Hybrid-Regressive Neural Machine Translation

Anonymous ACL submission

Abstract

Non-autoregressive translation (NAT) with it-
erative refinement mechanism has shown com-
parable performance with the auto-regressive
counterpart. However, we have empirically
found that decoding acceleration is fragile
when using a large batch size and running on
the CPU. We demonstrate that one-pass NAT
is sufficient when providing a few target con-
texts in advance through synthetic experiments.
Inspired by this, we propose a two-stage transla-
tion prototype — Hybrid-Regressive Translation
(HRT) to combine the strengths of autoregres-
sive and non-autoregressive. Specifically, HRT
first generates a discontinuous sequence by au-
toregression (e.g., make a prediction every k
tokens, £ > 1) and then fills all previously
skipped tokens at once in a non-autoregressive
manner. We also propose a bag of techniques
to effectively and efficiently train HRT, with
almost no increase in parameters. Experimen-
tal results on WMT En<+Ro, En<De, and
NIST Zh—En show that our model outper-
forms existing semi-autoregressive models and
is competitive with current state-of-the-art non-
autoregressive models. Moreover, compared to
its autoregressive counterpart, HRT has a stable
1.5x acceleration, regardless of batch size and

device !.

1 Introduction

Recently, increasing attention has been paid to ac-
celerating the autoregressive Transformer (Vaswani
et al., 2017) decoding for Neural Machine Trans-
lation, such as network architecture design (Zhang
et al., 2018; Xiao et al., 2019; Kasai et al., 2020b),
model compression (Kim and Rush, 2016; Lin
et al., 2021; Li et al., 2021), quantization (Bhan-
dare et al., 2019; Lin et al., 2020) etc. Unlike
them, non-autoregressive translation (NAT) (Gu
et al., 2017) attempts to circumvent the slow au-
toregressive translation (AT) by predicting the tar-
get sequence in parallel in one shot. Although

"We will release the source code once accepted.

attractive, early one-shot NAT usually suffers from
severe translation quality degradation due to the
lack of necessary target word dependencies (Gu
etal., 2017).

Aimed at this issue, researchers have proposed
many approaches, such as optimizing the training
objective (Li et al., 2019; Shao et al., 2019; Wang
et al., 2019b; Sun et al., 2019; Qian et al., 2021),
enhancing the decoder input (Guo et al., 2019a; Ma
et al., 2019) etc. Beyond that, another route is to
combine the strengths of autoregressive translation
and non-autoregressive, called semi-autoregressive
translation (Semi-AT) (Wang et al., 2018a; Kaiser
et al., 2018; Akoury et al., 2019; Ran et al., 2019,
2020). However, there is still a noticeable gap
between the above methods and AT in terms of
BLEU despite the effectiveness. Perhaps the most
promising solution is to extend the one-shot NAT
by introducing an iterative refinement mechanism
(IR-NAT). Concretely, IR-NAT takes the transla-
tion hypothesis from the previous iteration as a ref-
erence and regularly polishes the new translation
until reaching the predefined iteration count I or
no translation changed. A common brief is that IR-
NAT can run faster than AT and have comparable
translation accuracy.

In this work, we continue the line of research and
go towards a fast and accurate translation paradigm.
Our contributions are threefold:

* We analyze and empirically reveal that in-
creasing batch size and/or running on CPU
can significantly reduce the efficiency of par-
allel computation, resulting in severe accel-
eration degradation of IR-NAT. In contrast,
AT is less sensitive. For example, when de-
coding with a batch size of 32 on CPU, the
IR-NAT model (i.e., CMLM (Ghazvininejad
et al., 2019)) with 10 iterations even runs 3x
slower than auto-regressive (cf. Figure 1).

* We designed a synthetic experiment to demon-

strate that iterative decoding is unnecessary
when providing a good (partial) target con-
text. Specifically, given a well-trained CMLM
model, we notice that under the appropriate
masking strategy, even if 70% of the AT trans-
lation is masked, the remaining target context
can help the CMLM(beam=1, /=1) compete
with the standard CMLM (beam=5, I=10) (see
Figure 2).

* We proposed a two-stage translation proto-
type — Hybrid-Regressive Translation (HRT).
Concretely, HRT first uses an autoregressive
decoder to generate a discontinuous target
sequence with the interval k. Then, HRT
fills these remaining slots at once in a non-
autoregressive manner. We further propose
joint training guided by curriculum learning
and mixed distillation to effectively and effi-
ciently train HRT.

Experimental results on WMT En<>Ro, En<De,
and NIST Zh—En show that HRT has a large
BLEU improvement compared with previous Semi-
AT methods and can compete with the state-of-the-
art IR-NAT models. Moreover, HRT has a consis-
tent 50% decoding speedup compared with the au-
toregressive counterparts regardless of batch sizes
and devices.

2 Background

733M}
, YN}, there

Given a source sentence * = {x1,9,...
and a target sentence y = {yl, Y2,y ...
are several ways to model P(y|x):

Autoregressive translation (AT) is the dominant
approach in NMT, which decomposes P(y|x) by
chain rules:

N

= [Pwil=, y<:))

t=1

P(ylz)

where y.; denotes the generated prefix translation
before time step . However, autoregressive models
have to wait for the generation of ;1 before pre-
dicting ¥, which hinders the parallel computation
over the target sequence.

Non-autoregressive translation (NAT) allows
generating all target tokens simultaneously (Gu
et al., 2017). NAT replaces y; with target-
independent input z and rewrites Eq. 1 as:

N
=P(Nlz) [[Pyl 2) (@
t=1

P(ylz)

—e— CMLM(I=1) —— CMLM(I=10)

15 [T T T =
Faster

10

(=R

Relative Speedup Ratio ()

Decoding Batch Size
Figure 1: Relative speedup ratio («r) compared CMLM
with AT on GPU (solid) and CPU (dashed). The value of
« denotes running faster (positive) or slower (negative)
|| times than AT. The beam size is 5.

We can model z as source embedding (Gu et al.,
2017; Guo et al., 2019a), reordered source sentence
(Ran et al., 2019), latent variable (Ma et al., 2019;
Shu et al., 2019) etc.

Iterative refinement based non-autoregressive
translation (IR-NAT) extends the traditional
one-shot NAT by introducing a multi-round de-
coding mechanism (Lee et al., 2018; Ghazvinine-
jad et al., 2019; Gu et al., 2019; Ghazvininejad
et al., 2020b). We choose CMLM as IR-NAT rep-
resentative in this work due to its excellent perfor-
mance and simplification. During training, CMLM
randomly masks a fraction of tokens on y as the
alternative to z and is trained as a conditional
masked language model. Denote y™/y" as the
masked/residual tokens of y, then we have:

HP

At inference, CMLM deterministically masks to-
kens from the hypothesis in the previous iteration
91 according to the prediction confidence. This
process is repeated until y(l D= @(i) or ¢ reaches
the maximum iteration count.

P(ylz) = il y") 3)

3 Acceleration Degradation in IR-NAT

This section empirically compares the practical in-
ference speed of CMLMs and autoregressive mod-
els on different batch sizes (1, 8, 16, 32) and de-
vices (GPU, CPU) to demonstrate the speed degra-
dation problem.

Setup Inference speed is meassured on the
widely used WMT En—De newstest2014 test set
with a beam size of 5. We use the official CMLM
models released by Ghazvininejad et al. (2019) 2.
Unless otherwise stated, we use TITAN X (Pascal)

https://github.com/facebookresearch/
Mask-Predict

https://github.com/facebookresearch/Mask-Predict
https://github.com/facebookresearch/Mask-Predict

—6— head —3— tail —¢— random —s— chunk

35 b25, 1=10

30 [~

BLEU Score

masking rate Py ask

—6— head —5— tail —¢— random —s— chunk

[D=5,1=T0

25 |-

20

BLEU Score

masking rate Py, ask

Figure 2: Comparison of four masking strategies {Head, Tail, Random, Chunk} in synthetic experiments on
WMT En—Ro (Left) and En—De (Right) test sets. For Chunk, we test the chunk size from {2, 3, 4}. Dashed lines
represent Mask-Predict’s scores reported by Ghazvininejad et al. (2019). b stands for “beam size” while I stands for

“the number of iterations”.

GPU and Intel Xeon(R) E5-2680 v3 @ 2.50GHz
CPU in this work. We measure all speeds five times
and report the average value.

Results As illustrated in Figure 1, we can see
that: (1) Relative speedup ratio (CMLM/AT) de-
creases as the increase of decoding batch size re-
gardless of the number of iterations; (2) The speed
on the CPU is consistently worse than that on the
GPU; (3) Unlike the single iteration CMLM that
can achieve stable acceleration, the CMLM with
I1=10is even three times slower than autoregressive
when decoding with a batch size of 32 on the CPU.

Analysis Suppose that the computational cost is
proportional to the size of decoder input tensor
(BH x BM, N, H), where BH is the batch size,
BM is the beam size, and H is the network dimen-
sion. For convenience, we omit BM and H due to
their invariance in NAT and AT. Thus, the total cost
of I-iterations NAT is Cpq x I x O(BH x N).
Similarly, the cost of AT model is about Cy;
L x O(BH x 1) 3. We use T (-) to represent the
elapsed time. In this way, 7\ive can denote the rela-
. . Cat
tive speedup ratio v as a= T((Cm:t))

5:% < 1. Therefore, it is easy to de-

termine that fewer iterations / and more efficient
parallel computation (larger &) are the keys to the
acceleration in IR-NAT. Unfortunately, due to hard-
ware limitations, £ decreases significantly as the
computation cost (B H) increases (see Appendix
A for details). For example, when BH increases
from 1 to 32, AT’s decoding latency on the GPU
for a fixed test set (En—De newstesti14) reduces by
22.4 times, while CMLM (I=10) only reduces by

x % x £, where

3While the decoder self-attention module considers the
previous ¢ tokens, we omit it here for the sake of clarity.

3.6 times . If £ is too small, the advantage of par-
allel generation will disappear. And once £ < #,
NAT will perform slower than AT.

4 Synthetic Experiments

One way to alleviate the problem above is to reduce
the iteration count. To this end, we design a syn-
thetic experiment on WMT En—Ro and En—De
to study how much target context is needed to make
one-shot NAT compete with IR-NAT? We change
the target context by masking the translation gener-
ated by the pre-trained AT model.

Models We use the official CMLM models
(Ghazvininejad et al., 2019). Since the authors did
not release the AT baselines, we used the same data
to retrain AT models with the standard Transformer-
Base configuration (Vaswani et al., 2017) and ob-
tain comparable performance with theirs (see Ap-
pendix B for details).

Decoding AT models decode with beam sizes of
5 on both tasks. Then we replace a certain percent-
age of AT tokens with <mask> and feed them to
CMLM. The used CMLM model only iterates once
with beam size 1. We substitute all <mask> with
CMLM’s predictions to obtain the final translation.
We report case-sensitive tokenized BLEU scores
by multi-bleu.perl.

Mask strategies We tested four strategies to
mask AT results: Head, Tail, Random and
Chunk. Given the masking rate py,qsk and
the translation length N, the number of masked
tokens is Njqsx=max(l, |NXpmask])- Then
Head/Tail always masks the first/last N, 455 to-
kens, while Random masks the translation ran-
domly. Chunk is slightly different from the above

“We observed similar results on CPU.

strategies. It first divides the target sentence into C'
chunks, where C' = Ceil(N/k) and k is the chunk
size. Then in each chunk, we retain the first token,
but mask other k£ — 1 tokens. Thus, the actual mask-
ing rate in Chunk is 1 — 1/k instead of pjqsk. To
exclude randomness, we ran Random three times
with different seeds and report the average results.

Results The experimental results are illustrated
in Figure 2, where we can see that balanced bidi-
rectional context is optimal. Specifically, Chunk
is moderately but consistently superior to Random
and both of them significantly outperform Tail
and Head. We attribute the success of Chunk
to two aspects: (1) The use of bidirectional con-
text (compared to Head and Tail (Devlin et al.,
2019)); (2) Uniformly distributed deterministic to-
kens (compared to Rand) 3. In addition, when
using the Chunk strategy, exposing 30% AT to-
kens as the input of the decoder is sufficient to
make our CMLM(beam=1, I=1) compete with the
official CMLM(beam=5, I=10), which indicates
the importance of a good partial target context.

5 Hybrid-Regressive Translation

Inspired by the Chunk strategy’s success, we
propose a two-stage translation paradigm called
Hybrid-Regressive Translation (HRT). Briefly
speaking, HRT autoregressively generates a dis-
continuous sequence with chunk size k (stage I),
and then non-autoregressively fills the skipped to-
kens (stage II). The idea of HRT is similar to SynST
(Akoury et al., 2019) that carries out AT and NAT
sequentially, but HRT does not require any addi-
tional supervision from the external parser tree.

5.1 Architecture

Overview Our HRT consists of three compo-
nents: encoder, Skip-AT decoder (for stage I), and
Skip-CMLM decoder (for stage II). All compo-
nents adopt the Transformer architecture (Vaswani
et al., 2017). To make the single model compatible
with the generation of continuous and discontin-
uous sequences simultaneously, we additionally
equip each decoder self-attention sublayer with a
simplified relative position representation (SRPR)
(Shaw et al., 2018) for the awareness of word po-

SChunk can guarantee that each masked token (except
the last k-1 ones in the sequence) can meet two deterministic
tokens within the window size of k. However, in extreme
cases, Random may degrade into Head/Tail.

sition information 6. The two decoders have the
same network structure and share model param-
eters, leading to almost the same parameter size
as the standard CMLM (except for a few param-
eters in SRPR). The only difference between the
two decoders lies in the masking pattern in the self-
attention sublayer: The Skip-AT decoder masks
future tokens to guarantee strict left-to-right gener-
ation. In contrast, the Skip-CMLM decoder elimi-
nates it to leverage the bi-directional context.

No target length predictor Existing NAT mod-
els generally train the translation model with an
independent translation length predictor. However,
just like previous Semi-AT models (Wang et al.,
2018a; Akoury et al., 2019; Ran et al., 2020), such
a length predictor is unnecessary for us because
the translation length is a by-product of Skip-AT,
e.g., Npa=k X Ng, where Ng; is the sequence
length produced by Skip-AT ’. There are two main
advantages to avoiding the independent length pre-
dictor: (1) No need to carefully tune the weighting
coefficient between the length prediction loss (sen-
tence level) and the target token prediction loss
(word level). (2) The length predicted by (Skip-
)AT may be more accurate because it can access
the already generated sequence information to ob-
tain better translation performance (Ghazvininejad
et al., 2019).

5.2 Training

This section will introduce how to train the HRT
model efficiently and effectively. Please refer to
Appendix C for the entire training algorithm.

Training samples Figure 3 illustrates the dif-
ferences of training samples among AT, CMLM,
Skip-AT, and Skip-CMLM. Compared with AT,
Skip-AT shrinks the sequence length from N to
N/k. Tt should be noted that, although the se-
quence feeding to Skip-AT is shortened, the input
position still follows the original sequence. For
example, in Figure 3 (c), the position of Skip-AT
input (<s2>,y2,y4) is (0, 2, 4) instead of (0, 1, 2).
Moreover, CMLM has the opportunity to mask any
token on the target sequence, while the masking
pattern in Skip-CMLM is deterministic.

Shaw et al. (2018) inject the relative positional represen-
tation in both key and value, while our SRPR only involves
key. We found that this simplification has no negative impact
on performance but saves memory footprint.

"More precisely, Npa: is the maximum length rather than
the realistic length because multiple </s> may appear in the
last k tokens.

v y2 3 4 o PAD y2 ¥3 PAD PAD

1 1 1 1 1 1 ! ! 1 1

‘ Decoder ‘

I Decoder ‘ ‘ Decoder |

[[[I I
vt MASK MASK v4 s>

(b) CMLM

(a) AT

I I [[[[[[
<s2> 2 v MASK 2 MASK 4 s>

(c) Skip-AT (d) Skip-CMLM

Figure 3: Examples of training samples fed to the decoder. For the sake of clarity, we omit the source sequence.
<s2> is a special <s> for k=2. PAD is ignored when computing the loss function.

Method Generation
SAT a,b—c,d—e, f
RecoverSAT a,c,e = b,d, f
HRT (Our) a—>c—e-->0bd,f

Table 1: Examples of different methods to generate the
sequence of “a, b, ¢, d, e, f”. “—” denotes a new decode
step conditioned on the prefix with beam search, while
“--»” is its greedy search version.

Curriculum learning Unfortunately, the direct
joint training of Skip-AT and Skip-CMLM is prob-
lematic because their training samples cannot fully
use all the tokens in the sequence. For example, in
Figure 3 (c) and (d), y; and y3 have no chance to be
learned as the decoder input of either Skip-AT or
Skip-CMLM. However, there is no such problem
in AT and CMLM. Therefore, we propose to grad-
ually transit from joint training { AT, CMLM} to
{Skip-AT, Skip-CMLM} through curriculum learn-
ing (Bengio et al., 2009). In other words, the model
is trained from chunk size 1 to k (kK > 1). More
concretely, given a batch of original sentence pairs
B and let the proportion of chunk size k in B be
i, we start with pi=0 and construct the training
samples of AT and CMLM for all pairs. Then we
gradually increase p;, to introduce more learning
signals for Skip-AT and Skip-CMLM until py=1.
In the implementation, we schedule py, by:

pe = (¢/T)* (4)

where ¢ and T are the current and total training
steps, respectively. X is a hyperparameter, and we
use A=1 to increase py, linearly for all experiments.

Mixed distillation NAT models generally use
the distillation data generated by AT models due to
the smoother data distribution (Zhou et al., 2020).
However, using only distillation data may lose
some important information (e.g., rare words) con-
tained in the original data (Ding et al., 2020). To
combine the best of both worlds, we propose a
simple but effective approach — Mixed Distillation

(MixDistill). During training, MixDistill randomly
samples the target sentence from the raw version
y with probability p,q,, or its distillation version
y* with probability 1-p,q., Where p,.q., is a hyper-
parameter 8. We empirically found that MixDistill
makes the HRT model less prone to overfitting in
some simple tasks (e.g., WMT 16 En—Ro). Com-
pared with recent related studies (Ding et al., 2020,
2021), our method is easier to implement: HRT
does not rely on external word alignment (Ding
etal., 2020), and also avoids the time-consuming bi-
directional distillation process (Ding et al., 2021).

5.3 Inference

Thanks to the joint training under chunk size one
and k, it is flexible for HRT to trade-off translation
quality and speedup by switching different decod-
ing chunk size Cy € [1, k].

Autoregressive decoding When C;=1, HRT be-
haves like the standard AT model: Feed <s> to
Skip-AT decoder and increase the target position by
one in each step. Skip-CMLM decoder is needless.
In this way, HRT has no faster speed advantage
than AT, but we can regard Cy=1 as the perfor-
mance upper bound of Cy=k.

Hybrid-regressive decoding When Cy=k, the
Skip-AT decoder firstly starts from <sk> to au-
toregressively generate a discontinuous target se-
quence Yg¢ = (21, 22, - - -, 2m) With chunk size &k
until meeting </s>. Then we construct the input
of Skip-CMLM decoder y,,,; by appending & — 1
<mask> before every z;. The final translation is
generated by replacing all <mask> with the pre-
dicted tokens by Skip-CMLM decoder with one
iteration. If there are multiple </s> existing, we
truncate to the first </s>. Note that the beam size
bg: in Skip-AT can be different from the beam size
bnat in Skip-CMLM as long as st. by > byg: We

$Training with only raw data or distillation data can be re-
garded as the special case of MixDistill as prqw=1 0Or Praw=0.

System Iterations WMT'16 WMT'14
En-Ro Ro-En En-De De-En
= Transformer N 34.25 3440 2745 31.86
< Transformer-20L N - - 28.79 33.02
FCL-NAT (Guo et al., 2019b) 1 - - 2575 29.50
= FlowSeq (Ma et al., 2019) 1 3220 32.84 2531 30.68
<Zﬁ AXE (Ghazvininejad et al., 2020a) 1 30.75 3154 23,53 2790
GLAT (Qian et al., 2021) 1 32.87 33.84 2655 31.02
Fully-NAT (Gu and Kong, 2021) 1 3379 3416 2749 31.39
iNAT (Lee et al., 2018) Adaptive 29.66 3030 21.54 2543
; CMLM (Ghazvininejad et al., 2019) 10 33.08 33.31 27.03 30.53
% LevT (Gu et al., 2019) Adaptive - - 27.27 -
& JM-NAT (Guo et al., 2020) 10 33,52 3372 27.69 32.24
g SMART (Ghazvininejad et al., 2020b) 10 - - 27.65 31.27
= DisCO (Kasai et al., 2020a) Adaptive 33.22 3325 2734 3131
Imputer (Saharia et al., 2020) 8 3440 34.10 28.20 31.80
RewriteNAT (Geng et al., 2021) Adaptive 33.63 34.09 27.83 3152
; SAT (Wang et al., 2018a) N/2 - - 26.90 -
Z SynST (Akoury et al., 2019) N/6+1 - - 20.74* 25.50%
g ReorderNAT (Ran et al., 2019) N +1 31.70 3199 2649 31.13
@2 RecoverSAT(k=2) (Ran et al., 2020) N/2 3292 3319 27.11 31.67
HRT (by:=5, bpar=1) N/24+1 3436 3455 2798 3193
5 HRT(b,=5.b,=5) N/2+1 3453 3480 2810 3207
O HRT-20L (bg=5, bpat=1) N/2+1 - - 28.90 33.06
HRT-20L (by;=5, byqt=5) N/2+1 - - 28.99 33.08

Table 2: The BLEU scores of our proposed HRT and the baseline methods on four WMT tasks. Unless otherwise
stated, the used beam size is 5. “Adaptive” denotes dynamic iterations. “20L” stands for using a 20-layer encoder.
All HRT models only iterate once by non-autoregression. * means sacrebleu score, which is uncomparable
to others. All the HRT results are significantly better (p<0.01) than the autoregressive counterparts, measured by

paired bootstrap resampling (Koehn, 2004) .

only feed the Skip-CMLM with the top b,,4¢ Skip-
AT hypothesis. Finally, we choose the translation
hypothesis with the highest score S(y) by:

m m—1k—1
> log P(zil@, 2<i) + Y Y 108 P(fixckss T Unat) (5)
i=1 i=0 j=1

Skip-AT score Skip-CMLM score

where z;=y; x k.

5.4 Discussion

The basic idea of HRT is to apply AT and NAT in
sequence, which has been investigated by Kaiser
etal. (2018); Ran et al. (2019); Akoury et al. (2019).
The main difference from these methods lies in the
content of AT output, such as latent variable (Kaiser
et al., 2018), reordered source token (Ran et al.,
2019), syntactic label (Akoury et al., 2019). In
contrast, our approach uses the deterministic target
token as Ghazvininejad et al. (2019). Another line
to incorporate AT and NAT is to couple the two
decoding paradigms. For example, SAT (Wang
et al., 2018a) embeds chunk-level NAT into the
AT process, while RecoverSAT (Ran et al., 2020)
does the opposite. As shown in Table 1, although
HRT has a longer decoding path, the cost of the

non-autoregressive process in HRT is cheap. The
reason is that our Skip-CMLM can work well with
greedy search, thanks to the good context provided
by the relatively slow Skip-AT (see Table 2). In
contrast, SAT and RecoverSAT need larger beams
to explore translations of different lengths. Another
note is that HRT significantly outperforms both
SAT and RecoverSAT, e.g., +1.0 BLEU scores on
WMT En—De (see Table 2).

6 Experiments

Setup We mainly conducted experiments on
four widely used WMT tasks: WMT’16
English<»Romanian (En«+Ro, 610k) and WMT’ 14
English<+>German (En«++De, 4.5M). We replicated
the same data processing as Ghazvininejad et al.
(2019) for fair comparisons. To verify the effective-
ness in long-distance language pairs, we also test
it in the NIST Chinese-English (Zh—En, 1.8M)
translation task following the setup of Wang et al.
(2018b). Since Ghazvininejad et al. (2019) did not
release the distillation data of En<+De, we retrained
the AT teacher models to produce the correspond-
ing data. Specifically, we use the deep PreNorm
Transformer-Base with a 20-layer encoder as the

Model MT04 MTO05 MTO08

AT 4386 5291 3394
CMLM(/=10) 4247 52.16 33.09
HRTS5-1 4428 5344 34.63
HRT5-5 44.31 53.77 34.74

Table 3: BLEU scores on the NIST Zh—En task.

Lang. Cy Raw Dist. Mix Dist.
N/A 34.25 - -
EnRo k3392 3341 34.53
1 3429 3341 34.27
N/A 2745 - -
EnsDe k2637 28.00 28.10
1 27.60 28.42 28.51

I gcmuma=10) 0 D urrs-1

21 1.85
1.59

—

-
1

:

1.59

l,

2

[3

—

1.52
o

i

1.69

1.11

0.33

il

1.92

0.31

[

0
b=1

b=8

52 1.53
0.5¢
0.31
b=16 b=32

0

b=1 b=8

b=16

b=32

Figure 4: Relative speedup ratio w.r.t. batch size (b) and
computing device (left: GPU, right: CPU) on En—De
task. The dashed line at y=1 represents the correspond-
ing autoregressive model. HRT{#1}—{#2} denotes
decoding with byy=#1 and b,,;=#2.

teacher instead of Transformer-Big for faster train
and inference with comparable performance (Wang
et al., 2019a). We ran all experiments on 8 TITAN
X (Pascal) GPUs. Unless noted otherwise, we use
the chunk size k=2. We set p;.q.,=0.5 for En<»Ro
and p;q,=0.8 for En<+De according to validation
sets. The windows size of SRPR is 16 as Shaw et al.
(2018) °. We fine-tune HRT models on pre-trained
AT models and take the same training steps as that
of AT (about 1/3 training steps compared to previ-
ous NAT work) '°. Other training hyperparameters
are the same as Vaswani et al. (2017) or Wang et al.
(2019a) (deep-encoder).

Translation quality Table 2 reports the BLEU
scores on four WMT tasks. We first verify that
greedy search (b,.:=1) is sufficient for our Skip-
CMLM instead of cost-intensive beam search (e.g.,
a drop of approximately 0.1 BLEU on En«+De).
In contrast, we noticed that previous methods sig-
nificantly degrade performance when using greedy
search. For example, when the beam size switches
from 4 to 1, the BLEU score in SAT is reduced by
0.81. Therefore, we use b,;=5 and b,,,;=1 (denoted
by HRT5-1) in the following experiments unless
noted otherwise. Our HRT outperforms most ex-
isting NAT, IR-NAT, and Semi-NAT models and
establishes new state-of-the-art results on En<+Ro.
Besides, in line with Guo et al. (2020), when us-
ing a deeper encoder, HRT-20 can further improve

°For autoregressive baselines, adding SRPR in Trans-
former decoders did not bring obvious improvements.

19Since HRT needs to train Skip-AT and Skip-CMLM
jointly, the wall-clock time is about two times longer than
AT in the same training epochs.

Table 4: The BLEU scores against different data strate-
gies . Cy="N/A” represents the original AT model.

approximately +0.8 BLEU on more challenging
En<De tasks. More surprisingly, we found that
HRT can be slightly better than the AT models
trained from scratch. We attribute it to two rea-
sons: (1) HRT is fine-tuned on a well-trained AT
model, making training easier; (2) Mixing up AT
and NAT has a better regularization effect than
training alone. We also report the experimental
results on the Zh—En task in Table 3. We can see
that HRT is once again superior to the original AT
model and CMLM model, which indicates that the
effectiveness of HRT is agnostic to language pairs.
Please see Appendix E for case study.

7 Analysis

Translation speed Previous work generally only
reports the decoding speed on GPUs with a batch
size of 1. Instead, we systematically tested the
decoding speed under varying batch sizes and de-
vices on the WMT’14 En—De test set (see Fig-
ure 4). By default, all systems use a beam size
of 5 (except the Skip-CMLM process in HRT).
It can be seen that although HRT is slower than
CMLM(=10) when running on a GPU with a
batch size of 1, CMLM(/=10) dramatically slows
down as the batch size increases. In contrast, HRT5-
1 is consistently more than 50% faster than AT
without varying with the environment ', It indi-
cates that HRT has a more stable acceleration than
IR-NAT.

Impact of data strategy In Table 4, we com-
pared different data strategies, including raw
data (Raw), sequence-level knowledge distillation
(Dist.), and mixed distillation (Mix Dist.).
Overall, Mix Dist. is superior to other methods
across the board, indicating that training with raw
and distillation data is complementary. In addition,
we also found that the performance of the distil-
lation data is lower than that of the raw data on

'The acceleration results of other HRT variants are re-
ported in Appendix D.

Chunk BLEU Latency (sec.)
(k) Cag=k Cg4=1 GPU CPU

2 3411 3386 200 705

3 31.15 33.78 13.0 54.6

4 2822 3412 122 539

Table 5: The effects of chunk sizes. Latency is measured
in batch size of 16, Cy=k and b,;=b,,4;=1.

Model KD BLEU SU-GPU SU-CPU
AT wlo 27.45 ref. ref.
CMLM(=10) w/ 27.03* 0.93 0.54
HRT w/ 27.90 1.56 1.80
SD-AT w/ 28.23 2.08 347
SD-HRT w/ 28.05 3.23 4.55

Table 6: Effects of deep-shallow architecture on
En—De. SU-GPU and SU-CPU denotes the average
speedup ratio over batch size {1,8,16,32} on GPU and
CPU, respectively. b,:=5, b,,4:=1. * denotes the number
comes from the original paper.

En—Ro task, which is against the previous results.
As interpreted by Zhou et al. (2020), we suspect
that when the translation model is strong enough,
training entirely through distilled data may make
learning too easy and lead to overfitting. Another

note is that, even if we only use Raw or Dist.

alone, our HRT can obtain equivalent or even bet-
ter performance than the original AT model.

Impact of chunk size We tested chunk size k
on the En—Ro test set as shown in Table 5, where
we can see that: (1) A large k£ has more signifi-
cant acceleration on the GPU because fewer autore-
gressive steps are required; (2) As k increases, the
performance of hybrid-regressive decoding drops
sharply (e.g., k=4 is 6 BLEU points lower than
k=2.), but k has little effect on the autoregressive
mode. It indicates that the training difficulty of
Skip-AT increases as k gets bigger. We think that
skip-generation may require more fancy training
algorithms, which is left for our future work.

Deep-Shallow architecture Kasai et al. (2020b)
point out that AT with deep-shallow architecture
(i.e., deep encoder and shallow decoder) can be sub-
stantially sped up without loss in accuracy. We also
compare HRT and AT under this setting: 12-layer
encoder and 1-layer decoder, denoted by SD-HRT
and SD-AT, respectively. Instead of the proposed
mixed distillation, we use the same sequence-level
KD as AT for a fair comparison. From the results
listed in Table 6, we can see that: (1) SD-AT out-
performs our HRT in both BLEU and speed, indi-

System BLEU A
WMT’16 En—Ro validation set
AT 35.12 N/A
"HRT5-1 3484 ref.
—FT 3446 -0.38
—SRPR 3462 -0.22
—MixDistill 3421 -0.63
—CL(px=1.0) 33.85 -0.99
—ALL 33.38 -1.46
WMT’14 En— De validation set
HRT5-1 (100k) 26.68 N/A
" Official CMLM (300k) 2551 ref.
+FT + SRPR + MD (100k) 25.64 +0.13
+FT + SRPR + MD (300k) 26.13 +0.62

Table 7: Ablation study on En—Ro and En—De.

cating the effectiveness of the deep-shallow layer
allocation; (2) HRT also benefits from the deep-
shallow architecture, achieving comparable BLEU
and faster decoding with SD-AT. Note that CMLM
with deep-shallow architecture degrades severely
(1.1 BLEU dropped) as reported by Kasai et al.
(2020b), which indicates that SD-HRT can inherit
the good character from SD-AT.

Ablation study In Table 7, we first conducted ab-
lation studies on each newly introduced technique.
We can see that all techniques help to improve per-
formance, but the most critical components are CL
(-0.99) and MixDistill (-0.63). We also tried to ex-
clude all of them from the standard HRT (-ALL),
resulting in a total reduction of 1.46 BLEU points.
We continued to experiment on En—De task to ver-
ify whether the optimization methods used in HRT
training improve CMLM. Table 7 shows that with
the help of FT+SRPR+MD, our CMLM model has
improved +0.62 BLEU points compared with the
official CMLM when fine-tuning 300k steps. How-
ever, there is still a large BLEU gap (0.55 BLEU
points) between the enhanced CMLM and our HRT
with fewer training steps.

8 Conclusion

We have pointed out that existing IR-NAT methods
cannot efficiently accelerate when running with
a large batch or on CPU. Inspired by synthetic
experiments, we proposed a two-stage translation
paradigm, HRT, to combine the advantages of AT
and NAT. Experimental results show that our ap-
proach outperforms the existing Semi-AT methods
and is promising to be a good substitute for AT
due to competitive performance and stable 1.5x
acceleration.

References

Nader Akoury, Kalpesh Krishna, and Mohit Iyyer. 2019.
Syntactically supervised transformers for faster neu-
ral machine translation. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 1269-1281.

Yoshua Bengio, Jérome Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning, ICML ’09, page 41-48,
New York, NY, USA. Association for Computing
Machinery.

Aishwarya Bhandare, Vamsi Sripathi, Deepthi Karkada,
Vivek Menon, Sun Choi, Kushal Datta, and Vikram
Saletore. 2019. Efficient 8-bit quantization of trans-
former neural machine language translation model.
arXiv preprint arXiv:1906.00532.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Liang Ding, Xuebo Liu Longyue Wang, Derek F. Wong,
Dacheng Tao, and Zhaopeng Tu. 2021. Rejuvenating
low-frequencywords: Making the most of parallel
data in non-autoregressive translation. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F.
Wong, Dacheng Tao, and Zhaopeng Tu. 2020. Un-
derstanding and improving lexical choice in non-
autoregressive translation. arXiv: Computation and
Language.

Xinwei Geng, Xiaocheng Feng, and Bing Qin. 2021.
Learning to rewrite for non-autoregressive neural ma-
chine translation. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 3297-3308, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Marjan Ghazvininejad, Vladimir Karpukhin, Luke
Zettlemoyer, and Omer Levy. 2020a. Aligned cross
entropy for non-autoregressive machine translation.
In ICML 2020: 37th International Conference on
Machine Learning, volume 1, pages 3515-3523.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6111—
6120, Hong Kong, China. Association for Computa-
tional Linguistics.

Marjan Ghazvininejad, Omer Levy, and Luke Zettle-
moyer. 2020b. Semi-autoregressive training im-
proves mask-predict decoding. arXiv preprint
arXiv:2001.08785.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-

tor OK Li, and Richard Socher. 2017. Non-
autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281.

Jiatao Gu and Xiang Kong. 2021. Fully non-

autoregressive neural machine translation: Tricks of
the trade. In ACL 2021: 59th annual meeting of
the Association for Computational Linguistics, pages
120-133.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019. Lev-
enshtein transformer. In Advances in Neural Infor-
mation Processing Systems, pages 11179-11189.

Junliang Guo, Xu Tan, Di He, Tao Qin, Linli Xu, and
Tie-Yan Liu. 2019a. Non-autoregressive neural ma-
chine translation with enhanced decoder input. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3723-3730.

Junliang Guo, Xu Tan, Linli Xu, Tao Qin, Enhong Chen,
and Tie-Yan Liu. 2019b. Fine-tuning by curriculum
learning for non-autoregressive neural machine trans-
lation. arXiv preprint arXiv:1911.08717.

Junliang Guo, Linli Xu, and Enhong Chen. 2020.
Jointly masked sequence-to-sequence model for non-
autoregressive neural machine translation. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 376-385.

Lukasz Kaiser, Samy Bengio, Aurko Roy, Ashish
Vaswani, Niki Parmar, Jakob Uszkoreit, and Noam
Shazeer. 2018. Fast decoding in sequence models
using discrete latent variables. In International Con-
ference on Machine Learning, pages 2390-2399.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and
Jiatao Gu. 2020a. Non-autoregressive machine trans-
lation with disentangled context transformer. In
ICML, pages 5144-5155.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James
Cross, and Noah A. Smith. 2020b. Deep encoder,
shallow decoder: Reevaluating the speed-quality
tradeoff in machine translation. arXiv preprint
arXiv:2006.10369.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 1317-1327.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing, pages 388-395, Barcelona,
Spain. Association for Computational Linguistics.

https://doi.org/10.1145/1553374.1553380
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2021.emnlp-main.265
https://aclanthology.org/2021.emnlp-main.265
https://aclanthology.org/2021.emnlp-main.265
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://www.aclweb.org/anthology/W04-3250
https://www.aclweb.org/anthology/W04-3250
https://www.aclweb.org/anthology/W04-3250

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1173-1182,
Brussels, Belgium.

Bei Li, Ziyang Wang, Hui Liu, Quan Du, Tong Xiao,
Chunliang Zhang, and Jingbo Zhu. 2021. Learn-
ing light-weight translation models from deep trans-
former. In AAAL

Zhuohan Li, Zi Lin, Di He, Fei Tian, QIN Tao, WANG
Liwei, and Tie-Yan Liu. 2019. Hint-based training
for non-autoregressive machine translation. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5712-5717.

Ye Lin, Yanyang Li, Tengbo Liu, Tong Xiao, Tongran
Liu, and Jingbo Zhu. 2020. Towards fully 8-bit in-
teger inference for the transformer model. ArXiv,
abs/2009.08034.

Ye Lin, Yanyang Li, Ziyang Wang, Bei Li, Quan Du,
Tong Xiao, and Jingbo Zhu. 2021. Weight distilla-
tion: Transferring the knowledge in neural network
parameters. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 2076-2088, Online. Association for Computa-
tional Linguistics.

Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neu-
big, and Eduard Hovy. 2019. Flowseq: Non-
autoregressive conditional sequence generation with
generative flow. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP),
pages 4273-4283.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin
Qiu, Weinan Zhang, Yong Yu, and Lei Li. 2021.
Glancing transformer for non-autoregressive neural
machine translation. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1993-2003, Online. Association
for Computational Linguistics.

Qiu Ran, Yankai Lin, Peng Li, and Jie Zhou. 2019.
Guiding non-autoregressive neural machine transla-
tion decoding with reordering information. arXiv
preprint arXiv:1911.02215.

Qiu Ran, Yankai Lin, Peng Li, and Jie Zhou. 2020.
Learning to recover from multi-modality errors for
non-autoregressive neural machine translation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3059—
3069, Online. Association for Computational Lin-
guistics.

10

Chitwan Saharia, William Chan, Saurabh Saxena, and
Mohammad Norouzi. 2020. Non-autoregressive ma-
chine translation with latent alignments. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
1098-1108.

Chenze Shao, Yang Feng, Jinchao Zhang, Fandong
Meng, Xilin Chen, and Jie Zhou. 2019. Retrieving
sequential information for non-autoregressive neural
machine translation. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3013-3024.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464—468, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Raphael Shu, Jason Lee, Hideki Nakayama, and
Kyunghyun Cho. 2019. Latent-variable non-
autoregressive neural machine translation with de-
terministic inference using a delta posterior. arXiv
preprint arXiv:1908.07181.

Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin,
and Zhihong Deng. 2019. Fast structured decoding
for sequence models. In Advances in Neural Infor-
mation Processing Systems, pages 3011-3020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000-6010.

Chunqgi Wang, Ji Zhang, and Haiqing Chen. 2018a.
Semi-autoregressive neural machine translation. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 479—
488.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019a. Learning deep transformer models for ma-
chine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1810-1822, Florence, Italy.

Qiang Wang, Fuxue Li, Tong Xiao, Yanyang Li, Yin-
giao Li, and Jingbo Zhu. 2018b. Multi-layer repre-
sentation fusion for neural machine translation. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 3015-3026.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang
Zhai, and Tie-Yan Liu. 2019b. Non-autoregressive
machine translation with auxiliary regularization. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 5377-5384.

https://doi.org/10.18653/v1/D18-1149
https://doi.org/10.18653/v1/D18-1149
https://doi.org/10.18653/v1/D18-1149
https://doi.org/10.18653/v1/2021.acl-long.162
https://doi.org/10.18653/v1/2021.acl-long.162
https://doi.org/10.18653/v1/2021.acl-long.162
https://doi.org/10.18653/v1/2021.acl-long.162
https://doi.org/10.18653/v1/2021.acl-long.162
https://doi.org/10.18653/v1/2021.acl-long.155
https://doi.org/10.18653/v1/2021.acl-long.155
https://doi.org/10.18653/v1/2021.acl-long.155
https://www.aclweb.org/anthology/2020.acl-main.277
https://www.aclweb.org/anthology/2020.acl-main.277
https://www.aclweb.org/anthology/2020.acl-main.277
https://doi.org/10.18653/v1/N18-2074
https://www.aclweb.org/anthology/P19-1176
https://www.aclweb.org/anthology/P19-1176
https://www.aclweb.org/anthology/P19-1176

Tong Xiao, Yingiao Li, Jingbo Zhu, Zhengtao Yu, and
Tongran Liu. 2019. Sharing attention weights for fast
transformer. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelli-
gence, pages 5292-5298.

Biao Zhang, Deyi Xiong, and Jinsong Su. 2018. Accel-
erating neural transformer via an average attention
network. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1789-1798.

Chunting Zhou, Jiatao Gu, and Graham Neubig.
2020. Understanding knowledge distillation in non-
autoregressive machine translation. In ICLR 2020 :
Eighth International Conference on Learning Repre-
sentations.

A Analysis of speed degradation problem

Model BH=1 BH=8 BH=16 BH=32
AT 962s 151s 78s 43s
CMLM (I=10) 464s 125s 119s 129s

Table 8: Elapsed time of decoding newstest2014 by
different batch sizes on Titian X GPU. The beam size is
5.

As shown in Table 8, we list the elapsed time
when AT and CMLM(/=10) decode the test set
of WMT’14 En—De task under different batch
sizes. The beam size used is 5. We test the
time on Titian X GPU and report the average of 3
runs. In general, we can see that AT benefits more
than CMLM(/=10) from the increase in batch size.
Specifically, when the batch size is increased from
1 to 32, the delay of AT is reduced by 962/43 (about
22.4) times, while CMLM (/=10) is only reduced
by 464/129 (about 3.6) times. That is, when the
burden of parallel computing is too heavy, the com-
mon belief that non-autoregressive runs faster than
autoregressive may not hold.

B AT Transformer in synthetic
experiments

AT Transformer En-Ro En-De
Vaswani et al. (2017) - 27.3
Ghazvininejad et al. (2019) 34.28 27.74
Our implementation 3425 27.45

Table 9: The performance of autoregressive models in
the synthetic experiment.

In the synthetic experiment, we trained all AT
models with the standard Transformer-Base con-
figuration: layer=6, dim=512, ffn=2048, head=S.

Algorithm 1 Training Algorithm for Hybrid-
Regressive Translation

Input: Training data D including distillation tar-
gets, pretrained AT model M, chunk size k&,
mixed distillation rate p,q.,, schedule coeffi-
cient A

Output: Hybrid-Regressive Translation model
Mhrt

1: Mppy < Mg D fine-tune on pre-trained AT
2: fortinl,2,...,T do
3: X =Axy,...,xz,}, Y ={y1,...,yn}s
Y' ={y},...,y)} « fetch a batch from D
4: foriinl,2,...,ndo
5: B; = (X;,Y;") < sampling Y;* ~
{Y;, Y/} with P(Y;) = praw > mixed
distillation
6: end for
P+ (4 > curriculum learning
i Beky Be=1 < Binxp)s Blaxp): P
split batch
9: B, B" <+ construct {Skip-AT, Skip-
CMLM} training samples based on B.—,

10: B, B" <+ construct {AT, CMLM}
training samples based on B.—

11: Optimize My, using B%, U B%, U
Bt U B > joint training

12: end for

The difference from Ghazvininejad et al. (2019)
is that they trained the AT models for 300k steps,
but we updated 50k/100k steps on En—Ro and
En—De, respectively. Although fewer updates, as
shown in Table 9, our AT models have comparable
performance with theirs.

C Training algorithm

Algorithm 1 describes the training process of HRT.
The HRT model is pre-initialized by a pre-trained
AT model (Line 1). Each training sample B; ran-
domly selects a raw target sentence Y; or its dis-

tilled version Y’ (Line 4-6). Then according to
the schedule strategy pr = %)A, we can di-
vide B into two parts: B.—; and B._;, where
| Bc—k|/|B| = px (Line 7-8). Next, we construct
four kinds of training samples based on correspond-
ing batches: B%,, B*,, B and B!*. Fi-
nally, we collect all training samples together and
accumulate their gradients to update the model
parameters, which results in the batch size being

twice that of standard training.

Source Also problematic : civil military jurisdiction will continue to be uph@ @ eld .
Reference Auch problematisch : Die zivile Militir@ @ geri@ @ chts@ @ barkeit soll
weiter aufrechterhalten bleiben .

CMLM(/=10) | [Problem@ @] [atisch] [:] [Die] [zivile] [militdrische] Gerichts@ @ barkeit
(5th iteration) wird weiterhin [aufrechterhalten] . </s>

HRTS5-1 Auch problematisch : Die zivile Militir@ @ geri@ @ chts@ @ barkeit wird
(Cy=1) weiterhin aufrechterhalten . </s>

"HRT5-1 | [Auch] problematisch [:] Die [zivile] militirische [Rechtsprechung] wird [weit-
(Cy=2) erhin] aufrechterhalten [.] </s>

Table 10: A case study in En—De validation set. “[]” denotes the original token is <mask>. We also report the
CMLM(/=10) in the Sth iteration as its masking rate is closing to that of HRTS5-1(C;=2), e.g., 50%.

D Acceleration effects of HRT variants

Model BH=1 BH=8 BH=16 BH=32

On GPU
HRT5-1 1.59 1.59 1.52 1.53
HRTS5-5 1.40 1.38 1.34 1.29
HRT-20L(5-1) 1.55 1.52 1.53 1.49
On CPU
HRTS5-1 1.69 1.87 1.74 1.92
HRTS5-5 1.43 1.47 1.41 1.40

HRT-20L(5-1) 1.62 1.75 1.77 1.81

Table 11: Speedup effects of different HRT variants.

In Table 11, we list the speedup results of HRTS5-
5 and HRT-20L(5-1) by the average of three runs.
We can see that HRTS-5 can maintain a stable accel-
eration (about 30%) than AT counterparts, which is
less efficient than HRTS-1. Please note that HRTS-
5 is only slightly better than HRT5-1 (about 0.1
BLEU). Besides, the overall result of the 20-layer
encoder is similar to that of a 6-layer encoder be-
cause the translation time is mainly consumed in
the decoder.

E Case study

Table 10 shows a translation example from En—De
validation set. Compared CMLM and HRT(C;=2),
although both have the same masking rate (50%),
the masked positions in CMLM are more continu-
ous than HRT. It leads to a suboptimal translation,
which is consistent with the observation in the syn-
thetic experiment. Besides, we can see that most
skipped predictions (Cy=2) are the same as autore-
gressive ones (Cy=1). It indicates that our model
is capable of generating appropriate discontinuous
sequences.

12

