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ABSTRACT

Artificial intelligence is revolutionizing computational chemistry, bringing un-
precedented innovation and efficiency to the field. To further advance research and
expedite progress, we introduce the Quantum Open Organic Molecular (QO2Mol)
database a large-scale quantum chemistry dataset designed for researches on or-
ganic molecules under an open-source license. The database comprises 120,000
organic molecules and more than 20 million conformers, encompassing 10 dif-
ferent elements (C, H, O, N, S, P, F, Cl, Br, I), with heavy atom counts exceed-
ing 40. Each conformation was computed at B3LYP/def2-SVP level of theory
to derive quantum mechanical properties, including potential energy and forces.
The molecules included in the dataset are based on fragments from compounds
in ChEMBL, ensuring their structural relevance to real-world compounds. The
extensive variety of molecular structures and elemental compositions represented
in the dataset can facilitate construction of potential energy surface and various
downstream tasks.

1 INTRODUCTION

The advent of artificial intelligence (AI) has heralded a new era of innovation and efficiency in com-
putational chemistry. Among the various areas of focus within computational chemistry, the study
of small organic molecules holds a particularly prominent position due to their fundamental impor-
tance in diverse scientific disciplines, including drug discovery (Mayr et al., 2016; Chen et al., 2023;
Agüero-Chapin et al., 2022; Stokes et al., 2020; Zeng et al., 2022), reaction prediction (Żurański
et al., 2021; Wang et al., 2023; Pereira & Trofymchuk, 2023; Lin et al., 2023; Ding et al., 2024), and
materials science (Yang et al., 2020; Cheng et al., 2021; Dai et al., 2021; Bu et al., 2022; 2023).

However, there is currently still a shortage of publicly available large-scale quantum chemistry
datasets to support the increasingly extensive research on small organic molecules by AI and com-
putational chemistry experts in the field. Existing public quantum chemistry datasets are either
constrained by limited elemental diversity and molecular variety, or by a small sample size pre-
dominantly focused on small molecules with low heavy atom counts, thereby lacking the neces-
sary breadth and comprehensiveness for robust research applications. Figure 1 illustrates that other
commonly used datasets are restricted in both their coverage of element types and the number of
conformers they encompass. We provide a more detailed comparison and description of the short-
comings of existing datasets in Section 3.2.

To address these challenges and to promote deeper development in the field, we release Quantum
Open Organic Molecular (QO2Mol) database, the large-scale quantum chemistry dataset with 20
million conformers, designed for the research in molecular sciences under an open-source license.
We provide a comprehensive set of molecular property labels, encompassing potential energy, forces,
and formal charge, and additional relevant attributes. In Figure 1, compared to other well-known
datasets, QO2Mol covers the widest variety of 10 elements and includes the largest number of con-
formers. Additionally, QO2Mol employs high-precision quantum mechanical calculations, which
are computationally intensive and costly. Refer to Section 4.5 for computation costs. By offering
this high-quality data to the global scientific community, we aim to accelerate advancements in com-
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Figure 1: Main characteristics of commonly used datasets regarding elemental coverage and the
number of molecular structures. The left panel illustrates the coverage of elements; The right panel
presents the number of conformations.

putational chemistry, material science, and drug discovery. In summary, our key contributions are
threefold:

• Firstly, we introduce the QO2Mol dataset, which comprises 120,000 organic molecules and
more than 20 million conformations. This database covers 10 different elements with heavy
atom counts exceeding 40, closely mirroring the distribution of chemical structures found
in widely used real compound libraries.

• Secondly, we employ B3LYP/def2-SVP level of theory and basis set to obtain reliable
molecular property labels, including potential energy and forces, providing a valuable
database for future research and model development.

• Finally, we provide scripts for loading and processing the dataset, along with benchmark
code and comparative results, enabling researchers to quickly get started and easily in-
tegrate the dataset into their projects. All scripts and codes are available at https:
//github.com/saiscn/QO2Mol/.

We hope these contributions would effectively advance the field of computational chemistry and
provide essential resources and methodologies for accurate molecular modeling.

2 BACKGROUND INFORMATION

2.1 POTENTIAL APPLICATIONS OF OUR DATASET ON DATA-DRIVEN METHODS

This section explores the potential impacts of our dataset on three specific areas: Potential Energy
Surfaces, Force Field Models, and Conformation Generation. However, it is crucial to recognize
that the scope of influence may reach well beyond these identified domains.

Potential Energy Surface The potential energy surface (PES) of atomistic systems is the core of
several aspects of physical chemistry, such as transition states, vibrational frequencies and electronic
properties. Many of current methods based on deep learning mechanism focus on deploying neural
networks to predict QM computed properties (Qiao et al., 2020; Atz et al., 2021; Walters & Barzilay,
2021; Chen et al., 2021; Wang et al., 2022). These methods directly predict the QM properties
instead of solving the many-body Schrodinger equation numerically. All these methods require
high-precision QM data for training reliable models, which is what the QO2Mol dataset can provide.

Force Field Models Force fields are typically employed in downstream tasks like molecular dy-
namics simulations and structure optimizations (Joshi & Deshmukh, 2021; Shub et al., 2013; Suzuki
et al., 2022; Souza et al., 2021; Bejagam et al., 2020). They are essential for understanding and pre-
dicting the behavior and properties of molecular systems. Our dataset encompasses a diverse range
of element types and molecular structures, which is valuable for fitting or validating high-accuracy
force field models.
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Conformation Generation The molecular conformation generation task aims to quickly obtain
reasonable and stable atomic 3D coordinates, which can be used for downstream tasks such as molec-
ular property prediction and molecular docking. Traditional methods acquire reliable 3D structures
through DFT calculations, but the computational costs become increasingly expensive as the number
of atoms increase. Recently, many studies have utilized neural network models to directly generate
conformations from molecular graphs (Simm & Hernandez-Lobato, 2020; Shi et al., 2021; Zhu et al.,
2022). Our dataset includes rotational scans of all flexible bonds for each flexible molecule and can
serve as a training set for the molecular conformation generation task.

2.2 BASIC CONCEPTS OF COMPUTATIONAL CHEMISTRY

We introduce the necessary preliminaries of computational chemistry that will be used later.

• Density Functional Theory (DFT) (Thomas, 1927) is a popular computational method used
to approximately solve Schrödinger equation of molecular systems which offers energies
labels and possibly estimate further molecular property labels from the computed solution.

• Force fields can be applied in various areas of computational chemistry, such as Free Energy
Perturbation (FEP) calculations (Jiang & Roux, 2010; Wang et al., 2015).

• InChI (Heller et al., 2015) (The International Chemical Identifier) is a unique representa-
tion of a chemical substance. InChI decomposes molecular graphs into a series of lay-
ered descriptive information, accurately capturing the chemical structure of the molecule.
InChIKey (Pletnev et al., 2012) is a compacted version of InChI with 27-character fixed-
length. InChIKey is intended for identifying a unique molecule in database search-
ing/indexing (Wikipedia contributors, 2024).

• SMILES (Weininger, 1988) (Simplified Molecular Input Line Entry System) is a ASCII
string that represents a chemical structure in a way that can be friendly used by the com-
puter. It encodes molecular graph notations into compact linear strings through Depth First
Search (DFS) algorithm.

• Heavy atom is any atom other than hydrogen, typically used in molecular studies to fo-
cus on more complex atomic interactions. Heavy atoms form the structural backbone of
molecules, defining their geometry and functional groups, while hydrogen atoms are typi-
cally peripheral and less influential in determining molecular properties. Thus distinguish-
ing heavy atoms is highly relevant to real-world applications across various fields.

2.3 CALCULATION PRECISION

In quantum chemistry, computational precision is closely tied to the choice of calculation methods
and basis sets. Advanced methods offer higher precision but demand substantial computational
resources. Among DFT calculation functionals, B3LYP (Becke, 1988; Lee et al., 1988; Becke,
1993; Stephens et al., 1994) is the one of most popular choices in quantum mechanical calculations
of organic molecular systems due to its balance between computational efficiency and precision.
In QO2Mol, we employ the B3LYP/def2-SVP level of theory, one of the highest precision levels
achievable within an acceptable computational cost range for large-scale calculations of organic
molecular systems.

Table 1: Summary of main characteristics of the molecules in QO2Mol dataset.

Property Mean Std Max
Number of atoms 23.68 8.40 111
Number of heavy atoms 12.62 4.49 53
Molecular weight (amu) 186.27 65.51 1139.76
Number of rotatable bonds 2.03 1.51 26
Number of rings 1.50 0.92 19
Number of conformations 204.71 307.29 11950
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3 QO2MOL AND PREVIOUS DATASETS

3.1 OVERVIEW OF QO2MOL DATASET

Overall, QO2Mol dataset encompasses 120 kilo molecules, with 10 elements (H, C, N, O, F, P, S, Cl,
Br, and I). Each structure employs calculation with B3LYP/def2-SVP level of theory. We provide
statistics for the main characteristics of the molecules in QO2Mol dataset in Table 1. QO2Mol is
primarily composed of small organic molecules with an average of about 12 heavy atoms, featuring
up to 19 rings and 26 rotatable bonds. The average molecular weight is approximately 186.27. Each
molecule has averagely 204 conformations. The smallest molecule in QO2Mol is methane, which
has only one conformation. The largest molecule contains 111 atoms, including 53 heavy atoms and
13 rings.

Figure 2: Illustration of the maximum molecule in QO2Mol with 111 atoms and 53 heavy atoms.
(a) The left has 35 conformations. (b) The right has 74 conformations in the dataset.

3.2 COMPARISION WITH PREVIOUS DATASETS

Table 2: Summary of main characteristics among commonly used QM datasets.

Dataset Elements Molecules Structures Conformer Task Heavy Atoms Method Year

QM9 (Ramakrishnan et al., 2014) H,C,N,O,F 134K 134K 7 9 B3LYP/6-31G(2df,p) 2014
AN1-1 (Smith et al., 2017) H,C,N,O 57K 22M 3 8 ωB97x/631G(d) 2017
AlChemy (Chen et al., 2019) H,C,N,O,F,S,Cl 119K 119K 7 14 B3LYP/6-31G(2df,p) 2019
PCQM4Mv2 (Hu et al., 2021) H,C,N,O,F,S,Cl 3.7M 3.7M 7 51 B3LYP/6-31G(d) 2021
∇2DFT (Khrabrov et al., 2024) H,C,N,O,F,Cl,Br 1.9M 15M 3 27 ωB97x-D/def2-SVP 2024
QO2Mol H,C,N,O,F,P,S,Cl,Br,I 120K 20M 3 44 B3LYP/def2-SVP 2024

We provides a comparative overview of several commonly used quantum mechanical datasets in
Table 2, highlighting their respective methodologies, molecular coverage, and elemental diversity.
QM9 (Ramakrishnan et al., 2014), employing the B3LYP/6-31G(2df,p) method, contains 134,000
molecules with a maximum of 9 heavy atoms, limited to the elements H, C, N, O, and F. The AN1-1
dataset (Smith et al., 2017), released in 2017, using the ωB97x/6-31G(d) method, features 22 million
molecules but is restricted to only 8 heavy atoms and 4 elements (H, C, N, O). Alchemy (Chen et al.,
2019), released in 2019, also uses the B3LYP/6-31G(2df,p) method but includes 119,000 molecules,
expanding the elemental range to H, C, N, O, F, S, and Cl, and accommodating up to 14 heavy atoms.
PCQM4Mv2 (Hu et al., 2021), utilizing data from the PubChemQC Project (Nakata & Shimazaki,
2017) which employs the B3LYP/6-31G(d) level of precision, comprises 3.7 million molecules and
includes 10 elements H, C, N, O, F, S, Cl.

Overall, the QO2Mol dataset encompasses the widest variety of elements. Most earlier released
datasets like QM9 are severely limited in the number of molecular structures, making them grossly
inadequate for training large-scale models. Furthermore, although ANI-1 boasts a considerable sam-
ple size, its restriction to only 4 elements (H, C, N, O) imposes a limitation for studying small
organic molecules with diverse spectral properties. In addition, PCQM4v2 only provides HOMO-
LUMO gap labels, which are insufficient for supporting more complex molecular tasks and studies.
The ∇2DFT dataset, while encompassing a broader range of molecules, has fewer average confor-
mations per molecule compared to QO2Mol. ∇2DFT focuses more on the diversity of molecules,
whereas QO2Mol emphasizes the sampling density of the potential energy surface.
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Figure 3: Distribution of the number of conformations with different heavy atom counts among
commonly used datasets. We omitted Alchemy because of its small scale.

In Figure 3, QO2Mol exhibits a broad distribution of heavy atom counts and the richest number
of conformations overall. In contrast, while ANI-1 offers a substantial number of conformations
for smaller heavy atom counts, its limitation to a maximum of 8 heavy atoms severely impacts
the diversity and realism of the structures it covers. For example, organic molecular structures
with high occurrence rates such as naphthalene (10 heavy atoms) and biphenyl (12 heavy atoms)
cannot be incorporated. QO2Mol’s extensive molecular and elemental coverage, combined with
advanced computational methodology, underscores its superior capacity for quantum mechanical
studies, particularly for larger organic molecules and a broader spectrum of elements.

Remark We also acknowledge the existence of several other notable datasets in the field, such
as OC20/22 (Chanussot et al., 2021; Tran et al., 2023), which is frequently used for crystalline
material tasks, and GEOM (Axelrod & Gómez-Bombarelli, 2022). However, these datasets focus
on different domains and are not directly designed for the study of small organic molecules. Our
dataset specifically addresses the unique challenges and requirements of high-precision quantum
mechanical calculations for organic molecules, filling a gap that existing datasets do not cover. This
distinction ensures that our contributions are both complementary to and distinct from the current
resources available in the field.

4 DATASET GENERATION

In this section, we outline the process of data selection, processing, and preparation in QO2Mol. To
ensure the quality and reliablity of quantum mechanical data, the following considerations need to
be taken into account :

• The selected molecules should represent a chemical space that closely aligns with the distri-
bution of chemical structures found in widely used compound library, such as ZINC (Irwin
et al., 2020), PubChem (Wang et al., 2009), and ChEMBL (Gaulton et al., 2012).

• Identify as many key conformations as possible on the potential energy surface, as these
play a critical role in determining the properties of the molecules.

• Calculate properties using high-level quantum mechanical methods to ensure accuracy and
reliability.

By adhering to these guidelines, we release the QO2Mol dataset, which comprises 120,000 organic
molecules and their corresponding 20 million conformations.
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4.1 MOLECULE FRAGMENTATION

We first derive a set of source compounds from ChEMBL, a widely used virtual screening compound
database for drug design (Sadybekov & Katritch, 2023). Performing quantum mechanical calcula-
tions directly on these compounds is quite challenging due to the large size of these molecules. To
overcome the computational difficulties of quantum mechanical calculations, we employed a Com-
pound Fragmentation Process, dividing the source compounds into smaller fragments containing
fewer heavy atoms, as shown in Figure 4. In this way, we ensured that the basic fragment struc-
tures can be found in real-world molecules and are therefore chemically meaningful. Then a total
of 120,000 fragmented molecules were selected based on three rules: 1) with top 90% occurrence
frequency over the database; 2) labeled as important phosphate groups by our chemistry expert; 3)
encompassing 10 different elements(C, H, O, N, S, P, F, Cl, Br, I). We also ensured that there was no
fragment duplication during the generation procedure by utilizing InChIKey and canonical SMILES
identifiers.

Our selection criteria did not impose restrictions on the number of heavy atoms. This approach
enables us to capture a diverse range of significant and complex chemical space that might not be
adequately represented in existing databases, such as QM9 and ANI-1.

Figure 4: An example of molecule fragmentation process. The molecule (a) is decomposed into four
fragments: F1, F2, F3, and F4r.

4.2 CONFORMATION GENERATION

The constituent atoms of a molecule exhibit dynamic motion in three-dimensional space, generating
the molecule’s conformational space. Each conformation has its own unique energy, collectively
forming the molecular potential energy surface in 3N-dimensional space. The macroscopic proper-
ties of a molecule are effectively described by the ensemble average of the various conformational
properties existing on this PES. Thus, the contributions of key conformations, such as local minima
or transition state structures, are considerably important, while the significance of other conforma-
tions is also noteworthy. Given that, we sampled multiple conformations for each molecule within
the QO2Mol database.

Structure Optimization For each selected fragment molecule, an initial 3D structure is generated
using the RDKit package (Landrum et al., 2013) based on its SMILES (Weininger, 1988) representa-
tion. Then each initial structure is optimized to a local minimum at the B3LYP/def2-SVP precision
level. To ensure the structure reliability, during the structure optimization process, we employ four
convergence criteria to ensure the resulting structures are reasonable: 1) Maximum force <0.00045;
2) root-mean-square force <0.00030; 3) maximum displacement <0.00180; 4) root-mean-square dis-
placement <0.00120. Following each structural optimization, we perform a validation step to ensure
that all bond lengths fall within a defined range relative to their empirical values. For example, the
empirical length of CC single bond is approximately 1.54 Å as widely observed (Allen et al., 1987).
We provide a statistic distribution of C-C bond length over the whole dataset in Figure 5.

Conformation Search Conformation search is performed on optimized structures obtained in the
previous step. At room temperature, the flexible dihedral angles of molecules are likely to rotate.
Therefore, rotation is the most influential factor in constructing potential energy surfaces. Based on
this intuition, we perform rotational search in 30-degree increments each step on all rotatable bonds
of each molecule. By systematically rotating the flexible bonds of molecule to specific degrees,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

a series of new structures are generated. These structures are then optimized at the B3LYP/def2-
SVP level with fixed torsions. Additionally, for specific molecules, we also perform stretching and
bending operations on bond lengths and bond angles, generating corresponding conformations. We
ensure that all bond types, such as C=C and C=O, are included in these manipulations. Moreover,
the database includes a collection of nearby unstable conformations for each stable conformation,
further enhancing the representation of the overall molecular potential energy landscape. We provide
a scan curve showing the potential energy changes during the flexible bond rotation in Figure 5.

Based on the mentioned conformation generation procedure, we finally obtained a total of 20 million
conformers for the 120,000 molecules in our database.

Figure 5: Results of data generation. (left) The distribution statistics of C-C single bond lengths
in the dataset. (right) An example of the rotational scan curve. We conduct rotational scan on all
flexible bonds of each molecule during conformation search procedure.

4.3 PROPERTIES

All conformations were analyzed to compute energy and forces at the B3LYP/def2-SVP level of
theory. The forces, representing the first-order derivatives of energy with respect to coordinates,
were calculated for each atom in the three Cartesian directions (x, y, z). Among the 20 million con-
formations, we also provide additional properties for approximately 210,000 stable conformations,
although this is not the main focus of our contribution. For these stable conformations, we con-
ducted frequency and charge population calculations. Vibrational frequencies were derived through
diagonalization of the Hessian matrix, yielding 3N - 6 frequency values after excluding the three
translational and three rotational modes. The Hessian matrix represents the second-order derivatives
of energy with respect to coordinates. These frequency calculations allow for the determination of
thermodynamic properties, including zero-point energy, entropy, enthalpy, heat capacity, and free en-
ergy, utilizing both harmonic and ideal gas approximations. The charge population analysis includes
the calculation of electron density-derived charges such as ESP (Electrostatic Potential) charges and
Mülliken charges. More details are provided in Appendix B.

4.4 DATA SEGMENTATION

In order to support various learning tasks in this field, we divided the data into three subsets, with
each subset exhibiting a different data distribution pattern serving distinct learning tasks, as depicted
in Figure 6.

The main subset, referred to as subset A, which encompasses the most extensive conformation data,
contains 20 million conformations from more than 110,000 molecules. Unlike previous datasets
that only sample equilibrium conformations at local minima, our subset A consists of equilibrium
conformations at local minima and near-equilibrium conformations additionally sampled around
local minima. These near-equilibrium conformations aid in training models and reconstructing high-
precision potential energy surfaces. Due to its more comprehensive conformation sampling method
and broad distribution of heavy atoms, subset A can be used for various learning tasks, such as
neural network potential (NNP) regression tasks (Kocer et al., 2022), machine learning force field
(MLFF) tasks (Fu et al., 2023), or denoising-like pretraining tasks (Zaidi et al., 2023).

To introduce a higher level of complexity and challenge, we present the second subset, referred to
as subset B, which includes 2.4 million conformers generated from approximately 1,400 molecules.
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Figure 6: Distribution of the number of heavy atoms over sub-datasets

This subset consists of carefully selected representative drug molecules, based on domain expert
annotations, with a large number of heavy atoms ranging from 30 to 34, as shown in Figure 6.
This subset facilitates multiple tasks, such as testing the model’s extrapolative and generalization
capabilities and assessing its performance in real drug design workflows.

The third part, referred to as subset C, includes molecules that are non-analogous to those in subsets
A and B. Subset C can be used for potential-related tasks either as a supplementary data source
combined with the training set or as a validation set. Since the three subsets contain molecules
that occupy distinct and separate regions in the chemical representation space, researchers have the
flexibility to combine them in various ways.

4.5 COMPUTATION COST

All data preparation and DFT calculations were performed on a high-performance computing (HPC)
cluster. In total, the computations utilized approximately 10 million core-hours of CPU resources.

5 BENCHMARK RESULTS

Potential energy prediction is one of the most important benchmark tasks in the field of compu-
tational chemistry, as it serves as the foundation for numerous downstream tasks such as reaction
simulations (Manzhos & Carrington, 2021), protein dynamics (Majewski et al., 2023), and crystal
structure screening (Chen & Ong, 2022). Additionally, the potential energy prediction task is typ-
ically employed to evaluate whether the model has successfully learned robust representations of
molecular geometries (Gasteiger et al., 2020b;a; Liao & Smidt, 2023; Liu et al., 2024). Potential
energy prediction task leverages the 3D structure of molecules as input to predict the potential en-
ergy of each conformation. In this section, we will discuss the results of benchmark models on the
potential energy prediction task using the QO2Mol dataset.

5.1 DATA PREPROCESS PIPELINE

It has been successfully demonstrated that utilizing predefined atomic reference energies to optimize
the model’s prediction target enables the neural network to focus on fitting conformational energies.
This approach can be represented by the following formula:

Ef = Em −
∑
e

Neϵe (1)

where Ef denotes formation energy, Em denotes molecule energy. Ne corresponds to the number
of atoms of element e and ϵe corresponds to the reference energy of single atom of element e. Such
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strategy has been demonstrated to effectively reduce the variance in energy fitting, enhancing the
stability of training and the performance of the model on large-scale dataset. Notably, the top-ranked
teams in the CFFF Prize all employed this approach.

5.2 BENCHMARK MODELS

In this section, we mainly consider two types of benchmark models: invariant models and equivari-
ant models. Invariant models, such as SchNet (Schütt et al., 2017), SphereNet (Zhao et al., 2023),
DimeNet++ (Gasteiger et al., 2020a), GemNet (Gasteiger et al., 2021), leverage features that remain
unchanged under rotations and translations. These features include interatomic distances, bond an-
gles, and torsion angles. By focusing on invariant features, these models can effectively capture
the essential geometric relationships within molecular structures without being affected by their spa-
tial orientation. Equivariant models or approximately Equivariant model, such as Equiformer (Liao
& Smidt, 2023), EquiformerV2 (Liao et al., 2024), and eSCN (Passaro & Zitnick, 2023), utilize
features that transform predictably under rotations and translations. These features include the ir-
reducible representations of the SO(3) group and higher-order interactions. Equivariant models are
designed to handle the inherent symmetries of molecular systems, allowing them to better capture
the directional dependencies and interactions between atoms. Notably, most of these benchmark
models were adopted by participants in the CFFF Prize. By employing both invariant and equiv-
ariant models as benchmarks, we can comprehensively evaluate the performance and robustness of
various approaches in capturing the complexities of molecular structures and dynamics.

5.3 POTENTIAL PREDICTION BENCHMARK

We first evaluate the interpolation performance of potential prediction task over a series of bench-
mark models on subset A , which is aforementioned in Section 4.4. Subsequently, we undertook a
more challenging task of employing these trained models to predict potential energies on the subset
B, in order to evaluate the extrapolation capability of benchmark models. The results are presented
in Table 3. We employ Mean Absolute Error (MAE) as the evaluation metric, measured in units of
kcalůmol−1. Detailed experimental settings are provided in the Appendix D.

Table 3: MAE results on potential prediction task in units of
kcalůmol−1.

Model Params Interpolation Extrapolation
Spherenet 2.7M 0.10522 3.29613
Equiformer 3.5M 0.07743 2.22257
DimeNet++ 5.0M 0.07681 4.40856
SchNet 5.7M 0.12974 8.73877
GemNet 5.7M 0.02357 2.85464
eSCN 17.1M 0.06417 3.60763
EquiformerV2 38.0M 0.04757 2.88512

Table 3 presents that GemNet stands
out with the lowest MAE on test
set A and relatively high generaliza-
tion capability on test set B, indi-
cating exceptional performance with
a moderate number of parameters.
Spherenet and SchNet, show higher
MAE, reflecting limited expressive
power. Equiformer and eSCN demon-
strate good performance with lower
MAE, balancing parameter count and
accuracy effectively.

6 CONCLUSION

In this paper, we present the QO2Mol database, a open-source large-scale data resource designed
for organic molecular researchs. This database comprises 120,000 organic molecules generated
from real compound libraries. The collection includes more than 20 million conformers, reflecting
significant structural diversity and complexity. With representation from 10 different elements and
heavy atom counts exceeding 40, the QO2Mol database offers an extensive and diverse molecular
landscape for research exploration.Despite the richness and diversity of the dataset, it may not cover
all possible molecular configurations or adequately represent certain chemical environments. Future
research endeavors could involve leveraging the diverse and extensive molecular data within the
QO2Mol database to refine and optimize machine learning applications in the field of computational
chemistry.
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A KEY INFORMATION

Dataset documentation All the documentation for our datasets, along with usage demo scripts
via Python, are provided at https://github.com/ikovey/QO2Mol.

Author statement We bear all responsibility in case of violation of rights, etc., and confirmation
of the data license.

License This work uses CC BY-NC-SA 4.0. See details at https://creativecommons.
org/licenses/by-nc-sa/4.0/.

Maintaining Plan We utilize persistent cloud storage servers to provide accessing and download-
ing of the dataset. Further version will be updated upon research demands and the latest available
links will be provided on the official Github repository.

B DATA FILE FORMAT

The QO2Mol database comprises several chunk files, each containing a list of molecular data objects.
The description of the fields in each molecule object is provided in Table S1. We also provide
a supplementary bunch of thermochemical properties at local minima to facilitate further research,
with field names depicted in Table S2. Given the same data formats across all sets, researchers retain
the flexibility to conduct data preprocessing or resplitting utilizing alternative methodologies.

Table S1: Data File Format

Field Description
inchikey String, the identity of the conformer.
confid String, the identity of the conformer.
atom_count Integer, the number of atoms in the molecule.
bond_count Integer, the number of bonds in the molecule.

elements List, length equal to the number of atoms. Each value indicates the
atomic number in the periodic table.

coordinates List, length equal to the number of atoms. Each element is a 3-tuple
representing the 3D coordinates (x, y, z) of the corresponding atom.

edge_list List, length equal to the number of bonds multiplied by 2. Each ele-
ment (i, j) represents an edge from atom i to atom j.

edge_attr List, length equal to the number of bonds multiplied by 2. Each value
represents a bond type. ’1’: single bond, ’2’: double bond, ’3’: triple
bond.

energy Float, the calculated potential energy of the molecule.

force List, length equal to the number of atoms multiplied by 3. Each ele-
ment represents the force component (x, y, z) of an atom.

net_charge Float, the overall charge of a molecule.

formal_charge List, length equal to the number of atoms. Each element represents
the formal charge of the corresponding atom.

C CHEMICAL SPACE

Relative to the QM9 database, which is limited to the elements C, H, O, N, and F, QO2Mol dataset
encompasses a broader range of elements commonly found in organic molecules. These include
C, H, O, N, S, P, F, Cl, Br, and I, which depicts the number of molecules in our dataset and QM9
containing for each element. QO2Mol dataset comprises a signiffcantly larger number of molecules
that contain the element F, totaling 10,345 compounds, in contrast to the mere 310 F-containing
molecules in QM9. Additionally, our dataset includes a substantial number of molecules containing
S (29,702), P (2,464), Cl (9,829), Br (2,549), and I (647) elements, all of which are absent from
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Table S2: Supplementary Thermochemical Properties

Field Description
inchikey String, the identity of the conformer.
confid String, the identity of the conformer.

dipole List, length equals 3 corresponding to Cartesian coordinate compo-
nents.

esp_charge List, length equals number of atoms.
mulliken_charge List, length equals number of atoms.
freq List, length equals 3N-6. N denotes number of atoms.

hessian List, the upper triangular version of hessian matrix. Length equals
3N(3N+1)/2.

thermochem Dict, containing 7 items: capacity, enthalpy, entropy, free_energy, ther-
mal_e, total_e.

the QM9 database. This expanded elemental coverage in our dataset enables a more comprehensive
exploration of the chemical space, encompassing a wider array of important and diverse molecular
structures.

Table S3 summarizes the presence of ring structures in the molecules. Rings are essential com-
ponents of organic molecules, and the majority of drug molecules contain ring structures. Due
to the influence of ring strain, 5-membered and 6-membered rings are more stable compared to
3-membered and 4-membered rings. It is evident from the results of the QO2Mol databases that
molecules containing 5-membered and 6-membered rings are more prevalent. However, due to the
limitations on heavy atom counts, the QM9 database includes a greater number of molecules with
3-membered and 4-membered rings. Aromatic rings represent a distinct category of ring structures,
contrasting with aliphatic rings. Aromatic rings can be 5-membered, such as pyrrole and furan, or
6-membered, such as benzene and pyridine. Due to their high stability, aromatic rings are commonly
encountered in organic molecules. In the ChEMBL library, the majority of molecules contain aro-
matic rings, and a significant proportion of molecules in the QO2Mol database also feature aromatic
ring. However, the QM9 database exhibits a relatively lower percentage of molecules with aromatic
rings, particularly 6-membered aromatic rings.

Table S3: Summary of the presence of ring structures in the molecules

QO2Mol QM9
Ring Size 3 3304 54489

4 3335 50720
5 53476 50951
6 72420 19527
7 4819 4465
> 7 1453 750

Ring property Aromatic (5) 28264 12209
Aromatic (6) 45645 3239
Non-aromatic 46094 114552

D EXPERIMENT DETAILS

We conducted all experiment on A100 GPU cluster. For the interpolation task, we employ a
72%/18%/10% split for training, validation and testing on subset A. For the extrapolation task, we
use the entire subset B. In our experiments, we established the basic parameter settings as follows.
The cutoff radius is set to 5.0 angstrom for all models. The training process was conducted us-
ing the AdamW optimizer with a cosine annealing learning rate scheduler. For hyper-parameter
optimization, we employed a grid search strategy. Target hyper-parameters include learning rate,
batch size, and the weight decay, with the following ranges: learning rate {1e-3, 4e-4, 8e-4}, batch
size {32, 64, 128, 256}, weight decay {0, 1e-5, 1e-4}. Each combination of hyper-parameters
was evaluated on the valid set, and the configuration yielding the highest validation accuracy was
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selected for the final model. Convenient data loading scripts and relative codes are available at
https://github.com/ikovey/QO2Mol/.
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