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ABSTRACT

We present a unified transformer, i.e., Show-o, that unifies multimodal under-
standing and generation. Unlike fully autoregressive models, Show-o unifies au-
toregressive and (discrete) diffusion modeling to adaptively handle inputs and out-
puts of various and mixed modalities. The unified model flexibly supports a wide
range of vision-language tasks including visual question-answering, text-to-image
generation, text-guided inpainting/extrapolation, and mixed-modality generation.
Across various benchmarks, it demonstrates comparable or superior performance
to existing individual models with an equivalent or larger number of parameters
tailored for understanding or generation. This significantly highlights its poten-
tial as a next-generation foundation model. Code and models are released at
https://github.com/showlab/Show-o.

1 INTRODUCTION

“Alone we can do so little; together we can do so much.” – Helen Keller

Over the past few years, significant advancements have blossomed in the two key pillars of multi-
modal intelligence: understanding and generation (Fig. 1(a) and (b)). For multimodal understanding,
Multimodal Large Language Models (MLLMs) like LLaVA (Liu et al., 2024c) have demonstrated
exceptional capabilities in vision-language tasks such as visual question-answering (VQA). For the
other pillar of visual generation, denoising diffusion probabilistic models (DDPMs) (Sohl-Dickstein
et al., 2015; Ho et al., 2020b) have revolutionized the traditional generative paradigms (Kingma
& Welling, 2013; Goodfellow et al., 2014), achieving unprecedented performance in text-to-
image/video generation (Podell et al., 2023; Esser et al., 2024; Ho et al., 2022; Wu et al., 2023a).

Given these achievements in individual fields, it is natural to explore the potential of connecting
them. Recent works (Wu et al., 2023b; Ge et al., 2024; Ye et al., 2024a; Dong et al., 2024) have tried
to assemble expert models from different domains to form a unified system that can handle both
multimodal understanding and generation. However, existing attempts mainly treat each domain
independently and often involve individual models responsible for understanding and generation
separately (as shown on the left of Fig. 1(c)). For instance, NExT-GPT (Wu et al., 2023b) employs
a base language model for multimodal understanding but requires an additional pre-trained diffu-
sion model for image generation. Nonetheless, the mainstream understanding models like LLaVA
are of transformer architecture (Vaswani et al., 2017b) while each leading generation models like
Stable Diffusion 3 (SD3) (Esser et al., 2024) are just another transformer. This motivates a research
question: can one single transformer handle both multimodal understanding and generation?

Very recently, Chameleon (Team, 2024) has demonstrated this is possible. Specifically, Chameleon
enables an early fusion of different modalities to generate both text and image tokens through the
same manner of autoregressive modeling. While it is reasonable to model text tokens autoregres-
sively (Touvron et al., 2023; Liu et al., 2024c), it is less clear whether it is better to model im-
age/video patches (or pixels) autoregressively as well. An apparent and significant bottleneck of
autoregressively predicting an image is the large number of sampling steps required due to its causal
attention, particularly when dealing with images/videos in higher resolution. Further, (continuous)
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Figure 1: Characteristics comparison among understanding only, generation only, and unified (un-
derstanding & generation) models. “Vision” and “Language” indicate the representations from spe-
cific input modalities. In this context, “Diffusion” represents both continuous and discrete diffusion.

diffusion models (Podell et al., 2023; Esser et al., 2024) have exhibited superior capabilities in visual
generation than autoregressive ones and are in full attention.

This motivates us to ponder: can such one single transformer involve both autoregressive and
diffusion modeling? Here we envision a new paradigm that text is represented as discrete tokens and
modeled autoregressively, same with large language models (LLMs), and continuous image pixels
are modeled using denoising diffusion. However, it is non-trivial to integrate these two distinct
techniques into one single network due to the significant differences between discrete text tokens
and continuous image/video representations. Another challenge lies in the fact that existing state-
of-the-art diffusion models typically rely on two distinct models, i.e., a text encoder to encode text
conditional information and a denoising network to predict noise.

To this end, we present a novel unified model, i.e., Show-o, capable of addressing both multimodal
understanding and generation tasks simultaneously with mixed autoregressive and diffusion mod-
eling (as shown in Fig. 2). Specifically, Show-o is built upon a pre-trained LLM and inherits the
autoregressive modeling capability for text-based reasoning. Inspired by Gu et al. (2022); Chang
et al. (2022), we employ a simplified discrete denoising diffusion, similar to MaskGIT (Chang et al.,
2022), to model discrete image tokens instead of continuous diffusion used in existing works (Ge
et al., 2024; Dong et al., 2024). Besides, Show-o inherently encodes text conditional information,
eliminating additional text encoders. To accommodate diverse input data and variations of tasks, a
text tokenizer and image tokenizer are employed to encode them into discrete tokens, and a unified
prompting strategy is proposed further to process these tokens into structure sequences as input.
Consequently, given an image accompanying questions, Show-o gives the answers autoregressively.
When provided only text tokens, Show-o generates images in a style of discrete denoising diffusion.

Quantitatively, Show-o demonstrates comparable even better performance to individual models with
an equivalent or larger number of parameters across benchmarks. In contrast to autoregressively gen-
erating an image, Show-o requires approximately 20 times fewer sampling steps, exhibiting inherent
potential in acceleration. Besides, as shown in Fig. 2, Show-o naturally supports various downstream
applications like text-guided inpainting and extrapolation, without any fine-tuning. Moreover, we
have demonstrated that Show-o has the potential for mixed-modality generation like interleaved
video keyframe generation with text descriptions, video understanding, and video generation. This
demonstrates the potential of the unified model as a feasible paradigm for long-form video under-
standing and generation. Beyond, we investigate the impact of dataset scale, image resolution, and
different types of image representations (discrete or continuous) on the multimodal understanding
performance, presenting systematic insights for the design of a unified model in the future.

In Fig. 1, we present a comparison of model characteristics between Show-o and existing represen-
tative methods across various domains. One can observe that Show-o is a unified model that flexibly
involves existing advanced techniques to comprehensively address multimodal understanding and
generation. Collectively, the main contributions of this paper can be summarized as:
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• We present a unified model, i.e., Show-o, which unifies multimodal understanding and
generation using one single transformer.

• Show-o innovatively unifies autoregressive and (discrete) diffusion modeling within one
single transformer, demonstrating versatility in handling both text and images distinctly.

• As a unified model, Show-o demonstrates comparable even better performance to indi-
vidual baseline models with an equivalent or larger number of parameters in multimodal
understanding and generation benchmarks.

• Show-o inherently supports various downstream applications like text-based inpainting and
extrapolation, without necessitating any fine-tuning. Besides, it also demonstrates the po-
tential for mixed-modality generation, video understanding, and video generation.

• We explore the impact of dataset scale, image resolution, and different types of represen-
tations (discrete or continuous) on multimodal understanding, providing valuable insights
for improving multimodal understanding capabilities of a unified model.

2 RELATED WORK

2.1 MULTIMODAL UNDERSTANDING

Significant advancements in large language models (LLMs) (Touvron et al., 2023; Brown et al.,
2020; Chowdhery et al., 2023) have inspired the development of multimodal large language mod-
els (MLLMs) (Li et al., 2024; Yin et al., 2023; Bai et al., 2024). Early MLLM efforts, such as
LLaVA (Liu et al., 2024c), MiniGPT-4 (Zhu et al., 2023a), and InstructBLIP (Dai et al., 2023),
demonstrate notable multimodal understanding capabilities. To integrate LLMs into multimodal do-
mains, these studies explored projecting features from a pre-trained modal-specific encoder, such as
CLIP (Radford et al., 2021), into the input space of LLMs, enabling multimodal understanding and
reasoning within the transformer backbone. There are various design choices of MLLM (McKinzie
et al., 2024; Tong et al., 2024) in vision encoders, feature alignment adapters, and datasets.

2.2 VISUAL GENERATION

Autoregressive models. Transformer models (Vaswani et al., 2017a; Raffel et al., 2020; Brown
et al., 2020; Touvron et al., 2023) have demonstrated great success of autoregressive modeling in
natural language processing. Inspired by such progress, previous studies (Parmar et al., 2018; Esser
et al., 2021; Ravuri & Vinyals, 2019; Chen et al., 2020; Kondratyuk et al., 2023) directly apply the
same autoregressive modeling to learn the dependency of image pixels for image/video generation.
For instance, VideoPoet (Kondratyuk et al., 2023) also employs the decoder-only transformer archi-
tecture for synthesizing high-quality videos from multimodal inputs. More recently, LlamaGen (Sun
et al., 2024) has demonstrated LLM-architecture based image token autoregression.

Diffusion models. In recent years, diffusion-based methods (Rombach et al., 2022; Ramesh et al.,
2022b;a; Peebles & Xie, 2023; Bao et al., 2023; Podell et al., 2023; Chen et al., 2024; Nichol et al.,
2021; Xue et al., 2024; Xie et al., 2023; Wu et al., 2023a) have demonstrated exceptional capabili-
ties in text-to-image/video generation. Typically, the denoising diffusion process is operated on the
continuous latent space, in which the model is tasked with predicting the added Gaussian noise. In
contrast, D3PM (Austin et al., 2021), Mask-predict (Ghazvininejad et al., 2019), ARDM (Hooge-
boom et al., 2022), MaskGIT (Chang et al., 2022), UniD3 (Hu et al., 2023), and Copilot4D (Zhang
et al., 2024) formulate a discrete corruption process as an alternative to Gaussian diffusion.

2.3 UNIFIED VISION-LANGUAGE FOUNDATION MODEL

In recent years, an increasing number of studies (Wu et al., 2023b; Tang et al., 2024; Ye et al., 2024a;
Aiello et al., 2024; Lu et al., 2024) have focused on unified multimodal language models capable of
both comprehension and generation. Some efforts (Zhu et al., 2023b; Sun et al., 2023b;a) use con-
tinuous representations interleaved with text tokens for autoregressive modeling to generate images.
SEED-X (Ge et al., 2024) proposes a unified and versatile foundation system capable of handling
both multimodal understanding and generation tasks. DreamLLM (Dong et al., 2024) also explores
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Figure 2: An overview of Show-o. The input data, regardless of its modalities, is tokenized and
then prompted into a formatted input sequence. Show-o processes text tokens autoregressively with
causal attention and image tokens in (discrete) diffusion modeling via full attention, and then gener-
ates the desired output. Specifically, Show-o can handle image captioning, visual question answer-
ing, text-to-image generation, text-guided inpainting/extrapolation, and mixed modality generation.

the potential of enabling multimodal comprehension and creation. Chameleon (Team, 2024) intro-
duces token-based mixed-modal models capable of comprehending and generating images.

3 METHODOLOGY

Preliminaries. Instead of continuous diffusion, this work employs mask token prediction used in
MaskGIT as a simplified discrete diffusion modeling to enable a more unified learning objective,
i.e., predicting discrete tokens within one single transformer. We draw the connection between
mask token prediction used in this work and discrete diffusion modeling in Appendix A.

3.1 TOKENIZATION

Show-o is built upon pre-trained LLMs (Li et al., 2023), it is natural to perform the unified learning
on the discrete space. We maintain a unified vocabulary to include discrete text and image tokens.

Text Tokenization. Show-o is based on a pre-trained LLM such that we utilize the same tokenizer
for text data tokenization without any modifications.

Image Tokenization. Following MAGVIT-v2 (Yu et al., 2023), we train a lookup-free quantizer
using a large-scale image data. The quantizer maintains a codebook of size K = 8, 192 and encodes
images of 256×256 resolution into 16×16 discrete tokens (option (a) in Fig. 3).
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Figure 3: Optional inputs for multimodal understanding.

An alternative approach is to use different
tokenizers for understanding and generation,
respectively. Inspired by existing studies (Liu
et al., 2024c;b), we also extract the con-
tinuous image representations from the pre-
trained MAGVIT-v2 and CLIP-ViT (Radford
et al., 2021) encoder as input for exploring
the improvement of multimodal understand-
ing capabilities (options (b) and (c) in Fig. 3).
We will present more details and discuss this
exploration in Section 4.6. In the following
sections, the default Show-o employs discrete
image tokens as input for both multimodal
understanding and generation (option (a) in
Fig. 3). For simplicity, we only elaborate on the default Show-o in the methodology sections.
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Figure 4: Illustration of the proposed unified prompting format.
3.2 ARCHITECTURE

Show-o inherits the architecture of existing LLM (Li et al., 2023) without any architecture modifi-
cations except for prepending a QK-Norm operation (Dehghani et al., 2023; Wortsman et al., 2023;
Team, 2024) to each attention layer. We initialize Show-o with the weights of a pre-trained LLM and
expand the size of the embedding layer by incorporating 8,192 new learnable embeddings for dis-
crete image tokens. Unlike state-of-the-art diffusion models that require an additional text encoder,
Show-o inherently encodes text conditional information by itself for text-to-image generation.

Unified Prompting. To perform unified learning on multimodal understanding and generation, we
design a unified prompting strategy to format various kinds of input data. Given an image-text pair
(x, y), it is first tokenized into M image tokens u = {ui}Mi=1 and N text tokens v = {vi}Ni=1 by
the image and text tokenizer, respectively. We form them into an input sequence according to the
type of task in the format illustrated in Fig. 4. Specifically, [MMU] and [T2I] are pre-defined task
tokens that indicate the learning task for the input sequence. [SOT] and [EOT] serve as special tokens
denoting the start and end of text tokens, respectively. Similarly, [SOI] and [EOI] are pre-defined
special tokens marking the start and end of image tokens.

By employing this prompt design, we can effectively encode various input data for multi-modal
understanding, text-to-image generation, and mixed-modality generation as sequential data. This
setup enables unified learning to operate seamlessly within sequences across these various tasks.
Once trained, we can accordingly prompt Show-o to handle various vision-language tasks including
visual question answering and text-to-image generation (as shown in Fig. 2).
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Figure 5: Omni-Attention Mechanism (The dark squares represent ‘allow to attend’, while the white
squares indicate ‘prevent from attending’). It is a versatile attention mechanism with causal and full
attention that adaptively mixes and changes according to the format of the input sequence.

Omni-Attention Mechanism. Different from existing works (Touvron et al., 2023; Team, 2024)
that model sequence auto-regressively only, we propose an omni-attention mechanism to enable
Show-o to model various types of signals in distinct ways. It is a comprehensive attention mech-
anism with causal and full attention that adaptively mixes and changes according to the format of
the input sequence. We illustrate omni-attention examples for different input sequences in Fig. 5.
Specifically, Show-o model text tokens v within the sequence via causal attention. For image to-
kens u, Show-o processes them via full attention, allowing each token to comprehensively interact
with all others. Given a formatted input sequence, it is apparent that in multimodal understanding
(Fig. 5(a)), text tokens in a sequence can attend to all previous image tokens, and in text-to-image
generation (Fig. 5(b)), image tokens are able to interact with all preceding text tokens. When given
only text tokens, it degrades to causal attention (Fig. 5(c)).

Training Objectives. To perform both auto-regressive and (discrete) diffusion modeling, we
employ two learning objectives: i) Next Token Prediction (NTP) and ii) Mask Token Predic-
tion (MTP). Given a sequence with M image tokens u = {u1, u2, · · · , uM} and N text tokens
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Table 1: Evaluation on multimodal understanding benchmarks. Show-o is currently built upon
Phi-1.5 and thus we implement LLaVA-v1.5-Phi-1.5 as our apple-to-apple baseline. Und. and Gen.
denote “understanding” and “generation”, respectively. ‡ denotes the improved Show-o that employs
CLIP-ViT continuous representations. We highlight the model size of Show-o and LLaVA baseline
in green, and we use blue to highlight the larger model size than ours.

Type Model # Params POPE↑ MME↑ Flickr30k↑ VQAv2(test)↑ GQA↑ MMMU↑

Und. Only

LLaVA-v1.5 (Liu et al., 2024b) 7B 85.9 1510.7 - 78.5 62.0 35.4
InstructBLIP (Dai et al., 2023) 13B 78.9 1212.8 - - 49.5 -
Qwen-VL-Chat Bai et al. (2023) 7B - 1487.5 - 78.2 57.5 -
mPLUG-Owl2 (Ye et al., 2024b) 7B 85.8 1450.2 - 79.4 56.1 -
LLaVA-v1.5-Phi-1.5 1.3B 84.1 1128.0 69.6 75.3 56.5 30.7

Und. and Gen.

Gemini-Nano-1 (Anil et al., 2023) 1.8B - - - 62.7 - 26.3
CoDI (Tang et al., 2024) - - - 12.8 - - -
Emu (Sun et al., 2023c) 13B - - 77.4 57.2 - -
NExT-GPT (Wu et al., 2023b) 13B - - 84.5 66.7 - -
SEED-X (Ge et al., 2024) 17B 84.2 1435.7 52.3 - 47.9 35.6
DreamLLM (Dong et al., 2024) 7B - - - 72.9 - -
VILA-U (Wu et al., 2024) 7B 85.8 1401.8 - 79.4 60.8 31.6
Emu3 (Wang et al., 2024) 8B 85.2 - - 75.1 60.3 -
Chameleon (Team, 2024) 34B - - 74.7 66.0 - -
Show-o (Ours) 1.3B 80.0 1097.2 62.5 69.4 58.0 26.7
Show-o‡ (Ours) 1.3B 84.5 1232.9 67.6 74.7 61.0 27.4

v = {v1, v2, · · · , vN} for multimodal understanding, we maximize the likelihood of text tokens by
employing the standard language modeling objective:

LNTP =
∑
i

logpθ(vi|v1, · · · , vi−1, u1, · · · , uM ), (1)

where p(·|·) indicates the conditional probability which is modeled by the weights θ of Show-o and
stochastic gradient descent is used to train the model. Note that, if the input sequence involves only
text tokens, there are no conditional terms on image tokens u = {u1, u2, · · · , uM}.

With the proof in Appendix A, we seamlessly integrate the simplified discrete diffusion modeling
within Show-o by employing the mask token prediction as a learning objective. Hence, for modeling
image tokens u = {u1, u2, · · · , uM} within the input sequence, we first randomly replace the image
tokens with the [MASK] token, notated as u∗, at a random ratio (controlling by a time step) to create a
masked sequence u∗ = {u∗, u2, · · · , u∗, uM}. An illustration can be found in Fig. 9. Next, we aim
to reconstruct the original image token from the masked tokens conditioning on unmasked regions
and preceding text tokens by maximizing the following likelihood:

LMTP =
∑
j

logpθ(uj |u∗, u2, · · · , u∗, uM , v1, · · · , vN ). (2)

Note that the loss is only applied to the masked tokens. Specifically, we follow the sampling strategy
used by MaskGIT Chang et al. (2022; 2023) to mask image tokens and reconstruct them via the
information from all text and unmasked image tokens within the input sequence. Following the
classifier-free guidance introduced by Ho & Salimans (2022), we randomly replace the conditioned
text tokens using a null text “” with some probability.

Given a batch size of input sequences, the overall training loss is the combination of LMTP and LNTP:
L = LMTP + αLNTP, (3)

where α is the hyper-parameter weighting the loss term LNTP. The training schedule mainly involves
three stages, and we provide more details in Appendix C.

Inference Stage. In multimodal understanding, given an image accompanying visual questions,
Show-o autoregressively predicts textual answers. In visual generation, we use all [MASK] tokens as
initial input for Show-o, in which [MASK] tokens will be iteratively replaced by the predicted image
tokens within T steps. More inference details are provided in Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We assemble two scales of datasets, i.e., around 35M and 2.0B image-text pairs, and col-
lect around 2M high-quality data for multimodal understanding and generation fine-tuning. Besides,
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User: Do you think the image is unusual or not?

Show-o:
The image is unusual because it depicts a living room
with a couch and a table in the middle of the ocean,
surrounded by a large body of water. This is not a typical
setting for a living room, as living rooms are usually
indoors and designed for relaxation and entertainment.
The presence of the couch and table in the ocean adds
a unique and unexpected element to the scene, making
it stand out from typical living room setups.

Chameleon:
The image is unusual because of the transparent and
colorful fish and coral in the water. The image is also
unusual because of the clear blue sky with white clouds.
The unusual objects in the image are the fish and coral
in the water. The unusual objects in the image are the
fish and coral in the water. The unusual objects in the
image are the fish and coral in the water. The unusual
objects in the image are the fish and coral in the water.

Figure 6: Comparisons of VQA capabilities between Chameleon and Show-o.

RefinedWeb (Penedo et al., 2023) is adopted as text corpora to maintain the language modeling ca-
pability. Appendix E provides more details about these datasets.

Evaluation Details. Following LLaVA (Liu et al., 2024b), we evaluate the multimodal understand-
ing capabilities of Show-o on POPE, MME, Flickr30k, VQAv2, GQA, and MMMU benchmarks.
Besides, we adopt Fréchet Inception Distance (FID) on MSCOCO dataset to evaluate the genera-
tion fidelity of Show-o. Further, we follow SD3 (Esser et al., 2024) to evaluate the text-to-image
generation capabilities of Show-o on the GenEval (Ghosh et al., 2023) benchmark.

Implementation details. Current version of Show-o is based on Phi-1.5 (1.3B) (Li et al., 2023).
In the following, the default Show-o employs discrete image tokens as input for both multimodal
understanding and generation. Show-o† and Show-o‡ indicate the use of continuous image repre-
sentations from the pre-trained MAGVIT-v2 and CLIP-ViT (corresponding to options (b) and (c) in
Fig. 3), respectively, for multimodal understanding. Training details can be found in Appendix F.

4.2 MULTIMODAL UNDERSTANDING

Quantitative Evaluation. Table 1 presents the multimodal understanding capability of Show-o on
public benchmarks, such as image captioning and visual question-answering tasks. i) The current
version of Show-o is built upon Phi-1.5 and thus we follow LLaVA to train Show-o’s understanding
only counterpart as our direct baseline, namely LLaVA-v1.5-Phi-1.5. The proposed Show-o exhibits
comparable performance in all evaluation metrics to the baseline LLaVA-v1.5-Phi-1.5, which is ded-
icated and optimized to only multimodal understanding. This demonstrates the great potential of our
framework to unify multimodal understanding and generation in one single transformer. ii) When
comparing with understanding only models including InstructBLIP, Qwen-VL-Chat, and mPLUG-
Owl2 on multimodal understanding, our model with a much smaller model size also achieves com-
petitive performance on POPE, MME, Flickr30k and VQAv2 benchmarks and performs better on
GQA benchmark. iii) Compared with unified models with a much larger number of parameters, such
as NExT-GPT-13B and Chameleon-34B, our model also achieves decent performance on Flickr30k
benchmark and performs much better on VQAv2 benchmark.

Qualitative Results. We present Show-o’s visual question-answering capability and make compar-
isons with Chameleon in Fig. 6. It is evident that when presented with a query image, Show-o can
respond to commonly asked questions, even addressing the unusual aspects within the image. In
the example of Fig. 6, when asked, “Do you think the image is unusual or not”, Chameleon fails to
correctly identify the unusual aspect. In contrast, Show-o’s response, “as living rooms are usually
indoors and designed for relaxation and entertainment”, is more accurate.

4.3 VISUAL GENERATION
Table 2: MSCOCO zero-shot FID. Und. and Gen. denote
“understanding” and “generation”, respectively.

Type Method # Params # Images FID-30K↓

Gen. Only

DALL·E (Ramesh et al., 2021) 12B 250M 27.50
GLIDE (Nichol et al., 2021) 5B 250M 12.24
LDM (Rombach et al., 2022) 1.4B 400M 12.64
DALL·E 2 (Ramesh et al., 2022a) 6.5B 650M 10.39
SDv1.5 (Rombach et al., 2022) 0.9B 2000M 9.62
GigaGAN (Kang et al., 2023) 0.9B 2700M 9.09
PixArt (Chen et al., 2024) 0.6B 25M 7.32
Imagen (Saharia et al., 2022) 3B 860M 7.27
RAPHAEL (Xue et al., 2024) 3B 5000M+ 6.61

Und. and Gen.

CoDI (Tang et al., 2024) - 400M 22.26
LWM (Liu et al., 2024a) 7B - 12.68
SEED-X (Ge et al., 2024) 17B - 14.99
DreamLLM (Dong et al., 2024) 7B - 8.76
Show-o (Ours) 1.3B 35M 9.24

Results on MSCOCO 30K. We
present zero-shot FID of Show-o on
MSCOCO 30K in Table 2. It can be
observed that, compared to genera-
tion models trained with larger num-
bers of parameters and training im-
ages such as GLIDE and DALL·E 2,
Show-o achieves a better FID, i.e.,
9.24, with only 1.3B parameters and
35M training data. Though Giga-
GAN, Imagen, and RAPHAEL ob-
tain a relatively better performance
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Table 3: Evaluation on the GenEval (Ghosh et al., 2023) benchmark. Und. and Gen. denote
“understanding” and “generation”, respectively. We highlight the model size of Show-o in green,
and we use blue to highlight the larger model size than ours. Obj.: Object. Attri.: Attribute.

Type Method # Params Single Obj. Two Obj. Counting Colors Position Color Attri. Overall↑

Gen. Only

LlamaGen (Sun et al., 2024) 0.8B 0.71 0.34 0.21 0.58 0.07 0.04 0.32
LDM (Rombach et al., 2022) 1.4B 0.92 0.29 0.23 0.70 0.02 0.05 0.37
SDv1.5 (Rombach et al., 2022) 0.9B 0.97 0.38 0.35 0.76 0.04 0.06 0.43
PixArt-alpha (Chen et al., 2024) 0.6B 0.98 0.50 0.44 0.80 0.08 0.07 0.48
SDv2.1 (Rombach et al., 2022) 0.9B 0.98 0.51 0.44 0.85 0.07 0.17 0.50
DALL-E 2 (Ramesh et al., 2022a) 6.5B 0.94 0.66 0.49 0.77 0.10 0.19 0.52
SDXL (Podell et al., 2023) 2.6B 0.98 0.74 0.39 0.85 0.15 0.23 0.55
SD3 (d=24) (Esser et al., 2024) 2B 0.98 0.74 0.63 0.67 0.34 0.36 0.62

Und. and Gen.

CoDI (Tang et al., 2024) - 0.89 0.16 0.16 0.65 0.02 0.01 0.31
LWM (Liu et al., 2024a) 7B 0.93 0.41 0.46 0.79 0.09 0.15 0.47
SEED-X (Ge et al., 2024) 17B 0.97 0.58 0.26 0.80 0.19 0.14 0.49
Emu3 Wang et al. (2024) 8B - - - - - - 0.66
Transfusion Zhou et al. (2024) 7.3B - - - - - - 0.63
Chameleon (Team, 2024) 7B - - - - - - 0.39
Show-o (Ours) 1.3B 0.98 0.80 0.66 0.84 0.31 0.50 0.68
Show-o‡ (Ours) 1.3B 0.98 0.85 0.67 0.81 0.28 0.55 0.69

than Show-o, they are much larger in model size (3B v.s. 1.3B) and trained with much more data.
In comparison to unified models, Show-o also exhibits improvement. However, it is worth noting
that FID on MSCOCO 30K may not be a comprehensively accurate assessment of generation fi-
delity. The reason lies in the fact that existing generation models are commonly fine-tuned with
high-quality and aesthetic images that do not align with the distribution of the MSCOCO dataset.

Results on GenEval. One can observe in Table 3 that when comparing to the model in a similar
size such as LDM (1.4B), Show-o obtains significantly better performance in all six metrics, with an
improvement of around 0.24 overall. Besides, Show-o achieves a better performance than DALL·E
2, which is 5 times larger in model size, and SDXL. Further, Show-o, with only 1.3B parameters,
achieves comparable performance to models with around two times larger number of parameters
such as SD3 (2B). It indicates that our unified model’s generative capabilities are comparable to or
even surpass those of specialized generation models. In comparison to unified models such as CoDI,
SEED-X, and Chameleon, Show-o also demonstrates significant improvements.

Qualitative Results. We show image samples generated by Show-o in Fig. 7. One can observe that
Show-o is capable of generating diverse, interesting, and realistic visual content in a resolution of
512×512. For example, Show-o can generate a futuristic style of car, a highly detailed face, cute
objects, and vivid scenery with vibrant contrast.

Text-guided Inpainting and Extrapolation. As mentioned, Show-o naturally supports text-based
inpainting and extrapolation without requiring any fine-tuning. We illustrate examples in Fig. 8 (a).
As shown on the top of the figure, given an input image and inpainting mask, Show-o can inpaint
the original red trolley car to a blue sports car with sleek curves and tinted windows based on the
user-provided text prompt. Specifically, we first tokenize the original image, mask those tokens to be
inpainted, and then Show-o will gradually replace the masked tokens with predicted image tokens.
Besides, Show-o is capable of extrapolating the original image horizontally/vertically based on the
given text prompt. These cases significantly demonstrate the inherent advantages of Show-o over
those autoregressive models for downstream applications.

4.4 MIXED-MODALITY GENERATION OF VIDEO KEYFRAMES AND CAPTIONS

Here, we explore the mixed-modality generation ability of Show-o based on the text descriptions
and video keyframes in the GenHowTo dataset. Given a sequence of interleaved text descriptions
and video keyframes (as shown at the bottom of Fig. 4), Show-o is trained to predict the next text
tokens or keyframe tokens conditioning on all preceding tokens. Thus, Show-o can generate mixed-
modality of text descriptions and video keyframes. Examining a single frame, these tokens are
generated in a diffusion manner. When considering the modeling of long sequences, as subsequent
keyframes are produced based on all preceding text and image information, this can also be viewed
as a form of temporal auto-regressive modeling.

We have tried to train Show-o using instructional examples and present qualitative examples in
Fig. 8 (b). For example, given a question “Can you guide me through making Avocado and Apple
Juice”, Show-o exhibits the capability to generate video keyframes with text descriptions related to
the question. It is apparent that the generated keyframes are temporally consistent.
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Figure 7: Images generated by Show-o. Text prompts are provided in Appendix G.

4.5 VIDEO UNDERSTANDING AND GENERATION

Beyond image understanding and generation, we have explored Show-o to support video understand-
ing and generation. We inflate the existing pre-trained MAGVIT-v2 to support encoding videos into
discrete tokens, compressing an 8 FPS video tensor of 3× 17× 256× 256 into 5× 16× 16. In this
way, following the sequence format and omni-attention of multimodal understanding and generation
introduced in Section 3.2, it is convenient to fine-tune the existing Show-o to involve video under-
standing and generation. One can observe visual examples in Figs. 8 (c) and (d) that Show-o can
accurately comprehend and describe the variations in the video and generate consistent video frames
with “a jeep car is approaching from a distance”. More examples can be found in Appendix H.

4.6 ABLATION STUDIES

Table 4: Impact of dataset scale and image resolution on the learning
of discrete image token embeddings for multimodal understanding.

# Image-text Resolution POPE MME Flickr30k VQAv2(test) GQA MMMU

35M 2562 73.8 948.4 36.2 59.3 48.7 25.1
2.0B 2562 76.2 1014.9 48.9 64.7 54.2 25.0
2.0B 5122 80.0 1097.2 62.5 69.4 58.0 26.7

Impact of dataset scale
and image resolution on
multimodal understand-
ing. As only discrete image
tokens are extracted from
the vision tokenizer, it is re-
quired to learn image token
embeddings in Show-o from scratch. Unlike aligned image representations from the CLIP well-
trained on a large-scale image-text dataset, Show-o necessitates the multimodal alignment between
image and text embeddings during the pre-training stages. Here, we study the impact of the dataset
scale and image resolution on the learning of discrete image token embeddings for multimodal un-
derstanding in Table 4. One can observe that the multimodal understanding capabilities of Show-o
are consistently improved when increasing the data scale and image resolution. This reveals that
it is required to involve more image-text pairs for multimodal alignment and more image tokens to
represent an image for better comprehending the image information.

As illustrated in Fig. 3(a), the default Show-o adopts the pre-trained MAGVIT-v2 to tokenize input
image to discrete tokens, which are then passed to the embedding layer to obtain embeddings as input
for multimodal understanding. Beyond, we provide a systematic exploration of different design
choices for the input of Show-o to enhance multimodal understanding. Specifically, as shown in
Fig. 3(b) and (c), instead of discrete image tokens, we extract the continuous image representations

9



Published as a conference paper at ICLR 2025

User: Can you guide me through making Avocado and Apple Juice?

(6) a food
processor with 
avocado in it.

(1) Apple 
Peeling/Cutting. 

(2) a person is 
cutting an apple. 

(3) a person slicing 
an apple on a 
plate. 

(4) Avocado 
Peeling/Slicing.

(5) a woman is 
cutting an avocado 
on a plate. 

Generated Text Descriptions with Corresponding Video Keyframes

Input image

Extrapolation

“A serene natural landscape featuring a clear, blue lake surrounded by lush green trees.”“A blue sports car with sleek curves and tinted windows.”Original Image

User: Describe the video content.

Show-o: The video shows a little girl sitting in a car seat, holding an ice cream cone in her hand. She appears to be enjoying her treat, and her eyes are 
closed, suggesting she is either asleep or simply taking a moment to relax. The car seat she is sitting on is black, and the background of the video is 
blurred, indicating that the focus is on the girl and her ice cream. The lighting in the car is bright, and the car seat is positioned in front of a window, 
providing a view of the outside environment.

(a) Text-guided Inpainting and Extrapolation

(b) Mixed-modality Generation

(c) Video Understanding

(d) Video Generation
“A jeep car is approaching from a distance.”

Figure 8: Examples of text-guided inpainting/extrapolation, mixed-modality generation, video un-
derstanding and generation. 6 frames are sampled from the (generated) video for illustration.

from the pre-trained MAGVIT-v2 and CLIP-ViT, respectively, as input for Show-o when dealing
with multimodal understanding. We provide experimental results and insights in Appendix I.

Additionally, we present qualitative examples to illustrate the impact of sampling steps and
classifier-free guidance for text-to-image generation in Appendix I. In observation, increasing the
sampling steps can allow the synthesis of an image that closely adheres to the prompt and improve
fidelity. Besides, the classifier-free guidance can significantly make the colors and contents more
diverse and consistent with the given text prompt.

We also discuss the failure modes of Show-o in Appendix K.

5 CONCLUSION

This paper proposed a unified transformer, i.e., Show-o, to unify multimodal understanding and
generation. Show-o for the first time unified autoregressive and (discrete) diffusion modeling that
can handle different modalities in distinct ways. Extensive experimental results demonstrated that
Show-o is comparable to even better than individual expert models across a wide range of vision-
language tasks. This highlighted its potential as a next-generation foundation model.
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Image corruption by adding different level mask (noise) tokens

Image generation by iteratively removing mask (noise) tokens

Figure 9: Illustration of image corruption by adding different level mask (noise) tokens and image
generation by iteratively removing mask (noise) tokens in the absorbing discrete diffusion paradigm.

APPENDIX

A PRELIMINARIES

In recent years, denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020a) have demon-
strated unprecedented performance in text-to-image/video generation in continuous state spaces,
particularly exemplified by the popular Stable Diffusion series (Podell et al., 2023; Esser et al.,
2024). Concurrently, discrete denoising diffusion probabilistic models (D3PMs) (Austin et al., 2021)
have also shown impressive capabilities in modeling data in discrete form, featuring models like VQ-
Diffusion (Gu et al., 2022) and Copilot4D (Zhang et al., 2024). Further, MaskGIT (Chang et al.,
2022) and Muse (Chang et al., 2023) have demonstrated a simplified discrete diffusion that can ef-
fectively model discrete image tokens. Our Show-o model is built upon MaskGIT so that both such
discrete visual and textual tokens can share a unified learning objective format. In the following, we
provide preliminaries for diffusion models and draw the connection between discrete diffusion and
mask token prediction employed in MaskGIT.

In diffusion models, the forward process q(x1:T |x0) =
∏T

t=1 q(xt|xt−1) corrupts the image data
x0 ∼ q(x0) into latent variables x1, · · · ,xT in different noise level. The reverse Markov pro-
cess is learned to iteratively remove the noises added to the latent variables towards the real image
distribution q(x0). In the continuous scenario, the transition distribution q(xt|xt−1) is commonly
characterized by a Gaussian distribution:

q(xt|xt−1) = N (xt|
√

1− βtxt−1, βtI), (4)

where the mean is
√
1− βtxt−1 and the variance is βt. For images tokenized into K (i.e., the

codebook size) categorical random variables xt,xt−1 ∈ {1, · · · ,K} and given a [MASK] state, the
transition distribution is instead formulated by a stochastic transition matrix Qt ∈ R(K+1)×(K+1):

q(xt|xt−1) = Cat(xt|xt−1Qt), (5)

where [Qt]ij = q(xt = j|xt−1 = i), xt−1Qt indicates the row vector-matrix product, and
Cat(xt|xt−1Qt) is a categorical distribution over the one-hot row vector xt given by xt−1Qt. When
the transition matrix Qt is applied to each image token in a sequence, the marginal and posterior at
time step t and t− 1, respectively, are formulated as:

q(xt|x0) = Cat
(
xt|x0Qt

)
, where Qt = Q1Q2 · · ·Qt,

q(xt−1|xt,x0) =
q(xt|xt−1,��x0)q(xt−1|x0)

q(xt|x0)
= Cat

(
xt−1|

xtQ
⊤
t ⊙ x0Qt−1

x0Qtx
⊤
t

)
, (6)

where q(xt−1|xt,x0) = q(xt−1|xt) because of the Markov property.

In the following, we introduce the Absorbing-Uniform Discrete Diffusion by defining the stochas-
tic transition matrix Qt as follows:

Qt = Qa
tQ

u
t , (7)

where em is a one-hot vector with a value of 1 at the index of [MASK] token, Qa
t = (1 − αt)I +

αt1e
⊤
m, and Qu

t = I− βt(I− eme⊤m) + βt

(K+1) (1− em)(1− em)⊤. Here, αt and βt represent the
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probabilities of an image token transforming into the [MASK] token and non-[MASK] token at time
step t, respectively. Specifically, the matrix form of Qt can be written as:

Qt =



ωt + νt νt νt · · · νt αt

νt ωt + νt νt · · · νt αt

νt νt ωt + νt · · · νt αt

...
...

...
. . .

...
...

νt νt νt · · · ωt + νt αt

0 0 0 · · · 0 1

 , (8)

where ωt = (1 − αt − βt) and νt =
βt

(K+1) . Intuitively, during the corruption process, each image
token in the sequence has a probability of αt to be replaced by the [MASK] token, a chance of νt
to be uniformly diffused, and a probability of ωk + νt remain unchanged. Besides, if a token turns
into a [MASK] token, it will stay in the same [MASK] state during the following corruption process.
Likewise, Qt = Q

a

tQ
u

t can be accordingly derived. An illustration of the image corruption process
using [MASK] token is provided in Fig. 9.

The evidence-lower bound (ELBO) for the variational diffusion models is:

−LELBO(x0, θ) = Eq(x1:T |x0)

[
−DKL[q(xT |x0) ∥ p(xT )]︸ ︷︷ ︸

LT

+ log pθ(x0|x1)︸ ︷︷ ︸
L0

−
T∑

t=2

DKL[q(xt−1|xt,x0) ∥ pθ(xt−1|xt)]︸ ︷︷ ︸
Lt−1

]
. (9)

Considering the proposition in (Campbell et al., 2022) and the following parameterization of the
reverse process:

pθ(xt−1|xt) =
∑
x0

q(xt−1|xt,x0)pθ(x0|xt), (10)

the variational lower bound can be further expressed under the image distribution q(x0) (referring
to the proof provided by Zhang et al. (2024) as detailed in the Appendix B):

Eq(x0)[log pθ(x0)] ≥ Eq(x0)[−LELBO(x0, θ)] ≥
T∑

t=1

Eq(x0)q(xt|x0)[log pθ(x0|xt)] + C. (11)

When deriving this lower bound, the discrete diffusion paradigm can be further simplified by restrict-
ing each image token to be either unchanged or replaced with the [MASK] token, with no possibility
of becoming other categorical variables. The resulting lower bound is effectively the Cross-Entropy
loss used in MaskGIT (Chang et al., 2022), which is the mask token prediction to learn a neural net-
work pθ to reconstruct masked regions of x0 from the noised xt. In this work, we follow MaskGIT
to integrate this simplified discrete diffusion paradigm into Show-o because of its simplicity. Fur-
ther, Muse (Chang et al., 2023) has successfully scaled up such a paradigm for text-to-image models
of 3B parameters using 460M image-text pairs.
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B ALTERNATIVE LOWER BOUND FOR THE VARIATIONAL DIFFUSION

Eq(x0)[log pθ(x0)]

= Eq(x0)[log

∫
pθ(x0,x1 · · ·xT )dx1 · · ·xT ]

= Eq(x0)

{
logEq(x1:T |x0)

[
pθ(x0:T−1|xT )

q(x1:T |x0)
p(xT )

]}
≥ Eq(x0)q(x1:T |x0)

[
log

pθ(x0:T−1|xT )

q(x1:T |x0)
+ log p(xT )

]
= Eq(x0:T )

[ T∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)
+ log p(xT )

]

= Eq(x0:T )

[ T∑
t≥1

log pθ(xt−1|xt) + log p(xT )−
T∑

t≥1

log q(xt|xt−1)
]

= Eq(x0:T )

[ T∑
t≥1

log
∑
x̃0

q(xt−1|xt, x̃0)p̃θ(x̃0|xt)

]
+ Eq(x0:T )

[
log p(xT )−

T∑
t≥1

log q(xt|xt−1)

]
︸ ︷︷ ︸

C1

= Eq(x0:T )

[ T∑
t≥1

log
∑
x̃0

q(xt−1, x̃0|xt)

q(x̃0|xt)
p̃θ(x̃0|xt)

]
+ C1

= Eq(x0:T )

[ T∑
t≥1

log
∑
x̃0

q(x̃0|xt−1)

q(x̃0|xt)

q(xt|xt−1)q(xt−1)/q(xt)︷ ︸︸ ︷
q(xt−1|xt) p̃θ(x̃0|xt)

]
+ C1

≥ Eq(x0:T )

[ T∑
t≥1

∑
x̃0

q(x̃0|xt−1) log

(
q(xt−1|xt)

q(x̃0|xt)
p̃θ(x̃0|xt)

)]
+ C1

= Eq(x0:T )

[ T∑
t≥1

∑
x̃0

q(x̃0|xt−1) log p̃θ(x̃0|xt)

]
+ C1 + Eq(x0:T )

[ T∑
t≥1

∑
x̃0

q(x̃0|xt−1) log
q(xt−1|xt)

q(x̃0|xt)

]
︸ ︷︷ ︸

C2

=

T∑
t≥1

Eq(x0,xt−1,xt)

[∑
x̃0

q(x̃0|xt−1) log p̃θ(x̃0|xt)

]
+ C1 + C2

=

T∑
t≥1

Eq(x0,xt−1,xt)q(x̃0|xt−1)[log p̃θ(x̃0|xt)] + C1 + C2

=

T∑
t≥1

Eq(x0|xt−1)q(xt|xt−1)q(xt−1)q(x̃0|xt−1)[log p̃θ(x̃0|xt)] + C1 + C2

=

T∑
t≥1

Eq(xt|xt−1)q(xt−1,x̃0)[log p̃θ(x̃0|xt)] + C1 + C2

=

T∑
t≥1

Eq(xt,x0)[log p̃θ(x0|xt)] + C1 + C2
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The constants C1 and C2 are:

C1 = Eq(x0:T )

[
−

T∑
t=1

log q(xt|xt−1) + log p(xT )︸ ︷︷ ︸
Note that p(xT )=q(xT )

]

= Eq(x0:T )

[
−

T∑
t=1

log q(xt,xt−1) +

T∑
t=0

log q(xt)

]

C2 = Eq(x0:T )

[ T∑
t=1

log q(xt−1|xt)

]
− Eq(x0:T )

[ T∑
t=1

∑
x̃0

q(x̃0|xt−1) log q(x̃0|xt)

]

= Eq(x0:T )

[ T∑
t=1

log q(xt,xt−1)−
T∑

t=1

log q(xt)

]
−

T∑
t=1

Eq(x0:T )q(x̃0|xt−1)[log q(x̃0|xt)]

C1 + C2 = Eq(x0:T )[log q(x0)−
∑T

t=1 log q(x0|xt)]

The alternative lower bound can be derived as:

Eq(x0)[log pθ(x0)] ≥
T∑

t=1

Eq(xt,x0)[log pθ(x0|xt)] + Eq(x0:T )[log q(x0)−
T∑

t=1

log q(x0|xt)]

=

T∑
t=1

Eq(x0)q(xt|x0)[log pθ(x0|xt)] + C.

This proof is provided by Zhang et al. (2024).

C TRAINING PIPELINE

Given that the embedding of image tokens is newly initialized, it necessitates large-scale pre-training
to align for multimodal understanding and generation. Besides, Show-o eliminates the text encoder
to extract text embeddings for text-to-image generation, which poses a significant challenge for
achieving effective alignment between text and image content within one single transformer. To this
end, we employ a three-stage approach to progressively and effectively train Show-o:

i) Image Token Embedding and Pixel Dependency Learning: We employ RefinedWeb (Penedo
et al., 2023) dataset to train Show-o to maintain the language modeling ability. Meanwhile,
ImageNet-1K dataset (Deng et al., 2009) and large-scale image-text pairs are adopted to train Show-
o for class-conditional image generation and image captioning, respectively. Here, we directly lever-
age the class names from ImageNet-1K as textual inputs for learning class-conditional image gen-
eration. This stage primarily involves the learning of new learnable embeddings for discrete image
tokens, pixel dependency for image generation, and alignment between image and text for image
captioning.

ii) Image-Text Alignment for Multimodal Understanding and Generation: Building upon the
pre-trained weights, we proceed to involve training of text-to-image generation on the image-text
data instead of the ImageNet-1K. This stage mainly focuses on image and text alignment for both
image captioning and text-to-image generation.

iii) High-Quality Data Fine-tuning: Lastly, we further refine the pre-trained Show-o model by
incorporating filtered high-quality image-text pairs for text-to-image generation and instructional
data for multimodal understanding and mixed-modality generation.

D INFERENCE DETAILS

In inference, two types of predictions, i.e., text and image tokens, are involved in Show-o. In mul-
timodal understanding, given the conditional image and questions, text tokens are auto-regressively
sampled from the predicted tokens with higher confidence. In visual generation, given N text to-
kens and M [MASK] tokens as initial input, Show-o predict M logits ℓt = {ℓti}Mi=1 in parallel, where
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ℓti ∈ R1×(K+1) and t is the time step. Following the work (Chang et al., 2023), we compute both the
conditional logit ℓtc and unconditional logit ℓtu for masked tokens. The final logit ℓt of each [MASK]
token is obtained by the following equation with a guidance scale w:

ℓt = (1 + w)ℓtc − wℓtu. (12)

For each [MASK] token u∗ at location i, we sample an image token ut
i from the codebook based on

the predicted probability pti = softmax(ℓti) and indicate its predicted score si ∈ R as the confidence
of this sampled token. The confidence of the unmasked token is set as 1.0. Next, we compute
the number of image tokens m that should be re-masked based on the mask scheduling function γ,
where m = ⌈γ( t

T )M⌉. More details of mask scheduling functions can be found in MaskGIT (Chang
et al., 2022). Subsequently, we replace the predicted image tokens with [MASK] token u∗ based on
the following metric:

u
(t+1)
i =

{
u∗, if si < sortedj(sj)[m].

ut
i, otherwise.

. (13)

The resulting sequence, consisting of the remaining image tokens and [MASK] tokens, will be fed
back to Show-o for the subsequent round of prediction until reaching the final time step T . The
finalized image tokens are decoded by the image tokenizer into an image.

E DATASET DETAILS

Three types of data are adopted for training Show-o: i) Text-only Data: We employ the publicly
available RefinedWeb dataset (Penedo et al., 2023) to preserve the text reasoning capabilities of
the pre-trained LLM. This dataset comprises approximately 1 billion instances (equivalent to 968
million individual web pages) and totals 2.8 terabytes of curated text data. ii) Image Data with
Class Names: Show-o learns pixel dependencies using 1.28M images sourced from the ImageNet-
1K (Deng et al., 2009) dataset. iii) Image-Text Data: For pre-training tasks correspond to multi-
modal understanding and generation, we assemble roughly 35M image-text pairs from the publicly
available datasets including CC12M (Changpinyo et al., 2021), SA1B (Kirillov et al., 2023), and
LAION-aesthetics-12M† . Additionally, we further increase the data scale to around 2.0B by incor-
porating DataComp (Gadre et al., 2024) and COYO700M (Byeon et al., 2022) with some filtering
strategies. Note that, we employ ShareGPT4V (Chen et al., 2023) to re-caption these datasets. Addi-
tionally, around 1M internal image-text pairs serve as high-quality text-to-image generation datasets
for the final fine-tuning. Following LLaVA-v1.5 (Liu et al., 2024b), we incorporate LLaVA-Pretrain-
558K and LLaVA-v1.5-mix-665K for instruction tuning. Moreover, the GenHowTo dataset (Souček
et al., 2024) is utilized for mixed-modality generation.

F IMPLEMENTATION DETAILS

We initially conduct joint training of Show-o using the RefinedWeb, a collection of image-text pairs,
and the ImageNet-1K for language modeling, image captioning, and class-conditional image gener-
ation, respectively, over 500K steps. Subsequently, we replace the class-conditional generation with
the training for text-to-image generation using the around 35M image-text pairs for an additional
1,000K steps. The base model is trained on 48 A100 (80GB) GPUs with a total batch size of 1,152.
We employ the AdamW optimizer with a weight decay of 0.01, 5,000 steps of warm-up, and an
initial learning rate of 1e-4 with a cosine scheduling. Finally, we fine-tune Show-o with around 1M
internal high-quality image-text pairs and adhere to the configuration of LLaVA-v1.5 for instruction
data tuning. Note that, the current version of Show-o is based on Phi-1.5 (Li et al., 2023). In the
following experiment sections, the default Show-o employs discrete image tokens as input for both
multimodal understanding and generation. Show-o† and Show-o‡ indicate the use of continuous
image representations from the pre-trained MAGVIT-v2 and CLIP-ViT (corresponding to options
(b) and (c) in Fig. 3), respectively, for multimodal understanding and we discuss this exploration in
Section 4.6.

Based on the pre-trained Show-o, we continue to train it on the 2.0B image-text pairs for 500K
steps and then we increase the image resolution to 512 × 512 and train Show-o for an additional

† https://huggingface.co/datasets/dclure/laion-aesthetics-12m-umap
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500K steps. Finally, we fine-tune Show-o with around 1M internal high-quality image-text pairs
and adhere to the configuration of LLaVA-v1.5 for instruction data tuning.

G TEXT PROMPTS

“A 3D render of a futuristic car made of glass, driving through a city of mirrors.”

“A colorful cartoon of a tiger camouflaged in an abstract art painting, its stripes merging with the
wild brushstrokes. ”

“The image features a stylized stained glass illustration of a hummingbird with vibrant colors, set
against a backdrop of swirling patterns and a large sun. The composition includes floral elements
and intricate details, creating a vivid and dynamic scene that emphasizes the beauty of the bird. The
colors range from greens to reds, enhancing the lively and artistic aesthetic of the piece. ”

“A 3D render of a surreal explosion scene on the shore of a beautiful white sand beach with crystal
clear water. The explosion has a spatter of oil paint with pastel colors and a thick consistency. The
explosion is in a quiet and serene environment. A beautiful Japanese woman with a dress compacted
to the sea is seen. There are butterfly petals and flowers with an ethereal glow and bioluminescence.
There are pink and blue roses, and the overall image has a surreal and dreamlike quality. ”

“A hyper-realistic close-up photograph of a woman’s face, focusing on the left side. The image is
highly detailed and realistic, showing voluminous glossy lips slightly parted, a well-defined nose,
and open eyes with long eyelashes that cast shadows on the skin. The eye color is crystal clear
almond green. The skin texture is crisp, with incredible detail of natural, lush skin and pores and
freckles, with subtle highlights and shadows that give a realistic, close-up appearance. ”

“A 3D render of a cute, round rice ball character named Mochi, with big, sparkling eyes that convey
curiosity and joy. Its body is a soft, fluffy white with a slight sheen, resembling freshly cooked rice.
Mochi has small, rosy cheeks that give it a warm, friendly expression. A tiny smile brightens its
face, and it often sports a colorful ribbon tied around its ”waist,” adding a playful touch. Mochi’s
arms and feet are cartoonishly short, allowing it to bounce adorably around its surroundings. This
time, Mochi is placed against a background that is a vibrant explosion of colors, with bright hues
of fuchsia, turquoise, lemon yellow, and emerald green creating a canvas of vibrant contrasts and
playful energy. The clashing colors make Mochi’s soft white body and rosy cheeks stand out even
more, inviting viewers into a world of cheerful exuberance and visual delight.”

H MORE EXAMPLES OF VIDEO

We provide more examples of video understanding and generation in Fig. 10.

I ABLATION STUDIES

Impact of Vision Encoder for Multimodal Understanding. The default Show-o employs
MAGVIT-v2 to encode images into discrete tokens for both multimodal understanding and gen-
eration. Inspired by the literature (Liu et al., 2024b), we investigate the impact of the most popular
design choice of vision encoder, i.e., the pre-trained CLIP ViT (Radford et al., 2021), for mul-
timodal understanding. We first compare the two settings using our Show-o model. In Table 5,
the comparison between Exp 2 and Exp 4, Exp 3 and Exp 5 clearly demonstrates that continuous
representations from CLIP-ViT have significantly better performance on multimodal understanding
than that of MAGVIT-v2. This mainly attributes to: i) The CLIP-ViT is pre-trained on a much
larger dataset (400M) than that of our pre-trained MAGVIT-v2 (35M); ii) In contrast to image re-
construction learning objective in MAGVIT-v2, the discriminative loss, i.e., image-text matching, in
CLIP-ViT makes the extracted representations easier to be adapted for multimodal understanding.

Impact of Various Representations for Multimodal Understanding. In typical multimodal un-
derstanding models like LLaVA, the image representation extraction and cross-modal alignment
usually happen in the continuous space. However, image tokenizers such as MAGVIT-v2 naturally
yield discrete image tokens. As shown in Table 5, we compare the two types of input, i.e., con-
tinuous representations and discrete tokens, in the multimodal understanding scenario. In Exp 6
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Describe the video content.

The video features a man in a red shirt who is making a drink by adding various ingredients to a glass. He pours the mixture into a
strainer and then adds a lemon slice to the glass. The man then drinks the drink from the glass.

Describe the video content.

The video features a woman who is sitting in front of a computer and talking to the camera. She is wearing a blue shirt and has her
hands in her lap. Throughout the video, she is seen making various gestures and speaking to the camera. The background of the
video is filled with various items, including a clock, a mirror, and a shelf with clothes. The woman's expressions and gestures vary
throughout the video, but they are all focused on her conversation.

Describe the video content.

The video features a woman in a kitchen who is cooking an omelette. She is shown stirring the eggs in a bowl, adding butter and
grated cheese, and then flipping the omelette. The video also includes a cartoon character who is shown cooking an omelette.

“A blue car drives past a white picket fence on a sunny day”

“There are two dogs, one brown and one black, playing together in a fenced-in area.”

Figure 10: More examples on video understanding and generation. Only some key frames are
sampled for illustration.

Table 5: Ablation studies of various vision encoders and kinds input representations for multimodal
understanding. Note that this experiment is based on the Show-o pre-trained on 35M image-text
data in a resolution of 256× 256.

# Exp Method Vision Encoder Unified Pretrain Feature type POPE MME Flickr30k VQAv2(val) GQA MMMU

1 LLaVA CLIP-ViT ✗ Continuous 84.1 1128.0 69.6 73.0 56.5 30.67

2 Show-o‡ CLIP-ViT ✓ Continuous 84.5 1182.7 64.3 71.9 57.5 27.4
3 Show-o‡ CLIP-ViT ✗ Continuous 84.5 1161.6 68.5 73.5 58.7 29.2

4 Show-o† MAGVIT-v2 ✓ Continuous 74.3 947.8 33.9 59.4 51.0 26.7
5 Show-o† MAGVIT-v2 ✗ Continuous 65.1 800.0 12.3 50.8 43.9 24.6

6 Show-o MAGVIT-v2 ✓ Discrete 73.8 948.4 36.2 57.8 48.7 25.1
7 Show-o MAGVIT-v2 ✗ Discrete 63.8 689.1 4.5 46.1 40.5 28.1

and 7, we use the pre-trained MAGVIT-v2 to extract discrete tokens and train an embedding layer
to embed the tokens into the continuous embedding space of the LLM. In Exp 4 and 5, we modify
MAGVIT-v2 to output continuous representations without quantization. The cross-modal projection
layer follows the setting of LLaVA. The comparison between Exp 5 and Exp 7 reveals that discrete
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w = 3.0w = 1.0Step = 5 Step = 25 Step = 50 w = 5.0

“A colorful cartoon of a tiger camouflaged in an abstract art painting, its stripes merging with the wild brushstrokes.”

Figure 11: Illustration of generated samples using different sampling steps and classifier-free guid-
ance scale w. This experiment is based on the Show-o in a resolution of 512× 512.

What are the words in this image?

Show-o: The words in this image
are "closing stock must go down.”

How many people in this picture?

Show-o: There are three people in the
picture.

“A group of seven people
standing on a snow-covered
slope, all wearing skis and
posing for a picture.”

“The word 'mardefly' on a 
coffee mug”

(a) Failure Cases in Multimodal Understanding (b) Failure Cases in Visual Generation

Figure 12: Illustration of failure cases of Show-o in multimodal understanding and generation.

tokens show much worse performance on most benchmarks. We attribute the performance gap to
that popular multimodal understanding datasets, e.g., LLaVA-Pretrain-558K, are not sufficient to
align discrete image tokens into the language space, leading to an unsatisfactory cross-modal under-
standing. In contrast, continuous representations, already lying in a well-shaped embedding space,
are much easier to align.

Impact of Unified Pre-training for Multimodal Understanding. Our training pipeline involves
two-stage unified pre-training to learn image token embedding and image-text alignment for multi-
modal understanding and generation (as described in Section C). Here we elaborate on the impact
of the unified per-training with different vision encoders and types of representations:

• CLIP-ViT with Continuous Representations. The comparison between Exp 2 and Exp
3 shows that the unified pre-training has a small negative effect on the CLIP ViT-based
understanding, as the performance on most benchmarks has marginal degradations. We
hypothesize that the MAGVIT-v2 token-based pre-training and the CLIP ViT-based tuning
happen in nearly orthogonal dimensions, and the capability of the backbone has been spared
to maintain the compatibility of the two tasks.

• MAGVIT-v2 with Continuous Representations. In the comparison between Exp 4 and Exp
5, we also notice a performance improvement brought by the unified pre-training, even
though the pre-training uses discrete tokens while the experiments here use continuous fea-
tures. This comparison further validates the hypothesis that unified pre-training enhances
the multimodal understanding and reasoning capabilities of the backbone by diverse mul-
timodal interactions during pre-training.

• MAGVIT-v2 with Discrete Tokens. The comparison between Exp 6 and Exp 7 shows
that the unified pre-training has significantly boosted the multimodal understanding per-
formance. This is intuitive since the pre-training also adopts MAGVIT-v2 discrete tokens
as image representation. Specifically, we attribute the performance gain to that unified
pre-training learns a better cross-modal alignment with large-scale data and enhances the
multimodal understanding capabilities of the backbone.

Impact of Sampling Steps. We present generated results at 512 × 512 resolution with varying
sampling steps on the left of Fig. 11. With just five steps, Show-o can produce an image that is
roughly related to the given prompt. Increasing the sampling steps to 25 allows the synthesis of
an image that closely adheres to the prompt. When the sampling step is set as 50, the generated
image becomes more detailed and realistic. In contrast, auto-regressive models Team (2024); Sun
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A green apple on the deskOriginal image A small mouse on the desk A blue car in the cartoon styleOriginal image A blue car in the oil painting style

Figure 13: Mask-free image editing.

et al. (2024) require 1024 sampling steps to generate an image of the same resolution when the
downsampling rate is 16, which is around 20 times more steps than our approach.

Impact of Classifier-free Guidance. The visual variations of generated images with different
classifier-free guidance scales w are illustrated on the right of Fig. 11. It can be observed that
the object in the generated images lacks detail without classifier-free guidance. As the classifier-free
guidance scale w is gradually increased to 3 and 5, the colors and contents become more diverse and
consistent with the given text prompt.

J MASK-FREE IMAGE EDITING

Given an image, it can be converted into discrete image tokens, which can then be subject to iterative
random masking for sampling purposes. This process allows for image editing without the need for
predefined masks. For instance, as illustrated in Fig. 13, Show-o enables local-region modifications
such as ”changing the red apple to green” or ”replacing the apple with a mouse.” Furthermore,
Show-o facilitates global style adjustments like ”transforming the original image into a cartoon or
oil painting style.”

K FAILURE CASES

We provide failure cases of Show-o in multimodal understanding and generation in Fig. 12. The
current version of Show-o sometimes cannot accurately recognize the text and count the object
instances and exhibits challenges in generating correct belongings such as skis for each instance.
One can observe that Show-o fails to identify the phrase ”closing down” in the left of Fig. 12(a) and
is unable to generate the term “mardefly” (as shown left of Fig. 12(b)). This limitation is mainly
attributed to the insufficiency of specific data tailored to these scenarios, as our model relies on a
limited set of image-text pairs sourced from publicly available datasets and utilizes automatically
generated captions. Enriching such kind of data holds promise for addressing these failure modes in
Show-o, an aspect that will be explored in the future.
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