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ABSTRACT

Weather prediction is crucial for decision-making in various social and economic
sectors. The classical numerical weather prediction methods cannot incorporate
the historical observations to enhance the underlying physical models, whereas the
existing data-driven, deep learning-based weather prediction methods disregard
either the physics of the weather evolution or the topology of the Earth’s surface.
In light of these disadvantages, we develop PASSAT, a novel Physics-ASSisted
And Topology-informed deep learning model for weather prediction. PASSAT at-
tributes the weather evolution to two key factors: (i) the advection process that can
be characterized by the advection equation and the Navier-Stokes equation; (ii) the
Earth-atmosphere interaction that is difficult to both model and calculate. PASSAT
also takes the topology of the Earth’s surface into consideration, other than simply
treating it as a plane. Therefore, PASSAT numerically solves the advection equa-
tion and the Navier-Stokes equation on the spherical manifold, utilizes a spherical
graph neural network to capture the Earth-atmosphere interaction, and generates
the initial velocity fields that are critical to solving the advection equation, from
the same spherical graph neural network. These building blocks constitute a deep
learning-based, physics-assisted and topology-informed weather prediction mo-
del. In the 5.625°-resolution ERAS data set, PASSAT outperforms both the state-
of-the-art deep learning-based weather prediction models and the operational nu-
merical weather prediction model IFS T42.

1 INTRODUCTION

Weather prediction is of paramount importance to social security and economic development, and
has attracted extensive research efforts since the ancient time. Among the modern weather prediction
methods, numerical weather prediction (NWP) is built upon differential equations that govern the
weather evolution (Randall et al., 2007; Bauer et al., 2015). These differential equations attribute the
weather evolution to the advection process and the Earth-atmosphere interaction (Rood, [1987;
Smith et al.,|1990), as shown in Figure The advection process is the evolution of weather variables
(described by the advection equation) driven by the evolution of their velocity fields (described by
the Navier-Stokes equation). The Earth-atmosphere interaction encompasses other complex physical
processes in the atmosphere, such as radiation, clouds, and subgrid turbulent motions. One particular
challenge in NWP is that the Earth-atmosphere interaction is difficult to model and calculate, form-
ing a bottleneck of improving the accuracy of NWP (Hourdin et al.,2017;Kochkov et al.,2024])). Be-
sides, the accuracy of NWP does not improve with the increasing amount of historical observations.

On the other hand, data-driven methods that predict the weather based on the historical observations,
especially deep learning models, have become very popular in recent years (Ren et al. 2021)). With
the aid of high-quality and ever-accumulating data, state-of-the-art deep learning models have dem-
onstrated great potentials and been integrated into the modern weather prediction systems. Besides,
deep learning-based models are able to remarkably shorten the time consumption in the prediction
stage (B1 et al.| 2023} [Lam et al., [2023)). However, these models disregard either the physics of the
weather evolution or the topology of the Earth’s surface. Thus, their predictions are often unreliable
due to the lack of the physical constraints or suffer from the distortions caused by the topological
structure (Schultz et al., [2021)).
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Figure 1: Attributions of the weather evolution.

1.1 ENHANCING DEEP LEARNING WITH DIFFERENTIAL EQUATIONS

Combining with the differential equations that characterize the weather evolution can enhance the
precisions, efficiency and robustness of deep learning models, as the differential equations provide
valuable prior knowledge (Xiang et al.l [2022). Some works incorporate differential equations into
losses during training deep learning models (Daw et al., [2021}; lde Bezenac et al.,|2018). However,
tuning weights for the differential equations and computing stochastic gradients of the losses bring
new challenges. Some other works utilize deep learning models to correct NWP models (Kwa et al.,
2023} |Arcomano et al., [2022} |Kochkov et al.,|2024). Though having high accuracies, these approa-
ches are computationally demanding since they need to both solve all differential equations and train
end-to-end neural networks. The closest to ours are (Verma et al.||[2024;Zhang et al.||2023)), in which
neural networks are trained with the aid of differential equations. However, they both overlook the
Navier-Stokes equation that drives the elocution of the velocity fields.

Despite that these physics-assisted deep learning models are harder to train and slower in inference
compared to the end-to-end deep learning methods, they significantly enhance the robustness of pre-
dictions and demonstrate remarkable potentials (Chen et al., 2018)).

1.2 TAKING TOPOLOGY OF EARTH’S SURFACE INTO CONSIDERATION

The historical observations used during training most deep learning-based weather prediction mod-
els are on planar latitude-longitude grids, other than on the spherical surface of the Earth. Neverthe-
less, neglecting the Earth’s topology introduces remarkable distortions, as shown in Figure [2] (Mai
et al.| [2023; (Cohen et al.;|2018])). For example, the points that are close to the poles turn to be denser
on the spherical manifold than on the planar latitude-longitude grid. A notable consequence is that
one weather pattern appears differently on the sphere and the plane, such that capturing the weather
pattern on the plan suffers from distortions. These distortions also affect the patches and convolution
kernels, negatively impacting the deep learning models based on convolutional neural networks or
vision transformers (Coors et al., 2018). In addition, the velocity fields defined on the planar are
significantly distorted when increasing the latitude towards the poles, which will bring biases to the
deep learning models that learn the velocity fields (Verma et al., 2024; Zhang et al., 2023)).

1.3 CONTRIBUTIONS

In this paper, we propose PASSAT, a novel Physics-ASSisted And Topology-informed deep learning
model for weather prediction. PASSAT attributes the weather evolution to the analytical advection
process and the complex Earth-atmosphere interaction. Within the advection process, the evolution
of weather variables is driven by the evolution of their velocity fields, and the two are respectively
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Figure 2: Distortions due to planar projection. (a) The spherical and planner representations of
the global weather. (b) The same weather patterns on the sphere are distorted on the plane. (c) The
convolutions on the sphere are distorted on the plane.

described by the advection equation and the Navier-Stokes equation. PASSAT also takes the topolo-
gy of the Earth’s surface into consideration. Therefore, PASSAT: (i) trains a spherical graph neural
network to estimate the Earth-atmosphere interaction; (ii) generates the initial velocity fields with
the same spherical graph neural network; (iii) numerically solves the advection equation on the sphe-
rical manifold; (iv) updates the velocity fields through numerically solving the Navier-Stokes equa-
tion on the spherical manifold. Our contributions are as follows.

* PASSAT seamlessly integrates the historical observations, the physics of the weather evolu-
tion and the topology of the Earth’s surface, yielding a novel physics-assisted and topology-
informed deep learning model for weather prediction.

* Compared to the black-box deep learning models, PASSAT takes advantages of the physical
constraints, characterized by the advection equation and the Navier-Stokes equation, and
thus remarkably improves the stability of medium-term prediction.

* Compared to the traditional NWP models, PASSAT avoids modeling and calculating the
complex Earth-atmosphere interaction. PASSAT is also able to utilize the historical obser-
vations to improve the prediction accuracy.

» PASSAT solves the differential equations and trains the graph neural network on the spher-
ical manifold other than on the planar latitude-longitude grid, and thus effectively avoids
the distortions brought by the latter.

* We conduct experiments on the 5.625° ERAS data set, demonstrating the competitive per-
formance of PASSAT compared to the state-of-the-art deep learning models and the NWP
model IFS T42.

2 RELATED WORKS

Numerical weather prediction (NWP). NWP is a fundamental physics-based method for weather
prediction (Scher}, |2018)), utilizing the underlying differential equations to predict how the weather
will evolve over the time. For example, the operational Integrated Forecast System (IFS) consists
of several NWP models with different spatial resolutions (Bouallegue et al.| [2024). Despite of its
widespread applications, modeling and calculating the complex Earth-atmosphere interaction are
challenging. In addition, solving the differential equations is sensitive to the initial conditions, and
also computationally demanding (Kochkov et al., [2024)).

Deep learning-based weather prediction. Deep learning models learn from the historical observa-
tions so as to predict the weather. Although time-consuming during training, deep learning models
are rapid during prediction since they do not involve solving the differential equations. State-of-the-
art deep learning-based weather prediction models include FourCastNet (Kurth et al.||2023), Pangu
(B1 et al.| 2023)), GraphCast (Lam et al.} 2023)), ClimaX (Nguyen et al., [2023)), Fengwu (Chen et al.,
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[2023al), and Fuxi (Chen et al.,[2023b). Among them, only GraphCast takes the Earth’s topology into
consideration. However, all of them disregard the underlying physics information.

Deep learning-based, physics-assisted weather prediction. Integrating the differential equations
with deep learning models significantly improves the precisions, efficiency and robustness of the
latter. Notable recent works along this line include ClimODE (Verma et al., [2024) and NowcastNet
(Zhang et al}2023)). Different to PASSAT, ClimODE characterizes the evolution of the weather vari-
ables with the continuity equation, other than the advection equation. On the other hand, ClimODE
updates the velocity fields with a neural network, other than the Navier-Stokes equation. Nowcast-
Net focuses on regional precipitation nowcasting, while PASSAT focuses on global, multi-variable
and medium-term predictions. Additionally, PASSAT solves the differential equations and trains its
graph neural network on a spherical manifold, other than on the planar latitude-longitude grid used
by ClimODE and NowcastNet, effectively avoiding the distortions.

Estimating initial velocity fields at step 0

Backbone
model

Backbone
model

Weather at step t -
\ J

( Evolving weather variables and velocity fields at step t

Advection equation &
Earth-atmosphere interaction

Weather at step t+1

Figure 3: Overview of PASSAT.

3 METHODS

Considering the attributions of the weather evolution illustrated in Figure [T} we accordingly build
a physics-assisted and topology-informed deep learning model for weather prediction, abbreviated
as PASSAT. Given any initial time, PASSAT: (i) generates the initial velocity fields of the weather
variables with the velocity branch of a spherical graph neural network; and then autoregressively (ii)
predicts the effects of the Earth-atmosphere interaction with the interaction branch of the spherical
graph neural network; (ii) numerically solves the advection equation on the spherical manifold; (iv)
numerically updates the velocity fields through solving the Navier-Stokes equation on the spherical
manifold, aided by the initial velocity fields provided by (i). In the following, we will discuss how
PASSAT captures the evolution of the weather variables and their velocity fields, via integrating the
two differential equations and the spherical graph neural network (see also Figure [3).

We disregard the impact of vertical actions and focus on analyzing the advection equation and the
Navier-Stokes equation on the spherical manifold. All the analyses and approaches presented below
can be readily extended to scenarios where the vertical actions are taken into account.

We begin by introducing the spherical manifold in Section [3.1] and describing the evolution of the
weather variables in Section[3.2] Then, we respectively present the advection equation on the spher-
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ical manifold, the spherical graph neural network and the Navier-Stokes equation on the spherical
manifold in Section[3.3] Section[3.4]and Section [3.5] Finally, we summarize in Section 3.6

3.1 SPHERICAL MANIFOLD

The historical observations used during training most deep learning-based weather prediction mod-
els are on planar latitude-longitude grids, other than on the spherical surface of the Earth. Ignoring
this topology information leads to remarkable distortions in both the neural networks and the differ-
ential equations. In order to avoid such distortions, we project the weather variables from a planar
latitude-longitude grid onto the Earth’s surface. Without loss of generality, we assume the Earth’s
surface to be an ideal unit sphere, with a radius of 1 unit length (637 1km).

We denote the unit sphere S = {s € R?| ||s||o = 1} as the Earth’s surface. Any spatial coordinate
s on the unit sphere corresponds to a point (¢, #) within the planar latitude-longitude grid, where 6
is the latitude and ¢ is the longitude. Thus, we use s and s(¢, §) interchangeably. Given any spatial
coordinate s, e4(s) € R3 and ey(s) € R? are two orthogonal unit vectors originated from s and
along the parallel and meridian directions, respectively. We denote Vg as the spatial gradient on the
unit sphere and - as the inner product.

3.2 EVOLUTION OF WEATHER VARIABLES

Weather prediction depends on understanding the evolution of weather variables that we are inter-
ested in. Given any weather variable u, its evolution is characterized as follows.

The weather variable w« is viewed as a differentiable, real-valued function v : T x S — R, within
which T is the time set and S is the Earth’s surface. According to Figure[T] the evolution of weather
variable w is attributed to the advection process and the Earth-atmosphere interaction, as:

%(t; S) = (%(ta S))advection + (%(t, S))interactiona v(tv S) €T x S, (1
where %7;(7,‘, s) is the total tendency of weather variable u at time ¢ and spatial coordinate s and can
be decomposed into the tendency due to the advection process, denoted as (%(t, S) ) advection, and
the tendency due to the Earth-atmosphere interaction, denoted as (% (t,s))interaction-

Once the total tendency %(t7 s) is known, we can predict the value of u at any future time ¢ + At
according to Newton-Leibniz theorem and using proper numerical methods, as:
t+At ou
u(t + At,s) = u(t,s) + / S ults) + At (1), %)
t

Therefore, the key of weather prediction is to compute the tendencies of the advection process and
the Earth-atmosphere interaction. Though the tendency of the advection process can be numerically
estimated by solving the advection equation on the spherical manifold, the tendency of the Earth-
atmosphere interaction is difficult to model and calculate so that we resort to a spherical graph neural
network. We introduces them one by one in the following.

3.3 ADVECTION EQUATION ON SPHERICAL MANIFOLD

The advection process is the evolution of the weather variables driven by their velocity fields. Given
any weather variable v, its velocity field v : 7' x S — R? is a differentiable function of time and
spatial coordinate. Since we disregard vertical actions, the velocity field can be express by v(t,s) =
vg(t,s)eq(s) +vy(t, s)eq(s), where vg and vy are the velocities of v along the meridian and parallel
directions, respectively. With particular note, at any initial time ¢ and spacial coordinate s, u(t, s) is
known but v (¢, s) is to be calculated.

The tendency of u due to the advection process is given by solving the advection equation (Chan-
drasekar, [2022)), as:

(8u

E(t,s))advmion +v(t,s) - Vsu(t,s) =0, V(t,s) €T xS. 3)
—_—

advective derivative
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Once the advective derivative is known, the tendency of u due to the advection process is known
too. On the spherical manifold and the planar latitude-longitude grid, the advective derivative has
different forms, and the latter brings distortions in weather prediction, as discussed in the following.

Given a spatial coordinate s = s(¢, ) € S, on the spherical manifold, the advective derivative is in
the form of (Lions et al.,{1992):

on spherical manifold: v(¢,s) - Vgu(t,s) = vg(t,s) gz (t,s) vi(()ts’;) %

(t;s).
For vy (t,s) and v (¢, s), PASSAT will estimate their initial values utilizing the velocity branch of a
spherical graph neural network, and calculate their future values through solving the Navier-Stokes
equation. The differentials 8“ 5 (t,s) and ¢ 8“ 5 (t,s) can be estimated using the difference quotients of

u on the planar latitude- longltude grid.

In contrast, on the planar latitude-longitude grid, the advective derivative is in the form of:

ou
on planar latitude-longitude grid: v (¢,s)-Vsu(t,s) = vy(t,s) =

50 (t,s)+vy(t, s)

where vy (¢, s) and vj (¢, s) are respectively the velocities along the meridian and parallel directions,

but on the latitude-longitude planar grid, not on the spherical manifold. We have vj(t,s) = vg(t, s)

vy (t,s)
cosf

and v (t,s) =

ClimODE and NowcastNet calculate the the advective derivative according to (3)), via estimating
vy(t, s) and vj (¢, s) with neural networks. However, we can observe that fixing the value of vy (t,s),
v:t (t,s) is not spatial-invariant — it is large when s is close to the poles and small when s is close to
the equator. Such distortions will affect the pattern recognition of the neural networks. In contrast,
PASSAT takes advantages of the spherical manifold, and thus avoids the distortions.

3.4 SPHERICAL GRAPH NEURAL NETWORK

As discussed above, to calculate the tendency of u due to the advection process, we need to estimate
the initial velocity field of v(¢,s). On the other hand, we need to estimate (%(t7 S) interaction, the
tendency of u due to the Earth-atmosphere interaction. We train a spherical graph neural network to
estimate these values.

The spherical graph neural network consists of a backbone model and two branches: the interaction
branch that estimates ( 57 (t,3) )interaction and the velocity branch that estimates v (¢, s). The spherical
graph neural network incorporates the topology information from the spherical manifold, and thus
avoids the distortions caused by the planar latitude-longitude grid. For more details, readers are ref-
erred to the supplementary material.

Up to now, at time ¢, we have known (%‘(t, S) )interaction (from the spherical graph neural network),

as well as (% (t,3))advection (from the advection equation) with the aid of v(¢, s) (from the spherical
graph neural network). Therefore, we can the predict the value of u at a future time ¢ + At according
to (2). However, the numerical methods to solve (2)) are sensitive to the lead time At. As we will
see, the temporal resolution of our weather prediction is 6 hours. When At = 6 hours, the numerical
accuracies in solving (2) are acceptable. But when At becomes larger, these numerical methods are
no longer reliable.

To address this issue and enable medium-term or long-term prediction, PASSAT predicts the future
u in an autoregressive manner. To be specific, the predicted value of u for ¢ 4 6 hours will be the
initial value of u for predicting ¢ + 12 hours; so on and so forth. However, a new challenge arises:
the prediction errors originated from the black-box spherical graph neural network accumulate, such
that medium-term or long-term prediction will be inevitably biased.

Our remedy is to introduce new physical information to assist PASSAT. To be specific, we no longer
trust the velocity field v estimated by the velocity branch of the spherical graph neural network,
except for the initial time ¢. Instead, we solve the Navier-Stokes equation that governs the evolution
of the velocity field, to calculate v. We discuss in the following subsection.
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3.5 NAVIER-STOKES EQUATION ON SPHERICAL MANIFOLD

On the spherical manifold, the velocity field v(¢,s) = vg(t,8)eg(s) + v4(t, s)ey(s) satisfies the
Navier-Stokes equation (Lions et al.l [1992):

v, v, vy Ov 10
—9+(v9—9 ¢ —O)Jrvétanf)Jr =P +2wvgsinfd + ——v9 =0, (6)
ot 20 cosf 0 L ___ p 00 ———— cos20
R curvature VT Coriolis force . A
advection pressure gradient force viscous friction
v, v vy Ov 1 0
—¢—|—(vg—¢+ ¢ —‘b)—v(z,vetanﬁ—l— o — 2wvg sin 0 + L% =0, (7
ot 00  cosf 0’ L —— pcosf 0o ————  cos?f
curvature — N Coriolis force . v
advection pressure gradient force viscous friction

We omit the pair (¢, s) for notational simplicity. In the Navier-Stokes equation, p(t,s) is the atmo-
spheric density, w = 0.2618 (radian/hour) is the Earth’s rotation speed, p(t,s) is the atmospheric
pressure, and f is a constant related to the Reynolds constant. For computational efficiency and sta-
bility, we simplify the Navier-Stokes equation by retaining only the viscous friction in the Laplacian.

The Navier-Stokes equation governs the evolution of vs(t, s) and v, (¢, s). After calculating 81’987(:’5)

and B%T(tt’s) from the Navier-Stokes equation, we also apply Newton-Leibniz theorem and numerical
methods to predict vg(¢,s) and vy (¢, s).

3.6 SUMMARIZING PASSAT

Here we summarize the prediction procedure of PASSAT. At current time ¢ and spatial coordinate
s, for any weather variable u(t, s), we first use the spherical graph neural network to generate its
velocity field (vg(t,s),ve(t,s)). Then, given a temporal resolution At, for 7 = 0,1, -- -, we iter-
atively predict the values of w at times ¢ + (7 4+ 1)At in an autoregressive manner. This involves:
(i) estimating the tendency of u due to the Earth-atmosphere interaction (% (t + TAL, S))interaction
using the same spherical graph neural network; (ii) calculating the tendency of u due to the advec-
tion process (% (t+ TAt, S))advection through the advection equation (3)) and ; (iii) calculating the
total tendency of u through @); (iv) calculating the tendency of vy and v, through the Navier-Stokes
equation (6) and (7); (v) using Newton-Leibniz theorem and numerical methods to predict the values
of u(t + (1 +1)At,s), (ve(t + (7 + 1)At, s),vs(t + (T + 1) At, s)). In the experiments, we use the
Euler’s method in the prediction, with A¢ = 6 hours.

4 EXPERIMENTS

Data & Tasks. The experiments are conducted on the European Centre for Medium-Range Weather
Forecasts Reanalysis V5 (ERAS) 5.625°-resolution data set from 2006 to 2018, provided by Weath-
erBench (Hersbach et al.l 2020; Rasp et al., 2020). The data samples from 2006 to 2015 are used in
the training set, 2016 in the validation set, as well as 2017 and 2018 in the test set. The interested
weather variables are temperature at 2m height (t2m), temperature at 850hPa pressure level (t), geo-
potential at 500hPa pressure level (z), u component of wind at 10m height (u10), and v component
of wind at 10m height (v10).

We employ PASSAT and the baseline models to predict these weather variables, at a temporal reso-
lution of 6 hours (6am, 12am, 6pm, and 12pm of each day) and lasting for 20 steps (120 hours). The
performance metrics are root mean square error (RMSE), anomaly correlation coefficient (ACC)
and mean bias error (MBE). Due to the page limit, we only demonstrate the RMSE in this section.
For ACC and MBE, as well as more details on data preprocessing, readers are referred to the supple-
mentary material.

We release an open-source Pytorch implementation of PASSAT on PASSAT.

Baseline deep learning models. We compare PASSAT with the following baseline deep learning
models: (i) ClimODE (Verma et al.l 2024); (ii) FourCastNet (Kurth et al., [2023); (iii) Pangu (B1
et al., 2023)); (iv) GraphCast (Lam et al., [2023)); (v) ClimaX (Nguyen et al., 2023). Among them,
ClimaX needs to specify the number of steps (namely, the lead time) in advance, while PASSAT and
the other models predict in an autoregressive manner. For fair comparisons, we unify the number of
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parameters to the same magnitude (around 1.2 million). We also assign the same weights to different
lead times and different weather variables in the losses. We reproduce Pangu and GraphCast as their
codes are unavailable in public, while train the other models according to their open-source codes.

We do not compare with Neural GCM, NowcastNet, Fengwu, and Fuxi, whose codes are unavailable
in public too. Neural GCM requires to solve a complete set of key differential equations, demanding
substantial computational resources as the NWP models. NowcastNet exclusively focuses on region-
al precipitation nowcasting, while we focus on global, multi-variable and medium-term predictions.
Fengwu and Fuxi utilize attention-based structures similar to Pangu and Climax, and their focus is
on improving long-term predictions via enhancing the training and inference strategies.

Baseline NWP models. PASSAT is also compared with the following operational NWP models: (i)
IFS T42 (Rasp et al.,2020); (ii) IFS T63 (Rasp et al.,[2020). IFS T42 and IFS T63 are the Integrated
Forecast System (IFS) model run at two different resolutions, 2.8° and 1.9° respectively. We observe
that they are both finer than the 5.625° resolution of PASSAT, at the cost of more computationally
demanding in solving the advection equation and the Navier-Stokes equation.

Training strategy. We train PASSAT and the baseline deep learning models mentioned above from
scratch, following a two-phase approach: pre-training and fine-tuning. In the pre-training phase,
we train each model to predict the weather variables for the future 6 hours and the future 12 hours,
focusing on the short-term prediction capability. In the fine-tuning phase, we gradually increase the
lead time from 18 hours to 72 hours, strengthening the medium-term prediction capability. Such a
training strategy is similar to the one adopted in GraphCast (Lam et al.| |2023). Note that we will use
these models to predict up to 120 hours. For more details on model training, readers are referred to
the supplementary material.

Table 1: Comparisons between PASSAT and the other models in terms of RMSE, over the test

set. We use * to indicate the reproduced GraphCast and Pangu models. For each lead time and each

weather variable, the best model RMSE is in bold and the second best model RMSE is underlined.
Lead Time (h) PASSAT GraphCast* ClmODE Pangu* FourCastNet ClimaX IFST42 IFS T63

Physics-assisted - Yes No Yes No No No
Topology-informed - Yes Yes No No No No
Parameters (M) - 1.19 1.23 1.32 1.40 1.22 1.21
24 1.18 1.16 1.72 1.73 1.72 1.74
48 1.51 1.50 2.12 1.94 1.93 2.46 - -
2m 72 1.83 1.84 2.50 2.16 2.15 2.93 3.21 2.04
96 2.13 2.17 2.72 2.36 2.36 4.38 - -
120 2.40 2.45 2.86 2.53 2.54 7.19 3.69 2.44
24 1.25 1.25 2.12 1.65 1.84 1.58
48 1.68 1.68 2.77 2.16 2.27 241 - -
t 72 2.14 2.16 3.35 2.64 2.69 3.14 3.09 1.85
96 2.60 2.63 3.67 3.02 3.06 4.34 - -
120 3.00 3.04 3.84 3.31 3.34 6.39 3.83 2.52
24 174.7 179.9 372.3 268.4 306.7 247.8
48 3159 326.0 574.8 448.4 460.5 493.8 - -
z 72 446.1 458.0 739.9 589.2 5879 684.1 489.0 268.0
96 562.5 5742 833.1 692.0 688.3 889.5 - -
120 660.0 670.2 890.0 762.4 761.6 1178.0 743.0 463.0
24 1.58 1.59 2.56 1.97 2.17 2.00
48 2.28 2.30 3.30 2.78 292 3.10
ul0 72 2.92 2.94 3.87 3.38 3.48 3.72
96 3.42 3.44 4.16 3.76 3.85 4.38
120 3.78 3.81 4.31 4.00 4.08 5.00
24 1.61 1.62 2.85 2.04 2.25 2.04
48 2.32 2.34 351 2.85 2.98 3.21
v10 72 2.97 3.00 4.12 347 3.55 3.86
96 3.50 3.53 4.34 3.88 3.95 4.38
120 3.90 3.93 4.43 4.13 421 4.54

Results. As demonstrated in Table |1} PASSAT outperforms the other deep learning models in most
weather variables across different lead times. The closest to PASSAT is GraphCast, which takes the
topology of the Earth’s surface into consideration. However, GraphCast ignores the physics of the
weather evolution, and thus has to use a more complex graph structure than PASSAT (twice in terms
of the number of nodes and three times in terms of the number of edges). ClimODE, despite of its
physics-assisted structure, does not perform well. This could be attributed to the following reasons:
(i) ClimODE characterizes the evolution of the weather variables with the continuity equation, other
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than the advection equation; (ii) ClimODE updates the velocity fields with a neural network, other
than the Navier-Stokes equation; (iii) ClimODE ignores the topological information, and thus suffers
from the distortions. In contrast, PASSAT solves the advection equation on the spherical manifold to
estimate the evolution of the weather variables, solves the Navier-Stokes equation on the spherical
manifold to update the velocity fields, and trains a spherical graph neural network to estimate the
Earth-atmosphere interaction and the initial velocity fields. Therefore, PASSAT benefits from both
the physics information and the topology information, allowing it to achieve better performance.

The RMSEs of IFS T42 and IFS T63 are from Rasp et al.| (2020), only including t2m, t and z for
lead times of 72 and 120 hours. We can observe that PASSAT outperforms IFS T42, a pure physical
model solved at a finer resolution (2.8°). Improving the resolution of the physical model from 2.8°
to 1.9°, IFS T63 surpasses PASSAT and the other deep learning models, nevertheless at the cost of
high computational complexity.

Table 2: Ablation studies in terms of RMSE, over the test set. For each lead time and each wea-
ther variable, the best model RMSE is in bold and the second best model RMSE is underlined. We
also compare the memories used in fine-tuning the models to predict for the future 72 hours.

Lead-Time (h) PASSAT w/o Navier-Stokes equation w/o Navier-Stokes equation
and advection equation

Parameters (M) - 1.19 1.19 1.37
Memories (M) - 8708 10061 7387
24 1.18 1.17 1.21

48 1.51 1.51 1.55

2m 72 1.83 1.83 1.87
96 2.13 2.14 2.16

120 2.40 242 241

24 1.25 1.26 1.29

48 1.68 1.67 1.73

t 72 2.14 2.14 2.21
96 2.60 2.60 2.66

120 3.00 3.00 3.05
24 174.7 173.8 189.4
48 315.9 313.9 336.7
z 72 446.1 444.2 468.1
96 562.5 562.5 582.1
120 660.0 661.5 675.0

24 1.58 1.57 1.62

48 2.28 2.28 2.36

ul0 72 2.92 2.92 3.00
96 342 3.42 348

120 3.78 3.79 3.83

24 1.61 1.61 1.65

48 232 2.31 2.39

v10 72 297 2.96 3.05
96 3.50 3.49 3.56

120 3.90 3.89 3.94

5 ABLATION STUDIES

As shown in Table [T} PASSAT and GraphCast outperform the other models, demonstrating the supe-
riority of incorporating the topology information. Below, we conduct ablation studies to assess the
effectiveness of the physical information used inside PASSAT. First, we assess the effectiveness of
the Navier-Stokes equation. To do so, we retrain PASSAT (without the Navier-Stokes equation) by:
(1) keeping to numerically solve the advection equation; (ii) keeping to use a spherical graph neural
network to learn the earth-atmosphere interaction; (iii) using the velocity branch of the spherical
graph neural network, other than the Navier-Stokes equation, to generate the velocity fields for all
times. This approach is similar to NowcastNet. Second, we further assess the effectiveness of both
the Navier-Stokes equation and the advection equation. To do so, we retrain PASSAT (without the
Navier-Stokes equation and the advection equation) by using a spherical graph neural network to
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predict the weather in an end-to-end manner, without numerically solving either the Navier-Stokes
equation or the advection equation. This approach is similar to GraphCast.

The results are depicted in Table[2] For medium-term prediction, updating the velocity fields by the
Naiver-Stokes equation incorporates the physical constraints, and is hence better than updating the
velocity fields from the velocity branch of the spherical graph neural network. Besides, it is able to
significantly reduce the memory consumption. Further removing the advection equation essentially
affects the prediction ability of PASSAT, showing that treating the entire advection process (includ-
ing the advection equation and the Earth-atmosphere interaction) as a black box is inappropriate. In
comparison, PASSAT only treats the Earth-atmosphere interaction as a black box.

6 CONCLUSIONS AND FUTURE WORKS

In this paper, we propose PASSAT, a novel physics-assisted and topology-informed deep learning
model for weather prediction. PASSAT seamlessly integrates the advection equation and the Navier-
Stokes equation that govern the evolution of the weather variables and their velocity fields, with a
graph neural network that estimates the complex Earth-atmosphere interaction and the initial veloc-
ity fields. PASSAT also takes the topology of the Earth’s surface into consideration, during solving
the equations and training the graph neural network. In the 5.625°-resolution ERAS data set, PAS-
SAT outperforms both the state-of-the-art deep learning-based weather prediction models and the
operational numerical weather prediction model IFS T42.

As future works, we will extend PASSAT in the following aspects: (i) We will enhance PASSAT by
incorporating more weather variables. (ii) We will refine PASSAT via training over a data set with a
finer resolution. (iii) We will incorporate new forward integration method that is more efficient than
the Euler’s method, during training and prediction. We expect that PASSAT is able to motivate more
research efforts in combining physics, topology and historical observations for weather prediction.
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Supplementary Material for
Physics-Assisted and Topology-Informed Deep Learning for Weather Prediction

A DATA

A.1 DATA SET

We follow ClimODE to use the European Centre for Medium-Range Weather Forecasts Reanalysis
V5 (ERAS) 5.625°-resolution data set from 2006 to 2018, provided by WeatherBench (Hersbach
et al., 2020; Rasp et al.,[2020). TableE] summarizes the weather variables in the data set. For more
details, readers are referred to ERAS.

Table 3: Weather variables in the data set.

Long name Short name Description Unit  Levels

geopotential z Proportional to the height of a pressure level m2s~2  500hPa

temperature t Temperature K 850hPa
2m_temperature t2m Temperature at 2m height above surface K -
10m_u_component_of_wind ul0 Wind in longitude-direction at 10m height ms™! -
10m_v_component_of_wind v10 Wind in latitude-direction at 10m height ms~! -

A.2 DATA PREPROCESSING

Normalization. Since the weather variables have diverse magnitudes, we use their means and stan-
dard deviations in 2006 to normalize the entire data set.

Mapping the latitude-longitude grid to the sphere. In PASSAT and GraphCast, we need to project
a latitude-longitude point (6, ¢) onto the unit sphere, as:

cos 6 cos ¢

s(0,¢) = [ cos 6 sin ¢

sin 0

€S. ¥

Constructing time-space embedding. As in ClimODE, PASSAT uses the time-space embedding
as one input, which encompasses the hour in the day, the day in the year and the spatial information.
We follow ClimODE to generate the time-space embedding (Verma et al.| [2024), as:

embed(,s) = (embed;in.(t), embedgp,c(s), embediimex space (, S), Ism(s), oro(s)). 9)
Here ¢ € [0,366 x 24 — 1] C N represents the hour that the data sample is in the year,
embed;ine (t) = (sin(2mh/24), cos(2wh/24),sin(2wd/366), cos(2md/366)) (10)

with h = (¢ mod 24) being the hour that the data sample is in the day and d = [t/24] being the day
that the data sample is in the year,

embed,p,..(s) = (sin(f), cos(), sin(¢), cos(¢), sin() cos(¢), sin(f) sin(¢)) (11)
with s = s(6, ¢), and

embed imexspace (t, 5) = embediime () ® embedpace (S)

= (sin(27h/24) sin(0), sin(27h/24) cos(h), ..., cos(2md/366) sin () sin(¢)) (12)

with ® being the Kronecker product. Besides, Ism(s) and oro(s) are respectively the land-sea binary
mask and the height of Earth’s surface, given in the 5.625°-resolution ERAS5 data set.

For simplicity, in the following, we use embed(?) to include the time-space embeddings at time ¢ of
all spatial coordinates.
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B PASSAT

B.1 GENERATING WEATHER PREDICTIONS

We will introduce how PASSAT generates weather predictions with: (i) the advection equation; (ii)
the Navier-Stokes equation; (iii) the earth-atmosphere interaction characterized by a spherical graph
neural network; (iv) the initial velocity fields generated by the same spherical graph neural network.

At any initial prediction time, denoted as step 0, PASSAT takes the weather variables at step —1, as
well as the weather variables and the time-space embedding at step O as the inputs. First, PASSAT
uses the spherical graph neural network to generate the initial velocity fields at and only at step 0.
Then, PASSAT estimates the effects of the Earth-atmosphere interaction and numerically solves the
advection equation at step 0, with the aid of the generated initial velocity fields. The summations
of the effects of the Earth-atmosphere interaction and the solutions of the advection equation are
the tendencies of the weather variables at step 0. After that, PASSAT obtains the tendencies of the
velocity fields at step 0, through numerically solving the Navier-Stokes equation. With numerical
integration, PASSAT updates the weather variables and the velocity fields for step 1. As such, PAS-
SAT conducts weather predictions for more steps in an autoregressive manner.

Algorithm 1: PASSAT: Predicting each weather variable « for future 7" steps
Input: {u!|t = —1,0}, {embed(¢),t = 0,1,2,--- [ T} A
Output: {u'[t =1,2,--- T}, {v = vjey +vieylt =0,1,2,--- T}
fort=0,1,2,--- /T —1do
if t = 0 then

| Estimate initial velocity field: v° = f,(u™!,u°, embed(0))
end
Estimate effect of Earth-atmosphere interaction: phy’ = fpny (u!™!, u*, embed(t))
Compute tendencies of u, vg, vy at step ¢
out _ t ou® vy dul

_ ou” ou” t
ot V956 — s 04 T Phy
vl + OV Vg vl f
Bts 77@9()79670059674?7( ) taneiiizﬂv(ﬁﬁn@ MCOSQO
aw}, vl v, vl
¢ t ¢ _ _“d o) 1
ot = Y990  cosf 90 T %Ue tant — 8(15 + 2wv sinf — “cos2 0

Update u', vy, v,
uttl =t + At;%t
bt = b+ AtSe; vptt = (1 — A)h + Aoyt

Af—&-l ¢ g il t+1
byt =g+ Aty v = (1= Avg + N

end

We summarize the details in Algorithm|[I] For simplicity, we omit the spatial coordinate s, and use
u' to denote u(t, s) and v' to denote v(t,s). We use fy and fpny to denote the velocity and physics
branches of the spherical graph neural network, respectively. We use phy’ to denote the estimated
effect of the Earth-atmosphere iteration for time ¢ and spatial coordinate s. Within the Navier-Stokes
equation, % %’; and /1) %’; are unknown. We replace them with the gradients of the geopotential z* at
the 500 hPa pressure level as a substitute, normalized by a factor of 0.01. To ensure the stability of
the estimated velocity fields, we output a convex combination of the current velocity field (v}, Ufb)
and the intermediately estimated velocity field (o}, ﬁfb), with a parameter A that is set as % in the
experiments.

B.2 STRUCTURE

In Table[d] we illustrate the structures of PASSAT and its variant. For PASSAT without the advection
and Navier-Stokes equations, we no longer need the velocity branch, and merge the physics branch
with the backbone. For PASSAT without the Navier-Stokes equation, its structure remains the same
as PASSAT and we do not list here.
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Table 4: The structure of PASSAT. The number in the brackets is the output dimension.

PASSAT w/o advection and Navier-Stokes equations
Num Nodes 2048 2048
Num Edges 20480 20480
Input Embedding 1x MLP (48) 1x MLP (48)
Backbone 2x Basic Block (48) [2x Basic Block (48), 1x Basic Block (96)]

Velocity Branch 1x Basic Block (48) -
Physics Branch  [2x Basic Block (48), 1x Basic Block (24)] -

Parameters 1.19 M) 1.37 M)

B.2.1 GRAPH IN PASSAT

The spherical graph neural network of PASSAT is denoted as (N, £, A), where A is the node set, £
is the edge set and A is the adjacency matrix.

Each node of PASSAT is represented by a spatial coordinate. Corresponding to the 5.625°-resolution
data set, there are 2048 nodes, represented as:

(ng, 1y, -+ ,ng3, -+ ,N2047) = (8(P0,00),8(¢1,00),- - ;8(¢63,00), - ,8(¢e3,031)).  (13)
The (%, j)-th element of the original adjacency matrix A is given by:

(A)ij = exp(—|In; — nyl[3). (14)

To improve the computational efficiency, we prune A by setting its elements to zero if they are below
a given threshold. We set two thresholds, so that in the pruned adjacency matrices, the sparsest row
has 6 and 10 non-zeros, respectively. We denote the pruned adjacency matrices as A5 and Ag, resp-
ectively. We also re-normalize them to avoid exploding/vanishing gradients (Kipf & Welling,|2016),
as:

_1 _1
A, = Dy AD %, ke {59}, (15)

where Dy, is a diagonal degree matrix, with (Dy);; = Zj(Ak)ij.

We will use both A5 and Ag for feature extraction. In addition, we define the edge set £ by As. If

the (7, j)-th element of Aj is non-zero, we say that nodes n; and n; are neighbors, and (n;, n;) € £.

B.2.2 INITIAL STATES OF NODES AND EDGES

As shown in Algorithm at step 0, the input of PASSAT includes u~ !, ul and embed(0), in which
we use u to stack all weather variables. These three terms determine the initial states of nodes and
edges. For node n;, that is:

Initialization: 7!°%* = (u™!(n;), u’(n;),embed(0,n;)), (16)

where u’(n;) and u°(n;) denote the weather variables of spatial coordinate n; at step —1 and step
0, respectively. For edge (n;,n;) connecting nodes n, and nj, its initial state is

hedge

Initialization: %= = (n; — ny, |[n; — nj|[2). (17

B.2.3 MAIN BLOCKS IN PASSAT

There exist two main blocks within PASSAT: the input embedding block and the basic block. The
basic block further consists of graph connection and graph convolution, as shown in Figure

In graph connection, the edge connection involves concatenating the hidden states of the two nodes
n; and n; connected by each edge (n;, n;), written as:

edge edge 7 node 7 node
pedee s (e e pode) (1)
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where A% is the hidden state of edge (n;, 1;), while h2°% and A% are the hidden states of nodes

n; and n;, respectively. The node connection is to concatenate the sum of the hidden states of edges
that each node n; connects, written as:

h?ode = (h?ode 7 Z h?@ge) . ( 19)

]
ji(n;,n;)e€

The graph convolution uses the adjacency matrices A and Ag to aggregate the hidden states of all
nodes, and concatenate the results to update the hidden states of all nodes, written as:

B = (B2 S ()i h, S (Ag) i o). 20)

J J

Input Embedding Block

GraphConnection

NodeConnection

Basic Block

GraphConnection GraphConvolution

GraphConvolution

edge edge

Figure 4: Main blocks in PASSAT.

C PERFORMANCE METRICS

Root mean square error (RMSE). Given a weather variable u, we suppose that the initial time is 0
and that the lead time is 7. The RMSE is defined as:

RMSE(T) = \/|Sld| Z as(u(r,s) — u(r,s))?. (21)

s€Sq

Therein, Sq C S is the set of discrete spatial coordinates, while u(7, s) and %(7, s) are the prediction
and observation of u at lead time 7 and spatial coordinate s. The weight a(s) is defined as:
cos 0

1 7"
Al Zs'esd cos 6

a(s) =

(22)

The reported RMSE is the average over all initial times.

16



Under review as a conference paper at ICLR 2025

Anomaly correlation coefficient (ACC). Given a weather variable u, we suppose that the initial
time is 0 and that the lead time is 7. The ACC is defined as:

Zsesd asClim(u(r, s))Clim(a(T,s))

ACC(1) = . (23)
V/ Zscs, asClim(u(7,8))? x Yy, asClim(ia(r, s))?
Therein, we define:
Clim(u(r,s)) = u(r,s) — d| Z u(r,s’) — C(s)), (24)

s’€8y

where C(s) is the climatological mean of weather variable u at spatial coordinate s, computed using
the ERAS data set of 2006. The reported ACC is the average over all initial times.

D TRAINING DETAILS

D.1 Loss FUNCTIONS

Given a weather variable u and at any initial time denoted by 0, the loss function of ClimODE, Gra-
phCast, Pangu, FourCastNet, and ClimaX is given by:

Lbpasic = T Z Z T S))2 (25)

rel:T, S d‘ s€Sq

Therein, Sq C S is the set of discrete spatial coordinates, while u(7, s) and (7, s) are the prediction
and observation of v at lead time 7 and spatial coordinate s. We use 7, to denote the number of au-
toregressive steps. Then, Ly, is averaged over all weather variables and all initial times.

The predictions of PASSAT also involve the initial velocity fields, whose values must be controlled.
Therefore, we introduce several penalty terms to the loss function. Given a velocity field v and at
any initial time denoted by 0, we define:

‘CV@IOCitY = ‘Cielocity + E\Qlelocity + ‘Cgelocityv (26)
where
‘C\l/elocity 2‘8 | Z ’Ue 0 S (’U¢(O,S))2], (27)
sESy

L2006 Z 0(0,8))2 + (= 0 v4(0,8))?] (28)

velocity — Z‘Sd| 80 90 ) )
oy = 5o S (00 (0,5)) + (s(0,5))7. 29)

velocity Z‘Sd| S 8¢) ’ 3¢ 3

Therein, A\; = 10, A2 = 0.1 and A3 = 0.1 are constants to penalize the initial velocity field and its
smoothness. Then, Lycocity is averaged over all velocity fields and all initial times.

In summary, the loss function of PASSAT is given by £ = Lpasic + Luelocity-

D.2 TRAINING STRATEGIES

We train PASSAT and the baseline deep learning models from scratch in an autoregressive manner
(except for ClimaX); that is, we treat the current predictions as observations and feed them back to
the models to generate future predictions.

The training of all models follows a two-phase approach: pre-training and fine-tuning (Lam et al.,
2023). In the pre-training phase, we train each model to predict the weather variables for the future
6 hours and the future 12 hours, focusing on the short-term prediction capability. In the fine-tuning
phase, we gradually increase the lead time from 18 hours to 72 hours, for the sake of strengthening
the medium-term prediction capability.
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We use the AdamW optimizer with parameters 51 = 0.9 and 82 = 0.999, and set the weight decay
as 0.05. Gradient clipping is also employed, with a maximum norm value of 5. We use PyTorch for
training, validation and prediction, on four GeForece RTX 2080.

In the pre-training phase, the batch size is 8 per GPU (32 in total). In the fine-tuning phase, the batch
size is 2 per GPU (8 in total) to prevent memory overflow. In the pre-training phase, we adjust the
learning rate with the Cosine-LR-Scheduler, and set the maximum and minimum learning rates to
le-3 and 3e-7, respectively. In the fine-tuning phase, the learning rate is 7.5e-8.

E STRUCTURES OF BASELINE DEEP LEARNING MODELS

We consider the following baseline deep learning models: GraphCast, Pangu, ClimODE, FourCast-
Net, and ClimaX. For fair comparisons, we unify the number of parameters to the same magnitude
(around 1.2 million). In Tables [5H9} we show their modified structures.

Table 5: The modification of GraphCast.
Original Modified (this paper)

Num Nodes 1079202 4096
Num Edges 5061126 61440
Num Embedding Layers 5 1
Embedding Dimension 512 48
Num Multi-mesh Layers 16 5
Parameters 36.7 M) 1.23 (M)

Table 6: The modification of Pangu.

Original Modified (this paper)
Embedding Dimension 192 72
Num Layers [2(192), 6(384), 6(384),2(192)] [2(72), 2(144), 2(144), 2(72)]
Num Heads [6, 12, 12, 6] [4, 4, 4, 4]
Patch Sizes 2,4,4) 1,1
Window Sizes (2,6, 12) “4,4)
Parameters 256 (M) 1.40 (M)

Table 7: The modification of ClimODE.
Original Modified (this paper)

Num Layers (Velocity) [5(128), 3(64), 2(10)]  [5(64), 3(32), 2(10))]
Num Layers (Noise) [3(128), 2(64), 2(10)] [4(96), 2(64), 2(5)]
Parameters 2.8 (M) 1.32 (M)

F COMPARISONS WITH BASELINE MODELS

We compare the ACCs of PASSAT and the other models in Table[T0] Similar to the comparisons of
RMSEs, PASSAT is the best among all deep learning models and Graphcast is the closest one. IFS
T63 outperforms IFS T42 and all deep learning models, but is computationally expensive.
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Table 8: The modification of FourCastNet.
Original Modified (this paper)

Embedding Dimension 768 128
Num Layers 12 8
Num Blocks 16 8
Parameters 59.1 (M) 1.22 (M)

Table 9: The modification of ClimaX.
Original Modified (this paper)

Embedding Dimension 1024 128
Num Layers 8 6
Num Decoder Layers 2 2
Num Heads 16 8
Parameters 107 (M) 1.36 (M)

Table 10: Comparisons between PASSAT and the other models in terms of ACC, over the test

set. We use * to indicate the reproduced GraphCast and Pangu models. For each lead time and each

weather variable, the best model ACC is in bold and the second best model ACC is underlined.
Lead-Time (h) PASSAT GraphCast* ClimODE Pangu* FourCastNet ClimaX IFST42 IFS T63

Manifold-informed - Yes Yes No No No No - -
Physical-informed - Yes No Yes No No No - -
Parameters (M) - 1.19 1.23 1.32 1.40 1.22 1.21 - -
24 0.97 0.98 0.94 0.94 0.94 0.94 - -
48 0.96 0.96 091 0.93 0.93 0.88 - -
t2m 72 0.94 0.94 0.88 091 091 0.82 0.87 0.94
96 0.92 0.92 0.86 0.89 0.89 0.67 - -
120 0.90 0.89 0.84 0.88 0.88 0.41 0.83 0.92
24 0.97 0.97 0.90 0.94 0.93 0.95 - -
48 0.94 0.94 0.83 0.90 0.89 0.87 - -
t 72 0.90 0.90 0.74 0.85 0.84 0.77 0.86 0.94
96 0.85 0.85 0.69 0.79 0.79 0.55 - -
120 0.80 0.80 0.66 0.75 0.74 0.26 0.78 0.90
24 0.99 0.98 0.93 0.97 0.95 0.97 - -
48 0.95 0.95 0.82 0.90 0.89 0.87 - -
z 72 0.90 0.89 0.70 0.82 0.82 0.74 0.90 0.97
96 0.84 0.83 0.61 0.73 0.74 0.53 - -
120 0.77 0.76 0.56 0.67 0.67 0.24 0.78 091
24 0.93 0.93 0.80 0.88 0.85 0.88 - -
48 0.84 0.83 0.61 0.75 0.72 0.67 - -
ulo 72 0.72 0.71 0.43 0.60 0.57 0.45 - -
96 0.60 .59 0.34 0.48 0.46 0.14 - -
120 0.49 0.48 0.28 0.39 0.38 0.03 - -
24 0.92 0.92 0.75 0.87 0.84 0.87 - -
48 0.83 0.83 0.54 0.73 0.70 0.64 - -
v10 72 0.71 0.70 0.31 0.57 0.55 0.39 - -
96 0.58 0.57 0.22 043 0.43 0.09 - -
120 0.46 0.45 0.19 0.33 0.33 0.04 - -
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G VISUALIZATIONS

G.1 MEAN BIAS ERRORS (MBES)

We visualize the mean bias errors (MBEs) of PASSAT for two lead times: 12 hours and 48 hours,
respectively in Figures[5]and [6]

PASSAT z b1as at 12 hours PASSAT t b1as at 12 hours

-l
-0.6 -0.4 —0.2 0.0 0.2 0.4 0.6 —-0.50 -0.25 0.00 0.25 0.50

-l
-0.50 —0.25 0.00 0.25 0.50

Figure 5: MBE of PASSAT at 12 hours lead time, over the test set.
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PASSAT z bias at 48 hours

PASSAT t bias at 48 hours

‘?""(-v,

—

-150  -100  —50 0 50 100 150 -06 -04 -02 00 02 04 06
PASSAT ul0 bias at 48 hours PASSAT t2m bias at 48 hours
g = e = F

T

—_—
> R -
T

Figure 6: MBE of PASSAT at 48 hours lead time, over

21

the test set.



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

G.2 PREDICTIONS

We present several visualization examples of the predictions generated by PASSAT for t2m (Figure
[7). t (Figure[8), z (Figure[9), ul0 (Figure[T0), and v10 (Figure TT).

2018-07-12_12:00 UTC | 24 hours Observation

S
200.0 214.7 2293 2440 2587 2733 288.0 302.7 200.0 214.7 2293 2440 2587 2733 288.0 302.7
2018-04-30_12:00 UTC | 48 hours Observation

e
200.0 2147 2293 244.0 258.7 273.3 288.0 302.7 200.0 214.7 2293 2440 2587 2733 283.0 302.7
2017-11-26_00:00 UTC | 120 hours Observation

e
200.0 2147 2293 244.0 258.7 273.3 288.0 302.7 200.0 2147 2293 2440 2587 2733 288.0 302.7

Figure 7: Prediction visualization of t2m.
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2018-01-27_12:00 UTC | 24 hours Observation

0 e
245.00 252.33 259.67 267.00 274.33 281.67 289.00 296.33 245.00 252.33 259.67 267.00 274.33 281.67 289.00 296.33
2017-12-11_00:00 UTC | 48 hours Observation

-
245.00 252.33 259.67 267.00 274.33 281.67 289.00 296.33 245.00 252.33 259.67 267.00 274.33 281.67 289.00 296.33
2018-12-06_18:00 UTC | 120 hours Observation

-
245.00 252.33 259.67 267.00 274.33 281.67 289.00 296.33 245.00 252.33 259.67 267.00 274.33 281.67 289.00 296.33

Figure 8: Prediction visualization of t.
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2018-05-23_18:00 UTC | 24 hours Observation

I
48000 49333 50667 52000 53333 54667 56000 57333 48000 49333 50667 52000 53333 54667 56000 57333
2017-01-30_06:00 UTC | 48 hours Observation

I 000
48000 49333 50667 52000 53333 54667 56000 57333 48000 49333 50667 52000 53333 54667 56000 57333
2018-05-08_00:00 UTC | 120 hours Observation

I
48000 49333 50667 52000 53333 54667 56000 57333 48000 49333 50667 52000 53333 54667 56000 57333

Figure 9: Prediction visualization of z.
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2017-07-23_12:00 UTC | 24 hours Observation

-144 -9.6 48 0.0 4.8 9.6 14.4 -144 96 48 0.0 4.8 9.6 14.4
2017-12-06_00:00 UTC | 48 hours Observation

7‘*‘ e B

B .
-144 96 48 00 4.8 9.6 144 -144 -96 48 00 4.8 9.6 14.4

Observation

=

-~
144 -96 48 00 48 96 144 144 -9.6 48 00 48 96 144

Figure 10: Prediction visualization of ul0.
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1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361 2018-10-02_12:00 UTC | 24 hours Observation
1362 = — = 4 =

1363
1364
1365
1366
1367
1368
1369
1370 m -144 96 -48 00 48 9.6 144
1371
1372
1373
1374
1375
1376
1377
1378

1379 R ——— ]
1380 -144 96 -48 0.0 4.8 9.6 144 -144 96 —48 0.0 4.8 9.6 144

1381 2018-02-21_00:00 UTC | 120 hours Observation

1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Observation

Figure 11: Prediction visualization of v10.
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