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Abstract
Non-autoregressive translation (NAT) with it-001
erative refinement mechanism has shown com-002
parable performance with the auto-regressive003
counterpart. However, we have empirically004
found that decoding acceleration is fragile005
when using a large batch size and running on006
the CPU. We demonstrate that one-pass NAT007
is sufficient when providing a few target con-008
texts in advance through synthetic experiments.009
Inspired by this, we propose a two-stage transla-010
tion prototype – Hybrid-Regressive Translation011
(HRT) to combine the strengths of autoregres-012
sive and non-autoregressive. Specifically, HRT013
first generates a discontinuous sequence by au-014
toregression (e.g., make a prediction every k015
tokens, k > 1) and then fills all previously016
skipped tokens at once in a non-autoregressive017
manner. We also propose a bag of techniques018
to effectively and efficiently train HRT, with019
almost no increase in parameters. Experimen-020
tal results on WMT En↔Ro, En↔De, and021
NIST Zh→En show that our model outper-022
forms existing semi-autoregressive models and023
is competitive with current state-of-the-art non-024
autoregressive models. Moreover, compared to025
its autoregressive counterpart, HRT has a stable026
1.5x acceleration, regardless of batch size and027
device 1.028

1 Introduction029

Recently, increasing attention has been paid to ac-030

celerating the autoregressive Transformer (Vaswani031

et al., 2017) decoding for Neural Machine Trans-032

lation, such as network architecture design (Zhang033

et al., 2018; Xiao et al., 2019; Kasai et al., 2020b),034

model compression (Kim and Rush, 2016; Lin035

et al., 2021; Li et al., 2021), quantization (Bhan-036

dare et al., 2019; Lin et al., 2020) etc. Unlike037

them, non-autoregressive translation (NAT) (Gu038

et al., 2017) attempts to circumvent the slow au-039

toregressive translation (AT) by predicting the tar-040

get sequence in parallel in one shot. Although041

1We will release the source code once accepted.

attractive, early one-shot NAT usually suffers from 042

severe translation quality degradation due to the 043

lack of necessary target word dependencies (Gu 044

et al., 2017). 045

Aimed at this issue, researchers have proposed 046

many approaches, such as optimizing the training 047

objective (Li et al., 2019; Shao et al., 2019; Wang 048

et al., 2019b; Sun et al., 2019; Qian et al., 2021), 049

enhancing the decoder input (Guo et al., 2019a; Ma 050

et al., 2019) etc. Beyond that, another route is to 051

combine the strengths of autoregressive translation 052

and non-autoregressive, called semi-autoregressive 053

translation (Semi-AT) (Wang et al., 2018a; Kaiser 054

et al., 2018; Akoury et al., 2019; Ran et al., 2019, 055

2020). However, there is still a noticeable gap 056

between the above methods and AT in terms of 057

BLEU despite the effectiveness. Perhaps the most 058

promising solution is to extend the one-shot NAT 059

by introducing an iterative refinement mechanism 060

(IR-NAT). Concretely, IR-NAT takes the transla- 061

tion hypothesis from the previous iteration as a ref- 062

erence and regularly polishes the new translation 063

until reaching the predefined iteration count I or 064

no translation changed. A common brief is that IR- 065

NAT can run faster than AT and have comparable 066

translation accuracy. 067

In this work, we continue the line of research and 068

go towards a fast and accurate translation paradigm. 069

Our contributions are threefold: 070

• We analyze and empirically reveal that in- 071

creasing batch size and/or running on CPU 072

can significantly reduce the efficiency of par- 073

allel computation, resulting in severe accel- 074

eration degradation of IR-NAT. In contrast, 075

AT is less sensitive. For example, when de- 076

coding with a batch size of 32 on CPU, the 077

IR-NAT model (i.e., CMLM (Ghazvininejad 078

et al., 2019)) with 10 iterations even runs 3x 079

slower than auto-regressive (cf. Figure 1). 080

• We designed a synthetic experiment to demon- 081
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strate that iterative decoding is unnecessary082

when providing a good (partial) target con-083

text. Specifically, given a well-trained CMLM084

model, we notice that under the appropriate085

masking strategy, even if 70% of the AT trans-086

lation is masked, the remaining target context087

can help the CMLM(beam=1, I=1) compete088

with the standard CMLM(beam=5, I=10) (see089

Figure 2).090

• We proposed a two-stage translation proto-091

type – Hybrid-Regressive Translation (HRT).092

Concretely, HRT first uses an autoregressive093

decoder to generate a discontinuous target094

sequence with the interval k. Then, HRT095

fills these remaining slots at once in a non-096

autoregressive manner. We further propose097

joint training guided by curriculum learning098

and mixed distillation to effectively and effi-099

ciently train HRT.100

Experimental results on WMT En↔Ro, En↔De,101

and NIST Zh→En show that HRT has a large102

BLEU improvement compared with previous Semi-103

AT methods and can compete with the state-of-the-104

art IR-NAT models. Moreover, HRT has a consis-105

tent 50% decoding speedup compared with the au-106

toregressive counterparts regardless of batch sizes107

and devices.108

2 Background109

Given a source sentence x = {x1, x2, . . . , xM}110

and a target sentence y = {y1, y2, . . . , yN}, there111

are several ways to model P (y|x):112

Autoregressive translation (AT) is the dominant113

approach in NMT, which decomposes P (y|x) by114

chain rules:115

P (y|x) =
N∏
t=1

P (yt|x, y<t) (1)116

where y<t denotes the generated prefix translation117

before time step t. However, autoregressive models118

have to wait for the generation of yt−1 before pre-119

dicting yt, which hinders the parallel computation120

over the target sequence.121

Non-autoregressive translation (NAT) allows122

generating all target tokens simultaneously (Gu123

et al., 2017). NAT replaces y<t with target-124

independent input z and rewrites Eq. 1 as:125

P (y|x) = P (N |x)
N∏
t=1

P (yt|x, z) (2)126
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Figure 1: Relative speedup ratio (α) compared CMLM
with AT on GPU (solid) and CPU (dashed). The value of
α denotes running faster (positive) or slower (negative)
|α| times than AT. The beam size is 5.

We can model z as source embedding (Gu et al., 127

2017; Guo et al., 2019a), reordered source sentence 128

(Ran et al., 2019), latent variable (Ma et al., 2019; 129

Shu et al., 2019) etc. 130

Iterative refinement based non-autoregressive 131

translation (IR-NAT) extends the traditional 132

one-shot NAT by introducing a multi-round de- 133

coding mechanism (Lee et al., 2018; Ghazvinine- 134

jad et al., 2019; Gu et al., 2019; Ghazvininejad 135

et al., 2020b). We choose CMLM as IR-NAT rep- 136

resentative in this work due to its excellent perfor- 137

mance and simplification. During training, CMLM 138

randomly masks a fraction of tokens on y as the 139

alternative to z and is trained as a conditional 140

masked language model. Denote ym/yr as the 141

masked/residual tokens of y, then we have: 142

P (y|x) =
|ym|∏
t=1

P (ym
t |x,yr) (3) 143

At inference, CMLM deterministically masks to- 144

kens from the hypothesis in the previous iteration 145

ŷ(i−1) according to the prediction confidence. This 146

process is repeated until ŷ(i−1) = ŷ(i) or i reaches 147

the maximum iteration count. 148

3 Acceleration Degradation in IR-NAT 149

This section empirically compares the practical in- 150

ference speed of CMLMs and autoregressive mod- 151

els on different batch sizes (1, 8, 16, 32) and de- 152

vices (GPU, CPU) to demonstrate the speed degra- 153

dation problem. 154

Setup Inference speed is meassured on the 155

widely used WMT En→De newstest2014 test set 156

with a beam size of 5. We use the official CMLM 157

models released by Ghazvininejad et al. (2019) 2. 158

Unless otherwise stated, we use TITAN X (Pascal) 159

2https://github.com/facebookresearch/
Mask-Predict
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Figure 2: Comparison of four masking strategies {Head, Tail, Random, Chunk} in synthetic experiments on
WMT En→Ro (Left) and En→De (Right) test sets. For Chunk, we test the chunk size from {2, 3, 4}. Dashed lines
represent Mask-Predict’s scores reported by Ghazvininejad et al. (2019). b stands for “beam size” while I stands for
“the number of iterations”.

GPU and Intel Xeon(R) E5-2680 v3 @ 2.50GHz160

CPU in this work. We measure all speeds five times161

and report the average value.162

Results As illustrated in Figure 1, we can see163

that: (1) Relative speedup ratio (CMLM/AT) de-164

creases as the increase of decoding batch size re-165

gardless of the number of iterations; (2) The speed166

on the CPU is consistently worse than that on the167

GPU; (3) Unlike the single iteration CMLM that168

can achieve stable acceleration, the CMLM with169

I=10 is even three times slower than autoregressive170

when decoding with a batch size of 32 on the CPU.171

Analysis Suppose that the computational cost is172

proportional to the size of decoder input tensor173

(BH × BM,N,H), where BH is the batch size,174

BM is the beam size, and H is the network dimen-175

sion. For convenience, we omit BM and H due to176

their invariance in NAT and AT. Thus, the total cost177

of I-iterations NAT is Cnat ∝ I × O(BH × N).178

Similarly, the cost of AT model is about Cat ∝179

L × O(BH × 1) 3. We use T (·) to represent the180

elapsed time. In this way, we can denote the rela-181

tive speedup ratio α as α= T (Cat)
T (Cnat)

∝ N
I ×E , where182

E= T (O(BH×1))
T (O(BH×N)) ≤ 1. Therefore, it is easy to de-183

termine that fewer iterations I and more efficient184

parallel computation (larger E) are the keys to the185

acceleration in IR-NAT. Unfortunately, due to hard-186

ware limitations, E decreases significantly as the187

computation cost (BH) increases (see Appendix188

A for details). For example, when BH increases189

from 1 to 32, AT’s decoding latency on the GPU190

for a fixed test set (En→De newstest14) reduces by191

22.4 times, while CMLM (I=10) only reduces by192

3While the decoder self-attention module considers the
previous i tokens, we omit it here for the sake of clarity.

3.6 times 4. If E is too small, the advantage of par- 193

allel generation will disappear. And once E < N
I , 194

NAT will perform slower than AT. 195

4 Synthetic Experiments 196

One way to alleviate the problem above is to reduce 197

the iteration count. To this end, we design a syn- 198

thetic experiment on WMT En→Ro and En→De 199

to study how much target context is needed to make 200

one-shot NAT compete with IR-NAT? We change 201

the target context by masking the translation gener- 202

ated by the pre-trained AT model. 203

Models We use the official CMLM models 204

(Ghazvininejad et al., 2019). Since the authors did 205

not release the AT baselines, we used the same data 206

to retrain AT models with the standard Transformer- 207

Base configuration (Vaswani et al., 2017) and ob- 208

tain comparable performance with theirs (see Ap- 209

pendix B for details). 210

Decoding AT models decode with beam sizes of 211

5 on both tasks. Then we replace a certain percent- 212

age of AT tokens with <mask> and feed them to 213

CMLM. The used CMLM model only iterates once 214

with beam size 1. We substitute all <mask> with 215

CMLM’s predictions to obtain the final translation. 216

We report case-sensitive tokenized BLEU scores 217

by multi-bleu.perl. 218

Mask strategies We tested four strategies to 219

mask AT results: Head, Tail, Random and 220

Chunk. Given the masking rate pmask and 221

the translation length N , the number of masked 222

tokens is Nmask=max(1, ⌊N×pmask⌋). Then 223

Head/Tail always masks the first/last Nmask to- 224

kens, while Random masks the translation ran- 225

domly. Chunk is slightly different from the above 226

4We observed similar results on CPU.
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strategies. It first divides the target sentence into C227

chunks, where C = Ceil(N/k) and k is the chunk228

size. Then in each chunk, we retain the first token,229

but mask other k−1 tokens. Thus, the actual mask-230

ing rate in Chunk is 1− 1/k instead of pmask. To231

exclude randomness, we ran Random three times232

with different seeds and report the average results.233

Results The experimental results are illustrated234

in Figure 2, where we can see that balanced bidi-235

rectional context is optimal. Specifically, Chunk236

is moderately but consistently superior to Random237

and both of them significantly outperform Tail238

and Head. We attribute the success of Chunk239

to two aspects: (1) The use of bidirectional con-240

text (compared to Head and Tail (Devlin et al.,241

2019)); (2) Uniformly distributed deterministic to-242

kens (compared to Rand) 5. In addition, when243

using the Chunk strategy, exposing 30% AT to-244

kens as the input of the decoder is sufficient to245

make our CMLM(beam=1, I=1) compete with the246

official CMLM(beam=5, I=10), which indicates247

the importance of a good partial target context.248

5 Hybrid-Regressive Translation249

Inspired by the Chunk strategy’s success, we250

propose a two-stage translation paradigm called251

Hybrid-Regressive Translation (HRT). Briefly252

speaking, HRT autoregressively generates a dis-253

continuous sequence with chunk size k (stage I),254

and then non-autoregressively fills the skipped to-255

kens (stage II). The idea of HRT is similar to SynST256

(Akoury et al., 2019) that carries out AT and NAT257

sequentially, but HRT does not require any addi-258

tional supervision from the external parser tree.259

5.1 Architecture260

Overview Our HRT consists of three compo-261

nents: encoder, Skip-AT decoder (for stage I), and262

Skip-CMLM decoder (for stage II). All compo-263

nents adopt the Transformer architecture (Vaswani264

et al., 2017). To make the single model compatible265

with the generation of continuous and discontin-266

uous sequences simultaneously, we additionally267

equip each decoder self-attention sublayer with a268

simplified relative position representation (SRPR)269

(Shaw et al., 2018) for the awareness of word po-270

5Chunk can guarantee that each masked token (except
the last k-1 ones in the sequence) can meet two deterministic
tokens within the window size of k. However, in extreme
cases, Random may degrade into Head/Tail.

sition information 6. The two decoders have the 271

same network structure and share model param- 272

eters, leading to almost the same parameter size 273

as the standard CMLM (except for a few param- 274

eters in SRPR). The only difference between the 275

two decoders lies in the masking pattern in the self- 276

attention sublayer: The Skip-AT decoder masks 277

future tokens to guarantee strict left-to-right gener- 278

ation. In contrast, the Skip-CMLM decoder elimi- 279

nates it to leverage the bi-directional context. 280

No target length predictor Existing NAT mod- 281

els generally train the translation model with an 282

independent translation length predictor. However, 283

just like previous Semi-AT models (Wang et al., 284

2018a; Akoury et al., 2019; Ran et al., 2020), such 285

a length predictor is unnecessary for us because 286

the translation length is a by-product of Skip-AT, 287

e.g., Nnat=k × Nat, where Nat is the sequence 288

length produced by Skip-AT 7. There are two main 289

advantages to avoiding the independent length pre- 290

dictor: (1) No need to carefully tune the weighting 291

coefficient between the length prediction loss (sen- 292

tence level) and the target token prediction loss 293

(word level). (2) The length predicted by (Skip- 294

)AT may be more accurate because it can access 295

the already generated sequence information to ob- 296

tain better translation performance (Ghazvininejad 297

et al., 2019). 298

5.2 Training 299

This section will introduce how to train the HRT 300

model efficiently and effectively. Please refer to 301

Appendix C for the entire training algorithm. 302

Training samples Figure 3 illustrates the dif- 303

ferences of training samples among AT, CMLM, 304

Skip-AT, and Skip-CMLM. Compared with AT, 305

Skip-AT shrinks the sequence length from N to 306

N/k. It should be noted that, although the se- 307

quence feeding to Skip-AT is shortened, the input 308

position still follows the original sequence. For 309

example, in Figure 3 (c), the position of Skip-AT 310

input (<s2>, y2, y4) is (0, 2, 4) instead of (0, 1, 2). 311

Moreover, CMLM has the opportunity to mask any 312

token on the target sequence, while the masking 313

pattern in Skip-CMLM is deterministic. 314

6Shaw et al. (2018) inject the relative positional represen-
tation in both key and value, while our SRPR only involves
key. We found that this simplification has no negative impact
on performance but saves memory footprint.

7More precisely, Nnat is the maximum length rather than
the realistic length because multiple </s> may appear in the
last k tokens.
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<s> y1

y1 y2

y2 y3 y4

y3 y4 </s>

Decoder

(a) AT

y1 MASK

PAD y2

MASK y4 </s>

y3 PAD PAD

Decoder

(b) CMLM

<s2>

y2

y2 y4

y4 </s>

Decoder

(c) Skip-AT

MASK y2

y1 PAD

MASK y4 </s>

y3 PAD PAD

Decoder

(d) Skip-CMLM

Figure 3: Examples of training samples fed to the decoder. For the sake of clarity, we omit the source sequence.
<s2> is a special <s> for k=2. PAD is ignored when computing the loss function.

Method Generation
SAT a, b→ c, d→ e, f

RecoverSAT a, c, e→ b, d, f
HRT (Our) a→ c→ e 99K b, d, f

Table 1: Examples of different methods to generate the
sequence of “a, b, c, d, e, f”. “→” denotes a new decode
step conditioned on the prefix with beam search, while
“99K” is its greedy search version.

Curriculum learning Unfortunately, the direct315

joint training of Skip-AT and Skip-CMLM is prob-316

lematic because their training samples cannot fully317

use all the tokens in the sequence. For example, in318

Figure 3 (c) and (d), y1 and y3 have no chance to be319

learned as the decoder input of either Skip-AT or320

Skip-CMLM. However, there is no such problem321

in AT and CMLM. Therefore, we propose to grad-322

ually transit from joint training {AT, CMLM} to323

{Skip-AT, Skip-CMLM} through curriculum learn-324

ing (Bengio et al., 2009). In other words, the model325

is trained from chunk size 1 to k (k > 1). More326

concretely, given a batch of original sentence pairs327

B and let the proportion of chunk size k in B be328

pk, we start with pk=0 and construct the training329

samples of AT and CMLM for all pairs. Then we330

gradually increase pk to introduce more learning331

signals for Skip-AT and Skip-CMLM until pk=1.332

In the implementation, we schedule pk by:333

pk = (t/T )λ (4)334

where t and T are the current and total training335

steps, respectively. λ is a hyperparameter, and we336

use λ=1 to increase pk linearly for all experiments.337

Mixed distillation NAT models generally use338

the distillation data generated by AT models due to339

the smoother data distribution (Zhou et al., 2020).340

However, using only distillation data may lose341

some important information (e.g., rare words) con-342

tained in the original data (Ding et al., 2020). To343

combine the best of both worlds, we propose a344

simple but effective approach – Mixed Distillation345

(MixDistill). During training, MixDistill randomly 346

samples the target sentence from the raw version 347

y with probability praw or its distillation version 348

y∗ with probability 1-praw, where praw is a hyper- 349

parameter 8. We empirically found that MixDistill 350

makes the HRT model less prone to overfitting in 351

some simple tasks (e.g., WMT’16 En→Ro). Com- 352

pared with recent related studies (Ding et al., 2020, 353

2021), our method is easier to implement: HRT 354

does not rely on external word alignment (Ding 355

et al., 2020), and also avoids the time-consuming bi- 356

directional distillation process (Ding et al., 2021). 357

5.3 Inference 358

Thanks to the joint training under chunk size one 359

and k, it is flexible for HRT to trade-off translation 360

quality and speedup by switching different decod- 361

ing chunk size Cd ∈ [1, k]. 362

Autoregressive decoding When Cd=1, HRT be- 363

haves like the standard AT model: Feed <s> to 364

Skip-AT decoder and increase the target position by 365

one in each step. Skip-CMLM decoder is needless. 366

In this way, HRT has no faster speed advantage 367

than AT, but we can regard Cd=1 as the perfor- 368

mance upper bound of Cd=k. 369

Hybrid-regressive decoding When Cd=k, the 370

Skip-AT decoder firstly starts from <sk> to au- 371

toregressively generate a discontinuous target se- 372

quence ŷat = (z1, z2, . . . , zm) with chunk size k 373

until meeting </s>. Then we construct the input 374

of Skip-CMLM decoder ynat by appending k − 1 375

<mask> before every zi. The final translation is 376

generated by replacing all <mask> with the pre- 377

dicted tokens by Skip-CMLM decoder with one 378

iteration. If there are multiple </s> existing, we 379

truncate to the first </s>. Note that the beam size 380

bat in Skip-AT can be different from the beam size 381

bnat in Skip-CMLM as long as st. bat ≥ bnat: We 382

8Training with only raw data or distillation data can be re-
garded as the special case of MixDistill as praw=1 or praw=0.
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System Iterations WMT’16 WMT’14
En-Ro Ro-En En-De De-En

AT

Transformer N 34.25 34.40 27.45 31.86
Transformer-20L N - - 28.79 33.02

N
AT

FCL-NAT (Guo et al., 2019b) 1 - - 25.75 29.50
FlowSeq (Ma et al., 2019) 1 32.20 32.84 25.31 30.68
AXE (Ghazvininejad et al., 2020a) 1 30.75 31.54 23.53 27.90
GLAT (Qian et al., 2021) 1 32.87 33.84 26.55 31.02
Fully-NAT (Gu and Kong, 2021) 1 33.79 34.16 27.49 31.39

It
er

at
iv

e
N

AT

iNAT (Lee et al., 2018) Adaptive 29.66 30.30 21.54 25.43
CMLM (Ghazvininejad et al., 2019) 10 33.08 33.31 27.03 30.53
LevT (Gu et al., 2019) Adaptive - - 27.27 -
JM-NAT (Guo et al., 2020) 10 33.52 33.72 27.69 32.24
SMART (Ghazvininejad et al., 2020b) 10 - - 27.65 31.27
DisCO (Kasai et al., 2020a) Adaptive 33.22 33.25 27.34 31.31
Imputer (Saharia et al., 2020) 8 34.40 34.10 28.20 31.80
RewriteNAT (Geng et al., 2021) Adaptive 33.63 34.09 27.83 31.52

Se
m

i-N
AT SAT (Wang et al., 2018a) N/2 - - 26.90 -

SynST (Akoury et al., 2019) N/6 + 1 - - 20.74* 25.50*
ReorderNAT (Ran et al., 2019) N + 1 31.70 31.99 26.49 31.13
RecoverSAT(k=2) (Ran et al., 2020) N/2 32.92 33.19 27.11 31.67

O
ur

HRT (bat=5, bnat=1) N/2 + 1 34.36 34.55 27.98 31.93
HRT (bat=5, bnat=5) N/2 + 1 34.53 34.80 28.10 32.07
HRT-20L (bat=5, bnat=1) N/2 + 1 - - 28.90 33.06
HRT-20L (bat=5, bnat=5) N/2 + 1 - - 28.99 33.08

Table 2: The BLEU scores of our proposed HRT and the baseline methods on four WMT tasks. Unless otherwise
stated, the used beam size is 5. “Adaptive” denotes dynamic iterations. “20L” stands for using a 20-layer encoder.
All HRT models only iterate once by non-autoregression. * means sacrebleu score, which is uncomparable
to others. All the HRT results are significantly better (p<0.01) than the autoregressive counterparts, measured by
paired bootstrap resampling (Koehn, 2004) .

only feed the Skip-CMLM with the top bnat Skip-383

AT hypothesis. Finally, we choose the translation384

hypothesis with the highest score S(ŷ) by:385

m∑
i=1

logP (zi|x, z<i)︸ ︷︷ ︸
Skip-AT score

+
m−1∑
i=0

k−1∑
j=1

logP (ŷi×k+j |x,ynat)︸ ︷︷ ︸
Skip-CMLM score

(5)386

where zi=ŷi×k.387

5.4 Discussion388

The basic idea of HRT is to apply AT and NAT in389

sequence, which has been investigated by Kaiser390

et al. (2018); Ran et al. (2019); Akoury et al. (2019).391

The main difference from these methods lies in the392

content of AT output, such as latent variable (Kaiser393

et al., 2018), reordered source token (Ran et al.,394

2019), syntactic label (Akoury et al., 2019). In395

contrast, our approach uses the deterministic target396

token as Ghazvininejad et al. (2019). Another line397

to incorporate AT and NAT is to couple the two398

decoding paradigms. For example, SAT (Wang399

et al., 2018a) embeds chunk-level NAT into the400

AT process, while RecoverSAT (Ran et al., 2020)401

does the opposite. As shown in Table 1, although402

HRT has a longer decoding path, the cost of the403

non-autoregressive process in HRT is cheap. The 404

reason is that our Skip-CMLM can work well with 405

greedy search, thanks to the good context provided 406

by the relatively slow Skip-AT (see Table 2). In 407

contrast, SAT and RecoverSAT need larger beams 408

to explore translations of different lengths. Another 409

note is that HRT significantly outperforms both 410

SAT and RecoverSAT, e.g., +1.0 BLEU scores on 411

WMT En→De (see Table 2). 412

6 Experiments 413

Setup We mainly conducted experiments on 414

four widely used WMT tasks: WMT’16 415

English↔Romanian (En↔Ro, 610k) and WMT’14 416

English↔German (En↔De, 4.5M). We replicated 417

the same data processing as Ghazvininejad et al. 418

(2019) for fair comparisons. To verify the effective- 419

ness in long-distance language pairs, we also test 420

it in the NIST Chinese-English (Zh→En, 1.8M) 421

translation task following the setup of Wang et al. 422

(2018b). Since Ghazvininejad et al. (2019) did not 423

release the distillation data of En↔De, we retrained 424

the AT teacher models to produce the correspond- 425

ing data. Specifically, we use the deep PreNorm 426

Transformer-Base with a 20-layer encoder as the 427
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Model MT04 MT05 MT08
AT 43.86 52.91 33.94

CMLM(I=10) 42.47 52.16 33.09
HRT5-1 44.28 53.44 34.63
HRT5-5 44.31 53.77 34.74

Table 3: BLEU scores on the NIST Zh→En task.

b=1 b=8 b=16 b=32
0

1

2 1.85

1.01

0.55
0.31

1.59 1.59 1.52 1.53

α

CMLM(I=10) HRT5-1

b=1 b=8 b=16 b=32
0

1

2

1.11

0.39 0.33 0.31

1.69
1.87 1.74

1.92
α

Figure 4: Relative speedup ratio w.r.t. batch size (b) and
computing device (left: GPU, right: CPU) on En→De
task. The dashed line at y=1 represents the correspond-
ing autoregressive model. HRT{#1}−{#2} denotes
decoding with bat=#1 and bnat=#2.

teacher instead of Transformer-Big for faster train428

and inference with comparable performance (Wang429

et al., 2019a). We ran all experiments on 8 TITAN430

X (Pascal) GPUs. Unless noted otherwise, we use431

the chunk size k=2. We set praw=0.5 for En↔Ro432

and praw=0.8 for En↔De according to validation433

sets. The windows size of SRPR is 16 as Shaw et al.434

(2018) 9. We fine-tune HRT models on pre-trained435

AT models and take the same training steps as that436

of AT (about 1/3 training steps compared to previ-437

ous NAT work) 10. Other training hyperparameters438

are the same as Vaswani et al. (2017) or Wang et al.439

(2019a) (deep-encoder).440

Translation quality Table 2 reports the BLEU441

scores on four WMT tasks. We first verify that442

greedy search (bnat=1) is sufficient for our Skip-443

CMLM instead of cost-intensive beam search (e.g.,444

a drop of approximately 0.1 BLEU on En↔De).445

In contrast, we noticed that previous methods sig-446

nificantly degrade performance when using greedy447

search. For example, when the beam size switches448

from 4 to 1, the BLEU score in SAT is reduced by449

0.81. Therefore, we use bat=5 and bnat=1 (denoted450

by HRT5-1) in the following experiments unless451

noted otherwise. Our HRT outperforms most ex-452

isting NAT, IR-NAT, and Semi-NAT models and453

establishes new state-of-the-art results on En↔Ro.454

Besides, in line with Guo et al. (2020), when us-455

ing a deeper encoder, HRT-20 can further improve456

9For autoregressive baselines, adding SRPR in Trans-
former decoders did not bring obvious improvements.

10Since HRT needs to train Skip-AT and Skip-CMLM
jointly, the wall-clock time is about two times longer than
AT in the same training epochs.

Lang. Cd Raw Dist. Mix Dist.

En→Ro

N/A 34.25 - -
k 33.92 33.41 34.53
1 34.29 33.41 34.27

En→De

N/A 27.45 - -
k 26.37 28.00 28.10
1 27.60 28.42 28.51

Table 4: The BLEU scores against different data strate-
gies . Cd=“N/A” represents the original AT model.

approximately +0.8 BLEU on more challenging 457

En↔De tasks. More surprisingly, we found that 458

HRT can be slightly better than the AT models 459

trained from scratch. We attribute it to two rea- 460

sons: (1) HRT is fine-tuned on a well-trained AT 461

model, making training easier; (2) Mixing up AT 462

and NAT has a better regularization effect than 463

training alone. We also report the experimental 464

results on the Zh→En task in Table 3. We can see 465

that HRT is once again superior to the original AT 466

model and CMLM model, which indicates that the 467

effectiveness of HRT is agnostic to language pairs. 468

Please see Appendix E for case study. 469

7 Analysis 470

Translation speed Previous work generally only 471

reports the decoding speed on GPUs with a batch 472

size of 1. Instead, we systematically tested the 473

decoding speed under varying batch sizes and de- 474

vices on the WMT’14 En→De test set (see Fig- 475

ure 4). By default, all systems use a beam size 476

of 5 (except the Skip-CMLM process in HRT). 477

It can be seen that although HRT is slower than 478

CMLM(I=10) when running on a GPU with a 479

batch size of 1, CMLM(I=10) dramatically slows 480

down as the batch size increases. In contrast, HRT5- 481

1 is consistently more than 50% faster than AT 482

without varying with the environment 11. It indi- 483

cates that HRT has a more stable acceleration than 484

IR-NAT. 485

Impact of data strategy In Table 4, we com- 486

pared different data strategies, including raw 487

data (Raw), sequence-level knowledge distillation 488

(Dist.), and mixed distillation (Mix Dist.). 489

Overall, Mix Dist. is superior to other methods 490

across the board, indicating that training with raw 491

and distillation data is complementary. In addition, 492

we also found that the performance of the distil- 493

lation data is lower than that of the raw data on 494

11The acceleration results of other HRT variants are re-
ported in Appendix D.
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Chunk BLEU Latency (sec.)
(k) Cd=k Cd=1 GPU CPU
2 34.11 33.86 20.0 70.5
3 31.15 33.78 13.0 54.6
4 28.22 34.12 12.2 53.9

Table 5: The effects of chunk sizes. Latency is measured
in batch size of 16, Cd=k and bat=bnat=1.

Model KD BLEU SU-GPU SU-CPU
AT w/o 27.45 ref. ref.
CMLM(I=10) w/ 27.03* 0.93 0.54
HRT w/ 27.90 1.56 1.80
SD-AT w/ 28.23 2.08 3.47
SD-HRT w/ 28.05 3.23 4.55

Table 6: Effects of deep-shallow architecture on
En→De. SU-GPU and SU-CPU denotes the average
speedup ratio over batch size {1,8,16,32} on GPU and
CPU, respectively. bat=5, bnat=1. ∗ denotes the number
comes from the original paper.

En→Ro task, which is against the previous results.495

As interpreted by Zhou et al. (2020), we suspect496

that when the translation model is strong enough,497

training entirely through distilled data may make498

learning too easy and lead to overfitting. Another499

note is that, even if we only use Raw or Dist.500

alone, our HRT can obtain equivalent or even bet-501

ter performance than the original AT model.502

Impact of chunk size We tested chunk size k503

on the En→Ro test set as shown in Table 5, where504

we can see that: (1) A large k has more signifi-505

cant acceleration on the GPU because fewer autore-506

gressive steps are required; (2) As k increases, the507

performance of hybrid-regressive decoding drops508

sharply (e.g., k=4 is 6 BLEU points lower than509

k=2.), but k has little effect on the autoregressive510

mode. It indicates that the training difficulty of511

Skip-AT increases as k gets bigger. We think that512

skip-generation may require more fancy training513

algorithms, which is left for our future work.514

Deep-Shallow architecture Kasai et al. (2020b)515

point out that AT with deep-shallow architecture516

(i.e., deep encoder and shallow decoder) can be sub-517

stantially sped up without loss in accuracy. We also518

compare HRT and AT under this setting: 12-layer519

encoder and 1-layer decoder, denoted by SD-HRT520

and SD-AT, respectively. Instead of the proposed521

mixed distillation, we use the same sequence-level522

KD as AT for a fair comparison. From the results523

listed in Table 6, we can see that: (1) SD-AT out-524

performs our HRT in both BLEU and speed, indi-525

System BLEU ∆

WMT’16 En→Ro validation set
AT 35.12 N/A
HRT5-1 34.84 ref.
−FT 34.46 -0.38
−SRPR 34.62 -0.22
−MixDistill 34.21 -0.63
−CL(pk=1.0) 33.85 -0.99
−ALL 33.38 -1.46

WMT’14 En→De validation set
HRT5-1 (100k) 26.68 N/A
Official CMLM (300k) 25.51 ref.
+FT + SRPR + MD (100k) 25.64 +0.13
+FT + SRPR + MD (300k) 26.13 +0.62

Table 7: Ablation study on En→Ro and En→De.

cating the effectiveness of the deep-shallow layer 526

allocation; (2) HRT also benefits from the deep- 527

shallow architecture, achieving comparable BLEU 528

and faster decoding with SD-AT. Note that CMLM 529

with deep-shallow architecture degrades severely 530

(1.1 BLEU dropped) as reported by Kasai et al. 531

(2020b), which indicates that SD-HRT can inherit 532

the good character from SD-AT. 533

Ablation study In Table 7, we first conducted ab- 534

lation studies on each newly introduced technique. 535

We can see that all techniques help to improve per- 536

formance, but the most critical components are CL 537

(-0.99) and MixDistill (-0.63). We also tried to ex- 538

clude all of them from the standard HRT (-ALL), 539

resulting in a total reduction of 1.46 BLEU points. 540

We continued to experiment on En→De task to ver- 541

ify whether the optimization methods used in HRT 542

training improve CMLM. Table 7 shows that with 543

the help of FT+SRPR+MD, our CMLM model has 544

improved +0.62 BLEU points compared with the 545

official CMLM when fine-tuning 300k steps. How- 546

ever, there is still a large BLEU gap (0.55 BLEU 547

points) between the enhanced CMLM and our HRT 548

with fewer training steps. 549

8 Conclusion 550

We have pointed out that existing IR-NAT methods 551

cannot efficiently accelerate when running with 552

a large batch or on CPU. Inspired by synthetic 553

experiments, we proposed a two-stage translation 554

paradigm, HRT, to combine the advantages of AT 555

and NAT. Experimental results show that our ap- 556

proach outperforms the existing Semi-AT methods 557

and is promising to be a good substitute for AT 558

due to competitive performance and stable 1.5x 559

acceleration. 560
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A Analysis of speed degradation problem800

Model BH=1 BH=8 BH=16 BH=32
AT 962s 151s 78s 43s

CMLM (I=10) 464s 125s 119s 129s

Table 8: Elapsed time of decoding newstest2014 by
different batch sizes on Titian X GPU. The beam size is
5.

As shown in Table 8, we list the elapsed time801

when AT and CMLM(I=10) decode the test set802

of WMT’14 En→De task under different batch803

sizes. The beam size used is 5. We test the804

time on Titian X GPU and report the average of 3805

runs. In general, we can see that AT benefits more806

than CMLM(I=10) from the increase in batch size.807

Specifically, when the batch size is increased from808

1 to 32, the delay of AT is reduced by 962/43 (about809

22.4) times, while CMLM (I=10) is only reduced810

by 464/129 (about 3.6) times. That is, when the811

burden of parallel computing is too heavy, the com-812

mon belief that non-autoregressive runs faster than813

autoregressive may not hold.814

B AT Transformer in synthetic815

experiments816

AT Transformer En-Ro En-De
Vaswani et al. (2017) - 27.3

Ghazvininejad et al. (2019) 34.28 27.74
Our implementation 34.25 27.45

Table 9: The performance of autoregressive models in
the synthetic experiment.

In the synthetic experiment, we trained all AT817

models with the standard Transformer-Base con-818

figuration: layer=6, dim=512, ffn=2048, head=8.819

Algorithm 1 Training Algorithm for Hybrid-
Regressive Translation

Input: Training data D including distillation tar-
gets, pretrained AT model Mat, chunk size k,
mixed distillation rate praw, schedule coeffi-
cient λ

Output: Hybrid-Regressive Translation model
Mhrt

1: Mhrt ← Mat ▷ fine-tune on pre-trained AT
2: for t in 1, 2, . . . , T do
3: X = {x1, . . . ,xn}, Y = {y1, . . . ,yn},

Y ′ = {y′
1, . . . ,y

′
n} ← fetch a batch from D

4: for i in 1, 2, . . . , n do
5: Bi = (Xi,Y

∗
i ) ← sampling Y ∗

i ∼
{Yi, Y ′

i } with P (Yi) = praw ▷ mixed
distillation

6: end for
7: pk ← ( t

T )
λ ▷ curriculum learning

8: Bc=k,Bc=1 ← B:⌊n×pk⌋,B⌊n×pk⌋: ▷
split batch

9: Bat
c=k,B

nat
c=k ← construct {Skip-AT, Skip-

CMLM} training samples based on Bc=k

10: Bat
c=1,B

nat
c=1 ← construct {AT, CMLM}

training samples based on Bc=1

11: Optimize Mhrt using Bat
c=k ∪ Bat

c=1 ∪
Bnat

c=k ∪Bnat
c=1 ▷ joint training

12: end for

The difference from Ghazvininejad et al. (2019) 820

is that they trained the AT models for 300k steps, 821

but we updated 50k/100k steps on En→Ro and 822

En→De, respectively. Although fewer updates, as 823

shown in Table 9, our AT models have comparable 824

performance with theirs. 825

C Training algorithm 826

Algorithm 1 describes the training process of HRT. 827

The HRT model is pre-initialized by a pre-trained 828

AT model (Line 1). Each training sample Bi ran- 829

domly selects a raw target sentence Yi or its dis- 830

tilled version Y ′ (Line 4-6). Then according to 831

the schedule strategy pk =
(

t
T

)λ
, we can di- 832

vide B into two parts: Bc=1 and Bc=k, where 833

|Bc=k|/|B| = pk (Line 7-8). Next, we construct 834

four kinds of training samples based on correspond- 835

ing batches: Bat
c=k, Bat

c=1, Bnat
c=k and Bnat

c=1. Fi- 836

nally, we collect all training samples together and 837

accumulate their gradients to update the model 838

parameters, which results in the batch size being 839

twice that of standard training. 840
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Source Also problematic : civil military jurisdiction will continue to be uph@@ eld .
Reference Auch problematisch : Die zivile Militär@@ geri@@ chts@@ barkeit soll

weiter aufrechterhalten bleiben .
CMLM(I=10)
(5th iteration)

[Problem@@] [atisch] [:] [Die] [zivile] [militärische] Gerichts@@ barkeit
wird weiterhin [aufrechterhalten] . </s>

HRT5-1
(Cd=1)

Auch problematisch : Die zivile Militär@@ geri@@ chts@@ barkeit wird
weiterhin aufrechterhalten . </s>

HRT5-1
(Cd=2)

[Auch] problematisch [:] Die [zivile] militärische [Rechtsprechung] wird [weit-
erhin] aufrechterhalten [.] </s>

Table 10: A case study in En→De validation set. “[]” denotes the original token is <mask>. We also report the
CMLM(I=10) in the 5th iteration as its masking rate is closing to that of HRT5-1(Cd=2), e.g., 50%.

D Acceleration effects of HRT variants841

Model BH=1 BH=8 BH=16 BH=32
On GPU

HRT5-1 1.59 1.59 1.52 1.53
HRT5-5 1.40 1.38 1.34 1.29

HRT-20L(5-1) 1.55 1.52 1.53 1.49
On CPU

HRT5-1 1.69 1.87 1.74 1.92
HRT5-5 1.43 1.47 1.41 1.40

HRT-20L(5-1) 1.62 1.75 1.77 1.81

Table 11: Speedup effects of different HRT variants.

In Table 11, we list the speedup results of HRT5-842

5 and HRT-20L(5-1) by the average of three runs.843

We can see that HRT5-5 can maintain a stable accel-844

eration (about 30%) than AT counterparts, which is845

less efficient than HRT5-1. Please note that HRT5-846

5 is only slightly better than HRT5-1 (about 0.1847

BLEU). Besides, the overall result of the 20-layer848

encoder is similar to that of a 6-layer encoder be-849

cause the translation time is mainly consumed in850

the decoder.851

E Case study852

Table 10 shows a translation example from En→De853

validation set. Compared CMLM and HRT(Cd=2),854

although both have the same masking rate (50%),855

the masked positions in CMLM are more continu-856

ous than HRT. It leads to a suboptimal translation,857

which is consistent with the observation in the syn-858

thetic experiment. Besides, we can see that most859

skipped predictions (Cd=2) are the same as autore-860

gressive ones (Cd=1). It indicates that our model861

is capable of generating appropriate discontinuous862

sequences.863

12


