seg (Ours) 44.9 22.9 22.5

Table 2: Simple baselines for open-vocabulary
semantic segmentation. We report results trained
on CC12M. All pixels (incl. background) are eval-
uated. Higher values are better. Two simple base-
lines fail to obtain satisfactory results, even using
after using our pseudo masks and no less training
data.

Baseline 2: Pseudo-mask ViT. We introduce a
new visual backbone that differs from the reg-
ular ViT. Instead of pooling all image tokens
into a single feature, we first individually pool
tokens in each segment of the pseudo-mask into
segment features, and then pool these features
into a visual embedding. We train a CLIP-like
model from scratch using this visual backbone.
During testing, we classify each segment feature
and assign the label to that segment.

The results are presented in Table 2. As we can
see, open-vocabulary segmentation is more com-
plex than simply grouping image into segments
and then categorizing them into classes, even when the segments are of high quality. Baseline 1
employs a significantly larger pretrained CLIP ViT/L-14 model that was also trained on a much larger
dataset, while Baseline 2 is trained using the same data as ours. Nevertheless, both baselines fail to
achieve satisfactory results, suggesting that open-vocabulary segmentation cannot be deconstructed
in such ways. We hypothesize that a multi-task learning approach that jointly trains the mask and
classification tasks could yield significant advantages.

4.2 MAIN RESULTS

In table 3, we evaluate our model and compare with existing method on open-vocabulary semantic
segmentation task. We observe several key findings: Firstly, our approach outperforms all previous
open-vocabulary segmentation methods that does not require mask annotations, as evident from the
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Method Zero-shot Supervision Pascal VOC Pascal Context COCO

Open-vocabulary models (annotated masks required for training):
SPNet (Xian et al., 2019) ✓ mask+text 18.3 24.3 -

ZS3Net (Bucher et al., 2019) ✓ mask+text 38.3 19.4 21.1
LSeg (Li et al., 2022a) ✓ mask+text 47.4 - 23.4
LSeg (Li et al., 2022a) ✓ mask+text 52.3 - 27.2

OpenSeg (Ghiasi et al., 2022) ✓ mask+text 63.8 40.1 -
OpenSeg (Ghiasi et al., 2022) ✓ mask+text 77.2 45.9 38.1

Open-vocabulary models (annotated masks not required for training):
CLIP (Radford et al., 2021) ✓ text 39.6 9.0 13.8

MaskCLIP (Zhou et al., 2022) ✓ text 49.5 25.5 23.6
GroupViT (Xu et al., 2022) ✓ text 77.2 23.0 37.5

P-Seg (Ours) ✓ text 81.8 (↑4.6%) 27.2 (↑4.2%) 42.4 (↑10.6%)
P-Seg+ (Ours) ✓ text 84.7 (↑7.5%) 31.6 (↑8.6%) 53.0 (↑15.5%)

Fully-supervised segmentation models:
DeepLabV3+† (Chen et al., 2018) mask+label 89.9 48.5 66.9

Table 3: Open-vocabulary semantic segmentation results. † denotes our reimplemented results. Higher
values are better.

(a) Pascal VOC (+18.3%)

10 20 30
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(c) COCO (+17.6%)
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Figure 9: Self-training improvement. We show average relative improvement in bracket on top of the plot. we
observe that self-training consistently leads to significant improvement for P-seg across all of our training and
testing data settings.

table, with a significant margin over the previous state-of-the-art GroupViT (50.5% vs 45.9% mIoU
averaged over 3 datasets). Secondly, our self-trained model, P-Seg+, further widens the gap with an
impressive 10.5% mIoU improvement over the previous best method (56.4% vs 45.9% 3-avg. mIoU).
Finally, Comparing with methods trained with annotated masks, we observe that our method, which
learns only from text, comfortably outperforms LSeg. Our model also outperforms OpenSeg on both
Pascal VOC and COCO datasets.

4.3 EVALUATION WITH BACKGROUND

We also evaluate our model on the evaluation protocol used by (Xu et al., 2022), where the background
pixels are included in evaluation. We note that this setting is more difficult because background class
is more diverse in appearance and often requires additional processing such as thresholding. Table 4
shows the results. Similar to the previous setting, our P-Seg and P-Seg+ models achieve significantly
better performance compared to earlier methods.

4.4 ABLATION STUDIES

Self-training. We investigated the effectiveness of self-training for improving segmentation per-
formance. To this end, we compared P-Seg and P-Seg+ on three datasets and evaluated the results
using Figure 9. We found that self-training consistently improved the segmentation performance by
a significant margin (+5.5% mIoU on average), regardless of the data size and test dataset. These
results indicate that self-training is a reliable approach for enhancing the performance of P-Seg and
can provide a desirable complement for further improvement.

Data scalability. To evaluate the scalability of our method, we trained P-Seg and P-Seg+ using three
datasets of increasing sizes: 12M, 15M, and 26M. The results of the experiments are presented in
Figure 11. We observed that both models achieve significant improvements in performance across all
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Method Zero-shot Supervision Pascal VOC Pascal Context COCO

Linearly-probed classification models:
MoCo v3 (Chen et al., 2021) ✗ self 34.3 21.3 -
DINO (Caron et al., 2021) ✗ self 39.1 20.4 -

Open-vocabulary models (annotated masks not required for training):
CLIP (Radford et al., 2021)† ✓ text 13.5 8.1 5.9

MaskCLIP (Zhou et al., 2022)† ✓ text 26.8 22.8 12.8
ViL-Seg (Liu et al., 2022) ✓ text 34.4 16.3 16.4

CLIPpy (Ranasinghe et al., 2022) ✓ text 52.2 - 25.5
GroupViT (Xu et al., 2022) ✓ text 52.3 22.4 24.3
GroupViT (Xu et al., 2022) ✓ text 50.8 23.7 27.5

P-Seg (Ours) ✓ text 53.2 (↑2.4%) 27.9 (↑4.2%) 30.3 (↑2.8%)
P-Seg+ (Ours) ✓ text 62.0 (↑11.2%) 30.2 (↑6.5%) 35.7 (↑8.2%)

Fully-supervised segmentation models:
DeepLabV3+† (Chen et al., 2018) ✗ mask+label 78.7 46.4 55.7
MaskFormer† (Cheng et al., 2021) ✗ mask+label 81.2 50.0 62.1

Table 4: Open-vocabulary semantic segmentation results (incl. background). † denotes our reimplemented
results. Higher values are better. When background pixels are included during evaluation, our method also show
strong performance.

three testing datasets as the amount of data increased, suggesting that our method scales well with
larger datasets.

4.5 VISUALIZATION

P-Seg (details) P-Seg+ (details) P-Seg (details) P-Seg+ (details)

Figure 10: Visualizing effect of self-training. Our
self-trained P-Seg+ model demonstrates the ability to
accurately predict in regions overlooked by P-Seg, as
shown in the three colorful rectangles.
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Figure 11: Scaling training data provide consis-
tent gain in performance, with or without self-
training. We train our model using different sizes
of data: CC12M (12M), CC12M+CC3M (15M), and
CC12M+CC3M+RedCaps (26M). We note a steady im-
provement in the model’s performance as the data size
increases.

The qualitative results of our model are illus-
trated in Figure 3. Our model has demonstrated
its ability to handle difficult situations such as
overlapping and small objects. Comparing our
results to those of existing methods, as shown
in Figure 8, we observed that our approach ac-
curately segments objects in challenging cases
where previous methods have failed. Addition-
ally, we observed that self-training can correct
minor errors in our base model (as shown in
detail in fig. 10). In Figure 1 (and 12 in the
appendix), we present P-Seg’s performance on
web images using custom query classes. Our
model is able to produce precise results for these
categories. For more qualitative results, please
refer to our supplementary material.

5 CONCLUSION

To summarize, P-Seg is a simple and intu-
itive framework that enables accurate and gen-
eralizable open-vocabulary segmentation. Our
algorithm directly trains for pixel-level fea-
ture and language alignment, and does not re-
quire manual segmentation annotations or ex-
tensive pretraining. Once trained, our model
outperforms previous open-vocabulary models
on three datasets by a substantial margin. Addi-
tionally, our model demonstrates efficient scalability with increasing data and can be easily augmented
by self-training. As computational resources and high-quality vision-language datasets continue to
grow, we anticipate that our model will become a highly competitive alternative to close-set methods,
providing not only accurate but also flexible segmentation results.
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A DISCUSSIONS

A.1 THE DIFFERENCES BETWEEN P-SEG AND LSEG/OPENSEG/ETC. (PREVIOUS MODELS
THAT REQUIRES ANNOTATED MASKS FOR TRAINING)

Method Algorithm
Need large Training data Openness
VL pretrain Mask Anno. Text data code ckpt

LSeg Adapt/Refine image-level Yes (CLIP) Yes (340K) 400M no CLIP data/code ✓

OpenSeg VL alignment models Yes (ALIGN) Yes (453K) 1800M ✗ ✗ ✗

Ours Directly training
pixel&language alignment Not required Not required 26M

(↓98.5%) ✓ ✓ ✓

Table 5: Differences between P-Seg (Ours) and LSeg (Li et al., 2022a) and OpenSeg (Ghiasi et al., 2022).

Several key high-level differences are listed in Table 5. Specifically, contrary to LSeg and OpenSeg,
which refine image-level models like CLIP/ALIGN, we’ve found that training for pixel features and
language alignment delivers superior results. This is not only a novel method for training open-
vocabulary models but also eliminates the need for costly VL pretrainings, streamlining the learning
process. Moreover, our model trains without manual mask annotations, thereby reducing supervision
needs and offering better generalization. Additionally, we leverage open-source datasets, and will
provide full access to all of our source code and pre-trained parameters.

A.2 THE DIFFERENCES BETWEEN P-SEG AND MASKCLIP/GROUPVIT/ETC. (PREVIOUS
MODELS THAT REQUIRES NO ANNOTATED MASKS FOR TRAINING)

Method Algorithm
Need large

Backbone
Well-optimized Loss

VL pretrain segmentation model image-level pixel-level

CLIP Adapt/Refine image-level
Yes (CLIP) ViT

Not used
✓ ✗

MaskCLIP VL alignment models (classification model)

GroupViT Extract segments
from language alignment Not required GroupViT

Not used
(custom model)

✓ ✗

Ours Directly training
pixel&language alignment Not required MaskFormer Used ✓ ✓

Table 6: Differences between P-Seg (Ours) and CLIP (Radford et al., 2021), MaskCLIP (Zhou et al.,
2022), and GroupViT (Xu et al., 2022).

The main distinctions between our model and previous models that requires no annotated masks
for training, such as CLIP, MaskCLIP, and GroupViT, can be found in Table 6. Similar to above,
we’ve discovered that training directly for pixel-level feature and language correlation not only
works but actually offers better outcomes. Unlike previous models that rely on classification models
(like ViT) or purpose-built custom models (like GroupViT), our approach directly trains a dedicated
segmentation model, MaskFormer. This difference often leads previous methods to underperform in
segmentation tasks. In order to directly train for pixel feature, we leverage an additional pixel-level
mask loss. We show that a simple mask loss obtained from pseudo-masks obtained from raw images
is sufficient to yield strong results.

B ADDITIONAL RESULTS

B.1 ADDITIONAL DATASETS

We evaluate our method on two new challenging datasets that contain significantly more classes,
LVIS (1103 classes) and ImageNet-S (919 classes). The results are shown in Table 7. We observe
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Method Backbone 0-shot Sup. LVIS
(1103 classes)

ImageNet-S
(919 classes)

CLIP (Radford et al., 2021) ViT-L ✓ text 1.3 8.0
MaskCLIP (Zhou et al., 2022) ViT-L ✓ text 4.3 9.1

GroupViT (Xu et al., 2022) GroupViT ✓ text 7.2 32.2
P-Seg (Ours) MaskFormer ✓ text 8.5 34.9

Fully Sup. (Dosovitskiy et al., 2020) ViT-FCN 1 ✗ GT 9.6 40.4

Table 7: Open-vocabulary semantic segmentation results on additional datasets.

(a) Scaling training data provide consistent gain: We train our model using
different size of data: 12M (CC12M), 15M (+CC3M), and 26M (+RedCaps).
We note a steady improvement in the model’s performance as the data size
increases.

data P-Seg P-Seg+
VOC Context COCO VOC Context COCO

12M 44.9 22.9 22.5 53.1 25.5 26.2
15M 45.1(+0.2) 23.8(+0.9) 27.9(+5.4) 54.2(+1.1) 29.2(+3.7) 28.0(+1.8)

26M 53.2(+8.3) 27.9(+5.0) 30.3(+7.8) 62.0(+8.9) 30.2(+4.7) 35.7(+9.5)

(b) Self-training offers constant improvement: We
observe that self-training consistently leads to signif-
icant improvement on performance across 3 datasets.

method 3-Average
12M 15M 26M

w/o self-train 30.1 30.8 37.1
w/ self-train 34.9 37.1 42.6

∆ +4.8 +6.3 +5.5

Table 8: Ablations on data scalability and self-training. We report mIoU evaluated on three
datasets. Higher values are better.

that our model outperforms existing open-vocabulary baseline methods and approaches supervised
models, indicating its robustness in challenging scenarios.

B.2 ABLATION RESULTS

In Table 8, we show numerical results corresponding to Figure 10 and 12 in the main paper. As seen
from the table, scaling data and self-training provide consistent gain in performance for our model.

B.3 PER-CATEGORY RESULT

Table 9 presents the mIoU results of our models and baseline methods on the Pascal VOC dataset,
where each class is evaluated separately. Our models outperform current state-of-the-art GroupViT
in most classes, and P-Seg+ achieves superior performance across all categories. Our models are
particularly effective at segmenting large objects such as aeroplanes, buses, and trains, with an average
improvement of 11.1 compared to 2.5 for all classes. This suggests that our models benefit from the
pseudo-mask generator, which works better for larger objects (showing a 83.3% oracle performance
compared to 77.2% for other classes). On the other hand, our self-training model performs better
on categories that share consistent texture, such as cats, cows, dogs, and sheep, with an average
improvement of 14.3 compared to 8.8 for all classes. This indicates that self-training can identify
common features and reduce noise in the self-training labels.

1We also tried DeepLabV3+ but failed to obtain satisfactory results.
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MaskCLIP 41.3 12.8 18.7 22.5 6.7 22.8 50.7 23.4 56.8 13.6 34.1 8.1 46.3 29.5 39.9 22.7 9.5 29.5 25.1 30.8 18.2 26.8
GroupViT 79.0 37.4 29.9 33.3 33.9 64.4 60.2 62.4 76.7 16.2 68.8 28.0 75.9 62.5 64.2 51.6 38.7 63.0 37.4 44.0 38.4 50.8

P-Seg (Ours) 81.0 47.2 40.1 38.6 30.0 63.5 74.6 67.6 75.7 18.6 65.3 34.4 72.2 56.3 68.0 50.7 45.7 60.2 33.6 53.1 41.0 53.2
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Table 9: Per-category open vocabulary semantic segmentation performance over 21 Pascal VOC
classes.

tiger
M
aoi

avatar

Figure 12: Qualitative results on web images. The query class name is shown to the right. Row 1:
P-Seg demonstrates its ability to segment fictional characters in an animated scene. Row 2: Despite
having taken a mud bath, the tiger can still be easily recognized and segmented. Row 3: P-Seg is
capable of identify specific landmarks

B.4 ADDITIONAL VISUALIZATIONS

Figure 12 presents P-Seg’s performance on web images using custom query classes. Figures 13
and 14 present more detailed open-vocabulary segmentation results in higher resolution. As shown
in the results, our approach can effectively segment object-centric images from Everingham et al.
(2009) (fig. 13) as well as context-rich images from Lin et al. (2014) (fig. 14) accurately. Our method
can segment objects based solely on their category name, without requiring any annotations from
specific target datasets during training. Figure 15 and 16 provide additional comparison with previous
methods.
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Input Ours Ours+

Cat          Cow          Car         Boat          Dog          Person          Bicycle

Figure 13: Additional qualitative results of P-Seg in higher resolution (object-centric images).
Our method demonstrates robustness in dealing with challenging scenarios, such as objects with
unconventional shapes and poses (row 1), images with unusual color and tone (row 2), objects of the
same class but with differing colors (row 3), objects with the similar color but of different classes
(row 4), concealed objects (row 5), and various other difficult situations.
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Input Ours Ours+

Person          Surfboard          Bird          Banana          Umbrella          Boat          Couch

Figure 14: Additional qualitative results of P-Seg in higher resolution (context-rich images).
Although context-rich images pose challenges in segmentation due to the presence of an increased
number of small and cluttered objects, our method can still accurately segment the objects with
precision.
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Input CLIP MaskCLIP GroupViT Ours Ours+ AnnotationFully Sup.

Figure 15: Additional qualitative comparison with existing methods. CLIP Radford et al. (2021)
is primarily designed for classification and does not perform well in segmentation. MaskCLIP Zhou
et al. (2022) adapts CLIP for segmentation, although it produces noisy predictions and cannot handle
background classes. GroupViT Xu et al. (2022) is a strong competitor, but it could struggle in
challenging scenarios.
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Input CLIP MaskCLIP GroupViT

Ours Ours+ Fully Sup. Ground Truth

Input CLIP MaskCLIP GroupViT

Ours Ours+ Fully Sup. Ground Truth

Input CLIP MaskCLIP GroupViT

Ours Ours+ Fully Sup. Ground Truth

Input CLIP MaskCLIP GroupViT

Ours Ours+ Fully Sup. Ground Truth

Figure 16: Additional qualitative comparison with existing methods (continued).
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config value
optimizer AdamW Loshchilov & Hutter (2019)
base learning rate 5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
batch size 4096
learning rate schedule cosine decay Loshchilov & Hutter (2016)
warmup epochs Goyal et al. (2017) 2
training epochs 30

Table 10: P-Seg setting.

config value
optimizer AdamW Loshchilov & Hutter (2019)
base learning rate 1e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
batch size 16
learning rate schedule polynomial decay
warmup iters Goyal et al. (2017) 1.5k
training iters 20k (voc), 40k (ctxt), 80k (coco)
layer-wise lr decay Clark et al. (2020) 0.7

Table 11: P-Seg+ setting.

C IMPLEMENTATION DETAILS

C.1 P-SEG EXPERIMENTS

Architecture. Our experiments use MaskFormer Cheng et al. (2021) with Swin-S Liu et al. (2021)
backbone and 6-layer transformer decoder with N = 64 queries. The hidden and output feature
dimension is 256. The language model is a Transformer Vaswani et al. (2017) with 12 layers, each
with a hidden dimension of 256. The context length (maximum length of input text) is set to 77
and the vocabulary size is 49408. We use a 2-layer MLP to project the visual and text feature into
a common embedding space of dimension 256. We use DINO ViT-S/8 as the pretrained ViT in
pseudo-mask generator which generates K = 8 pseudo-masks.

Training. During training, we used three publically available datasets: CC3M Sharma et al. (2018),
CC12M Changpinyo et al. (2021), and RedCaps Desai et al. (2021), containing 3M, 12M and 12M
image-text pairs, respectively. Due to storage constraint, we use only first 11M data samples at a
smaller resolution of when using RedCaps dataset. In total, we use at most 26M image-text pairs
for training - this is an order of magnitude fewer data than CLIP Radford et al. (2021) and 1-4M
fewer than GroupViT Xu et al. (2022). The total dataset takes about 2.4 TB storage space. Table 10
shows our default training setting. All input images are random resized and cropped to 224× 224 in
resolution. Following Xu et al. (2022), we extract nouns and verbs from raw sentence because these
words are more likely to describe the image.

Inference. We evaluate P-Seg on the validation set of three datasets: Pascal VOC 2012 Everingham
et al. (2009), Pascal Context Mottaghi et al. (2014) and COCO Lin et al. (2014). The Pascal VOC
dataset contain 1449 images for testing. Each image is labeled with 20 foreground classes and a
background class. The Pascal Context dataset contains 5104 testing images with 59 foreground classes
and a background class. The COCO dataset contains 5000 images for testing with 80 foreground
classes and an additional background class. As in Xu et al. (2022), we combine all instances of the
same class to get semantic segmentation mask for each image in COCO. Our method of merging
individual masks follows GroupViT Xu et al. (2022), except for Pascal VOC, where we employ the
original MaskFormer method of semantic inference Cheng et al. (2021). When visualizaing P-Seg,
we apply CRF Krähenbühl & Koltun (2011) as an extra post-process step to correct minor errors.
During inference, we set the input resolution to 448× 448, which is consistent with GroupViT Xu
et al. (2022).
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C.2 P-SEG+ EXPERIMENTS

Self-training. For self-training experiments, we use UperNet Xiao et al. (2018) with MAE He et al.
(2022) pretrained ViT backbone. We utilize a pyramid-structured network to merge the features
obtained from layer 4, 6, 8, and 12 of the ViT, following the implementation of BEiT Bao et al. (2021).
We use the same model that we used to evaluate our main results to generate training data from the
train set of the respective dataset. Training hyperparameters are provided in Table 11. Following Bao
et al. (2021); He et al. (2022), we use a layerwise learning rate decay Clark et al. (2020). We do not
use relative position embeddings in our backbone ViT model (which is used by Bao et al. (2021); He
et al. (2022) at fine-tuning stage).

C.3 REIMPLEMENTED BASELINES

CLIP Radford et al. (2021) We utilized the CLIP ViT-B/16 model along with the official pretraining
weights. The ViT model incorporates attentional pooling in its last layer, using an additional [CLS]
token to aggregate other tokens. We choose to employ the value embedding as the representation
of each token, as the query and key embedding of the final layer is not fully trained during CLIP
pretraining (only the similarity between the query embedding of the [CLS] token and the key
embedding of other tokens is utilized). Finally, we leverage the language model to encode all classes
and classify the visual tokens, similar to CLIP’s zero-shot classification approach.

MaskCLIP Cheng et al. (2021) We use the testing code and weights provided by the authors, but
re-evaluating them on the commonly-used protocol that includes the background class. To further
assess the efficacy of our approach, as well as baseline methods, we employed the evaluation metric
utilized by MaskCLIP, which specifically disregards background pixels.

GroupViT Xu et al. (2022) The GroupViT project has provided pre-trained models for two configu-
rations. Without specific clarification, we opt to use the model with the highest average accuracy,
which was trained on CC12M, CC15M, and Redcaps datasets. This particular model also closely
aligns with our method in terms of training data.

Fully supervised models (DeepLabV3+ Chen et al. (2018) and MaskFormer Cheng et al. (2021))
We leverage public checkpoints when available. In cases where a checkpoint is not available, we
retrain the model using the original training hyperparameters (such as optimizer, learning rate,
momentum, and weight decay) along with the standard training schedule, which varies depending on
the dataset (40k iterations for Pascal VOC, 80k for Pascal Context, and 160k for COCO). We show
the performance of DeepLabV3+ in qualitative comparisons (Fully Sup.).
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D PSEUDOCODE

In figure 17, we provide pseudocode for the core implementation of training P-Seg. As shown from the
pseudo-code, our method is very simple in concept and has easily replaceable submodules. It contains
a concise seven lines of operations. Furthermore, functions such as maskformer, text encoder,
and pmg can be seamlessly updated as more advanced models emerge in the future.

# maskformer     - MaskFormer model
# text_encoder   - text transformer
# pmg            - pseudo-mask generator
# I [n, h, w, c] - minibatch of aligned images
# T [n, l]       - minibatch of aligned texts
# N              - number of MaskFormer queries
# C              - number of pseudo masks

# predict mask, mask feature, and text feature
M, M_f = maskformer(I) # [n, N, H, W], [n, N, d_f]
T_f = text_encoder(T)  # [n, d_f]

# aggregate all mask features [n, d_f]
M_f = M_f.mean(axis=1)

# generate pseudo masks [n, C, H, W]
S = pmg(I)

# compute loss
loss_c = contrastive_loss(M_f, T_f)
loss_m = mask_loss(M, S)
loss = (loss_c + loss_m)/2

Figure 17: Pseudocode for training P-Seg with image-text pairs.
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