
Refining Sentence Embedding Model through Ranking Sentences
Generation with Large Language Models

Anonymous ACL submission

Abstract

Sentence embedding is essential for many001
NLP tasks, with contrastive learning methods002
achieving strong performance using annotated003
datasets like NLI. Yet, the reliance on manual004
labels limits scalability. Recent studies lever-005
age large language models (LLMs) to gener-006
ate sentence pairs, reducing annotation depen-007
dency. However, they overlook ranking infor-008
mation crucial for fine-grained semantic dis-009
tinctions. To tackle this challenge, we propose010
a method for controlling the generation direc-011
tion of LLMs in the latent space. Unlike un-012
constrained generation, the controlled approach013
ensures meaningful semantic divergence. Then,014
we refine exist sentence embedding model by015
integrating ranking information and semantic016
information. Experiments on multiple bench-017
marks demonstrate that our method achieves018
new SOTA performance with a modest cost in019
ranking sentence synthesis1.020

1 Introduction021

Sentence embedding is a fundamental task in nat-022

ural language processing. It provides effective023

semantic representations for various downstream024

applications, such as semantic search (He et al.,025

2023), text classification (Wang et al., 2022a), and026

question-answering systems (Nguyen et al., 2022).027

In recent years, significant progress has been made028

in the study of sentence embeddings, with methods029

based on contrastive learning standing out in par-030

ticular. These approaches learn embeddings of sen-031

tences by bringing semantically similar sentences032

closer together and pushing dissimilar ones further033

apart. Current mainstream research relies on high-034

quality annotated data, especially natural language035

inference (NLI) datasets (Bowman et al., 2015;036

Williams et al., 2018). For instance, supervised037

contrastive learning methods based on NLI have038

1Our code is available at https://anonymous.4open.
science/r/RankingSentence-44EE

demonstrated a remarkable ability to surpass the 039

unsupervised approaches (Limkonchotiwat et al., 040

2022; Jiang et al., 2022). However, such annotated 041

datasets are often unavailable in most real-world 042

scenarios, and the manual construction of these 043

datasets incurs extremely high costs. 044

To reduce reliance on manually annotated data, 045

recent studies have begun to explore leveraging the 046

powerful generative capabilities of large language 047

models (LLMs) to construct high-quality sentence 048

pairs automatically. For instance, SynCSE (Zhang 049

et al., 2023) employs LLMs to generate semanti- 050

cally similar sentence pairs, enhancing the effec- 051

tiveness of contrastive learning. MultiCSR (Wang 052

et al., 2024) further evaluates the quality of LLM- 053

generated outputs, filtering out erroneous results. 054

GCSE (Lai et al., 2024) utilizes knowledge graphs 055

to extract entities and quantities, enabling LLMs 056

to generate more diverse and knowledge-enriched 057

samples. These approaches significantly diminish 058

the dependence on manual annotation. 059

However, current research focuses on generat- 060

ing sentence pairs, overlooking the critical role 061

of ranking sentences. While sentence pairs can 062

capture the similarity between sentences, they fail 063

to effectively distinguish between “highly similar” 064

sentences and “slightly different”. Liu et al. (2023) 065

point out that the limitation of sentence pairs lies in 066

their inability to represent finer-grained semantic 067

distinctions. Existing unsupervised methods, such 068

as RankCSE (Liu et al., 2023) and RankEncoder 069

(Seonwoo et al., 2023), attempt to construct rank- 070

ing information using in-batch data to address this 071

shortcoming. However, the ranking information in 072

these methods is derived in an unsupervised man- 073

ner, lacking explicit ranking supervision signals. 074

As shown in Figure 1 (a), the heatmap illustrates 075

the similarity calculations between sentences ac- 076

quired from the in-batch data. We observe that the 077

relationships among sentences within the in-batch 078

data are treated as equivalent, failing to capture the 079
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Figure 1: Sentence similarity within the ranking sentences obtained through different methods. We randomly
selected 1,000 ranking sentences generated by these methods and extracted the first 16 sentences from each ranking
sentence. Then, we use a trained DiffCSE (Chuang et al., 2022) to obtain their embeddings and compute their
average similarity. (a) Directly extracted from the trained batch. (b) Prompting the LLM to generate complete
ranking sentences at once. (c) Prompting the LLM to generate ranking sentences step by step. (d) Generating the
ranking sentences using our proposed directionally controlled generation method.

hierarchical semantic distinctions. Thus, we pro-080

pose a new research question: Can LLMs be used081

to generate ranking sentences to enhance the082

performance of sentence embedding models?083

A straightforward method for generating ranking084

sentences is to directly prompt LLMs to produce085

them. However, such an unconstrained generation086

process will result in ambiguous sentence semantic087

relationships. As illustrated in Figure 1 (b) and (c),088

neither prompting the LLM to generate complete089

ranking sentences at once nor guiding it to generate090

them step by step can ensure a gradual increase091

in semantic distance 2. Thus, it fails to provide092

high-quality ranking information for sentence em-093

bedding models.094

In this paper, we propose a latent space direc-095

tional control method for ranking sentence gener-096

ation and a post-training method for synthesized097

ranking sentences. Specifically, we design a direc-098

tionally controlled generation method that LLMs to099

produce ranking sentences. By utilizing the gener-100

ation probabilities of the preceding two sentences,101

we ensure that the resulting latent space remains in102

a consistent direction. As shown in Figure 1 (d),103

our generated ranking sentences exhibit a gradual104

increase in semantic divergence within the seman-105

tic space. Then, we integrate the ranking informa-106

tion and semantic information from the synthesized107

ranking sentences to refine existing sentence em-108

bedding models through post-training. The contri-109

butions of this paper can be summarized as follows:110

• We are the first to use LLMs to generate rank-111

ing sentences. We have curated a dataset112

consisting of 16,063 ranking sentences and113

2We provide a detailed description of their generation pro-
cess in Appendix A.

530,079 sentences, opening new avenues for 114

research in sentence embedding. 115

• We propose a post-training approach that in- 116

corporates both ranking and semantic informa- 117

tion from the synthesized ranking sentences, 118

substantially enhancing the performance of 119

sentence embedding models on STS, rerank- 120

ing, and TR tasks. 121

• Extensive experiments on multiple benchmark 122

datasets demonstrate the effectiveness of the 123

proposed method. Even using merely 5% of 124

the synthesized ranking sentences is sufficient 125

to surpass the original sentence embedding 126

model significantly. 127

2 Background 128

In unsupervised sentence embedding models, a se- 129

ries of works represented by SimCSE (Gao et al., 130

2021) employ contrastive learning to acquire effec- 131

tive embeddings by bringing semantically similar 132

neighbours closer while pushing dissimilar ones 133

apart. Assume there exists an unlabeled dataset 134

X . For each sentence x ∈ X , SimCSE processes 135

the same input through an encoder, such as BERT 136

(Kenton and Toutanova, 2019) or RoBERTa (Liu, 137

2019), twice. It yields two embeddings hi and h+
i 138

for the i-th sentence with different dropout masks. 139

The objective for the pair (hi,h
+
i ) within a mini- 140

batch of B is: 141

Li = − log
esim(hi,h

+
i )/τ∑B

j=1 e
sim(hi,h

+
j )/τ

, (1) 142

where τ is a temperature hyperparameter and 143

sim(·, ·) is the cosine similarity between two em- 144

beddings. Follow-up methods such as CARDS 145
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(Wang et al., 2022b), DiffCSE (Chuang et al.,146

2022), and RankCSE (Liu et al., 2023) have been147

proposed.148

Data Generation with LLM. Unsupervised ap-149

proaches often lag behind their supervised coun-150

terparts, which leverage labeled datasets such as151

natural language inference (NLI) corpora (Bow-152

man et al., 2015; Williams et al., 2018). The153

NLI dataset provides each x with a positive sam-154

ple x+ and a hard negative sample x− to con-155

struct the triplet (x, x+, x−) for the supervised156

contrastive loss. However, such annotated data157

are typically unavailable in the majority of scenar-158

ios. Thus, researchers began exploring the potential159

of LLMs for the triplet (x, x+, x−) generation for160

each x ∈ X . A representative work is SynCSE161

(Zhang et al., 2023), which leverages ChatGPT162

(OpenAI, 2022) in a few-shot setting to generate163

positive samples and hard negative samples. Mul-164

tiCSR (Wang et al., 2024) and GCSE (Lai et al.,165

2024) further refined the process of utilizing LLMs166

for data generation. These works fundamentally167

revolve around generating triplets.168

Ranking Sentences Generation. We further ad-169

vance this research by concentrating on the gen-170

eration of ranking sentences. Formally, a rank-171

ing sentence is defined as a sequence of sentences172

l = {x(1), x(2), · · · , x(n)} for each x ∈ X , x(1) is173

equal to x itself. Let φ(a, b) denote the semantic174

similarity between two sentences a and b, where175

a larger value indicates a closer semantic similar-176

ity. For any three sentences (x(a), x(b), x(c)) ∈ l177

with a < b < c, the condition should hold:178

φ(x(a), x(b)) > φ(x(a), x(c)). In other words,179

these sentences are arranged in order within the180

semantic space.181

3 Methodology182

3.1 Ranking Sentences Generation183

A straightforward approach to generating ranking184

sentences is prompting LLM, either by directly pro-185

ducing ranking sentences at once or by generating186

them step by step. Taking the second case as an187

example, let the prompt be denoted as an instruc-188

tion I . The LLM Cθ generates the i-th sentence189

x(i) = [x
(i)
1 , x

(i)
2 , . . . , x

(i)
k ] in the following form:190

pθ(x
(i)|x(i−1), I) =

n∏
t=1

pθ(x
(i)
t |x

(i)
<t, x

(i−1), I),

(2)191
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Figure 2: A 2D semantic space illustrating the genera-
tion of ranking sentences using prompts (solid line) and
our directionally controlled method (dashed line). The
color of each point represents its semantic similarity to
the initial point x(0).

where x
(i)
<t represents the tokens generated before 192

the t-th step. Eq.(2) use the previously generated 193

sentence x(i−1) and the instruction I to prompt the 194

LLM to generate the next sentence x(i), thereby 195

progressively constructing a sequence of ranking 196

sentences. However, as mentioned before, this 197

method of generation leads to ambiguous seman- 198

tic relationships among the ranking sentences, as 199

illustrated in Figure 1 (c). 200

Our core idea is to integrate directional control 201

into the ranking sentence generation process. As 202

illustrated in Figure 2, our generation process se- 203

quentially combines the directional tendencies of 204

two sentences, ensuring that the subsequent genera- 205

tion maintains a consistent trajectory. For example, 206

the generation direction of x(3) is controlled by the 207

latent generation space of x(1) and x(2), ensuring 208

maximal consistency in their generated directions 209

within the semantic space. Specifically, we mod- 210

ified the sampling method of x(i)t in the LLM as 211

follows: 212

pθ(x
(i)
t |x

(i)
<t, c) ∝

pθ(x
(i)
t |x

(i)
<t, x

(i−1), I)1+λ

pθ(x
(i)
t |x

(i)
<t, x

(i−2), I)λ
(3) 213

where x
(i)
<t represents the tokens generated before 214

the t-th step and c represents the generation condi- 215

tion based on x(i−1), x(i−2), and the instruction I . 216

λ is a hyperparameter that assigns weights to the 217

two generation probabilities. In other words, the 218

generation of a new sentence depends on the direc- 219

tional tendencies of the generation probabilities of 220

the preceding two sentences, ensuring that the re- 221

sulting latent space remains aligned in a consistent 222
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direction. Then, we can thus sample the next t-th223

token x
(i)
t in the logits space:224

log pθ(x
(i)
t |x

(i)
<t, c) =

(1 + λ) log pθ(x
(i)
t |x

(i)
<t, x

(i−1), I)

− λ log pθ(x
(i)
t |x

(i)
<t, x

(i−2), I).

(4)225

According to Eq.(4), we concatenate the instruction226

I and the previously generated segment x(i)<t with227

x(i−1) and x(i−2) separately. We then perform two228

decoding procedures to obtain their respective log229

probabilities. After computing a weighted sum of230

these log probabilities, we apply greedy sampling231

to generate x(i)t . When generating the first sentence232

x(1), since only x(0) is available, we set λ to 0.233

Our method generalizes to Eq.(2) when we set234

λ = 0. However, when we use two sentences as235

conditions, the generative process undergoes a fun-236

damental transformation. This can be likened to237

basic geometric theorems: “Infinitely many lines238

pass through a single point” and “The uniqueness239

of a line through two points.” The presence of240

two preceding sentences ensures the directional241

consistency of our generation. Besides, our con-242

trolled generation process is formally similar to243

classifier-free guidance (Ho and Salimans, 2021),244

which employs a linear combination to integrate245

conditional and unconditional score estimations.246

However, our method differs fundamentally. We247

rely solely on conditional control, meaning that all248

terms depend on preceding sentences rather than249

an unconditional distribution. By doing so, we250

effectively guide the sentence generation process,251

ensuring that the generated text maintains a stable252

and coherent flow within the semantic space.253

3.2 Model Post-training254

After obtaining the ranking sentences l for each255

x ∈ X , we aim to post-training the existing256

sentence embedding model to enhance its ability257

to distinguish fine-grained semantic differences.258

The ranking sentence l provides order information259

among sentences. However, the semantic gaps be-260

tween these sentences are not evenly spaced. Thus,261

we propose a post-training method that considers262

both ranking and semantic information among the263

ranking sentences.264

Let φj,k = φ(x(j), x(k)) denote the semantic265

similarity between x(j) and x(k). For any x(j) ∈ l,266

the following semantic ranking relationship should267

be satisfied according to the ordering within the268

ranking sentences: 269

φj,1 < · · · < φj,j > φj,j+1 > · · · > φj,n. (5) 270

Let r = {r(i)}ni=0 denote a permutation of the 271

object indices arranged in descending order of se- 272

mantic similarity, where r(i) represents the rank 273

of the i-th index in the list [φj,1, φj,2, . . . , φj,n] 274

based on its magnitude. Then, we process each 275

x in l using an encoder model, specifically adopt- 276

ing the DiffCSE (Chuang et al., 2022) base series 277

in our experiments. This model can be trained 278

through a standard unsupervised contrastive learn- 279

ing approach. We obtain their corresponding em- 280

beddings {h(1),h(2), . . . ,h(n)}. Assuming ϕj,k = 281

ϕ(h(j),h(k)) represents the cosine similarity be- 282

tween h(j) and h(k). For h(j), we can then derive 283

its similarity relationships with other sentences in 284

l, represented as ϕj = [ϕj,1, ϕj,2, . . . , ϕj,n]. 285

Next, we integrate the ranking information r 286

with the semantic information ϕj . Our fundamental 287

idea is to adjust ϕj,k based on the ranking position 288

r(k). Let ϕj [i] represent the value at index i in ϕj , 289

and let r̂ = {r̂(i)}ni=0 denote the permutation of 290

object indices based on the similarity relationships 291

in ϕj . We modify each ϕj,k using the following 292

approach: 293

ϕ̂j,k =

{
ϕj,k +m(j, k) if r(k) < r̂(k),
ϕj,k −m(j, k) if r(k) > r̂(k).

(6) 294295

m(j, k) = log (ω · |ϕj,k − ϕj [r(k)]|+ 1), (7) 296

where ω is a hyperparameter to control the impor- 297

tance of ranking information. When the ranking 298

order r̂ reflected by semantic information differs 299

from the ranking order r in the ranking information, 300

the value of ϕj,k is adjusted based on the ranking 301

discrepancy to bring r̂ closer to r. Through Eq.(6), 302

we obtain a score ϕ̂j = [ϕ̂j,1, ϕ̂j,2, . . . , ϕ̂j,n] that 303

seamlessly integrates both ranking information and 304

semantic information. Appendix D presents the 305

detailed algorithm. 306

Finally, we post-training the sentence embed- 307

ding model using the ListMLE (Xia et al., 2008) 308

loss. Suppose the representation of x(j) obtained 309

through the sentence embedding model is e(j). 310

Similarly, we can get a similarity relationships 311

list sj = [sj,1, sj,2, . . . , sj,n]. The objective of 312

ListMLE for ranking sentence l is defined as: 313

LListMLE (l) = −
n∑

j=1

logP
(
ϕ̂j | sj

)
. (8) 314
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This target ensures that the ranking results pro-315

duced by the sentence embedding model learn to316

align with the ranking results obtained from the317

fusion of ranking information and semantic infor-318

mation in the ranking sentences.319

4 Experiments320

4.1 Dataset321

Similar to SynCSE (Zhang et al., 2023) and Mul-322

tiCSR (Wang et al., 2024), we utilize the premises323

of the NLI dataset (Bowman et al., 2015; Williams324

et al., 2018) as the initial unlabeled dataset, denoted325

as X1. Unlike SynCSE and MultiCSR, which em-326

ploy the full dataset, we sample only a subset for a327

generation. Specifically, to enhance data diversity,328

we first apply k-means clustering to X1. We set329

the number of cluster centers to 1,000 and then330

performed random sampling, selecting 20 samples331

per cluster, resulting in the dataset X2. Next, we332

generate ranking sentences for each sentence in333

X2 using our method, where the generation step334

is set to 32, and the hyperparameter γ is set to 1.5.335

In contrast to SynCSE, which relies on ChatGPT336

with approximately 175B parameters for genera-337

tion, we utilize the LLaMA3-8B-Instruct. This338

process ultimately produces the dataset X3, con-339

sisting of 16,063 sentence ranking lists and a total340

of 530,079 sentences. Appendix A presents the341

detailed generation process of our method.342

4.2 Experiment Setup343

Baselines. We chose the following strong base-344

lines, including SimCSE (Gao et al., 2021), Dif-345

fCSE (Chuang et al., 2022), PromptBERT (Jiang346

et al., 2022), PCL (Wu et al., 2022a), DebCSE347

(Miao et al., 2023), InfoCSE (Wu et al., 2022b),348

RankCSE (Liu et al., 2023), SynCSE (Zhang et al.,349

2023), and MultiCSR (Wang et al., 2024). Our350

model is built upon existing sentence embedding351

models as a post-training approach. In the fol-352

lowing experiments, we primarily selected two353

SOTA models, SynCSE and MultiSCR, as our354

base models to evaluate whether integrating our355

ranked sentence data and post-training method can356

enhance performance3. We designate the post-357

trained SynCSE and MultiSCR as SynCSE-r and358

3By the time this work was completed, GCSE (Lai et al.,
2024) was one of the most recent approaches utilizing syn-
thetic data for sentence embedding training. However, as it
has not yet publicly released its code and dataset, we did not
consider it as a base model.

MultiSCR-r, respectively. The details of our train- 359

ing process are provided in Appendix C. 360

Evaluation Settings. We conduct evaluation 361

tests across three tasks: Semantic Textual Simi- 362

larity (STS), Reranking Task, and Transfer Task 363

(TR). Specifically, for the STS task, we assess 364

performance on seven STS benchmarks: STS 365

2012–2016 (Agirre et al., 2012, 2013, 2014, 2015, 366

2016), STS Benchmark (Cer et al., 2017), and 367

SICK-Relatedness (Marelli et al., 2014). These 368

datasets consist of sentence pairs annotated with 369

similarity scores ranging from 0 to 5. For the 370

retrieval task, we conduct experiments on four 371

datasets: AskUbuntuDupQuestions (Barzilay et al., 372

2016), MindSmallReranking (Wu et al., 2020), 373

SciDocsRR (Wu et al., 2020), and StackOver- 374

flowDupQuestions (Liu et al., 2018). We followed 375

the validation approach of SynCSE (Zhang et al., 376

2023), adopting the methodology of MTEB (Muen- 377

nighoff et al., 2023) and employing Mean Average 378

Precision (MAP) as the primary evaluation metric. 379

For the TR task, we use SentEval (Conneau and 380

Kiela, 2018) to evaluate the results, as detailed in 381

Appendix F. 382

4.3 Main Results 383

STS Tasks. As shown in Table 1, the post-trained 384

model obtained through our method significantly 385

outperforms previous baselines. Compared to the 386

standard unsupervised SimCSE, our SOTA results 387

improve Spearman’s correlation by an average of 388

7.11% on base models and 5.09% on large models. 389

In comparison with ranking-aware models such 390

as RankCSE, our method achieves improvements 391

of 2.19% and 2.65%, respectively. Furthermore, 392

compared to the underlying sentence embedding 393

models we employ, such as MultiCSR and SynCSE, 394

our approach enhances performance by 0.61% and 395

0.45% on base models and large models, respec- 396

tively. These results demonstrate that our method 397

has successfully achieved new SOTA models. 398

Reranking Tasks. Table 2 presents the perfor- 399

mance on four reranking datasets. We followed the 400

experimental setup of SynCSE (Zhang et al., 2023) 401

without utilizing the training sets of reranking tasks. 402

During model training, only the synthesized data 403

was used. We compared the changes in MAP for 404

SynCSE and MultiCSR after post-training with 405

our ranking sentences. Overall, our synthesized 406

data and method led to an average improvement of 407

1.35% and 1.11% for SynCSE and MultiCSR, re- 408

spectively. Note that both SynCSE and MultiCSR 409
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Model Method STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg.

BERT-base

SimCSE† 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
DiffCSE† 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49

PromptBERT♣ 71.56 84.58 76.98 84.47 80.60 81.60 69.87 78.54
PCL♠ 72.84 83.81 76.52 83.06 79.32 80.01 73.38 78.42

DebCSE† 76.15 84.67 78.91 85.41 80.55 82.99 73.60 80.33
InfoCSE†† 70.53 84.59 76.40 85.10 81.95 82.00 71.37 78.85
RankCSE♠ 75.66 86.27 77.81 84.74 81.10 81.80 75.13 80.36
SynCSE* 74.53 82.14 78.22 83.46 80.66 81.42 80.51 80.13

MultiCSR* 75.88 82.39 78.80 84.42 80.54 82.23 80.03 80.61
SynCSE-r 75.82 83.24 78.61 84.75 81.68 83.45 80.67 81.17

MultiCSR-r 76.37 82.50 78.37 85.38 82.15 84.01 80.55 81.33

BERT-large

SimCSE† 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
PCL♠ 74.87 86.11 78.29 85.65 80.52 81.62 73.94 80.14

DebCSE† 76.82 86.36 79.81 85.80 80.83 83.45 74.67 81.11
InfoCSE†† 71.89 86.17 77.72 86.20 81.29 83.16 74.84 80.18
RankCSE♠ 75.48 86.50 78.60 85.45 81.09 81.58 75.53 80.60
SynCSE* 75.23 84.28 79.41 84.89 82.09 83.48 81.79 81.60

MultiCSR* 75.56 85.19 80.14 85.91 82.40 84.19 81.65 82.15
SynCSE-r 76.32 85.17 79.29 85.78 82.76 84.76 82.51 82.37

MultiCSR-r 75.69 85.63 79.92 86.08 82.69 84.88 82.37 82.47

RoBERTa-base

SimCSE† 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
DiffCSE† 70.05 83.43 75.49 82.81 82.12 82.38 71.19 78.21

PromptRoBERTa♣ 73.94 84.74 77.28 84.99 81.74 81.88 69.50 79.15
PCL♠ 71.13 82.38 75.40 83.07 81.98 81.63 69.72 77.90

DebCSE† 74.29 85.54 79.46 85.68 81.20 83.96 74.04 80.60
RankCSE♠ 73.20 85.95 77.17 84.82 82.58 83.08 71.88 79.81
SynCSE* 76.15 84.41 79.23 84.85 82.87 83.95 81.41 81.84

MultiCSR* 77.03 84.72 79.71 85.80 82.68 84.24 80.64 82.12
SynCSE-r 76.01 83.18 79.13 85.51 83.03 84.66 80.93 81.78

MultiCSR-r 76.79 85.03 80.00 86.05 82.65 84.79 81.14 82.35

RoBERTa-large

SimCSE† 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90
PCL♠ 74.08 84.36 76.42 85.49 81.76 82.79 71.51 79.49

DebCSE† 77.68 87.17 80.53 85.90 83.57 85.36 73.89 82.01
RankCSE♠ 73.20 85.83 78.00 85.63 82.67 84.19 73.64 80.45
SynCSE* 75.92 85.01 80.43 85.83 84.40 85.05 81.99 82.66

MultiCSR* 74.42 84.46 79.17 84.76 83.67 84.23 81.50 81.74
SynCSE-r 75.64 84.53 80.36 85.88 84.47 85.82 83.24 82.85

MultiCSR-r 74.28 84.81 79.20 85.26 83.93 84.40 81.62 81.93

Table 1: Comparison of Spearman’s correlation results on STS tasks, where the value highlighted in bold is the best
value, and the value underlined is the second-best value. “†”: results from (Miao et al., 2023), “♣”: results from
(Wang et al., 2024), “♠”: results from (Liu et al., 2023), “††”: results from (Wu et al., 2022b). “*”: we reproduce
the results with the officially released codes and corpus from (Zhang et al., 2023; Wang et al., 2024).

employ contrastive learning, which is originally410

a training paradigm for retrieval models (Izacard411

et al., 2021; Li et al., 2021). Our synthesized rank-412

ing sentences further enhance the reranking perfor-413

mance of SynCSE and MultiCSR, demonstrating414

their effectiveness in this context.415

4.4 Ablation Study416

Since our method consists of both a data gener-417

ation phase and a model post-training phase, we418

conduct two groups of ablation experiments. For419

data synthesis, we design the following three abla- 420

tion settings: (a) Prompting the LLM to generate 421

complete ranking sentences at once. (b) Prompting 422

the LLM to generate ranking sentences step by step. 423

(c) Using our method, we first generate ranking 424

sentences. Then, we randomly shuffle them and re- 425

construct new ranking sentences. In this case, only 426

semantic information is utilized since the ranking 427

information is lost. For the post-training phase, 428

we designed the following two ablation settings: 429

(d) Only ranking information r is used. (e) Only 430
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Dataset SynCSE SynCSE-r MultiCSR MultiCSR-r

BERT-base
AskU. 51.79 52.34 (+1.05%) 51.04 51.51 (+0.92%)
Mind. 28.96 29.01 (+0.17%) 29.04 29.37 (+1.14%)
SciD. 69.49 70.73 (+1.79%) 69.32 70.61 (+1.87%)

StackO. 39.88 40.66 (+1.94%) 39.50 40.68 (+2.97%)
Avg. 47.53 48.19 (+1.37%) 47.22 48.04 (+1.73%)

BERT-large
AskU. 51.36 50.73 (-1.22%) 51.62 50.49 (-2.19%)
Mind. 30.56 30.62 (+0.18%) 29.47 30.68 (+4.11%)
SciD. 71.33 72.22 (+1.25%) 71.31 71.71 (+0.56%)

StackO. 40.06 39.82 (-0.60%) 39.76 40.09 (+0.84%)
Avg. 48.33 48.35 (+0.04%) 48.04 48.24 (+0.43%)

RoBERTa-base
AskU. 52.59 53.26 (+1.28%) 51.91 52.18 (+0.52%)
Mind. 27.58 28.70 (+4.06%) 27.97 28.37 (+1.45%)
SciD. 63.39 65.94 (+4.02%) 62.83 64.18 (+2.15%)

StackO. 38.81 38.84 (+0.07%) 39.35 39.95 (+1.53%)
Avg. 45.59 46.69 (+2.39%) 45.51 46.17 (+1.45%)

RoBERTa-large
AskU. 55.22 54.92 (-0.54%) 54.01 54.66 (+1.21%)
Mind. 29.88 30.17 (+0.99%) 29.16 29.32 (+0.56%)
SciD. 69.33 70.99 (+2.39%) 69.73 70.08 (+0.49%)

StackO. 39.00 40.42 (+3.65%) 40.50 40.92 (+1.04%)
Avg. 48.36 49.13 (+1.59%) 48.35 48.75 (+0.82%)

Table 2: Comparison of Mean Average Precision (MAP)
results on reranking tasks, illustrating the changes in
SynCSE and MultiCSR before and after training with
ranking sentence data.

semantic similarity information ϕ(j) is used.431

Table 3 presents the average Spearman’s correla-432

tion on the STS dataset. For data synthesis, compar-433

ing (a) shows that generating ranking sentences at434

once via prompts is limited, as LLMs struggle with435

semantic understanding in longer texts. Compari-436

son with (b) suggests that even a step-by-step ap-437

proach lacks effective directional control, leading438

to suboptimal results. The results of (c) highlight439

the importance of ranking information, confirm-440

ing that our method’s improvements are not solely441

due to semantic information. For post-training,442

comparing (d) indicates that ranking information443

alone is insufficient due to fine-grained semantic444

differences, emphasizing the need for semantic in-445

formation. The results of (e) remain inferior to the446

full method, showing that incorporating ranking447

information helps refine semantic representations448

and improve model performance.449

4.5 Analysis450

In this section, we conduct a more in-depth analysis451

of the synthesized dataset and our post-training452

method. We employ SynCSR-r and MultiCSR-r453

with the BERT-base model. We report the results in454

Phase Method Spearman’s ∆

- MultiCSR-r 81.33 0.0
Data Generation (a) 80.85 -0.48
Data Generation (b) 80.97 -0.36
Data Generation (c) 80.78 -0.55

Post-training (d) 80.65 -0.68
Post-training (e) 81.18 -0.15

- MultiCSR 80.61 -0.72

Table 3: Ablation studies on different data generation
methods and components of post-training. We use
MultiCSR-r based on BERT-base as the model, and
the results are reported on average Spearman’s correla-
tion of STS Task.
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ST
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Figure 3: The impact of hyperparameter ω on average
STS test score for SynCSE-r and MultiCSR-r based on
BERT-base as the model. The base model scores are
shown in dashed lines

terms of Spearman’s correlation on the STS task. 455

The impact of the hyperparameter ω. Figure 3 456

(a) illustrates the impact of different hyperparame- 457

ter ω on model performance in the STS task. The 458

ω plays a crucial role in our post-training method, 459

as defined in Eq. (7), where it controls the impor- 460

tance of ranking information. The results indicate 461

that while the optimal ω varies across different 462

models, it remains robust within a relatively broad 463

range. Based on these findings, we set ω = 0.7 for 464

SynCSE-r and ω = 0.5 for MultiCSR-r. 465

The impact of the amount of synthetic data 466

amount. Figure 3 (b) illustrates the performance 467

on the STS task when using different proportions 468

of our synthesized ranking sentences dataset. We 469

find that although approximately 16,000 sentence 470

ranking lists were generated, utilizing only 10% of 471

the data is sufficient to achieve a substantial im- 472

provement, while merely 5% is enough to surpass 473

the original model significantly. This underscores 474

the pivotal role of ranking sentences in enhancing 475

sentence embedding models. On the other hand, 476

we also observe that continuously increasing the 477

number of ranking sentences does not lead to a 478
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Method STS-12(∆) STS-13(∆) STS-14(∆) STS-15(∆) STS-16(∆) STS-B(∆) SICK-R(∆) Avg.(∆)

SimCSE +4.04 +1.47 +1.61 +2.31 +0.49 +1.87 +0.66 +1.78
InfoCSE +0.24 -0.42 +0.27 +0.36 +0.64 +0.14 +1.38 +0.37

PCL +0.69 +0.69 +0.25 +2.49 +2.79 +2.27 +1.4 +1.51
RankCSE -0.11 +0.6 +0.69 +2.00 +1.98 +0.15 -0.29 +0.71

Table 4: We compare the changes in Spearman’s correlation on STS tasks across several sentence embedding models
after post-training with ranking sentences. Their checkpoints based on BERT-base as the model are obtained from
their official sources.

consistent improvement in STS performance. This479

may be attributed to an excessive number of rank-480

ing sentences, potentially reducing the model’s gen-481

eralization ability.482

4.6 Post-training Experiment483

We further analyze the impact of post-training484

our data on sentence embedding models other485

than SynCSE and MultiCSR. Table 4 presents the486

changes in Spearman’s correlation for SimCSE487

(Gao et al., 2021), InfoCSE (Wu et al., 2022b),488

PCL (Wu et al., 2022a), and RankCSE (Liu et al.,489

2023) on STS tasks after applying our ranking sen-490

tences dataset and post-training approach. From491

these results, we can observe that employing rank-492

ing sentences along with our post-training method493

has led to improvements across most datasets in494

the STS task. This demonstrates the versatility and495

effectiveness of both ranking sentences and our496

post-training approach. The detailed results are497

presented in Figure 6 of the Appendix E.498

5 Related Work499

Unsupervised sentence embedding has been widely500

studied. Early methods extended the word2vec501

framework (Mikolov et al., 2013) to sentence-level502

embeddings, such as Skip-Thought (Kiros et al.,503

2015), FastSent (Hill et al., 2016), and Quick-504

Thought (Logeswaran and Lee, 2018). With the505

rise of PLMs, models like BERT (Kenton and506

Toutanova, 2019) and RoBERTa (Liu, 2019) have507

been explored for sentence representation. How-508

ever, issues like anisotropy (Ethayarajh, 2019) have509

led to post-processing techniques such as BERT-510

flow (Li et al., 2020) and BERT-whitening (Su et al.,511

2021) to improve embedding quality.512

With the rise of contrastive learning, the focus513

shifted toward deriving sentence embeddings by514

maximizing agreement between different views of515

the same sentence. Techniques like SimCSE (Gao516

et al., 2021) utilized dropout-based augmentation to517

create positive pairs, inspiring follow-up methods518

(Wang et al., 2022b; Chuang et al., 2022; Liu et al., 519

2023; Jiang et al., 2022; Wu et al., 2022a; Miao 520

et al., 2023). These methods proved highly effec- 521

tive. However, unsupervised approaches often lag 522

behind their supervised counterparts, which lever- 523

age labeled datasets such as natural language infer- 524

ence (NLI) corpora (Bowman et al., 2015; Williams 525

et al., 2018). Yet, such datasets are not easily ac- 526

cessible due to the high annotation cost. 527

To address these limitations, researchers began 528

exploring sentence generation for unlabeled data 529

(Chen et al., 2022; Ye et al., 2022) using models 530

like T5 (Chung et al., 2024). With the advent of 531

large language models (LLMs), both data annota- 532

tion and generation have seen significant improve- 533

ments (Gilardi et al., 2023; Alizadeh et al., 2023, 534

2025). SynCSE (Zhang et al., 2023) leverages 535

LLMs to generate semantically similar sentence 536

pairs, enhancing the effectiveness of contrastive 537

learning. MultiCSR (Wang et al., 2024) and GCSE 538

(Lai et al., 2024) further refine the utilization of 539

LLMs for data generation. This line of research 540

builds upon the training paradigm of supervised 541

SimCSE (Gao et al., 2021), where a triplet is gen- 542

erated for contrastive learning. In contrast to these 543

works, our approach shifts the generation objective 544

towards ranking sentence generation, introducing a 545

novel refinement strategy for contrastive learning 546

models. 547

6 Conclusion 548

In this paper, we investigate a method for synthe- 549

sizing ranking sentences by leveraging LLMs to 550

generate sentences progressively increasing seman- 551

tic divergence, guided by a controlled direction 552

in the latent space. Furthermore, we explore a 553

post-training approach that integrates ranking in- 554

formation and semantic information. Experimental 555

results demonstrate that our method achieves new 556

SOTA performance with minimal cost in ranking 557

sentence synthesis. 558
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7 Limitations559

Although our work has achieved a new SOTA per-560

formance for existing sentence embedding models,561

several promising directions still need to be ex-562

plored, which we leave for future research. In the563

realm of data synthesis, this paper primarily con-564

centrates on the process of data generation. How-565

ever, the selection and refinement of synthesized566

data are equally crucial. For instance, the analysis567

in (An et al., 2024) highlights the issue that synthe-568

sized sentences tend to be longer than the original569

ones. The selection mechanism for synthesized570

ranking sentence datasets has yet to be explored.571

Besides, during the post-training process, our pri-572

mary approach is to integrate ranking information573

with semantic information. This process involves574

a hyperparameter ω, whose magnitude influences575

the model’s performance. Exploring an adaptive576

method to eliminate the dependence on ω is also a577

worthwhile consideration.578
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A Ranking Sentences Generation Details921

In this section, we present the detailed methodol-922

ogy of several ranking sentence generation methods923

involved in this paper and the detailed methodol-924

ogy of our method. We employ the premises from925

the NLI dataset (Bowman et al., 2015; Williams926

et al., 2018) as the initial unlabeled dataset for these927

methods.928

1. Single-step Generation. Prompting the LLM929

to generate ranking sentences at once. Our pre-930

liminary experiments reveal that generating931

complete ranking sentences in a single step is932

too challenging for the LLaMA3-8B-Instruct933

model. Therefore, we employ the LLaMA3-934

70B-Instruct model and adopt a few-shot ap-935

proach to guide the LLM in the generation,936

ensuring both the coherence and usability of937

the generated ranking sentences.938

2. Iterative Step-by-step Generation. Prompt-939

ing the LLM to generate ranking sentences940

step by step. Specifically, based on the re-941

sult of the previous sentence, we prompt the942

LLaMA3-8B-Instruct to generate the next sen-943

tence. This process continues until 32 sen-944

tences have been generated.945

3. Our Method. Generating the ranking sen-946

tences using our proposed directionally con-947

trolled generation method. We employ the948

LLaMA3-8B-Instruct model to generate rank-949

ing sentences. Specifically, for the first genera-950

tion, we prompt the LLM to generate sentence951

x(2). Then, as designed in our method, each952

input consists of the previous two sentences953

along with an instruction. By adjusting the954

sampling strategy of the 8B LLaMA3 model,955

we progressively generate the final ranking956

sentences, setting γ to 1.5.957

For all generation methods, we employ a rule-958

based verification process at the final stage to en-959

sure that the generated results are as complete and960

non-redundant as possible. The first generation961

method is performed on a Linux server equipped962

with 8 NVIDIA A800 GPUs, while the second and963

third methods are conducted on a Linux server with964

8 NVIDIA GeForce RTX 4090 GPUs.965

Prompt for directly generating complete
ranking sentences

Your task is to take an input sentence
and generate a sequence of 32 sentences
that gradually and progressively diverge in
meaning from the original sentence. The fi-
nal sentence should be completely unrelated
to the original sentence.
Example Input: The cat is sleeping on the
warm windowsill.
Example Output:
1. The cat is resting on the cozy windowsill.
2. The cat is lying on a soft cushion by the
window.
3. A small animal is curled up near the
window.
... [Omit the following sentence list here for
conciseness.]
Here is the sentence: {sentence}
Each sentence should be similar in length
to the original sentence. Do not explain
yourself or output anything else.

966

Prompt for generating ranking sentences
step by step

Rewrite the following sentence in a way that
slightly changes the meaning while keep-
ing it semantically close. The new sen-
tence should not be an exact paraphrase but
should introduce a subtle variation in mean-
ing. Do not lose the core idea of the original
sentence.
Here is the sentence: {sentence}
Your response should be similar in length
to the original sentence. Do not explain
yourself or output anything else.

967

Prompt for our method

Rewrite the following sentence or phrase us-
ing different words and sentence structure
while preserving its original meaning. Di-
rectly answer with the rewritten sentence.
Don’t give any explanation or description
other than the rewritten sentence.
Write a sentence that is entailment
with:{sentence}.
Result:

968
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B Case Study969

In this section, we present a case study to illus-970

trate the generated results of our approach, the971

single-step generation method, and the iterative972

step-by-step generation method. Table 5 presents973

the top 10 generated sentences produced by differ-974

ent methods for a given input sentence. We employ975

the BGE-m3(Chen et al., 2024) model to obtain976

their embeddings and compute the cosine similar-977

ity between the generated results and the original978

sentence. Similarity scores for results that are not979

ranked in descending order of semantic similarity980

are highlighted in red. We observe that, compared981

to the other two generation methods, our approach982

produces results that adhere more closely to a de-983

scending order in the semantic space. Moreover,984

as the generation progresses, the likelihood of pro-985

ducing results that deviate from the expected order986

increases. This underscores the importance of con-987

trolling the direction of generation.988

C Model Training Details989

All our experimental code is implemented using990

Python and the PyTorch library. The experiments991

were conducted on a Linux server equipped with992

eight NVIDIA GeForce RTX 4090 GPUs. We993

utilized the official implementations for SynCSE994

(Zhang et al., 2023) and MultiCSR (Wang et al.,995

2024). Specifically, SynCSE provides both model996

training code and a synthesized dataset. We used997

their code and dataset to train SynCSE models, in-998

cluding BERT-base, BERT-large, RoBERTa-base,999

and RoBERTa-large. MultiCSR offers both train-1000

ing and data synthesis code, which we employ to1001

generate data before proceeding with MultiCSR1002

model training. Additionally, in Section 4.6, we1003

reproduce several models, including SimCSE (Gao1004

et al., 2021), InfoCSE (Wu et al., 2022b), PCL1005

(Wu et al., 2022a), and RankCSE (Liu et al., 2023).1006

We downloaded their checkpoints from the offi-1007

cial HuggingFace repositories and applied our post-1008

training method. During post-training, each model1009

receives a ranking sentence as input per training1010

step. We use the Adam (Kingma and Ba, 2014)1011

optimizer and set the learning rate to 3× 10−6. For1012

SynCSE, the hyperparameter ω is set to 0.7, while1013

for the other models, ω is set to 0.5.1014

D Algorithm to Get ϕ̂j1015

We propose an Algorithm 1 for efficiently comput-1016

ing ϕ̂j for j = 1, 2, . . . , n. This algorithm takes1017

Algorithm 1 Refined Semantic Similarity Compu-
tation
Input: Initial similarity matrix Φ, hyperparameter

ω.
Output: Refined similarity matrix Φ̂.

1: Initialize A← 0 ∈ Rn×n.
2: for each row index i = 1 to n do
3: Extract the subarray Φ[i, i : n].
4: Sort the subarray in descending order and

obtain sorted indices.
5: for each column index j = i to n do
6: Find the position index j′ of Φ[i, j] in the

sorted array.
7: Compute A[i, j] = Φ[i, j]− Φ[i, j′].
8: end for
9: end for

10: Fill A symmetrically: A[j, i] = A[i, j] for j >
i.

11: Compute Φ̂ = Φ + sign(A) · log(ω · |A|+ 1).
12: return Φ̂.

a similarity relation matrix Φ = [ϕ1, ϕ2, . . . , ϕn] 1018

as input and outputs a refined matrix Φ̂ = 1019

[ϕ̂1, ϕ̂2, . . . , ϕ̂n]. For each ϕj , it is unnecessary 1020

to compute the full set of values. We only need 1021

to calculate the results from index i onward and 1022

then leverage the symmetry of the similarity matrix 1023

to complete the remaining entries. The complex- 1024

ity of the algorithm is O(n3). Since n represents 1025

the length of the ranking sentences and is a finite 1026

value, the computational complexity of this algo- 1027

rithm is significantly lower than that of the model’s 1028

inference process. 1029

E Post-training Experiments 1030

In the preceding experiments, we demonstrated 1031

the changes in Spearman’s correlation for SimCSE 1032

(Gao et al., 2021), InfoCSE (Wu et al., 2022b), PCL 1033

(Wu et al., 2022a), and RankCSE (Liu et al., 2023) 1034

on STS tasks before and after training with our data 1035

and methodology. In this section, we present the 1036

comprehensive results, as illustrated in Figure 6. 1037

F Transfer Task 1038

For the TR tasks, we evaluate our method on seven 1039

datasets using the default configurations from Sen- 1040

tEval: MR (Pang and Lee, 2005), CR (Hu and Liu, 1041

2004), SUBJ (Pang and Lee, 2004), MPQA (Wiebe 1042

et al., 2005), SST-2 (Socher et al., 2013), TREC 1043

(Voorhees and Tice, 2000), and MRPC (Dolan 1044

and Brockett, 2005). Table 7 shows the results. 1045
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Original Sentence: A young man wearing a knit cap with the word PARIS on it and a blue jacket on the street.

Our Method Iterative Step-by-step Generation Single-step Generation

A stylish young man, sporting a PARIS-
emblazoned knit cap and a blue jacket,
strolled down the street. [0.8016]

A young man, sporting a knit cap with
the word PARIS emblazoned on it, walked
down the street in a blue jacket. [0.8660]

A young man wearing a warm hat with a
city name on it and a casual jacket outdoors.
[0.6829]

As he walked, the stylish young man’s
PARIS-emblazoned knit cap and blue
jacket made a stylish statement down the
street. [0.7996]

A young man, sporting a knit cap with
the word PARIS emblazoned on it, walked
down the street in a blue jacket. [0.8342]

A person wearing a soft hat with a name
tag and a casual coat in public. [0.5749]

His outfit, featuring a PARIS-emblazoned
knit cap and blue jacket, turned heads as he
strolled down the street. [0.7367]

A young man, sporting a knit cap with
a bold, cursive "PARIS" emblazoned on
it, strolled down the street in a navy blue
jacket. [0.8016]

Someone wearing a hat with a label and a
casual coat on the sidewalk. [0.5525]

As he walked down the street, people
couldn’t help but notice his outfit, which
boasted a knit cap adorned with the iconic
PARIS logo and a striking blue jacket.
[0.7313]

A young man, sporting a knit cap adorned
with a bold, cursive "PARIS" script, walked
down the street in a navy blue coat.
[0.8077]

A person wearing a hat with a logo and a
casual coat on the pavement. [0.5861]

Noticing his outfit became second nature
to passersby as he strolled down the street,
the knit cap’s PARIS logo and striking blue
jacket standing out in bold relief. [0.7246]

A young man, sporting a knit cap bearing a
bold, cursive "PARIS" script, strolled down
the street in a navy blue overcoat. [0.7801]

A man wearing a hat with a brand name
and a casual coat in the city. [0.6443]

As he walked down the street, it soon be-
came automatic for people to notice his
outfit, with the PARIS logo on his knit cap
and the striking blue jacket making a bold
statement. [0.7064]

A young man, sporting a knit cap adorned
with a striking, cursive "PARIS" motif, am-
bled down the sidewalk in a navy blue over-
coat. [0.7460]

A man wearing a hat with a logo and a
casual coat on the corner. [0.5745]

The moment he strolled along the sidewalk,
passersby couldn’t help but be drawn to his
attire, particularly the eye-catching PARIS
emblem on his beanie and the vibrant blue
coat that turned heads. [0.6063]

A young man, sporting a knit cap featur-
ing a bold, cursive "PARIS" logo, strolled
leisurely along the sidewalk in a navy blue
coat. [0.7859]

A man wearing a hat with a brand name
and a casual coat in the morning. [0.5850]

As soon as he ambled down the sidewalk,
people walking by were irresistibly capti-
vated by his outfit, specifically the strik-
ing PARIS logo on his beanie and the ra-
diant blue coat that commanded attention.
[0.5788]

A young man, sporting a knit cap adorned
with a prominent, cursive "PARIS" logo,
ambled along the sidewalk in a navy blue
overcoat. [ 0.7683]

A man wearing a hat with a label and a
casual coat in the evening. [0.5787]

The moment he strolled down the sidewalk,
passersby couldn’t help but be drawn in by
his ensemble, particularly the eye-catching
PARIS logo on his beanie and the dazzling
blue coat that demanded notice. [0.5868]

A young man, sporting a knit cap bear-
ing a large, cursive "PARIS" logo, strolled
leisurely along the sidewalk, clad in a navy
blue overcoat. [0.7792]

A person wearing a hat with a logo and a
formal coat at a party. [0.5256]

As soon as he walked down the street, peo-
ple couldn’t resist being captivated by his
outfit, specifically the striking PARIS em-
blem on his hat and the mesmerizing blue
coat that commanded attention. [0.5829]

A young man, wearing a knit cap adorned
with a prominent, cursive "PARIS" em-
blem, ambled along the sidewalk, wrapped
in a navy blue overcoat. [0.7471]

Someone wearing a hat with a brand name
and a formal dress at a wedding. [0.5064]

Table 5: A case study is conducted to compare our generation method with the Iterative Step-by-Step Generation
and Single-Step Generation approaches. The similarity to the original sentence is indicated at the end of each
sentence, highlighted in red if not ranked in descending order of semantic similarity.

Overall, we have achieved a new SOTA perfor-1046

mance on RoBERTa-base and RoBERTa-large. On1047

BERT-base and BERT-large, both SynCSE-r and1048

MultiCSR-r have demonstrated improvements com-1049

pared to the results after post-training. Furthermore,1050

our enhancement on the MRPC task is particularly1051

significant. This is because MRPC focuses on dis-1052

tinguishing the similarity between sentence pairs, 1053

and by incorporating ranking sentences in post- 1054

training, the model becomes more adept at captur- 1055

ing fine-grained semantic differences. 1056
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Method STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg.

SimCSE 66.05 81.49 73.61 79.73 78.12 76.52 71.86 75.34
SimCSE-r 70.09 82.96 75.22 82.04 78.61 78.39 72.52 77.12

InfoCSE 70.23 84.05 75.98 84.78 81.72 81.75 71.09 78.51
InfoCSE-r 70.47 83.63 76.25 85.14 82.36 81.89 72.47 78.88

PCL 73.46 81.57 74.91 82.24 79.94 79.41 71.76 77.61
PCL-r 74.15 82.26 75.16 84.73 82.73 81.68 73.16 79.12

RankCSE 74.55 85.13 77.67 84.23 81.18 81.6 74.28 79.81
RankCSE-r 74.44 85.73 78.36 86.23 83.16 81.75 73.99 80.52

Table 6: We compare Spearman’s correlation on STS tasks across several sentence embedding models after post-
training with ranking sentences. Their checkpoints based on BERT-base as the model are obtained from their official
sources.

Model Method MR CR SUBJ MPQA SST2 TREC MRPC Avg.

BERT-base

SimCSE♠ 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81
DiffCSE♠ 81.76 86.20 94.76 89.21 86.00 87.60 75.54 85.80

PromptBERT♣ 80.74 85.49 93.65 89.32 84.95 88.20 76.06 85.49
PCL♠ 80.11 85.25 94.22 89.15 85.12 87.40 76.12 85.34

RankCSE♠ 83.07 88.27 95.06 89.90 87.70 89.40 76.23 87.09
SynCSE* 81.09 88.29 93.53 90.02 86.60 84.40 75.30 85.60

MultiCSR* 81.64 87.79 93.83 89.91 87.15 80.20 75.25 85.11
SynCSE-r 81.13 87.82 94.07 89.87 87.42 83.80 77.86 86.00

MultiCSR-r 81.47 87.53 93.99 89.68 86.55 83.80 76.00 85.57

BERT-large

SimCSE♠ 85.36 89.38 95.39 89.63 90.44 91.80 76.41 88.34
PCL♠ 82.47 87.87 95.04 89.59 87.75 93.00 76.00 87.39

RankCSE♠ 84.63 89.51 95.50 90.08 90.61 93.20 76.99 88.65
SynCSE* 84.66 89.96 94.49 90.08 90.44 86.40 76.75 87.54

MultiCSR* 84.95 89.86 94.42 89.88 90.33 84.60 76.52 87.22
SynCSE-r 84.74 90.15 94.99 89.82 90.61 87.80 77.57 87.95

MultiCSR-r 84.86 90.17 95.00 89.88 89.68 88.00 76.29 87.70

RoBERTa-base

SimCSE♠ 81.04 87.74 93.28 86.94 86.60 84.60 73.68 84.84
DiffCSE♠ 82.42 88.34 93.51 87.28 87.70 86.60 76.35 86.03

PromptBERT♣ 83.82 88.72 93.19 90.36 88.08 90.60 76.75 87.36
PCL♠ 81.83 87.55 92.92 87.21 87.26 85.20 76.46 85.49

RankCSE♠ 83.32 88.61 94.03 88.88 89.07 90.80 76.46 87.31
SynCSE* 84.82 91.31 93.18 89.70 90.28 84.80 76.70 87.26

MultiCSR* 84.99 91.23 93.07 89.42 91.10 84.60 77.28 87.38
SynCSE-r 83.78 91.15 92.98 89.50 89.95 85.80 77.33 87.21

MultiCSR-r 84.89 90.70 93.62 89.50 90.06 85.40 78.38 87.51

RoBERTa-large

SimCSE♠ 82.74 87.87 93.66 88.22 88.58 92.00 69.68 86.11
PCL♠ 84.47 89.06 94.60 89.26 89.02 94.20 74.96 87.94

RankCSE♠ 84.61 89.27 94.47 89.99 89.73 92.60 74.43 87.87
SynCSE* 87.42 92.21 94.19 90.82 91.60 85.00 76.87 88.30

MultiCSR* 87.05 91.87 94.07 90.53 91.60 88.80 78.26 88.88
SynCSE-r 87.24 92.29 94.65 90.52 92.37 91.40 79.01 89.64

MultiCSR-r 87.45 92.29 94.56 90.45 91.98 90.80 78.61 89.45

Table 7: Comparison of different sentence embedding models accuracy on transfer tasks. The value highlighted in
bold is the best value, and the value underlined is the second-best value. “♠”: results from (Liu et al., 2023). “♣”:
results from (Wang et al., 2024). “*”: we reproduce the results with the officially released corpus from (Zhang et al.,
2023) and (Wang et al., 2024).
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