Published in Transactions on Machine Learning Research (06/2025)

Thoughts and Lessons on Using
Visual Foundation Models
for Manipulation

Ryan Chen ryanchen@u.northwestern.edu
Department of Statistics and Data Science
Northwestern University

Ziteng Pang zitengpang2027Q@Qu.northwestern. edu
Department of Statistics and Data Science
Northwestern University

Bradly C. Stadie bstadie@northwestern.edu
Department of Statistics and Data Science
Northwestern University

Reviewed on OpenReview: |https: //openreview. net/ forum? id=o6mnkDzVuc

Abstract

Training vision-based robotic systems from scratch is both computationally expensive and
memory intensive. To mitigate these challenges, recent approaches forgo end-to-end train-
ing in favor of adopting visual representations from visual foundation models — large scale
models designed for broad task transferability. Recent years have seen numerous vision
foundation models emerge, including several designed specifically for manipulation tasks.
However, we still lack clear principles for what makes these models effective for robotics
applications. To address this gap, we systematically evaluate vision foundation models to
understand what makes them effective for offline robotic learning. We find that across eleven
diverse vision encoders, a representation’s ability to reconstruct edges and predict keypoints
strongly correlates with its performance on manipulation tasks. Extensive correlation analy-
sis across 21 manipulation tasks consistently shows that representations preserving edge and
keypoint information achieve the highest environment success rates. These findings appear
to challenge conventional wisdom about holistic reconstruction-based pretraining and offer
a new lens for understanding what makes vision representations effective for robotics.

1 Introduction

Consider the challenge of a robot learning to manipulate its environment directly from raw images. In
contrast to image classification systems, robotic vision systems must understand not only what objects
are present, but their physical properties, spatial relationships, and how they will respond to interaction.
Training a system from scratch to both understand visual scenes and control actions requires enormous
amounts of robot data and computation (Finn et al.l |2016). Vision foundation models offer a promising
solution to this bottleneck: by leveraging visual representations pretrained on large datasets, robots can
start with a strong prior about the visual world. Prior work has shown these pretrained representations can
transfer surprisingly well to robotics tasks, even when trained on out-of-domain data (Parisi et al., 2022).
Building on this insight, several foundation models have been developed specifically for robotic applications
(Radosavovic et al., [2022; [Nair et al., |2022; Ma et al.| 2022} 2023} |Chen et al., [2024).

Despite widespread adoption of pretrained vision representations in robotics, the characteristics that make
them effective for control remain largely unclear. While several works have studied different aspects of
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Figure 1: Visual encoders exhibit substantial variability in their effectiveness when deployed in manipulation
tasks with imitation learning. We examine downstream auxiliary tasks that can help explain the variability,
providing insight on what is important in visual representations when trying to accomplish manipulation
tasks.

these representations—from inductive biases (Ze et al., |2023} [Yen-Chen et al., 2020 to robustness
and cross-environment performance (Parisi et al., 2022} Majumdar et al |2023)—we lack clear
principles for selecting and adapting them for manipulation tasks. To address this gap, we conduct a
systematic evaluation of nine diverse encoders—ranging from general-purpose to robotics-specific—across 21
manipulation tasks.

Consistent with Majumdar et al.| (2023, we find that no single pretrained representation uniformly outper-
forms others across all tasks. However, while investigating these encoders, we made a curious discovery:
there exist several easy-to-compute diagnostic measures of a visual encoder that are strongly correlated with
downstream robotic performance. Specifically, a representation’s ability to capture accurate keypoints and
reconstruct high-fidelity edges shows remarkably strong correlation with manipulation performance (Pearson
pr = 0.92, Spearman ps = 0.88). Visual analysis using Sobel filters on reconstructions reveals these measures
align with a model’s ability to precisely locate objects and their boundaries, capabilities that are crucial for
manipulation.

Our contributions are as follows:

1. Through extensive evaluation across 21 manipulation tasks, we identify which vision encoders con-
sistently excel at robotic control. Our results show consistency across both behavior cloning and
offline reinforcement learning, providing clear guidance for the robotics community on representation
selection.

2. We propose easy-to-compute diagnostic measures that strongly correlate with a vision encoder’s
performance on downstream manipulation tasks. In particular, we show that scene reconstruction
and edge reconstruction quality are remarkably associated with manipulation success, even in OOD
scenarios.

3. We demonstrate that representations trained with discriminative pretraining objectives consistently
outperform those trained with holistic reconstructive objectives. This finding helps resolve an ap-
parent contradiction in the literature between the effectiveness of supervised versus self-supervised
pretraining. Namely, we show that the pretraining objective, rather than the source of supervision,
is what matters most for downstream robotic control.
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2 Related Works

Representations for Robotic Manipulation In robotic manipulation, visual pretraining learns trans-
ferable features for downstream tasks. [Parisi et al| (2022) demonstrated that visual representations can
perform as well as ground-truth state representations, showing that using learned representations alone can
be highly effective. Thus, with the rise of foundation models (Bommasani et al., 2021), researchers have
begun leveraging these large-scale representations to tackle initialization challenges (Finn et al., 2016]).

This insight has led to the adoption of general-purpose vision models for learning manipulation skills. Ad-
ditionally, vision encoders such as MVP, R3M, VIP, and VC1 (Radosavovic et al. 2022; Nair et al.| [2022;
Ma et al., [2022; [Majumdar et all 2023) capture physical dynamics by training on robotics-adjacent datasets
(Shan et al., 2020; |Goyal et al., [2017; |Grauman et al.,|2022). Other approaches incorporate inductive biases

for grasping and pose estimation (Ze et al., 2023).

In parallel to these efforts, a growing body of work focuses on learning object-centric visual representations.
These approaches, including slot attention mechanism (Locatello et al.|, [2020; Heravi et al., 2023]), and OCLR
(Yoon et all 2023)), aim to decompose scenes into structured object representations using self-supervised
objectives such as contrastive learning, temporal alignment, and localized masked reconstruction. In addition,
entity-centric models like EIT (Haramati et al., [2024)) and EC-Diffuser also leverage keypoint
information on top of learning from pixels, and can produce generalizable visuomotor control policies. Our
findings about keypoint correlations are aligned with intuitions behind these object and entity centric designs,
however our focus is on frozen holistic pretrained representations.

Meanwhile, some studies (Hansen et al., [2023; [Sharma et all) 2023) suggest that training from scratch or
fine-tuning pretrained models can also yield strong results. In this work, we evaluate off-the-shelf vision
encoders, comparing both manipulation-specific and general-purpose models. Our goal is to develop data-
driven metrics to assess representation quality in manipulation tasks, helping guide future advancements in
designing pretrained vision models.

Representation Evaluation and Benchmarking in Robotics Benchmarking foundation vision models
for robotic tasks has been extensively studied. identified behavior cloning and inverse
reinforcement learning as key paradigms for analyzing visual representations. Several studies
[2024}; |Schneider et all 2023; [Sax et all 2021) evaluate out-of-distribution (OOD) performance of vision
encoders, while others (Parisi et al.l 2022} [Hu et al.,2023)) focus on in-distribution performance, which aligns
closely with our work.

A key discussion in this space concerns self-supervised versus supervised vision pretraining and their effec-
tiveness for manipulation tasks (Parisi et al. [2022; Burns et all [2024). [Majumdar et al| (2023) found that
no single representation consistently outperforms others and introduced the VC-1 encoder, which we include
in our evaluation.

Beyond benchmarking, researchers have explored the characteristics of effective representations. [Wulfmeier]
et al| (2021) studied how dimensionality and disentanglement impact multitask performance, while [Tomar]
et al.| (2023) analyzed the role of auxiliary training objectives. Both studies, along with Majumdar et al.
(2023)), suggest that no universal learning algorithm or representation excels across all robotic tasks.

Another line of work highlights the benefits of inductive biases. Burns et al.| (2024); Yen-Chen et al. (2020)
demonstrated that segmentation-oriented inductive biases improve performance in robotics tasks. To this
end, we include SAM (Kirillov et all [2023)) in our evaluation suite. Our work builds on these efforts by
identifying key representation qualities that influence manipulation performance.

3 Background

To evaluate vision representations for robotics, we need methods that can effectively learn from offline
datasets of expert demonstrations. We focus on two such approaches: behavior cloning, which directly
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mimics expert actions, and offline reinforcement learning, which learns a value function from demonstrations.
In both cases, we maintain a simple architecture (Figure [2) where states and goals are processed through
the vision encoder being evaluated.

Behavior Cloning Behavior cloning seeks to approximate expert behavior by learning a state-conditional
action distribution 7/ (a|s). We implement this by training a three-layer MLP to regress expert actions
onto scene embeddings produced by the vision encoder ¢. Specifically, for state-action pairs (sg, ag) sampled
from the expert dataset D, we minimize ming E,,, s, ~py [|72C (a|¢(sg)) —ag||3. The state space consists of
image embeddings augmented with goal image embeddings, excluding proprioception to focus our evaluation
on visual representations.
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Figure 2: Imitation algorithms. We evaluate visual representations using offline imitation methods that
learn from expert demonstrations. After training on expert datasets, policies 7(a|¢(s)) are evaluated in their
respective environments.

Offline Reinforcement Learning We also evaluate representations using implicit Q-Learning (IQL)
(Kostrikov et al.}[2022)). To maintain consistency with our behavior cloning experiments and focus purely on
evaluating visual representations, we use inverse Q-Learning (Garg et all, [2021)) to estimate Q-values directly
from expert demonstrations without reward signals, after which implicit )-learning estimates its V' function.
This creates a reward-agnostic implicit Q-learning algorithm. Like our behavior cloning experiments, we
exclude proprioception data and train only on visual representations. While other offline reinforcement
learning methods exist, most require either reward signals (e.g., CQL (Kumar et al| [2020), SAC-n
2021))), or environment interaction (e.g., GAIL (Ho & Ermon, 2016)), making them unsuitable for our
evaluation framework.

3.1 Environments

We aim to study the effectiveness of pretrained visual representations in how they encapsulate information
about any given scene, such as the acting agent, the objects in the environment, and the goal of the tasks. To
this end, we select environments based on the following criteria: (a) they must be renderable into images to
be encoded by visual representations; (b) solvable using only visual representations without proprioception
data ensuring that the agent acts solely on visual representations; (c) encompass a diverse range of tasks
with varying complexities, such as grasping, nudging, or hand gripping; and (d) have variable goal states
and starting configurations to promote generality in the analysis.
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With these criteria in mind, we arrive at 21 robotic manipulation tasks from the Fetch Suite (Plappert

2018), AdroitHand Suite [Rajeswaran et al.|(2017)), and Metaworld Suite (Yu et al. |2020). We created

experts that could solve these three environments with at least 95% success rate. These experts provided
offline datasets for our behavior cloning and offline reinforcement learning experiments. Details about the
environments and experts are discussed in Appendix [A] Examples of environment renderings are shown in

Figure [3
[~ ‘

Fetch Push AdroitHand Hammer Metaworld Coffee Pull Metaworld Window Close Metaworld Button Press

~

Figure 3: A sample rendering of some of the environments in our evaluation suite.

3.2 Vision Encoders

We evaluate nine off-the-shelf, frozen vision encoders, each encoding 224 x 224 RGB renderings of environ-
ment scenes into vector representations. We include both models specifically trained for manipulation tasks
and foundation models trained on internet-scale datasets. The selected encoders span diverse pretraining
objectives, from prediction and distillation to contrastive and holistic reconstruction approaches. A full list
of considered encoders and their pretraining objectives and data sets can be found in Table [f]

A fundamental aspect of vision encoders is the structure of the representations they generate. Many models
produce single-vector representations for an entire image. In contrast, models such as SAM generate spatial
feature maps corresponding to VIT patches, and are pooled with convolutions to produce a holistic scene
representation. These structured representations often benefit from transformer architectures for downstream
tasks, for which we consider in Appendix[[] The remaining encoders in our evaluation suite produced a single
holistic vector representation for each 224x224 RGB image.

Given the spatial structure of SAM’s embeddings, we initially applied a transformer-based policy to learn
actions. However, as shown in Appendix [, the MLP policy and attention policy performance did not
significantly differ from each other. Since the transformer policy did not provide a significant advantage, we
opted to use the MLP policy for consistency across all encoders, ensuring a fair evaluation framework. The
use of an MLP policy is well-established in the literature as an effective method for assessing embedding
quality (Kumar et al., [2022)). By maintaining a standardized evaluation methodology, our results facilitate
a direct comparison of the relative effectiveness of different vision encoders for manipulation tasks.

Another source of variation among the encoders is the dataset used for pretraining. While all encoders were
pretrained on different real-world data sets, the evaluation was conducted in simulation. [Parisi et al.| (2022)
demonstrated that differences in pretraining data do not influence downstream simulation performance. This
suggests that the encoder performance can be directly compared despite difference in training data.

4 Experimental Investigation of Vision Encoders

In this section, we evaluate the performance of different vision encoders across a diverse set of robotic
tasks. We focus on understanding how different pretraining strategies, task complexities, and offline learning
paradigms impact the success rates of policies for robotic tasks.
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4.1 Behavioral Cloning

We evaluated behavior cloning across 21 environments by regressing expert actions onto image embeddings
from the vision encoders. For each policy, we pass both the current scene and goal state images through
the encoder. The resulting embeddings are concatenated and processed through a three-layer MLP with
hidden layers [256, 128, 64] to predict a four-dimensional action vector. We trained policies using 2000
expert trajectories per environment. Additional training details can be found in Appendix

In Figure |1} we see that SAM representations do the best on average, even surpassing the average success
rates on policies pretrained with manipulation-based representations. In agreement with (2023),
we note that the ResNet50-based representations, (R3M, VIP, MOCOv3) are quite competitive, surpassing
the success rates of all ViT representations except for those of SAM representations.

Representations for Manipulation are more Sample Efficient. Data efficiency has always been an
area of interest for robotics and in general imitation learning. Particularly for robotics, large-scale high
quality data collection is time-consuming, and logistically complex. Thus finding a representation that does
well in a small sample regime is useful.

To study sample efficiency, we choose environments where the average success rate was at least 80 percent
across all representations in our behavior cloning evaluation. We identified five environments: button press,
window open, plate slide, door close, and window close. For almost all representations, these environments
can be solved with near perfect accuracy with as little as 40 demonstrations. We examine performance after
training using 5, 10 and 40 expert demonstrations.
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Figure 4: Sample efficiency of representations. Behavior cloning trained on 5, 10, and 40 expert
demonstrations. Representations trained for manipulation such as R3M, VIP are more sample efficient in
general as they achieve higher success rates even with just 5 expert demonstrations. MoCov3 representations
are also competitive in the low sample regime. Sample efficiency plots for button-press, window-open, and
window-close are shown in Appendix EI

From Figure 4] we can see that generally, pretrained representations for manipulation are more sample
efficient. MoCov3 is the most sample efficient relative to general pretrained representations, as it eventually
solves the environments with 100 percent success using 40 trajectories. However it is not as sample efficient
as R3M, or VIP since these representations can solve the environment at a higher success rate with fewer
expert trajectories. In general, representations trained specifically for manipulation tasks are more effective
when sample sizes are small, which is aligned with manipulation pretraining literature (Radosavovic et al.|
[2022; |[Nair et al., 2022).




Published in Transactions on Machine Learning Research (06/2025)

OOD performance correlates with ID perfor- 00D vs ID Correlation
mance In robotics, it is common for the visual o s ,
scene to change, due to distractions entering the e

scene, or a change in lighting intensity during a tra-

jectory. In the context of visuo-motor control, it is 025 -

important to identify image embeddings that are ro-
bust such visual scene perturbations. To this end,
we study the out of distribution performance of the
vision encoders in the Gymansium environments by
considering the following out of distribution scenar-
ios: 1) a nuisance object in the background at a
random location, 2) random lighting intensities, 3) speaman 053

and a combination of both nuisance object and light- o1 02 ofsmme oa s as a7
ing intensity changes. These perturbations are also

studied in [Burns et al| (2024)). Figure [5| compares Figure 5: OOD success rates are overall aligned
the out of distribution performance of the different jth ID scenarios. Stronger performing encoders
encoders across the listed OOD scenarios with their j;) the ID case also perform relatively stronger in the
ID performance. The correlation between ID behav-  OD scenario.

ior cloning and OOD behavior cloning has a Spear-

man correlation of #g = 0.642 and a Pearson corre-

lation of p, = 0.673. The performance distributions with each type of OOD setting is presented in Appendix

1311

> e

DINO

0.20 -

Average OOD Success Rate

0.15 -

Performance distribution is architecture agnostic Both ResNet50 and ViT architectures were evalu-
ated across all tasks. As shown in Figure[T] high-performing models exist in both architectures: ResNet-based
models like VIP, R3M, and MOCO perform well, as do ViT-based models like SAM and IBOT. Similarly,
lower-performing models appear in both architectures, with ResNet-based OBJ RN and ViT-based MVP
and MAE showing relatively weaker performance. This distribution suggests no clear performance advantage
between ViT and ResNet-based architectures.

Architecture ‘ Success %  1SD

VIT 0.484 0.145
ResNetb0 0.498 0.188

Table 1: Comparative analysis of architecture types show that architecture type does not affect manipulation
performance.

Performance distribution is dependent on pretraining objective Figure [I| suggests an association
between encoder performance in manipulation tasks and their respective pretraining objectives. Encoders
pretrained with holistic reconstruction objectives, specifically VC1, MAE, MVP, and OBJ RN, utilize mean
square error loss on pixels, which are aggregated across entire image scenes. These encoders also demonstrate
a notably worse performance in manipulation tasks. As discussed in Section despite the variety of pre-
training datasets, [Parisi et al.| (2022) has demonstrated that pretraining data set is not critical to downstream
manipulation performance. Thus, the comparative analysis in Table 2] can be viewed as a counterfactual
comparison of pretraining objectives. We further discuss the association between performance and pretrain-
ing in Section[5.3] Table[2]also indicates that for models trained with a holistic reconstruction objective, VIT
models have a slight edge over ResNet based models for manipulation tasks, however the performance gains
see larger increase when switching from a holistic reconstruction objective, to a discriminative pretraining
objective.
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Architecture Objective Success %  Standard Deviation
ResNet Holistic Reconstruction 0.180 0.021
ResNet Discriminative 0.603 0.049

VIT Holistic Reconstruction 0.360 0.086
VIT Discriminative 0.578 0.105

Table 2: Comparative analysis of pretraining objectives show that discriminative pretraining objectives
produce representations that are useful for manipulation.

4.2 Behavior Cloning versus Offline Reinforcement Learning

In addition to behavioral cloning, we also evaluate the effectiveness of various visual encoders when using
offline reinforcement learning. Specifically, we use our reward-agnostic version of implicit Q-learning, training
each policy for 10,000 gradient steps on 2,000 expert trajectories. We chose these parameters to make success
rates comparable with our behavior cloning results. Training details and the algorithm description can be
found in Appendix [B] and Section [3] respectively.
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Figure 6: Success rates with offline reinforcement learning with different representations. In
agreement with Figure [I] we see that the representations with reconstruction pretraining objectives perform
worse.

A surprising pattern emerges when we compare behavior cloning and offline reinforcement learning perfor-
mance across different types of pretrained representations. While one might expect offline reinforcement
learning to consistently improve upon behavior cloning, we find this benefit depends strongly on how the
representation was pretrained.

Holistic reconstruction-based representations struggle with offline RL Models pretrained with a
holistic reconstruction objective show inconsistent benefits from offline reinforcement learning—for example
MAE improves by 12% on Gymnasium tasks but declines by 11% on Metaworld tasks, while MVP, and VC1
both see lower success rates by using offline reinforcement learning. In contrast, representations trained with
contrastive objectives (DINO, MOCOv3, CLIP) show consistent improvements under offline reinforcement
learning.

Manipulation-specific representations prefer behavior cloning Even more surprisingly, representa-
tions specifically pretrained for manipulation (VC1, VIP, MVP, R3M) perform worse with offline reinforce-
ment learning compared to behavior cloning as shown in Figure [7} This effect is particularly pronounced
for R3M, which excels at behavior cloning but struggles with offline reinforcement learning, consistent with

findings from (2023)).
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The goal of this section is to investigate the metrics

that Correlateﬂ with how well visual representations

can perform in manipulation tasks. We propose two

types metrics: performance in keypoint prediction

and performance in image reconstruction.

Keypoint prediction is a discriminative task where the representations are probed for information on
keypoints such as positions of arm joints, end effectors, objects, or goal locations in the scene. We define
keypoint prediction as modeling P(v|¢(S)), where ¢(S) represents the encoded scene S from the expert
demonstration and v represents the vector of keypoints, which can include goals positions, arm and effec-
tor positions and velocities, and scene object positions. Representations excelling in keypoint prediction
highlight that the features embed task-relevant information like spatial relationships among key objects and
understanding precise manipulation dynamics. This aligns with prior work that leverages keypoints directly
for visuomotor control, either by learning keypoint-based representations end-to-end (Boney et al., [2022;
Daniel & Tamar, [2022)), or by extracting keypoints through pretrained language-guided models to support
downstream manipulation tasks (Fang et al [2024; [Palo & Johns| [2024).

Holistic reconstruction tasks focus on using global scene representations to reconstruct current scenes
or scenes k-steps into the future. We define reconstruction tasks to model P(S|¢(S)). That is, we learn to
recover the input distribution of scenes that are encoded by the encoder ¢(S). Representations that excel
at high-fidelity scene reconstruction suggest that they encode information around scene understanding and
model transitions. We pay particular attention to edge reconstruction. Our hypothesis is that representations
capable of accurately reconstructing fine grained edges, especially that of objects involved in manipulation,
are likely to encode spatial structure that is useful for control.

To evaluate our hypothesis that both metrics are correlated with imitation learning success, we designed
a suite of experiments to assess these predictive and reconstructive capabilities of various vision encoders.
These experiments test the ability of encoders to extract task-relevant features and reconstruct high-fidelity
image representations of current and future scenes.

5.1 Keypoint Prediction is Correlated with Success Rates

Following Hu et al.| (2023), we approach keypoint prediction with the linear probing method. We took the
representations of 100 Metaworld trajectories, each rendered with 150 scenes. For each scene, the linear

1We use correlation as a measure of how useful a particular metric is, in providing diagnostics of visual representations for
manipulation tasks.
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probes learned the positions and rotations of the arm joints, and the positions of objects within the scenes,
such as hammers, blocks, walls, and windows. The probe also learned the goal positions for each trajectory.
Each linear probe uses a linear head and minimizes square error of the keypoint position vectors.

Figure [§] shows an overall negative correlation between the log of validation loss and the behavior cloning
success rates for each vision representation. The ability to predict the goal position shows a strong negative
correlation between its log of prediction loss and behavior cloning success rate (p; = —0.927 for Spearman,
pr = —0.979 for Pearson). Meanwhile, predicting the arm’s key positions showed a slightly weaker correlation
(ps = —0.891 for Spearman, p, = —0.938 for Pearson). However, while slightly smaller in magnitude, these
relationships were still strongly negative. That the arm positions had the lowest correlation is expected, as
successful task completion can be achieved through multiple valid arm configurations—the same task goal
can be reached with different joint angles and positions. In contrast, object and goal positions in the scene
have a more direct, one-to-one relationship with task success, as they uniquely define the desired end state
of a task. When correlating with the OOD success rates, the correlations remain strong, (ps = —0.750 for
Spearman, p,. = —0.790 for Pearson). The graphs showing these correlations are presented in Appendix
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Figure 8: Correlation between key point prediction validation loss and behavior cloning per-
formance. Lower validation loss in predicting key points correlates with higher behavior cloning success
rates. Reconstruction-based encoders (MAE, VC1, and MVP) show both higher prediction losses and lower
success rates. Additional correlations for object position prediction and combined key point positions, along
with outlier analysis, are provided in Appendix @

These correlations suggest that representations that are better at predicting positions in a scene tend to
achieve higher success rates in behavior cloning. To verify the robustness of this relationship, we conducted
additional analyses to measure the sensitivity of these correlative values. Even when excluding SAM from
our analysis, the correlations remain strong (p; = —0.857 and p,, = —0.903; see AppendiX. Furthermore, a
DFBETA analysis (Kleinbaum et al.| [1988) confirms that SAM does not unduly influence these correlations.
These results strongly support the finding that a representation’s position prediction ability, measured by
log of validation loss, correlates with its behavior cloning performance.

5.2 Reconstructive Abilities are Correlated with Environment Success Rates
To evaluate the reconstructive abilities of various encoders, we encode 224 x 224 RGB images from expert

trajectories and attempt to reconstruct the current scene as well as scenes 5 and 20 steps into the future.
The reconstruction network uses four transposed convolution layers and combines square error loss with

10
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Figure 9: Scene reconstruction quality correlates with representation performance. Visualiza-
tions show reconstructed scenes, pixel-wise error maps, and Sobel edge detection for SAM (top) and MVP
(bottom). SAM, which was the best-performing model, produces accurate reconstructions with clear edges.
In contrast, MVP fails to capture critical scene elements.
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Figure 10: Scene reconstruction quality correlated with behavior cloning success rate. Global
scene reconstruction is strongly correlated with behavior cloning success rates. Each representation achieves
a similar level of reconstruction quality across the current and five-step scene reconstructions. This trend
generalizes to the longer horizon, 20-step future scene reconstruction, which is shown in Appendix E}

VGG-based perceptual loss [Johnson et al.| (2016]). The perceptual loss proved crucial. No representation
achieved high-fidelity reconstructions without it.

We evaluate reconstruction quality using two metrics: pixel-wise distance and edge preservation via Sobel
edge detection (Kanopoulos et al., [1988]), between reconstructions and original scenes. Figure [10|shows that
behavior cloning success rates correlate strongly and negatively with pixel differences when reconstructing the
current scene (Spearman correlation p; = —0.882 and Pearson correlation p, = —0.845). In the OOD setting,
the correlations are also strong (Spearman correlation ps = —0.918 and Pearson correlation p, = —0.910).
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The graphs showing these correlations are presented in Appendix [H] Similar strong correlations also hold
for 5-step and 20-step future scene reconstructions, with analyses available in Appendix [G]

The relationship between reconstruction quality and model performance is visually apparent when comparing
our best and worst-performing models, demonstrated in Figure [0] SAM’s reconstruction shows sharp edges
around the block and end effector, with low pixel-wise errors. In contrast, MVP’s reconstruction fails to
capture these critical scene elements, showing high pixel-wise errors and poorly defined edges. Surprisingly,
despite their reconstruction-based pretraining, MAE, MVP, and VC1 representations perform worse at recon-
struction than other pretrained models, which we discuss further in Section Additional reconstruction
examples are shown in Appendix [G]

Moving to our next experiment, we see reconstruction of edges is also correlated with success rates. To
evaluate edge reconstruction quality, following Kirillov et al.| (2023) we apply Sobel filters to both original
and reconstructed current scenes, comparing their MSE and structural similarity index measure (SSIM)
(Wang et all |2004). We observe strong negative correlations between edge reconstruction loss and behavior
cloning success rates in Figure [11| (Pearson p, = —0.890 and Spearman ps, = —0.918). The edge structural
similarity shows similarly strong correlations (Pearson p, = —0.913, Spearman ps = —0.927). This suggests
that the ability to encode edge information is particularly important for downstream manipulation tasks.
In the OOD setting, the correlations with edge reconstruction is strong (Pearson p, = —0.962, Spearman
ps = —0.910). Additionally, the OOD correlation with edge structural similarity is also strong (Pearson
pr = 0.934, Spearman ps = 0.955). The graphs showing these correlations are presented in Appendix
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Figure 11: Edge reconstruction quality correlates with manipulation performance. Both edge
reconstruction error (left) and structural similarity (right) show strong correlations with behavior cloning
success rates. Interestingly, reconstruction-pretrained models (MAE, MVP, VC1) consistently show poor
edge preservation.

Our analysis of both keypoint prediction and reconstruction tasks reveals a consistent pattern: representa-
tions that can predict keypoints with lower validation loss and reconstruct scenes with lower errors achieve
better manipulation performance. Notably, reconstruction-pretrained representations struggle with both key-
point prediction and scene reconstruction fidelity. Meanwhile, representations trained with discriminative
objectives excel at both tasks. These results suggest that effective robotics representations should perform
well on both discriminative and generative auxiliary tasks.
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5.3 Understanding the Impact of Pretraining Objectives on Robotic Performance

There is an apparent contradiction in the vision-based robotics literature. |Parisi et al.| (2022) showed that
the self-supervised MoCo representations outperforms supervised ones like CLIP and ImageNet pretrained
ResNets, in robotic manipulation. Yet, [Burns et al.| (2024) found supervised representations on ImageNet
performed strongest. We propose that this apparent conflict can be resolved by reframing the compari-
son: rather than supervised versus self-supervised, the key distinction lies in whether representations are
pretrained with reconstructive or discriminative objectives.

To understand this distinction, we need to examine how these pretraining objectives fundamentally differ.
Holistic reconstruction approaches, like masked autoencoding on the entire image, focus on rebuilding the
global view of the image pixel by pixel, often using masked patches. Although masking creates regularized
global representations, the resulting representations are embedded with inherent global reconstruction errors.
These errors force downstream manipulation policies to learn from reconstruction artifacts rather than focus-
ing on object or region-specific information. In contrast, discriminative approaches optimize representation
spaces to capture semantic relationships, either through direct prediction of supervised signals or through
contrastive learning between positive and negative pairs (Geiping et al., |2023]), facilitating downstream policy
learning. Table [3] classifies common vision encoders along these lines.

Encoder Objective Type
SAM Segmentation Prediction Supervised
MOCOv3 Self Contrastive Self-Supervised

R3M Time Language Contrastive Self-Supervised
VIP Value function prediction Supervised
DINOv2 Self-distillation Self-Supervised
CLIP Text Image Contrastive Supervised
IBOT Masked contrastive + self distillation  Self-Supervised

MAE Masked Image Reconstruction  Self-Supervised
VC1 Masked Image Reconstruction  Self-Supervised
MVP Masked Image Reconstruction  Self-Supervised
OBJ RN Image Reconstruction Self-Supervised

Table 3: Pretraining objectives of vision encoders. We provide additional details such as the pretraining
data set and architectures used in Appendix

When we analyze our results through this lens of holistic reconstruction versus discriminative pretraining,
a clear pattern emerges. Across our experiments, representations trained with discriminative objectives,
whether supervised or self-supervised, consistently outperform those trained with global reconstructive ob-
jectives. Most surprisingly, reconstruction-pretrained models (MAE, MVP, VC1) perform poorly even at
reconstruction tasks. Despite being explicitly trained to reconstruct entire images, these models struggle to
capture fine-grained details and edge information critical for manipulation as seen in Figures [I0] and [T1]

We hypothesize this performance gap likely stems from fundamental differences in how these objectives
structure representation spaces. Discriminative approaches naturally emphasize meaningful feature separa-
tion and semantic understanding. In contrast, global reconstructive approaches focus on overall pixel-level
fidelity across the entire scene, potentially at the cost of semantic abstraction of individual objects. This
distinction helps explain the strong performance of models like SAM and DINOv2, whose pretraining regimes
are known to produce features that facilitate segmentation (Kirillov et al., [2023; |Oquab et al.l [2023)). Simi-
larly, data augmentations and contrastive learning in MoCOv3 and DINOv2 help encode localized features
(Chen et all 2021; |Oquab et al., |2023)), which proves valuable for manipulation tasks.
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6 Conclusion

In this work, we conducted a systematic evaluation of pretrained vision representations for robotic manip-
ulation, examining their performance across 21 tasks in three environments. Our analysis reveals that the
distinction between global reconstruction and discriminative pretraining objectives is more crucial than the
supervised versus self-supervised categorization. Representations trained with discriminative objectives con-
sistently outperform those trained with global reconstructive losses across both behavior cloning and offline
reinforcement learning tasks.

We identified three diagnostic metrics—keypoint prediction, scene reconstruction, and edge preserva-
tion—that strongly correlate with a representation’s manipulation performance. In particular, scene recon-
struction and edge preservation are both effective diagnostics for manipulation success, even in the presence
of out of distribution perturbations to the environment. Surprisingly, models pretrained with reconstructive
objectives struggled with reconstruction tasks, suggesting these pretraining objectives may not effectively
capture the fine-grained details needed for manipulation. These findings help explain seemingly contradictory
results in prior work comparing supervised and self-supervised representations.

Based on these findings, we hypothesize that future vision encoders for robotics might benefit from combining
discriminative objectives with carefully designed reconstruction losses that preserve structural information.
For example, incorporating perceptual losses or explicit edge preservation during pretraining might help
capture the fine-grained details that prove crucial for manipulation tasks. Additionally, object-centric rep-
resentations may offer advantages for manipulation tasks, as they capture semantic abstractions of objects
within scenes while simultaneously maintaining high-level fidelity for image reconstruction. The landscape
of vision encoders is vast, and these insights offer promising directions for further exploration.

References

Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive behavioral
similarity embeddings for generalization in reinforcement learning. In International Conference on Learning
Representations, 2021.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline reinforcement
learning with diversified q-ensemble. Advances in neural information processing systems, 34:7436-7447,
2021.

Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jorg Sander. Optics: Ordering points to
identify the clustering structure. ACM Sigmod record, 28(2):49-60, 1999.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of
foundation models. arXiv preprint arXiv:2108.07258, 2021.

Rinu Boney, Alexander Ilin, and Juho Kannala. Learning of feature points without additional supervision
improves reinforcement learning from images, 2022. URL https://arxiv.org/abs/2106.07995.

Kaylee Burns, Zach Witzel, Jubayer Ibn Hamid, Tianhe Yu, Chelsea Finn, and Karol Hausman. What makes
pre-trained visual representations successful for robust manipulation? In 8th Annual Conference on Robot
Learning, 2024.

Ricardo JGB Campello, Davoud Moulavi, and Jérg Sander. Density-based clustering based on hierarchical
density estimates. In Pacific-Asia conference on knowledge discovery and data mining, pp. 160-172.
Springer, 2013.

Shizhe Chen, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Sugar: Pre-training 3d visual repre-
sentations for robotics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18049-18060, 2024.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision transformers.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 9640-9649, 2021.

14


https://arxiv.org/abs/2106.07995

Published in Transactions on Machine Learning Research (06/2025)

Yen-Chi Chen, Christopher R Genovese, and Larry Wasserman. A comprehensive approach to mode clus-
tering. Electronic Journal of Statistics, 10(1), 2016.

Tianhong Dai, Kai Arulkumaran, Tamara Gerbert, Samyakh Tukra, Feryal Behbahani, and Anil Anthony
Bharath. Analysing deep reinforcement learning agents trained with domain randomisation. Neurocom-
puting, 493:143-165, 2022.

Tal Daniel and Aviv Tamar. Unsupervised image representation learning with deep latent particles. In
International Conference on Machine Learning, pp. 4644-4665. PMLR, 2022.

Xiaolin Fang, Bo-Ruei Huang, Jiayuan Mao, Jasmine Shone, Joshua B. Tenenbaum, Toméas Lozano-Pérez,
and Leslie Pack Kaelbling. Keypoint abstraction using large models for object-relative imitation learning,
2024. URL https://arxiv.org/abs/2410.23254.

Chelsea Finn, Sergey Levine, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuomotor
policies. The Journal of Machine Learning Research, 17(1):1334-1373, 2016.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Ig-learn: Inverse
soft-q learning for imitation. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Jonas Geiping, Quentin Garrido, Pierre Fernandez, Amir Bar, Hamed Pirsiavash, Yann LeCun, and Micah
Goldblum. A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210, 2023.

Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence minimization perspective
on imitation learning methods. In Conference on robot learning, pp. 1259-1277. PMLR, 2020.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal, He-
una Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al. The" something
something" video database for learning and evaluating visual common sense. In Proceedings of the IEEE
international conference on computer vision, pp. 5842-5850, 2017.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar,
Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in 3,000 hours of
egocentric video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 18995-19012, 2022.

Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H Huang, Dhruva Tirumala, Jan Humplik, Markus
Waulfmeier, Saran Tunyasuvunakool, Noah Y Siegel, Roland Hafner, et al. Learning agile soccer skills
for a bipedal robot with deep reinforcement learning. Science Robotics, 9(89):eadi8022, 2024.

Nicklas Hansen, Zhecheng Yuan, Yanjie Ze, Tongzhou Mu, Aravind Rajeswaran, Hao Su, Huazhe Xu, and
Xiaolong Wang. On pre-training for visuo-motor control: revisiting a learning-from-scratch baseline. In
Proceedings of the 40th International Conference on Machine Learning, pp. 12511-12526, 2023.

Dan Haramati, Tal Daniel, and Aviv Tamar. Entity-centric reinforcement learning for object manipulation
from pixels. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=uDxeSZ1wdI.

Negin Heravi, Ayzaan Wahid, Corey Lynch, Pete Florence, Travis Armstrong, Jonathan Tompson, Pierre Ser-
manet, Jeannette Bohg, and Debidatta Dwibedi. Visuomotor control in multi-object scenes using object-
aware representations. In 2023 IEEFE International Conference on Robotics and Automation (ICRA), pp.
9515-9522. IEEE, 2023.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural Infor-
mation Processing Systems, volume 29, 2016.

Yingdong Hu, Renhao Wang, Li Erran Li, and Yang Gao. For pre-trained vision models in motor control,
not all policy learning methods are created equal. In International Conference on Machine Learning, pp.
13628-13651. PMLR, 2023.

15


https://arxiv.org/abs/2410.23254
https://openreview.net/forum?id=uDxeSZ1wdI
https://openreview.net/forum?id=uDxeSZ1wdI

Published in Transactions on Machine Learning Research (06/2025)

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and super-
resolution. In Computer Vision—-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part II 14, pp. 694-711. Springer, 2016.

Nick Kanopoulos, Nagesh Vasanthavada, and Robert L Baker. Design of an image edge detection filter using
the sobel operator. IEEE Journal of solid-state circuits, 23(2):358-367, 1988.

Liyiming Ke, Sanjiban Choudhury, Matt Barnes, Wen Sun, Gilwoo Lee, and Siddhartha Srinivasa. Imitation
learning as f-divergence minimization. In Algorithmic Foundations of Robotics XIV: Proceedings of the
Fourteenth Workshop on the Algorithmic Foundations of Robotics 14, pp. 313-329. Springer, 2021.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 4015-4026, 2023.

David G Kleinbaum, Lawrence L Kupper, Keith E Muller, and Azhar Nizam. Applied regression analysis
and other multivariable methods, volume 601. Duxbury press Belmont, CA, 1988.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-learning. In
The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022, 2022.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=UY¥neFzXSJWh.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline reinforce-
ment learning. Advances in Neural Information Processing Systems, 33:1179-1191, 2020.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Informa-
tion Processing Systems, volume 33, pp. 11525-11538. Curran Associates, Inc., 2020.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy Zhang.
VIP: Towards universal visual reward and representation via value-implicit pre-training. In Deep Rein-
forcement Learning Workshop NeurIPS 2022, 2022.

Yecheng Jason Ma, Vikash Kumar, Amy Zhang, Osbert Bastani, and Dinesh Jayaraman. Liv: language-
image representations and rewards for robotic control. In Proceedings of the 40th International Conference
on Machine Learning, 2023.

Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Jason Ma, Claire Chen, Sneha Silwal, Aryan Jain,
Vincent-Pierre Berges, Tingfan Wu, Jay Vakil, et al. Where are we in the search for an artificial vi-
sual cortex for embodied intelligence? Advances in Neural Information Processing Systems, 36:655—-677,
2023.

Leland Mclnnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection
for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement learning
with offline datasets. CoRR, abs/2006.09359, 2020.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
visual representation for robot manipulation. In 6th Annual Conference on Robot Learning, 2022.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual
features without supervision. arXiv preprint arXiv:2304.07193, 2023.

16


https://openreview.net/forum?id=UYneFzXSJWh

Published in Transactions on Machine Learning Research (06/2025)

Norman Di Palo and Edward Johns. Keypoint action tokens enable in-context imitation learning in robotics,
2024. URL https://arxiv.org/abs/2403.19578.

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising effec-
tiveness of pre-trained vision models for control. In international conference on machine learning, pp.
17359-17371. PMLR, 2022.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning. arXiv preprint arXiw:1910.00177, 2019.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell, Jonas
Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforcement learning: Chal-
lenging robotics environments and request for research. arXiv preprint arXiv:1802.09464, 2018.

Carl Qi, Dan Haramati, Tal Daniel, Aviv Tamar, and Amy Zhang. EC-diffuser: Multi-object manipulation
via entity-centric behavior generation. In The Thirteenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/forum?id=o03pJU5QCtv.

Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell. Real-world
robot learning with masked visual pre-training. CoRL, 2022.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel Todorov,
and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement learning and
demonstrations. arXiw preprint arXiv:1709.10087, 2017.

Alexander Sax, Bryan Chen, Francis Lewis, Iro Armeni, Silvio Savarese, Amir Zamir, Jitendra Malik, and
Lerrel Pinto. Robust policies via mid-level visual representations: An experimental study in manipulation
and navigation. In Conference on Robot Learning, pp. 2328-2346. PMLR, 2021.

Moritz Schneider, Robert Krug, Narunas Vaskevicius, Luigi Palmieri, and Joschka Boedecker. The surprising
ineffectiveness of pre-trained visual representations for model-based reinforcement learning. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2023.

Dandan Shan, Jiaqi Geng, Michelle Shu, and David F Fouhey. Understanding human hands in contact at
internet scale. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 9869-9878, 2020.

Mohit Sharma, Claudio Fantacci, Yuxiang Zhou, Skanda Koppula, Nicolas Heess, Jon Scholz, and Yusuf
Aytar. Lossless adaptation of pretrained vision models for robotic manipulation. In The FEleventh Inter-
national Conference on Learning Representations (ICLR), 2023.

Manan Tomar, Utkarsh Aashu Mishra, Amy Zhang, and Matthew E Taylor. Learning representations for
pixel-based control: What matters and why? Transactions on Machine Learning Research, 2023.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE transactions on image processing, 13(4):600-612, 2004.

Markus Wulfmeier, Arunkumar Byravan, Tim Hertweck, Irina Higgins, Ankush Gupta, Tejas Kulkarni,
Malcolm Reynolds, Denis Teplyashin, Roland Hafner, Thomas Lampe, et al. Representation matters:
Improving perception and exploration for robotics. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pp. 6512-6519. IEEE, 2021.

Lin Yen-Chen, Andy Zeng, Shuran Song, Phillip Isola, and Tsung-Yi Lin. Learning to see before learning to
act: Visual pre-training for manipulation. In IEEFE International Conference on Robotics and Automation
(ICRA), 2020.

Jaesik Yoon, Yi-Fu Wu, Heechul Bae, and Sungjin Ahn. An investigation into pre-training object-centric
representations for reinforcement learning. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023.

17


https://arxiv.org/abs/2403.19578
https://openreview.net/forum?id=o3pJU5QCtv

Published in Transactions on Machine Learning Research (06/2025)

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine.
Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In Conference
on robot learning, pp. 1094-1100. PMLR, 2020.

Yanjie Ze, Yuyao Liu, Ruizhe Shi, Jiaxin Qin, Zhecheng Yuan, Jiashun Wang, and Huazhe Xu. H-index:
Visual reinforcement learning with hand-informed representations for dexterous manipulation. NeurIPS,
2023.

18



Published in Transactions on Machine Learning Research (06/2025)

A Environments and Experts

Metaworld The Metaworld suite contains multiple grasping and nudging tasks, in which an end-effector
manipulates objects in the environment to complete the task. Metaworld provides expert policies, from
which we created expert trajectories for imitation learning. We used a total of 17 environments from
Metaworld. Each task intializes to a random starting position, and a random goal position, making this a
good environment for multi-goal tasks.

Fetch Suite From the Fetch suite, we evaluate two environments, FetchPush and FetchPickAndPlace. In
both environments, the goal is to move a block to a goal, either by pushing it around the table top, or by
grasping the block and moving to a goal location. We trained a SAC policy with hindsight relabeling to
create the experts.

AdroitHand From the AdroitHand suite, we evaluated two environments, Hammer and Door. Both
environments involve manipulating a 304+ DoF hand to open a door or drive a nail into a board with
a hammer. We trained a behavior cloning policy on the Farama expert trajectories to create a larger
expert trajectory data set. The Fetch and AdroitHand suite are collectively referred to as the Gymnasium
environments due to their use of the Farama gymnasium library.
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B Training Parameters

Each epoch in behavior cloning makes 100 gradient steps using 256 scenes for each gradient step, for a
total of 10,000 gradient steps. IQL trains with 10,000 gradient steps using 256 scenes for each step. Our
IQL algorithm uses 256 samples of the transition tuple (s¢,a, s;y1) (without reward signals), while behavior
cloning uses 256 samples in minibatches of (s, at).

Behavior Cloning IQL
Batch Size 256 256
Training Size 2000 2000
Epochs 100 -
Minibatches 100 -
Gradient Steps - 10000
Actor LR 0.0008 0.00015
Q LR - 0.0003
V LR - 0.0003
Expectile 7 - 0.7
B - 3
Polyak 7 - 0.05

Table 4: IQL and Behavior Cloning make the same number of gradient steps on the same size of minibatch.

We do not include any reward signal to perform the offline reinforcement learning. Instead, we use an inverse
Q learning method from |Garg et al.| (2021)).

B.1 Model Architectures

Encoder Objective Type Pretraining Data Architecture
SAM Segmentation Mask Prediction Supervised SA-1.1B ViT-B
DINOv2 Self-distillation Self-Supervised ImageNet ViT-B
CLIP Text Image Contrastive Supervised WIT ViT-B
MAE Masked Image Reconstruction  Self-Supervised ImageNet ViT-B
VIP Value function prediction Supervised Ego4D ResNet50
VC1 Masked Image Reconstruction — Self-Supervised Ego Suite ViT-B
R3M Time Language Contrastive Supervised Ego4D ResNet50
MVP Masked Image Reconstruction  Self-Supervised ImageNet, ViT-B
Robotics Adja-
cent
MOCOv3 Contrastive Self-Supervised ImageNet ResNet50
IBOT Contrastive + Self-Distillation — Self-Supervised ImageNet ViT-B
OBJ RN Reconstruction Self-Supervised  Objects 365 ResNet50

Table 5: Pretraining Objectives in vision encoders.
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Encoder  Architecture Policy VRAM (MB) 150 step runtime (seconds)

SAM ViT-B 568.317 7.076 £0.724
DINOv2 ViT-B 336.244 4.995 £ 0.701
CLIP ViT-B 573.281 2.307 £0.070
MAE ViT-B 332.972 2.393 £0.078
VIP ResNet50 199.581 2.347 £ 0.148
V(1 ViT-B 332.972 2.397 £ 0.070
R3M ResNetb0 560.989 2.372+£0.131
MVP ViT-B 332.972 2.409 £ 0.063
MOCOv3 ResNet50 262.767 2.117+£0.126
IBOT ViT-B 657.525 2.401 £ 0.069
OBJ RN ResNetb0 469.160 2.413 +0.121

Table 6: All policies can be trained on single A10 machines. Most policies take between 2 to 3 seconds to
complete a trajectory and produce an action for 150 steps, however SAM and DINO take longer for their
forward passes. Averages and standard deviations are reported over 5 repetitions on a single A10 machine.
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Figure 12: Representations trained for manipulation perform better using behavior cloning. In
Gymnasium environments, MAE sees an improvement while in the Metaworld suite, MAE sees a decline in

performance. Across the board, manipulation based representations see a decline in performance by using
offline reinforcement learning.
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D Sample Efficiency
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Figure 13: Sample efficiency of representations for behavior cloning evaluated on 5, 10, and 40 expert
demonstrations. Representations trained for manipulation such as R3M, VIP are more sample efficient in
general as they achieve higher success rates even with just 5 expert demonstrations.
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E Key Position Prediction

For objects and goals, we observe similar correlation patterns. Figure [I4] show a strong correlation between

keypoint prediction and behavior cloning success rates.
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Figure 14: Correlations between predicting positions and behavior cloning success rates. All three demon-

strate strong correlations.

Position =~ Pearson (p-value) Spearman (p-value)
Arm -0.875 (0.0020) -0.767 (0.0159)
Goal -0.921 (0.0004) -0.833 (0.0053)

Object -0.886 (0.0015) -0.833 (0.0053)

Combined  -0.904 (0.0008) -0.817 (0.0072)

Table 7: Pearson and Spearman rank Correlations for keypoint prediction are all statistically significant at
the o = 0.05 level

SAM can be considered as an influential observation and could affect the explanatory nature of our correlation
analysis. The correlations without the SAM data points are in Figure[I5] Additionally, a DFBETA analysis
in Table [9] show that neither of the SAM observations have high influence (Kleinbaum et all [1988).

The analysis in Tables [7] and [§] shows that removing SAM sees a maximum Pearson correlation increase
of 0.05 and a maximum Spearman correlation increase of 0.17. While the Spearman increase of 0.17 is
larger than the Pearson increase, Spearman correlation is a non-parameteric method, which inherently has a
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Figure 15: Correlations between predicting positions and behavior cloning success rates after removing SAM.
Correlations remain strong.

lower statistical power compared to the Pearson correlation, thus its larger increase may not be statistically
significant. The differences (Table E[) do not lie in the rejection region of A = 0.667 and are not considered
influential.

Position ~ Pearson (p-value) Spearman (p-value)

Arm -0.903 (0.0021) -0.857 (0.0065)
Goal -0.973 (0.0000) -1.000 (0.0000)
Object  -0.933 (0.0007) -1.000 (0.0000)
Combined  -0.937 (0.0006) -0.976 (0.0000)

Table 8: Without SAM, the Pearson and Spearman rank Correlations for keypoint prediction are also all
statistically significant but are not too different from that in Table E

Arm  Goal Object Combined

DFBETA 0.007 0.002 0.0003 0.007

Table 9: DFBETA analysis on the correlation coefficients by omitting SAM. All are below the threshold of
0.667, meaning SAM is not an influential point
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F Clustering Representations

Interestingly, we find that grasping tasks are harder to solve than nudging tasks in both behavior cloning
and reinforcement learning. We define grasping tasks to be tasks where the expert uses end-effectors of the
robotic arm to pick up and grip an object in the environment, while a nudging task is one where the expert
uses the end-effectors to push or drag an object without moving the effectors. Examples of grasping tasks
are hammer, coffee pull, and bin picking. Nudging tasks include plate slide, soccer, and dial turn.

We aim to evaluate which representations benefit from using an offline reinforcement learning regime. To
answer this question, we study the modality of the expert action distributions, following |Ghasemipour et al.
(2020); [Ke et al.|(2021). We view our expert data set as (¢(s), a) where the pretrained image representations
¢(s) define the state space, and a denotes the expert action. The state-action occupancy distribution is
denoted by . The expert policy is represented as 7 (a|¢(s)) which is a conditional action distribution.
We aim to learn the conditional action distribution using the expert collected trajectories with imitation
algorithms. Prior work from |Ghasemipour et al. (2020) differentiate between mode-covering and mode-
seeking imitation algorithms that recover expert action distributions. Behavior cloning is a mode covering
objective, which makes it particularly difficult to recover an expert action distribution that exhibits multiple
modes.

We argue that the expert conditional action distributions 7 (a|$(s)) for grasping tasks contain more modes
than for nudging tasks. This is clear from the optimization objective in behavior cloning with an Ly objective,
which is equivalent to minimizing a forward KL divergence of a Gaussian policy:

min Dy (r||7%) = min Eqrr, sopp logm(ald(s))

This formulation corresponds to a mode-covering objective. In contrast, the optimization procedure in
implicit @ learning follows an advantage-weighted regression objective, which Nair et al.| (2020); |Peng et al.
(2019) demonstrate is equivalent to a reverse KL divergence:

min Dy, (7TE||7T) =min E, 2 sopup eP(Q(8(5),a) =V (¢(s)) log w(alp(s))

Unlike behavior cloning, this objective corresponds to a mode-seeking optimization regime, making it better
suited for recovering optimal actions given a multi-modal expert action distribution.

Our expert conditional action distribution are samples drawn from a continuous state action occupancy
u¥, and modes are detected through clustering (Chen et al., 2016)). To test our hypothesis that grasping
tasks exhibit higher modality in the conditional action distribution, we discretized the representation state
space by first applying UMAP (Mclnnes et al.| 2018) dimension reduction on the representations. UMAP
preserves local density structure, makes non-linear down projections using intrinsic dimension and algebraic
simplexes, and is widely used in dimension reduction and analyzing representations (Agarwal et al. [2021}
Haarnoja et al.} [2024; Dai et al} [2022). After applying UMAP, we use HDBSCAN (Campello et al., [2013)) to
cluster the state representations. Upon discretizing the representation space, we cluster actions within each
discretized state representation, and count the number of clusters in the conditional action distribution and
visualize an example in Figure The details of this algorithm are given in Algorithm [I] We demonstrate
that dimension reduction with UMAP is not necessary in Table

For the results in Table [10] we use UMAP with 16 neighbors casting down to 3 dimensions. This produced
clusters using HDBSCAN with the largest Silhouette values. We find that the number of negatively scored
clusters is minimal with neighbors set at 16. We note that this method is sensitive to hyperparameter tuning.

When we do not reduce the dimensionality, and directly cluster with OPTICS to find approximate conditional
action distribution, and then find clusters of actions, we still see that nudging tasks have less modes than
grasping tasks in general across representations. The differences correlate with the gains in Figure [I6] with
Pearson p, = 0.716 and Spearman ps = 0.7. However, this method may not be preferred due to the
computation time due to clustering in high dimensions.
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Differences in Success Rate between Nudging and Grasping Tasks
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Figure 16: IQL is better at solving grasping tasks than BC The difference in success rates between
grasping and nudging tasks vary across encoders, and also by the learning method. Reinforcement learning
reduces the gap in success rate between nudging and grasping tasks (blue bar). However the level of im-
provement varies depending on representation.

Algorithm 1 Determining modality with continuous expert state-actions

Require: Expert data DF = (¢(s;),a¢)1.n. Tuned clustering algorithm K(-) : R® + N, UMAP algorithm
U(-) : R" i R?
UMAP reduced embeddings u < U(4(s))
Number of clusters K < K(u) and labels K € {1, ..., K}
Append cluster labels to expert data D < (¢(s;), as, K1)
Initialize array L to store number of modes in each cluster
for c=1...K do
Subset DF to get states belonging to cluster c¢. D, «+ (¢(s¢),as, K, = ¢)
Extract all actions a; from D, to get A,
Get number of clusters M from conditional actions, M < K(A.) > Optional: Apply A, < U(A.)
Append Llc] + M
end for
return Mean number of clusters L

Encoder ¢(-) Average modality for Nudging Average modality for Grasping A

SAM 3.405 4.083 0.678
DINO 2.987 3.929 0.942
CLIP 2.665 4.556 1.891
MAE 2.776 3.653 0.877
MVP 2.899 4.035 1.136
R3M 3.008 4.887 1.878
VIP 3.350 3.722 0.372
V(1 2.709 4.317 1.608
MOCO3 4.063 5.190 1.127

Table 10: Average number of clusters in the conditional action distributions. All conditional expert
action distributions exhibit more modes in grasping tasks than for nudging tasks. Each number represents
the average mode count from 3000 scenes representations in each of the 17 environments.
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Encoder ¢(-) Modes in 7 (a|$(s)) for nudging Modes in 7 (a|¢(s)) for grasping A

SAM 3.81 3.88 0.07
DINO 2.75 5.89 3.14
CLIP 3.75 6.44 2.69
MAE 1.62 2.22 0.60
MVP 3.00 3.44 0.44
R3M 2.25 4.11 1.86
VIP 2.25 3.55 1.30
VC1 2.63 3.44 0.81
MOCO3 5.72 8.06 2.34

Table 11: Average number of clusters in the conditional action distributions. SAM representations form a
state space that has almost the same number of clusters between nudging and grasping tasks. The clustering
is done by the OPTICS (Ankerst et al., [1999) algorithm. This produces moderate to strong correlations

(a) 3D representation of expert actions from a given (b) For a given discretized ¢(s) from window-close
discretized ¢(s) from coffee-pull (grasping), we can (nudging), multi-modal behavior is not as prominent
see multi-modal behavior in 77 (a|4(s)) in part due in 7% (a|¢(s)). There is no end effector movement,
to the end effector movement. and points roughly form a uniform subspace.

Figure 17: 3D representation of the action space. The (z,y, z) axes parameterize the arm movement,
and the colors green and blue respectively parameterize the end effector being open and closed.
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Figure 18: Correlations between the mode differences and the percentage improvements gained from using a
mode seeking objective. The correlation is moderate and positive, which demonstrates the benefit of using
mode seeking algorithms when the differences in expert conditional action distribution modes are larger.

G Reconstructions
Reconstructions from various environments from Metaworld are shown in Figures [I9] and [20] below:

G.1 Reconstructions Correlate with Success Rates
We can also see the p-values in Table [I2] and observe the correlations are significant at the o = 0.05 level.

Scene  Pearson (p-value) Spearman (p-value)

Current  -0.805 (0.009) -0.817 (0.007)
5-step  -0.816 (0.007) -0.817 (0.007)
20-step  -0.809 (0.008) -0.817 (0.007)

Table 12: The correlation between image reconstruction is strongly correlated with behavior cloning success
and the correlations are statistically significant at the a = 0.01 level.

Scene  Pearson (p-value) Spearman (p-value)

Current  -0.910 (0.0001)  -0.918 (0.0000067)
5-step  -0.932 (0.000029)  -0.873 (0.00045)
20-step  -0.931 (0.000031)  -0.873 (0.00045)

Table 13: The correlation between image reconstruction is even more strongly correlated with OOD behavior
cloning success and the correlations are statistically significant at the o = 0.01 level.

28



Published in Transactions on Machine Learning Research (06/2025)

assemb button press coffee b|n -pickin window-close

- ba
Mocob’ h
N &a b
- ba b
- ba b
) .a
. &a

Figure 19: Non-reconstructive pretrained representations produced these reconstructions. Compared with
Figure @, there appears to be a higher level of fidelity when reconstructing the scene.
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Figure 20: Reconstructive pretrained representations produced these reconstructions. Compared with Figure
[19] there appears to be a lower level of fidelity when reconstructing the scene. In particular, the arm is not
reconstructed very well, and objects in the scene are poorly reconstructed, if at all.
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Figure 21: Pixel differences between reconstructions and the original scene rendering. Across the board,
there is a strong negative correlation between reconstructions, future scene reconstructions, and the behavior

cloning success rates.
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Figure 22: Success rates accorss OOD performance is aligned with in distribution performance.
Across the board, all encoders perform worse in the OOD setting, but stronger encoders in the ID case still
perform better in the OOD setting.
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Figure 24: Reconstruction quality is strongly correlated with OOD success rates
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I Attention versus MLP For SAM

Success Rate by Environment and Architecture

. MLP

T

Success Rate

Environment

Figure 26: Attention based policy and MLP based policies perform very similarly for SAM

Policy Architecture Success % Standard Deviation

MLP 0.604 0.116
Attention 0.526 0.093

Table 14: The difference between MLP and Attention success rates are within one standard deviation of
each other. This suggests the differences in success rate of MLP and Attention based policies are modest.
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