
Published in Transactions on Machine Learning Research (05/2025)

Augmented Invertible Koopman Autoencoder
for long-term time series forecasting

Anthony Frion anthony.frion@hereon.de
Institute of Coastal Systems - Analysis and Modeling
Helmholtz-Zentrum Hereon, Geesthacht, Germany

Lucas Drumetz lucas.drumetz@imt-atlantique.fr
IMT Atlantique
Lab-STICC, UMR CNRS 6285, Brest, France

Mauro Dalla Mura mauro.dalla-mura@gipsa-lab.grenoble-inp.fr
Université Grenobles Alpes
Grenoble INP
GIPSA-lab, Grenoble, France
Institut Universitaire de France

Guillaume Tochon guillaume.tochon@lrde.epita.fr
LRE EPITA, Le Kremlin-Bicêtre, France

Abdeldjalil Aïssa El Bey abdeldjalil.aissaelbey@imt-atlantique.fr
IMT Atlantique
Lab-STICC, UMR CNRS 6285, Brest, France

Reviewed on OpenReview: https: // openreview. net/ forum? id= o6ukhJLzMQ

Abstract

Following the introduction of Dynamic Mode Decomposition and its numerous extensions,
many neural autoencoder-based implementations of the Koopman operator have recently
been proposed. This class of methods appears to be of interest for modeling dynamical
systems, either through direct long-term prediction of the evolution of the state or as a
powerful embedding for downstream methods. In particular, a recent line of work has
developed invertible Koopman autoencoders (IKAEs), which provide an exact reconstruction
of the input state thanks to their analytically invertible encoder, based on coupling layer
normalizing flow models. We identify that the conservation of the dimension imposed by the
normalizing flows is a limitation for the IKAE models, and thus we propose to augment the
latent state with a second, non-invertible encoder network. This results in our new model:
the Augmented Invertible Koopman AutoEncoder (AIKAE). We demonstrate the relevance
of the AIKAE through a series of long-term time series forecasting experiments, on satellite
image time series as well as on a benchmark involving predictions based on a large lookback
window of observations.

1 Introduction

A longstanding question in dynamical systems theory has been the ability to characterize the behavior of
dynamical systems from which one does not have access to the equations that govern their evolution, but only
to data snapshots measured from them. With the increasing computational resources and the development
of autodifferentiation frameworks, data-driven methods, and specifically deep neural networks, have taken
an increasing importance in dynamical systems modeling.

1

https://openreview.net/forum?id=o6ukhJLzMQ

Published in Transactions on Machine Learning Research (05/2025)

Among these neural network methods, an increasing part has been designed based on Koopman operator
theory, which means that they seek to find a representation of the state from which the evolution through time
can be described linearly. A popular class of such models is the Koopman autoencoder (Lusch et al., 2018),
which simply consists of a neural autoencoder along with a matrix that describes the linear dynamics in the
latent space of the encoder. Many flavors of the Koopman autoencoder seek to improve the long-term stability
of the linear latent dynamics through constrained parameterizations of its governing matrix (Bevanda et al.,
2022; Fan et al., 2022; Zhang et al., 2024) or additional loss function terms (Azencot et al., 2020; Frion et al.,
2023a). Some works propose to use the representation learned by a Koopman autoencoder in a broader
computation pipeline, for example as embeddings for a Transformer model (Geneva & Zabaras, 2022; Jin
et al., 2023) or in a data assimilation framework (Frion et al., 2024; Singh et al., 2024). In the present work,
we take interest in recent advancements (Meng et al., 2024; Jin et al., 2023) consisting in implementing the
Koopman autoencoder with a coupling layer normalizing flow as the encoder and the analytical inverse of this
flow as the decoder. We show that the induced constraint on the dimension of the latent space is detrimental
to the ability of the model to find a Koopman invariant subspace. As a remedy, we propose to learn a
second encoder in order to inflate the latent dimension of the model, without changing the architecture of
the decoder. The resulting model is our Augmented Invertible Koopman AutoEncoder (AIKAE).

We perform long-term forecasting experiments with this model in two settings. First, we work on regularly-
sampled time series with no missing observations, where one has access to numerous past observations in
order to compute a forecast. For this setting, we show that a delayed AIKAE, i.e. a AIKAE from which the
input space contains multiple consecutive observations rather than a single one, can obtain accurate results,
challenging a set of strong and recent baselines. Then, we work on satellite image time series, where there
are usually a lot of missing observations, resulting in irregularly-sampled data. In this context, we use a
pre-trained AIKAE model as a dynamical prior in a constrained variational data assimilation framework.
We show that this model performs better in this task than other Koopman autoencoder variants. The codes
associated to our experiments are available at https://github.com/anthony-frion/AIKAE.

The remainder of this paper is organized as follows: in section 2, we review Koopman operator theory and
the recent related neural network-based models. In section 3, we introduce our new architectures, including
the AIKAE architecture in subsection 3.1 and the delayed Koopman autoencoders in subsection 3.2. In
section 4, we show how an AIKAE can be used as a dynamical prior in a variational data assimilation cost.
Our experiments on long-term forecasting with a fixed lookback window and on assimilating satellite image
time series are respectively presented in sections 5 and 6. Section 7 concludes our work.

2 Background and related works

Originally introduced in Koopman (1931), Koopman operator theory has known a renewed interest in the
last few decades, starting from the work of Mezić (2005). We refer the interested reader to Brunton et al.
(2022) for an extensive review of Koopman operator theory and its applications. In a few words, this
theory states that any dynamical system, regardless of its inherent complexity, can be described by a linear
operator, although at the cost of an infinite dimension in the general case. More precisely, let us introduce
a (supposedly autonomous and deterministic) dynamical system from which the state at a given time can
be described by a n-dimensional variable x ∈ X ⊂ Rn. The system is defined by a discrete-time evolution
operator F : X → X . Then, assuming that the state of the system at an integer time t is xt ∈ X , we define

xt+1 ≜ F (xt). (1)

The Koopman operator K is such that, for any measurement function g : X → R and initial condition xt,

Kg(xt) ≜ (g ◦ F)(xt) = g(xt+1). (2)

Thus, in theory, one would simply need to have access to the expression of K for the canonical measurement
functions (i.e. the projections of the full state x onto its n variables) to be able to exactly characterize
the dynamical system F . However, the infinite dimension of the space of measurement functions means
that the Koopman operator is itself infinite dimensional, and therefore often difficult to describe in practice.

2

https://github.com/anthony-frion/AIKAE

Published in Transactions on Machine Learning Research (05/2025)

For this reason, most of the data-driven methods inspired by the Koopman operator consist in finding an
approximation of this operator on a specific d-dimensional set of measurement functions (g1, ..., gd). Ideally,
one would require this set to be invariant by the Koopman operator. This would mean that, for any of the
functions gi, there would exist coefficients ki,. such that, for any initial condition xt ∈ X ,

Kgi(xt) = gi(F (xt)) =
d∑

j=1
ki,jgj(xt). (3)

In this case, the action of the Koopman operator on the subspace spanned by (g1, ..., gd) could be simply
described by a matrix K ∈ Rd×d, built with the coefficients ki,j . For linear dynamical systems, the space
spanned by the canonical measurement functions of the system (i.e. the functions constituting the state
variables) is obviously invariant by the Koopman operator. For nonlinear dynamical systems, there are
some cases in which a finite-dimensional Koopman invariant subspace containing all the state variables (in
addition to some "augmentation" variables, required to obtain the linearity) are known. Examples of such
dynamical systems are detailed in e.g. Brunton et al. (2016) and Kutz et al. (2016). However, most of
the time the Koopman invariance has to be approximated to a certain degree, since in the general case
there exists no finite-dimensional Koopman invariant subspace for the system. Once a set of measurement
functions (g1, ..., gd) has been designed, one typically looks for the matrix K∗ that minimizes the residual
error of the multiplication by a matrix K. Formally, one can work with a set of data X = (x1, ...,xT), with
a time-shifted version Y = (x′

1, ...,x′
T), where, for any index 1 ≤ t ≤ T , x′

t = F (xt). Then, we seek to find

K∗ = arg min
K∈Rd×d

||Kg(X) − g(Y)||2, (4)

where we use the notations

g(X) =

 g1(x1) g1(x2) g1(xT)
...

... · · ·
...

gd(x1) gd(x2) gd(xT)

 , g(Y) =

 g1(x′
1) g1(x′

2) g1(x′
T)

...
... · · ·

...
gd(x′

1) gd(x′
2) gd(x′

T)

 . (5)

The optimization problem of equation 4 can be solved using the well-known least-squares solution:

K∗ = g(Y)(g(X))+, (6)

where ·+ denotes the Moore–Penrose pseudoinverse. It should be noted that this solution only accounts for
the advancement of one time step, i.e. one iteration of the discrete dynamics F . Hence, the obtained model
will generally perform poorly in long-term predictions. For this reason, while early Koopman-based methods
such as dynamic mode decomposition (Schmid, 2010) and extended dynamic mode decomposition (Williams
et al., 2015) compute the least-square solution of equation 6 (or a low-rank approximation of it), subsequent
neural network-based implementations generally leverage trajectories with multiple time steps in order to
train a model that produces accurate long-term predictions.

To sum up, many practical implementations of the Koopman operator consist in finding a set g : X → Rd

of d measurement functions (g1, ..., gd), each from the state space X to R, and a matrix K ∈ Rd×d that
approximates the restriction of the Koopman operator to the subspace spanned by these functions. We have
mentioned the importance of choosing a set of measurement functions that span an (approximately) Koopman
invariant subspace. Another important aspect of these methods is the ability to faithfully reconstruct an
input state x ∈ X from its embedding g(x) ∈ Rd, and to do the same for the time-advanced embeddings
Kg(x), in order to produce predictions for the evolution of the state vector from any initial condition. Thus,
one must be able to define a (possibly approximated) function f : Rd → X such that the composition f ◦ g
is (approximately) equal to the identity function. The reconstruction abilities of the recently introduced
classes of Koopman-based methods are discussed in Jin et al. (2024). We defer a detailed discussion of older
methods to appendix A and directly discuss Koopman autoencoders (KAEs), a class of methods introduced
by Lusch et al. (2018) and extended by numerous subsequent works, e.g. Otto & Rowley (2019); Li et al.
(2020); Azencot et al. (2020); Berman et al. (2023); Frion et al. (2024) among many others. These methods
model the Koopman invariant subspace through the means of a neural autoencoder, which does not directly

3

Published in Transactions on Machine Learning Research (05/2025)

include the state variables. A neural autoencoder simply consists of two neural networks, ϕ and ψ, each with
its set of trainable parameters, from which the composition is approximately equal to the identity function,
i.e. ψ ◦ ϕ(x) ≈ x. For KAE models, the encoder ϕ : Rn → Rd learns a non-trivial Koopman invariant set
of measurement functions, while the decoder ψ : Rd → Rn learns to reconstruct the state space from the
latent representation of ϕ. Depending on the implementations, the Koopman matrix K ∈ Rd×d is learned
alongside the parameters of ϕ and ψ or obtained separately through the resolution of a least squares problem
as in equation 4. The predictions of a KAE model after τ time steps are computed as:

xt+τ ≈ x̂t+τ = ψ(Kτϕ(xt)). (7)

While general neural autoencoder models were originally introduced for the purpose of reducing the dimension
of the input x (i.e. following the property d < n), in the context of finding a better representation of the
Koopman operator, it might actually be beneficial to learn a latent representation with a higher dimension
than the input (i.e. d > n). In practice, the latent dimension d should be regarded as an important parameter
for the design of a KAE model.

Although the Koopman autoencoder framework enables for a high expressivity in the search of a suitable
Koopman invariant subspace, it has the notable inconvenience that, in contrast to earlier methods, it com-
putes an approximated rather than an exact reconstruction of the input state. In practice, in the loss function
for training a Koopman autoencoder, one should include a reconstruction term to ensure that the components
ϕ and ψ indeed constitute an autoencoder. This loss function term is to be minimized in conjunction with
the prediction loss term and to the linearity loss term (see e.g. Lusch et al. (2018)), which leads to a complex
loss landscape, and possibly to difficulties in adjusting the relative weights of the loss function terms. For
this reason, a recent line of work (Jin et al., 2023; Meng et al., 2024; Jin et al., 2024) has investigated the
substitution of the neural autoencoder (ϕ, ψ), by an analytically invertible ϕ with its exact inverse ϕ−1. In
this case, the predictions of the model are given by:

xt+τ ≈ x̂t+τ = ϕ−1(Kτϕ(xt)). (8)

This results in a subclass of methods which we call invertible Koopman autoencoders (IKAEs). More
specifically, they proposed to implement ϕ with coupling-layer normalizing flow models (Dinh et al., 2014;
2017; Kingma & Dhariwal, 2018). These models have several interesting properties. Notably, they indeed
have an analytical inverse transformation, enabling an (algebraically) exact reconstruction1 of an encoded
state x. In addition, their Jacobians are tractably computable, which gives them a potential for stochastic
modeling. We provide more background on this and on normalizing flows in appendix B.

Another important property of coupling-layer normalizing flows is that they always preserve the dimension
of the input state, which is a necessity in order for the change of variable formula to be applicable. This may
be detrimental for IKAE models since, as previously mentioned, one often needs to inflate the dimension
of the state space in order to obtain a good approximation of the Koopman operator. To alleviate this
issue, the authors of the existing IKAE models have proposed to concatenate zeros to the state vector,
either before (Meng et al., 2024) or in-between (Jin et al., 2023) the coupling layers of the normalizing flow.
However, this approach means that the resulting model will learn a function that enables to reconstruct these
added zeros by design, while only the reconstruction of the true state variables is of interest. In addition, the
operation of concatenating zeros to the state vector prevents a direct application of the change-of-variable
formula from equation 19, hence reducing the possibilities for stochastic extensions.

3 Our proposed Koopman autoencoder architectures

3.1 Augmented invertible Koopman autoencoder

We mentioned in the previous section that the base IKAE architecture had the inconvenience of not enabling
to learn a large enough set of measurement functions to obtain a sufficiently good approximation of the

1It should be noted that the algebraic invertibility does not guarantee stable and accurate reconstructions in practice, since
normalizing flows can be subject to numerical ill-conditioning: see e.g. Lee et al. (2021) for an extensive discussion on the
conditioning of normalizing flow models.

4

Published in Transactions on Machine Learning Research (05/2025)

K

Figure 1: Graphical representation of the AIKAE architecture. ϕ is a coupling layer normalizing flow with
an analytical inverse ϕ−1, χ is a neural network (generally a simple multi-layer perceptron in practice) and
K is a matrix.

K

K

parallel
computation

Figure 2: Graphical representation of the prediction over 2 future timesteps with an AIKAE model. This can
be easily generalized to long-term predictions. As can be seen, the forecasting computations are all performed
in the latent space, and the predicted latent states can all be decoded in parallel for more efficiency.

Koopman operator. Thus, in this section, we propose a revised architecture in which the invertible encoder
of these models is augmented with a second neural encoder χ, which enables to capture a richer set of
measurement functions while keeping the invertibility of the model. We call the resulting architecture
an augmented invertible Koopman autoencoder (AIKAE). This architecture is represented graphically in
figure 1. Additionally, we represent the prediction over 2 time steps in figure 2, and the generalization to an
arbitrarily long T time steps prediction follows directly from it. Since χ does not have to be invertible, it
can be implemented with any neural network architecture.

The predictions performed by the AIKAE model over τ time steps from an observed initial condition xt can
be described as follows:

zt =
(

zi
t

za
t

)
=

(
ϕ(xt)
χ(xt)

)
(9)

5

Published in Transactions on Machine Learning Research (05/2025)

zt+τ =
(

zi
t+τ

za
t+τ

)
= Kτ zt (10)

x̂t+τ = ϕ−1(zi
t+τ) (11)

The innovation of the AIKAE model in comparison to the IKAE model is that we introduce a second
encoder χ : Rn → Rp, which we call the augmentation encoder. The latent state zt corresponding to xt is
thus obtained by concatenating an augmentation encoding za

t = χ(xt) to the invertible encoding zi
t = ϕ(xt)

produced by the unchanged normalizing flow model ϕ : Rn → Rn, as summarized in equation 9. Then, the
linear latent dynamics is defined by the multiplication of the full latent state zt by the matrix K, which
is now of size d = n + p, as summarized in equation 10. Hence, by adding an augmentation part to the
encoding, we indeed increase the number of measurement functions included in the latent space, and the
dimension of the approximated Koopman operator K as a consequence. Finally, in order to go back to the
input space after any desired number τ of iterations, one can decode the invertible part zi

t+τ of zt+τ , as
shown in equation 11. Note that, with our notations, the operations zi and za respectively correspond to
projections on the first n or the last p variables of z ∈ Rn+p.

From studying these equations, one can see that the augmentation part za
t of the initial latent state has no

influence on the direct reconstruction x̂t (i.e. the case where τ = 0), which is still algebraically exact thanks
to the analytical inverse ϕ−1 of ϕ. However, as evidenced by equation 10, za

t has an impact on the subsequent
invertible parts of the encoding through the multiplications by K if and only if za

t is not in the nullspace of
the upper-right block of K. An immediate corollary of this observation is that the upper-right block of K
should be nonzero in order for some information to flow from za

t to zi
t+1 and subsequent invertible encodings.

In fact, should the last p columns of K be zero, then the augmentation part za
t would have no influence on the

predictions in the state space, which means that the whole model would be equivalent to a non-augmented
IKAE model. Thus, we have the intuitive result that the AIKAE architecture is a generalization of the
IKAE architecture. In addition, one may interpret the invertible and augmentation parts of an encoding
zt as a disentanglement between the "static features" and the "dynamical features". This interpretation is
particularly interesting when performing data assimilation using the methods of section 4. In practice, the
output size p of χ determines the latent size d = n+p of an AIKAE, making it an important hyperparameter,
similarly to the latent dimension d itself for non-invertible KAE models.

In order to characterize the predictions by an AIKAE in a more compact way, we introduce the global encoder
Φ : Rn → Rd which corresponds to the concatenation of the invertible encoder ϕ and the augmentation
encoder χ, i.e. zt = Φ(xt). Correspondingly, we have that the global decoder Φ−1 : Rd → Rn consists in
the application of ϕ−1 on the invertible part (i.e. the first n variables) of a latent vector. Thus, equations 9
to 11 can now be summarized as

x̂t+τ = Φ−1(Kτ Φ(xt)). (12)
As the notations suggest, Φ−1 is still an analytical left inverse of Φ, as Φ−1 ◦ Φ corresponds to the identity
function. One should however be aware that the reversed composition Φ ◦ Φ−1 is not an identity function
since the information on the augmentation part of the encoding is dismissed when computing Φ−1. Thus,
Φ−1 is not a right inverse of Φ.

3.2 Delayed Koopman autoencoders

We now discuss delayed Koopman autoencoders, which simply consist in KAE models that take as their
input state a concatenation of m consecutive observed states from a dynamical system rather than a state
vector corresponding to a specific time index. We refer to this approach as a delay embedding. Formally,
when observing a long time series (x0, ...,xT) ∈ X T +1, rather than directly using a state xt ∈ Rn as the
input to a KAE, one may alternatively use

yt =

 xtm

...
xtm+m−1

 ∈ Rn′ (13)

as the input to the model. Then, the dimension of the input space of the model will be n′ = nm. Thus,
in order to avoid manipulating a very high-dimensional input state (taking into account the fact that the

6

Published in Transactions on Machine Learning Research (05/2025)

Figure 3: Graphical representation of an AIKAE model with delay embedding of the state. The model is
the same as in figure 1, except that the input (and output) of the model now contains multiple consecutive
states x, stacked along a single dimension.

latent space should be at least as big as the input space in order for the encoder to be invertible), it is more
convenient to do so when the original dimension n of the input space X is small. In this regard, the case of
univariate time series (i.e. n = 1) is of particular interest. A graphical representation of an AIKAE model
using this delay embedding strategy is shown on figure 3. This representation can obviously be generalized
to predictions over multiple time steps (of the variable y, each representing m time steps for the original
variable x), as in figure 2.

In practice, using such a delay embedding of the state may increase the predictability when the knowledge of
a single observation xt is not sufficient to predict the subsequent states, i.e. in cases where xt is not actually
the state variable of a dynamical system. The use of delay embedding is commonplace in data-driven signal
processing, as the well-known Takens theorem (Takens, 1981), guarantees an increased predictability of the
system when the size of the delay embedding increases.

In particular, the use of delay embedding for DMD was proposed by Tu et al. (2014). Along with the subse-
quent works of e.g. Le Clainche & Vega (2017); Kamb et al. (2020); Yuan et al. (2021), they demonstrated the
ability to model a higher number of Koopman modes, and an increased robustness to noise in the observed
data. However, to the best of our knowledge, our work is the first to propose using a large delay embedding
for a neural network-based implementation of the Koopman operator. Experiments involving this approach
are presented in section 5.

4 AIKAE as a variational data assimilation prior

Variational data assimiliation consists in inferring the full state of a system over time, by leveraging a
set of partial and noisy observations as well as some prior knowledge on the dynamical behavior of the
system, often in the form of a dynamical model. Concretely, the assimilated state is obtained by minimizing
a variational cost that comprises a term of fidelity to the observed data and a term of fidelity to the
prior knowledge. This cost is minimized using some form of gradient descent algorithm. Traditionally, the
prior knowledge comes in the form of a complex physical model, which can be differentiated using adjoint
methods (see e.g. Bannister (2017)). A rich line of work has recently investigated the minimization of a
variational cost using autodifferentiation frameworks, either by re-implementing physical models in such
frameworks (see Gelbrecht et al. (2023) for a review) or by substituting this physical prior by a data-driven
one (Nonnenmacher & Greenberg, 2021; Fablet et al., 2021). We refer the interested reader to Cheng et al.
(2023) for a review of the methods combining machine learning and data assimilation.

Here, we show how to use a pre-trained AIKAE model as a prior for variational data assimilation, taking
inspiration from the work of Frion et al. (2024). In a few words, this method consists in finding the initial
latent state of the model that enables to most closely fit a set of observed states with associated timestamps.

7

Published in Transactions on Machine Learning Research (05/2025)

Although it was originally introduced for regular (non-invertible) KAE models, it can be straightforwardly
adapted to IKAE and AIKAE models, and thus we hereafter explicit the AIKAE case only.

Suppose that we have at disposal a trained AIKAE model, with its components (ϕ, χ) = Φ and K. In
addition, we observe a trajectory of data through a set of T points (xt0 , ...,xtT

), with the associated time
indexes (t0, ..., tT) ∈ NT +1, supposed to be arranged in increasing order with t0 = 0 for convenience. Note
that the timestamps could be chosen to be non-integers if we use the matrix logarithm of K, as explained
in Frion et al. (2024). In order to fit the observed datapoints, one can solve the following optimization
problem:

z∗
0 = min

z0∈Rd

T∑
i=0

||Φ−1(Ktiz0) − xti ||2. (14)

This method corresponds to a strong-constrained variational data assimilation scheme, where the chosen
dynamical prior is the pre-trained AIKAE model. In practice, it can be solved using autodifferentiation,
leveraging the fact that the prior is fully differentiable. Once the (approximated) solution z∗

0 is found, one
can query the predicted state at any time t by simply computing

x̂t = Φ−1(Ktz∗
0). (15)

Then, depending on the time steps t for which we are interested in the predictions, this framework may
enable to solve denoising, interpolation, forecasting or all these tasks at once. In particular, the denoising
capabilities of a well-trained model stem from the assumption that any trajectory produced by this model
is physically consistent. Thus, the model is expected to be unable to exactly fit a set of noisy observations
(xt0 , ...,xtT

) through equation 14, but to instead produce the physically consistent trajectory that best
matches these points, which should remove the noise in the observations.

In order to adapt this method to a pre-trained IKAE model with components ϕ and K, one would simply
have to substitute ϕ to Φ in equations 14 and 15. Interestingly, since the latent space of an IKAE is in
bijection with the state space, the exact equality of its trajectory to an observation at one given timestamp
deterministically gives the remaining of the time series. To illustrate this remark, suppose that we constrain
the equality of the predicted initial state to the initial observation in equation 14. Then, we can solve

z∗
0 = min

z0∈Rd

T∑
i=0

||Φ−1(Ktiz0) − xti
||2

s.t. Φ−1(z0) = x0.

(16)

For an AIKAE, we have that the constraint Φ−1(z0) = x0 is respected if and only if zi
0 = ϕ(x0). Thus,

equation 16 is equivalent to an unconstrained optimization problem on za
0 ∈ Rp. If K has a nonzero upper-

right block (i.e. if different values of za
0 can influence the invertible parts of the subsequent latent states in

different ways), then multiple trajectories are admissible, making this problem nontrivial. In contrast, when
adapting equation 16 for an IKAE, since there is no augmentation encoder, the only possible value for z0 is
z∗

0 = ϕ(x0), which is the same one as in the direct inference in equation 8, taking no account of any of the
subsequent observations. Overall, one can see that an AIKAE can produce several different trajectories that
exactly match an observed initial state while an IKAE is not able to do so.

5 Long-term time series forecasting experiments

In this section, we present experiments on a set of popular long-term time series forecasting datasets. Some-
times called the "Informer benchmark" as a reference to the work of Zhou et al. (2021) that popularised
it, it is comprised of the ETT datasets (including the subsets ETTh1, ETTh2, ETTm1, ETTm2), ECL,
Exchange, Traffic and Weather. These datasets have been extensively used in the last few years to evaluate
the performance of the recently introduced long-term time series forecasting models, including Transform-
ers (Zhou et al., 2022; Nie et al., 2023), convolution-based methods (Wu et al., 2023) and linear models (Zeng
et al., 2023). We refer the interested reader to Wang et al. (2024) for a recent assessment of the rapidly
evolving state of the art on this benchmark. The long-term time series forecasting task consists in predicting

8

Published in Transactions on Machine Learning Research (05/2025)

the state of a time series over a prediction length of TP timesteps, using as input a lookback window of
TL preceding states. In practice, TL and TP are typically in the order of 100 time steps. Although the
considered datasets consist in multivariate time series, it has been observed that using the information of
a single variable over all time steps in a lookback window enables to obtain better performance than when
considering the information of all variables at a single time step. For this reason, some of the best performing
methods consist in either only one single univariate model that is used on every variable of the dataset (Zeng
et al., 2023; Li et al., 2023), or in one univariate model for each variable (Nie et al., 2023). In particular, it
has been repeatedly observed (see e.g. Zeng et al. (2023); Li et al. (2023); Toner & Darlow (2024); Han et al.
(2024)) that simple linear models significantly outperform early Transformer models such as Informer (Zhou
et al., 2021) on this benchmark. In addition, as underlined by Wang et al. (2024), sequential models such
as long short-term memory networks (LSTM, Hochreiter (1997)) typically struggle to capture the long-term
relationships compared to models that process the lookback window all at once. Using these insights, we
propose to solve the long-term time series forecasting task with univariate delayed Koopman autoencoders,
as described in subsection 3.2, rather than with a classical KAE that would use a single (multivariate) obser-
vation as its state space. Interestingly, a delayed KAE model may be seen as a generalization of the simplest
linear model proposed by Zeng et al. (2023). In a few words, this linear model consists in directly finding a
matrix W ∈ RTP ×TL representing a linear relationship between the observed lookback window X ∈ RTL and
the corresponding output Y ∈ RTP . Although W is found through stochastic gradient descent, this method
is reminiscent of DMD with a delay embedding. Indeed, when supposing TL = TP , these two approaches
are equivalent. In this regard, our delayed KAE approach is an additional generalization where the linear
relationship is computed in a latent space defined by a nonlinear encoding through ϕ of the delay embedded
state, rather than directly on this state. Thus, it will be of particular interest to assess whether the addi-
tion of a nonlinear encoder with an IKAE or AIKAE model enables to improve the forecasting performance,
knowing that linear models have been observed to perform surprisingly well for the datasets that we consider.

We compare our delayed IKAE and AIKAE models against a set of strong and recent baselines representing
several popular classes of models for long-term time series forecasting:

• The DLinear model (Zeng et al., 2023) is a variant of the previously discussed linear model, which
leverages a trend-season decomposition of the lookback observations rather than the direct lookback
window of observations.

• PatchTST (Nie et al., 2023) is a Transformer model, which decomposes the input time series into
patches each containing information on several time indexes. It also treats each channel of the
multivariate time series independently instead of mixing their information.

• Timesnet (Wu et al., 2023) is a convolution-based method. It consists in building 2-dimensional
representations of the time series by reshaping the input data according to its main frequencies, and
processing these representations using convolutional neural networks.

• iTransformer (Liu et al., 2024) is a Transformer model in which the feature and time dimensions are
switched, which has been shown to enable better performance than all of the previously proposed
variants of the Transformer model.

Following standard evaluation conditions (see e.g. Wu et al. (2023); Liu et al. (2024)), we test our IKAE
and AIKAE models with a lookback window of size TL = 96, and 4 lengths TP of the prediction window:
96, 192, 336, 720. Thus, the size of the invertible part of the latent space is TL = 96. For AIKAE, the
augmentation part of the latent space is of size 32, leading to a global latent space of size 128. We use
reversible instance normalization (RevIN, Kim et al. (2021)) for IKAE and AIKAE, as it was reported to
improve the performance of multiple long-term time series forecasting models. RevIN performs a channel-
wise normalization of the input data, with 2 learnable parameters for each channel. In order to ensure the
reproducibility of our results, we use a fixed random seed to initialise all IKAE and AIKAE models. The
training is performed with the Adam algorithm with a learning rate of 10−3 and momentum parameters
β = (0.9, 0.999). A detailed account of the architectures and hyperparameter search for our models is
deferred to appendix D.

9

Published in Transactions on Machine Learning Research (05/2025)

Table 1: Forecasting mean squared errors (MSEs) and mean absolute errors (MAEs) for various models and
long-term forecasting tasks. For each dataset, we use a lookback window of size TL = 96 and prediction
horizons TP of sizes 96, 192, 336, 720. IKAE and AIKAE are our own implementations, while we use the
results reported by Liu et al. (2024) for all other models. For each task and metric, the best result is in bold
and the second best result is underlined.

Model IKAE AIKAE iTransformer PatchTST TimesNet DLinear
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

EC
L

96 0.159 0.252 0.153 0.247 0.148 0.240 0.181 0.270 0.168 0.272 0.197 0.282
192 0.173 0.265 0.167 0.259 0.162 0.253 0.188 0.274 0.184 0.289 0.196 0.285
336 0.189 0.282 0.184 0.277 0.178 0.269 0.204 0.293 0.198 0.300 0.209 0.301
720 0.227 0.313 0.223 0.310 0.225 0.317 0.246 0.324 0.220 0.320 0.245 0.333

Tr
affi

c 96 0.460 0.313 0.431 0.297 0.395 0.268 0.462 0.295 0.593 0.321 0.650 0.396
192 0.476 0.317 0.449 0.302 0.417 0.276 0.466 0.296 0.617 0.336 0.598 0.370
336 0.496 0.327 0.467 0.311 0.433 0.283 0.482 0.304 0.629 0.336 0.605 0.373
720 0.524 0.343 0.499 0.329 0.467 0.302 0.514 0.322 0.640 0.350 0.645 0.394

W
ea

th
er 96 0.157 0.209 0.160 0.211 0.174 0.214 0.177 0.218 0.172 0.220 0.196 0.255

192 0.193 0.245 0.195 0.245 0.221 0.254 0.225 0.259 0.219 0.261 0.237 0.296
336 0.237 0.281 0.237 0.281 0.278 0.296 0.278 0.297 0.280 0.306 0.283 0.335
720 0.317 0.333 0.317 0.333 0.358 0.347 0.354 0.348 0.365 0.359 0.345 0.381

ET
T

h1

96 0.386 0.399 0.386 0.398 0.386 0.405 0.414 0.419 0.384 0.402 0.386 0.400
192 0.437 0.433 0.435 0.432 0.441 0.436 0.460 0.445 0.436 0.429 0.437 0.432
336 0.480 0.457 0.482 0.459 0.487 0.458 0.501 0.466 0.491 0.469 0.481 0.459
720 0.575 0.522 0.561 0.516 0.503 0.491 0.500 0.488 0.521 0.500 0.519 0.516

ET
T

h2

96 0.301 0.348 0.300 0.346 0.297 0.349 0.288 0.338 0.340 0.374 0.333 0.387
192 0.365 0.394 0.365 0.394 0.380 0.400 0.388 0.400 0.402 0.414 0.477 0.476
336 0.394 0.422 0.387 0.416 0.428 0.432 0.426 0.433 0.452 0.452 0.594 0.541
720 0.414 0.443 0.429 0.450 0.427 0.445 0.431 0.446 0.462 0.468 0.831 0.657

ET
T

m
1 96 0.328 0.364 0.322 0.360 0.334 0.368 0.329 0.367 0.338 0.375 0.345 0.372

192 0.365 0.389 0.364 0.387 0.377 0.391 0.367 0.385 0.374 0.387 0.380 0.389
336 0.390 0.405 0.390 0.406 0.426 0.420 0.399 0.410 0.410 0.411 0.413 0.413
720 0.463 0.443 0.465 0.443 0.491 0.459 0.454 0.439 0.478 0.450 0.474 0.453

ET
T

m
2 96 0.184 0.266 0.185 0.267 0.180 0.264 0.175 0.259 0.187 0.267 0.193 0.292

192 0.255 0.313 0.246 0.307 0.250 0.309 0.241 0.302 0.249 0.309 0.284 0.362
336 0.297 0.343 0.303 0.344 0.311 0.348 0.305 0.343 0.321 0.351 0.369 0.427
720 0.382 0.393 0.385 0.393 0.412 0.407 0.402 0.400 0.408 0.403 0.554 0.522

The full results are reported in table 1. The Exchange dataset is excluded from these results since it is the
only dataset for which none of the tested models is able to clearly beat the persistence, which is a trivial
method consisting in copying the last observed value from the lookback window to the whole prediction
window. Classically, models that do not perform better than persistence are considered to contain no
relevant information for the task at hand. Thus, we consider comparisons between methods that do not
beat the persistence to be irrelevant. Extended results including the Exchange dataset and the persistence
baseline can be found in appendix E.1.

From table 1, one can see that the AIKAE model clearly outperforms the IKAE model on the datasets
for which the amount of training data is the highest, i.e. ECL and Traffic. In contrast, for the other
datasets, AIKAE and IKAE obtain very similar results, which suggests that inflating the latent space with
an augmentation encoding brings no improvement to the IKAE. Besides, both the IKAE and AIKAE models
obtain very competitive performance against the other methods, ranking first or second for numerous tasks.

Our results seem promising considering the low numbers of parameters and overall simplicity of our methods.
We emphasize that the number of parameters of our models depend on the lookback window length TL, but
not on the prediction length TP , since longer predictions are simply obtained by autoregressive multiplications
in the latent space. Thus, our models evaluated in table 1 have at most 110K parameters for IKAE and
175K parameters for AIKAE (for some tasks the parameter count is lower, due to the hyperparameter search
described in appendix D). This is two orders of magnitude below most of the Transformer models, which have

10

Published in Transactions on Machine Learning Research (05/2025)

tens of millions of parameters (see e.g. Zeng et al. (2023)) and comparable to linear models such as DLinear,
which has around 140K parameters for TP = 720. Besides, extensions of our models with classical time series
processing tools such as the Fourier transform (Zhou et al., 2022) or seasonal-trend decomposition Zeng et al.
(2023) might be interesting directions to study in order to further improve the results.

Additional results on this benchmark can be found in the appendices. Specifically, in appendix E.2, we study
the influence of RevIN and of different encoder architectures, notably establishing the superiority of AIKAE
to the IKAE with zero padding proposed in Meng et al. (2024). In appendix E.3, we study the performance
of IKAE and AIKAE with varying lookback window sizes and show that, like linear models and in contrast
to many Transformer models, their performance consistently improves with an increasing lookback window
size. Our observation that the performance of older Transformer methods stagnates or even decreases as
the lookback window size increases is consistent with the results of numerous previous works, e.g. Zeng
et al. (2023); Nie et al. (2023); Liu et al. (2024). In appendix E.4, we study the sensitivity of the IKAE and
AIKAE models to the random initialization of their parameters, and show that this sensitivity is moderate. In
appendix E.5, we discuss the sensitivity of the performance with regards to some hyperparameters, namely
the learning rate, the number of coupling layers of the invertible encoder and the width of these layers.
Finally, in appendix E.6, we plot some predictions made by our models, along with the associated context
windows and groundtruth.

6 Variational data assimilation on satellite image time series

We now move on to a training task involving long-term forecasting of satellite image time series at the pixel
level. For reasons which will be shortly explained, this kind of data often involves missing observations,
making it more challenging to handle than the time series data from section 5. Thus, contrarily to our
approach for these previous experiments, we will not make use of the delay embedding strategy explained in
section 3.2. Instead, we will train more classical Koopman autoencoder models, which we will then use as
dynamical priors in the testing phase, using the assimilation approach described in section 4.

We work with a dataset of Sentinel-2 image time series, introduced by Frion et al. (2023b) and used as
a variational data assimilation benchmark by Frion et al. (2024). These data differ from the time series
datasets of the previous section in several ways. Most importantly, satellite images have multiple missing
observations that are due to the presence of clouds between the observation satellite and the surface of the
Earth. Since we are usually solely interested in modeling the surface, we find ourselves with the dilemma
of either directly processing an irregularly sampled time series or interpolating the available observations
as a pre-processing step. In the first case, the time series will be significantly more difficult to process.
In particular, one cannot directly observe a lookback window of many previous observations in order to
make a long-term prediction. In the second case, the time series is significantly easier to process, yet it is
made partly synthetic by the interpolation pre-processing step, which will be learned by the model alongside
the true distribution of the satellite data. Fortunately, as underlined by Frion et al. (2024), the Koopman
autoencoder framework is more flexible than most time series processing methods thanks to its ability to learn
an underlying continuous representation of the modeled system. However, in order to retain this flexibility,
one cannot work with a large delay embedding as described in section 3.2, or use the other models from
the benchmark of section 5. Instead, we will work with a more classical model, from which the input space
is built out of only two consecutive observations, the second of which being used to compute a first order
derivative. Indeed, as underlined in Frion et al. (2024), the access to a first order derivative enables to more
easily compute short-term predictions since, when the evolution is smooth enough, one can already obtain a
reasonably good approximation by using it to compute an explicit Euler scheme over one time step. Machine
learning-based autoregressive forecasting models based on two previous observations are commonplace for
tasks such as weather prediction: see e.g. Lam et al. (2023) and Oskarsson et al. (2024).

We now describe the forecasting benchmark that was introduced by Frion et al. (2024), on which we will
test several variants of Koopman autoencoder models including our new AIKAE architecture. We have at
disposal satellite images from two spatial areas: the forest of Fontainebleau and the forest of Orléans. The
data from Fontainebleau, which is used as a training area, is regularly sampled in time thanks to a pre-
processing Cressman interpolation step. To train a KAE model as a dynamical prior, we use Ttrain = 242

11

Published in Transactions on Machine Learning Research (05/2025)

time steps of data, from an area of 150 × 150 pixels. The Sentinel-2 images that compose the dataset
are multispectral, which means that they contain a richer spectral information than classical RGB images.
Namely, the available information for each pixel and time step is a reflectance vector of size L = 10, including
the classical red-green-blue spectral bands as well as 7 bands in the infrared domain. We emphasize that we
work at the pixel level, which means that the input space of a model corresponds to the reflectance vector
(and its first order derivative) of a single pixel, and that the pixel trajectories are assumed to all correspond
to a same dynamical system.

After training, the trained model is used as a dynamical prior in a variational data assimilation framework,
as discussed in section 4. The objective is to accurately predict the Ttest = 100 steps of data that follow
the window of training data, by leveraging the observations of this training window. This task is declined
on the two areas discussed before. For the Fontainebleau training area, the time series is again regularly
sampled in time, and only the capacity of the model to extrapolate to unseen time indexes is assessed. For
the Orléans area, the data are not interpolated as a pre-processing step, and are thus irregularly sampled
in time. In this case, all observations correspond to actual satellite measurements. The extrapolation task
on this area tests not only the ability of the trained KAE model to extrapolate in time, but also to transfer
its learned knowledge to a new spatial area with differing dynamics. Besides, the irregular sampling pattern
of the observed data for this task is the precise reason for which one cannot resort to a model with delay
embedding in this experiment.

It should be noted that directly training a model on irregularly-sampled data is preferable and that it is
possible to do so with a KAE model, as demonstrated by Frion et al. (2024). However, we restrain our
study to the case where training is performed on interpolated data in order to match the conditions of the
main benchmark proposed by the authors. For this benchmark, we compare 4 variants of the Koopman
autoencoder model:

• The base KAE model with 2 multilayer perceptron (MLP) networks as its encoder ϕ and decoder
ψ, as described in Frion et al. (2024).

• An IKAE model leveraging a coupling layer normalizing flow model as its analytically invertible
encoder, as proposed by Meng et al. (2024). More precisely, the encoder is implemented with the
NICE architecture (Dinh et al., 2014). Note that substituting the NICE model by a non-volume
preserving encoder such as RealNVP (Dinh et al., 2017) resulted in a less stable training procedure,
constraining a reduction of the learning rate and leading to worse performance.

• An IKAE with zero padding, as suggested by Meng et al. (2024) (abbreviated IKAE-zp). This
model is identical to the previous one except for the concatenation of zeros to the input state before
entering the normalizing flow encoder, hence inflating the dimension of the latent space.

• Our AIKAE model, as described in subsection 3.1, where the latent dimension is inflated by the
means of learning a second, non-invertible encoder χ (implemented as a MLP) rather than applying
a fixed zero padding.

The size of the input space is n = 2L = 20, and the dimension is augmented by 16, leading to a latent
space of size d = 36, for IKAE-zp and AIKAE. The latent dimension is set to d = 32 for KAE, and
constrained to d = n by design for IKAE. For each of these models, we train five instances corresponding to
five parameter initializations with fixed random seeds. Following the recommendations of Frion et al. (2024),
we design loss functions based on 4 terms: the prediction term, the reconstruction term, the linearity term
and an additional orthogonality term. While the first 3 of these loss terms were proposed by Lusch et al.
(2018) and are standardly used by multiple KAE implementations, the orthogonality term was proposed as
a way to improve the long-term stability of the predictions, by ensuring that the norms of the latent states
stay approximately constant through time. As previously mentioned, the 3 tested invertible models are
trained without the reconstruction loss term since their reconstructions are exact by design. The training is
performed with the Adam algorithm, with a learning rate of 10−3. We use weight decay with a coefficient
of 10−6 for training the IKAE-zp and AIKAE models. For the other 2 models, we present results obtained
with no weight decay since the usage of weight decay did not improve the performance.

12

Published in Transactions on Machine Learning Research (05/2025)

Table 2: Mean squared errors (MSEs) and mean absolute errors (MAEs) obtained by averaging the perfor-
mance of 5 instances of each model. The models are pre-trained on the Fontainebleau area, and then used as
variational data assimilation priors, following equation 17. The KAE model was the only one to be subject
to overfitting when assimilating the Orléans data, hence the additional row "Orléans (overfit)".

Model KAE IKAE IKAE-zp AIKAE
Metric MSE MAE MSE MAE MSE MAE MSE MAE

Fontainebleau 0.00112 0.0213 0.00128 0.0224 0.00106 0.0212 0.00108 0.0204
Orléans (optimal) 0.00346 0.0384 0.00382 0.0399 0.00324 0.0366 0.00297 0.0356
Orléans (overfit) 0.00403 0.0419 N/A N/A N/A N/A N/A N/A

The testing procedure leverages the methods of section 4 by using the pre-trained model as a variational prior
for data assimilation, with the motivation of producing a long-term forecast from an observed trajectory.
Typically, for evaluating a trained AIKAE instance with components Φ and K on long-term forecasting the
Fontainebleau data, we instantiate equation 14 as

z∗
0 = min

z0∈Rd×N×N

Ttrain∑
t=0

||Φ−1(Ktz0) − xt||2, (17)

where xt ∈ RL×N×N corresponds to the reflectance over an area of N2 = 100 × 100 pixels, which is included
in the training data. Concretely, since the prior is a pixelwise model, this can be seen as N × N separate
optimization problems. One could however perform a joint optimization with an additional spatial coherence
prior, as proposed by Frion et al. (2024). After z∗

0 is obtained, the forecasting mean squared error is computed
as

MSE = 1
Ttest

Ttrain+Ttest∑
t=Ttrain+1

||Φ−1(Ktz∗
0) − xt||2, (18)

and the mean absolute error is computed in an analogous way. This procedure can be simply adapted to
the other KAE variants by replacing Φ and Φ−1 by ϕ, ψ or ϕ−1 when necessary. The procedure is similar
for the Orléans area, except that the assimilation cost and the metrics are computed only over time indexes
where groundtruth observations are available.

Table 2 displays the obtained results. Additionally, in appendix F.3, we display and analyze forecasting re-
sults associated to this task for a randomly selected pixel. When extrapolating on the training Fontainebleau
area, one can see that the performances of the models are relatively even, except for the IKAE model. Its
worse performance may be attributed to the reduced size of its latent space, which limits its ability to find
a proper linear representation of the system. The IKAE-zp variant seems to partially alleviate this issue as
it obtains significantly better performance. The test Orléans area exhibits a stronger contrast between the
tested models. On this area, one can see that the AIKAE model performs best, followed by the IKAE-zp.

Interestingly, the base KAE model was the only variant which was observed to overfit on its assimilated data
on the Orléans area. In other words, the latent initial state z∗

0 from equation 17 is not necessarily the best
initial state for minimizing the forecasting error of equation 18. Concretely, as explained in section 4, we find
an approximation to z∗

0 by minimizing the associated variational cost using automatic differentiation with
the Adam optimizer. We observe that the best extrapolation performance is obtained by using a relatively
small learning rate and fewer gradient descent steps, resulting in a suboptimal minimization of the variational
cost of equation 17. In contrast, for all other models, the best extrapolation result is always obtained by
minimizing the variational cost, which means that the assimilation scheme does not overfit the assimilated
data. To illustrate this difference, we report two results for the KAE model on the Orléans area: the first one
(optimal) is with the optimal variational assimilation hyperparameters, as reported by Frion et al. (2024).
The second one (overfit) is with the hyperparameters that minimize the cost of equation 17. The tendency
to overfit on the assimilated data is a critical flaw in practice since, in real conditions, one cannot fit the
assimilation hyperparameters using future data which are actually not known, and one will simply choose the
hyperparameters that best fit the available data. Since the conditions for training and testing all 4 models

13

Published in Transactions on Machine Learning Research (05/2025)

are very similar, the fact that the other models do not overfit the assimilation data should be attributed to
an increased regularity enabled by their invertible encoders.

Additional results on AIKAE models for satellite image time series forecasting are presented in appendix F.
More precisely, we study the influence of the size of the augmentation encoding za

t in section F.1, and
variants of the linearity loss in section F.2. In a few words, the conclusions of these experiments are that 1)
the performance of AIKAE models increases with the augmentation size until it eventually decreases due to
overfitting, and 2) it is important to compute the linearity loss over both the invertible and the augmentation
parts of the AIKAE encoding, with an unweighted least squares implementation.

7 Conclusion

We have experimentally shown that, for the recently introduced invertible Koopman autoencoder (IKAE)
models, the analytical invertibility of the encoder can limit the practical ability to learn a Koopman invari-
ant subspace, i.e. a latent space in which the system dynamics can be described linearly. Consequently, we
proposed to augment these models with a new non-invertible encoder, resulting in our model: augmented
invertible Koopman autoencoder (AIKAE). We have shown how recently proposed variational data assimi-
lation schemes leveraging Koopman autoencoder models can be easily extended to the AIKAE architecture,
enabling to work in difficult contexts where the observed data may be incomplete and noisy. Additionally, we
proposed to design Koopman autoencoder models with a delay embedding, in order to solve long-term time
series forecasting tasks in ideal settings where the data is regularly sampled with no missing information,
and a large number of past states are observed. We showed that the AIKAE model performs equally or
better than the IKAE, both in these ideal settings and in more difficult settings related to satellite image
time series. Additionally, we showed that our AIKAE with delay embedding performs competitively with
recent concurrent methods on a popular long-term time series forecasting benchmark.

A potential direction for future work would be to design stochastic Koopman autoencoder models, leverag-
ing the likelihood computation abilities brought by the coupling-layer normalizing flows that compose the
(augmented) invertible Koopman autoencoders. Besides, regarding our delay embedding strategy, it would
be of interest to test alternative approaches where the input to the model is a condensed representation of
several time steps (e.g. using mean pooling or convolution) rather than a direct stack of these steps, in order
to reduce the computational cost as well as to increase the robustness to missing data.

References
Omri Azencot, N Benjamin Erichson, Vanessa Lin, and Michael Mahoney. Forecasting sequential data using

consistent koopman autoencoders. In International Conference on Machine Learning, pp. 475–485. PMLR,
2020.

Ross N Bannister. A review of operational methods of variational and ensemble-variational data assimilation.
Quarterly Journal of the Royal Meteorological Society, 143(703):607–633, 2017.

Nimrod Berman, Ilan Naiman, and Omri Azencot. Multifactor sequential disentanglement via structured
koopman autoencoders. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=6fuPIe9tbnC.

Petar Bevanda, Max Beier, Sebastian Kerz, Armin Lederer, Stefan Sosnowski, and Sandra Hirche. Diffeo-
morphically learning stable koopman operators. IEEE Control Systems Letters, 6:3427–3432, 2022.

Steven L Brunton, Bingni W Brunton, Joshua L Proctor, and J Nathan Kutz. Koopman invariant subspaces
and finite linear representations of nonlinear dynamical systems for control. PloS one, 11(2):e0150171,
2016.

Steven L Brunton, Marko Budišić, Eurika Kaiser, and J Nathan Kutz. Modern koopman theory for dynamical
systems. SIAM Review, 64(2):229–340, 2022. doi: 10.1137/21M1401243.

14

https://openreview.net/forum?id=6fuPIe9tbnC

Published in Transactions on Machine Learning Research (05/2025)

Sibo Cheng, César Quilodrán-Casas, Said Ouala, Alban Farchi, Che Liu, Pierre Tandeo, Ronan Fablet, Didier
Lucor, Bertrand Iooss, Julien Brajard, et al. Machine learning with data assimilation and uncertainty
quantification for dynamical systems: a review. IEEE/CAA Journal of Automatica Sinica, 10(6):1361–
1387, 2023.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation.
arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In International
Conference on Learning Representations, 2017. URL https://openreview.net/forum?id=HkpbnH9lx.

Ronan Fablet, Bertrand Chapron, Lucas Drumetz, Etienne Mémin, Olivier Pannekoucke, and François
Rousseau. Learning variational data assimilation models and solvers. Journal of Advances in Model-
ing Earth Systems, 13(10):e2021MS002572, 2021.

Fletcher Fan, Bowen Yi, David Rye, Guodong Shi, and Ian R Manchester. Learning stable koopman embed-
dings. In 2022 American Control Conference (ACC), pp. 2742–2747. IEEE, 2022.

Anthony Frion, Lucas Drumetz, Mauro Dalla Mura, Guillaume Tochon, and Abdeldjalil Aïssa-El-Bey. Lever-
aging neural koopman operators to learn continuous representations of dynamical systems from scarce
data. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5. IEEE, 2023a.

Anthony Frion, Lucas Drumetz, Guillaume Tochon, Mauro Dalla Mura, and Abdeldjalil Aissa El Bey. Learn-
ing sentinel-2 reflectance dynamics for data-driven assimilation and forecasting. In 2023 31st European
Signal Processing Conference (EUSIPCO), pp. 1390–1394. IEEE, 2023b.

Anthony Frion, Lucas Drumetz, Mauro Dalla Mura, Guillaume Tochon, and Abdeldjalil Aissa El Bey. Neural
koopman prior for data assimilation. IEEE Transactions on Signal Processing, 2024.

Maximilian Gelbrecht, Alistair White, Sebastian Bathiany, and Niklas Boers. Differentiable programming
for earth system modeling. Geoscientific Model Development, 16(11):3123–3135, 2023.

Nicholas Geneva and Nicholas Zabaras. Transformers for modeling physical systems. Neural Networks, 146:
272–289, 2022.

Lu Han, Han-Jia Ye, and De-Chuan Zhan. The capacity and robustness trade-off: Revisiting the channel
independent strategy for multivariate time series forecasting. IEEE Transactions on Knowledge and Data
Engineering, 2024.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

Yuhong Jin, Lei Hou, Shun Zhong, Haiming Yi, and Yushu Chen. Invertible koopman network and its
application in data-driven modeling for dynamic systems. Mechanical Systems and Signal Processing, 200:
110604, 2023.

Yuhong Jin, Lei Hou, and Shun Zhong. Extended dynamic mode decomposition with invertible dictionary
learning. Neural Networks, 173:106177, 2024.

Mason Kamb, Eurika Kaiser, Steven L Brunton, and J Nathan Kutz. Time-delay observables for koopman:
Theory and applications. SIAM Journal on Applied Dynamical Systems, 19(2):886–917, 2020.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible
instance normalization for accurate time-series forecasting against distribution shift. In International
Conference on Learning Representations, 2021.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. Advances
in neural information processing systems, 31, 2018.

15

https://openreview.net/forum?id=HkpbnH9lx

Published in Transactions on Machine Learning Research (05/2025)

Bernard O Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of the National
Academy of Sciences, 17(5):315–318, 1931.

J Nathan Kutz, Joshua L Proctor, and Steven L Brunton. Koopman theory for partial differential equations.
arXiv preprint arXiv:1607.07076, 2016.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Ferran Alet,
Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning skillful medium-range global
weather forecasting. Science, 382(6677):1416–1421, 2023.

Soledad Le Clainche and José M Vega. Higher order dynamic mode decomposition. SIAM Journal on Applied
Dynamical Systems, 16(2):882–925, 2017.

Holden Lee, Chirag Pabbaraju, Anish Prasad Sevekari, and Andrej Risteski. Universal approximation using
well-conditioned normalizing flows. Advances in Neural Information Processing Systems, 34:12700–12711,
2021.

Qianxiao Li, Felix Dietrich, Erik M Bollt, and Ioannis G Kevrekidis. Extended dynamic mode decomposition
with dictionary learning: A data-driven adaptive spectral decomposition of the koopman operator. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 27(10), 2017.

Yunzhu Li, Hao He, Jiajun Wu, Dina Katabi, and Antonio Torralba. Learning compositional koopman
operators for model-based control. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=H1ldzA4tPr.

Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An investigation
on linear mapping. arXiv preprint arXiv:2305.10721, 2023.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. itransformer:
Inverted transformers are effective for time series forecasting. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=JePfAI8fah.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings of
nonlinear dynamics. Nature communications, 9(1):4950, 2018.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural network
acoustic models. In Proc. icml, volume 30, pp. 3. Atlanta, GA, 2013.

Yuhuang Meng, Jianguo Huang, and Yue Qiu. Koopman operator learning using invertible neural networks.
Journal of Computational Physics, 501:112795, 2024.

Igor Mezić. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear
Dynamics, 41:309–325, 2005.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814, 2010.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words:
Long-term forecasting with transformers. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=Jbdc0vTOcol.

Marcel Nonnenmacher and David S Greenberg. Deep emulators for differentiation, forecasting, and
parametrization in earth science simulators. Journal of Advances in Modeling Earth Systems, 13(7):
e2021MS002554, 2021.

Joel Oskarsson, Tomas Landelius, Marc Peter Deisenroth, and Fredrik Lindsten. Probabilistic weather
forecasting with hierarchical graph neural networks. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https://openreview.net/forum?id=wTIzpqX121.

16

https://openreview.net/forum?id=H1ldzA4tPr
https://openreview.net/forum?id=JePfAI8fah
https://openreview.net/forum?id=Jbdc0vTOcol
https://openreview.net/forum?id=wTIzpqX121

Published in Transactions on Machine Learning Research (05/2025)

Samuel E Otto and Clarence W Rowley. Linearly recurrent autoencoder networks for learning dynamics.
SIAM Journal on Applied Dynamical Systems, 18(1):558–593, 2019.

Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of fluid me-
chanics, 656:5–28, 2010.

Ashutosh Singh, Ashish Singh, Tales Imbiriba, Deniz Erdogmus, and Ricardo Borsoi. Koda: A data-driven
recursive model for time series forecasting and data assimilation using koopman operators. arXiv preprint
arXiv:2409.19518, 2024.

Floris Takens. Detecting strange attractors in turbulence. Dynamical Systems and Turbulence, 1981.

William Toner and Luke Nicholas Darlow. An analysis of linear time series forecasting models. In Forty-
first International Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
xl82CcbYaT.

Jonathan H Tu, Clarence Worth Rowley, Dirk M Luchtenburg, Steven L Brunton, and J Nathan Kutz.
On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 1(2):
391–421, 2014.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep time series
models: A comprehensive survey and benchmark. arXiv preprint arXiv:2407.13278, 2024.

Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven approximation of the
koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25:1307–1346,
2015.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting. Advances in neural information processing systems, 34:
22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Temporal 2d-
variation modeling for general time series analysis. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=ju_Uqw384Oq.

Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep neural network representations for Koop-
man operators of nonlinear dynamical systems. In American Control Conference (ACC), pp. 4832–4839.
IEEE, 2019.

Yuan Yuan, Kaiwen Zhou, Wenwu Zhou, Xin Wen, and Yingzheng Liu. Flow prediction using dynamic mode
decomposition with time-delay embedding based on local measurement. Physics of Fluids, 33(9), 2021.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting?
In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp. 11121–11128, 2023.

Jingdong Zhang, Qunxi Zhu, and Wei Lin. Learning hamiltonian neural koopman operator and simultane-
ously sustaining and discovering conservation laws. Physical Review Research, 6(1):L012031, 2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. In-
former: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency enhanced
decomposed transformer for long-term series forecasting. In International conference on machine learning,
pp. 27268–27286. PMLR, 2022.

17

https://openreview.net/forum?id=xl82CcbYaT
https://openreview.net/forum?id=xl82CcbYaT
https://openreview.net/forum?id=ju_Uqw384Oq

Published in Transactions on Machine Learning Research (05/2025)

A Reconstruction abilities of older Koopman-based methods

For Dynamic Mode Decomposition (DMD, Schmid (2010)), which is the most popular and well-established
method for finding an approximation to the Koopman operator, the set of measurement functions is simply
chosen to be the set of canonical measurement functions constituting the state variable. Hence, this method
implicitly assumes that the dynamical system under study evolves linearly, or at least that accurate short-
term predictions can be made by a linear model. In this case, the predictions are made directly in the state
space, making its reconstruction unnecessary. A notable extension of DMD is the so-called extended Dynamic
Mode Decomposition (Williams et al., 2015), which consists in manually designing a set of measurement
functions that is likely to yield an approximate invariance by the Koopman operator. Common choices
for these measurement functions are sets of polynomials of the state variables up to a chosen degree and
sets of radial basis functions. The canonical measurement functions of the state are usually included in
the hand-designed dictionary. This enables to trivially link the set of measurement functions to the state
space by projecting on the appropriate variables. Although extended DMD is generally applied on low-
dimensional dynamical systems, a high number of measurement functions is usually required to obtain
accurate predictions, which is a limiting factor of this method in practice. Thus, some subsequent works (Li
et al., 2017; Yeung et al., 2019) have proposed to replace the hand-designed dictionary of measurement
functions by a lower-dimensional dictionary that is automatically learned by a neural network. In these
models, the inferred Koopman invariant subspace is a concatenation of the fixed canonical measurement
functions and of the ones that are learned by the neural network.

Although the inclusion of the state variables in the Koopman invariant subspace again enables to easily
reconstruct the state vector after multiplication by K, it may be detrimental to the actual linearity of the
model. Indeed, depending on the dynamical system under study, there might not exist an (approximately)
Koopman invariant subspace of low dimension that contains the state variables. This flaw has motivated
the introduction of Koopman autoencoders Lusch et al. (2018), which do no constrain a direct inclusion of
the input variables in their latent space.

B Stochastic modeling abilities of invertible Koopman autoencoders

Let us here outline some possible adaptations of invertible Koopman autoencoders for stochastic modeling,
although we do not present associated experiments in the paper.

The determinant of the Jacobian matrix corresponding to a coupling-layer normalizing flow ϕ can be easily
computed in practice, enabling to perform likelihood computations thanks to the well known change of
variable formula:

pX(x) = pY (ϕ(x))
∣∣∣∣det ∂ϕ(x)

∂x

∣∣∣∣ , (19)

where Y is defined in the latent space of the model.

Using these properties, coupling-layer normalizing flows were originally introduced as a generative model,
enabling to link a complex probability distribution pX , supposedly corresponding to a set of observed data,
to a simple probability distribution pY , often chosen to be a standard Gaussian. Although the current
existing works on invertible Koopman autoencoders only consider deterministic settings, these properties
may be used to train invertible Koopman autoencoders in a stochastic context.

For example, one may estimate the probability distribution function of an advanced state xt+τ knowing
that the state xt is observed with an uncertainty corresponding to a Gaussian white noise with a covariance
Σt ∈ Rn×n. In this case, we would have that xt is in fact a random variable, defined as

xt ∼ N (µt,Σt). (20)

Using equation 19, one can accordingly compute the probability density function of the associated encoding
zt = ϕ(xt). From there, zt+τ is obtained as the multiplication of zt by the square matrix Kτ , enabling for
another easy change of variable since the Jacobian of this linear transformation is Kτ itself. Finally, one
can go back to the input space by simply reversing equation 19. As a conclusion, one may compute the

18

Published in Transactions on Machine Learning Research (05/2025)

Table 3: Summary of the characteristics of the datasets of the Informer benchmark. The "Dataset length"
entry contains the lengths of the training, validation and test subsets of data.

Dataset Channels Sampling period Dataset length Information
ETTh1, ETTh2 7 1 hour (8545, 2881, 2881) Electricity
ETTm1, ETTm2 7 15 minutes (34465, 11521, 11521) Electricity

Weather 21 10 minutes (36792, 5271, 10540) Weather
ECL 321 1 hour (18317, 2633, 5261) Electricity

Traffic 862 1 hour (12185, 1757, 3509) Transportation
Exchange 8 1 day (5120, 665, 1422) Economy

probability density function of xt+τ when xt follows a known Gaussian distribution, which can enable to
design a loss function that leverages the likelihood of subsequent states.

Conversely, following classical usage of normalizing flow models, one may consider the latent distribution to
be Gaussian while the distribution in the input space is more complex. In this case, one may consider a
variant of the IKAE where a variance encoder ξ is trained along with the invertible normalizing flow encoder
ϕ, so that zt is a random variable following:

zt ∼ N (ϕ(xt), ξ(xt)), (21)

where ξ(xt) ∈ Rn corresponds to the (positive) diagonal coefficients of a diagonal covariance matrix. In this
case, zt+τ = Kτ zt is also Gaussian as a linear transformation of a Gaussian variable (one might consider
adding Gaussian noise at each propagation step too), and one can again retrieve the probability density
function of xt+τ with a final change of variable. Thus, one may construct a stochastic dynamical model of
the considered system, trained with a likelihood criterion.

C Description of the long-term time series datasets

Here, we provide brief descriptions of the datasets constituting the benchmark from section 5. The ETT
datasets (Zhou et al., 2021) are constituted from 7 factors of electricity transformers, including load and
oil temperatures, recorded from July 2016 to July 2018. There are four subsets: ETTh1, ETTh2, ETTm1
and ETTm2. ETTh1 and ETTh2 have a sampling period of one hour, while ETTm1 and ETTm2 have a
sampling period of 15 minutes. Weather (Wu et al., 2021) is constituted from 21 meteorological indicators,
recorded every 10 minutes by the weather station of the Max Planck Biogeochemistry Institute in 2020.
ECL (Wu et al., 2021) (also called "Electricity") is constituted from the hourly electricity consumptions of
321 clients, recorded from 2012 to 2014. Traffic (Wu et al., 2021) is composed of hourly occupancy rates
of 863 roads in the San Francisco bay area, recorded by the California Department of Transportation from
January 2015 to December 2016. Exchange (Wu et al., 2021) contains the daily exchange rates of eight
different countries, ranging from 1990 to 2016.

In Table 3, we summarize the numbers of channels, sampling periods, time series lengths (including training,
validation and test subsets), and nature of the information of these datasets. From this table, one can clearly
see that the ECL and Traffic datasets contain much more channels than all of the other considered datasets.
Concerning the loading and separation into train, validation and test splits for each dataset, we use the
code from Zeng et al. (2023), corresponding to the same settings as for the benchmarks of Wu et al. (2023)
and Liu et al. (2024) that the baseline methods use.

As explained in the main text, each of these datasets contains several simultaneously recorded channels of
information, and thus one can theoretically combine the information of these channels in order to increase
the predictive capabilities of a forecasting model. However, some recent methods (Zeng et al., 2023; Nie
et al., 2023; Li et al., 2023) (along with the ones introduced in this paper) rely on a single univariate model,
with performance challenging the strongest multivariate time series processing models.

19

Published in Transactions on Machine Learning Research (05/2025)

D Implementation details for delayed Koopman autoencoders

Here, we describe in more detail the architectures of the delayed IKAE and delayed AIKAE models that
produced the results on the first 2 columns of table 1. As explained in section 3.2, we make use of the
delay embedding strategy, which means that the invertible encoding contains information on multiple time
steps. Besides, we adopt the channel independence principle (Nie et al., 2023), so that an input state
contains only information on one specific variable of the time series. Thus, since we use an input sequence
length of 96 time steps for all experiments, the dimension of our input (and invertible encoding) is always
n = 96 · 1 = 96. The main component of both the IKAE and AIKAE is their invertible encoder ϕ, which
in these experiments is implemented as a NICE normalizing flow (Dinh et al., 2014). Using the terminology
from Dinh et al. (2014), the NICE model is composed of k coupling layers, each using the additive coupling
law and a MLP network with one hidden layer of width w and a leaky rectified linear unit nonlinearity (Maas
et al., 2013). Following common modeling choices, the input to the MLP is composed of half of the input
state variables, i.e. it is of size n/2 = 48. Thus, neglecting the bias parameters, the hidden layer of the
MLP contains about (n/2) · w parameters and its output layer contains w · (n/2) parameters, for a total of
approximately wn parameters, and finally around kwn trainable parameters when adding all the coupling
layers of ϕ. The decoder, being analytically obtained from this encoder, does not involve any additional
trainable parameters. For the AIKAE models only, one additionally trains an augmentation encoder χ,
which is implemented as a MPL network. This MLP network comprises 3 linear layers, of width fixed to
[256, 128, 32]. A ReLU nonlinearity Nair & Hinton (2010) is applied after the first 2 of these layers. Note that
the width of the final layer is the size of the augmentation encoding, i.e. p = 32. This augmentation encoder
contains approximately 60K trainable parameters. Finally, the Koopman matrix K adds d2 parameters to
the models, where d = n = 96 for the IKAE models and d = n+ p = 128 for the AIKAE models.

A hyperparameter search is performed for each dataset and prediction length on the number k of coupling
layers (set in the range k ∈ {3, 4}) and the width w of the hidden layer of the coupling functions (set in the
range w ∈ {128, 256}). Thus, the number of parameters for the IKAE models varies approximately from
50K to 110K. Conversely, the number of trainable parameters for the AIKAE models varies approximately
from 115K to 175K.

As mentioned in the main text, all models are trained with the Adam algorithm with a learning rate of 10−3

and parameters β = (0.9, 0.999). As we observed a high sensitivity of the final performance on the batch
size of the dataloader, for each task we search for the best batch size among the values {4, 128, 512}.

E Additional long-term time series forecasting results

E.1 Extended forecasting results

Table 4 extends the results from table 1 by adding the persistence baseline and the exchange dataset. As
mentioned in the main text, it shows that the tested models significantly outperform the persistence baseline
on all datasets except for Exchange.

E.2 Ablation study

In order to get insight on the performance of the delayed IKAE and AIKAE models, we now perform an
ablation study. We focus on the influence of two components of our models: the nonlinear encoder and the
usage of RevIN.

Concretely, we test eight different models. The IKAE and AIKAE models with RevIN correspond to the
results reported in table 1. For each of these models, we train a variant where we do not use RevIN. In
order to infer the interest of inflating the latent space with a second learned encoder rather than with zero
padding as proposed by Meng et al. (2024), we also test IKAE models with zero padding, which are referred
to as IKAE-zp, with or without RevIN. The size of the zero padding is 32, corresponding to the size of the
augmentation encoding in AIKAE models. In addition, we test simple linear models, where the nonlinear
encoder ϕ or Φ is simply replaced by an identity function, with (Li et al., 2023) or without (Zeng et al.,

20

Published in Transactions on Machine Learning Research (05/2025)

Table 4: Forecasting mean squared errors (MSEs) and mean absolute errors (MAEs) for various models and
long-term forecasting tasks. For each dataset, we use a lookback window of size TL = 96 and prediction
horizons TP of sizes 96, 192, 336, 720. IKAE and AIKAE are our own implementations, while we use the
results reported by Zeng et al. (2023) for the persistence baseline and by Liu et al. (2024) for all other
models. For each task and metric, the best result is in bold and the second best result is underlined.

Model IKAE AIKAE iTransformer PatchTST TimesNet DLinear Persistence
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

EC
L

96 0.159 0.252 0.153 0.247 0.148 0.240 0.181 0.270 0.168 0.272 0.197 0.282 1.588 0.946
192 0.173 0.265 0.167 0.259 0.162 0.253 0.188 0.274 0.184 0.289 0.196 0.285 1.595 0.950
336 0.189 0.282 0.184 0.277 0.178 0.269 0.204 0.293 0.198 0.300 0.209 0.301 1.617 0.961
720 0.227 0.313 0.223 0.310 0.225 0.317 0.246 0.324 0.220 0.320 0.245 0.333 1.647 0.975

Ex
ch

. 96 0.081 0.202 0.080 0.201 0.086 0.206 0.088 0.205 0.107 0.234 0.088 0.218 0.081 0.196
192 0.159 0.290 0.163 0.295 0.177 0.299 0.176 0.299 0.226 0.344 0.176 0.315 0.167 0.289
336 0.331 0.435 0.320 0.429 0.331 0.417 0.301 0.397 0.367 0.448 0.313 0.427 0.305 0.396
720 0.854 0.700 0.848 0.698 0.847 0.691 0.901 0.714 0.964 0.746 0.839 0.695 0.823 0.681

Tr
affi

c 96 0.460 0.313 0.431 0.297 0.395 0.268 0.462 0.295 0.593 0.321 0.650 0.396 2.723 1.079
192 0.476 0.317 0.449 0.302 0.417 0.276 0.466 0.296 0.617 0.336 0.598 0.370 2.756 1.087
336 0.496 0.327 0.467 0.311 0.433 0.283 0.482 0.304 0.629 0.336 0.605 0.373 2.791 1.095
720 0.524 0.343 0.499 0.329 0.467 0.302 0.514 0.322 0.640 0.350 0.645 0.394 2.811 1.097

W
ea

th
er 96 0.157 0.209 0.160 0.211 0.174 0.214 0.177 0.218 0.172 0.220 0.196 0.255 0.259 0.254

192 0.193 0.245 0.195 0.245 0.221 0.254 0.225 0.259 0.219 0.261 0.237 0.296 0.309 0.292
336 0.237 0.281 0.237 0.281 0.278 0.296 0.278 0.297 0.280 0.306 0.283 0.335 0.377 0.338
720 0.317 0.333 0.317 0.333 0.358 0.347 0.354 0.348 0.365 0.359 0.345 0.381 0.465 0.394

ET
T

h1

96 0.386 0.399 0.386 0.398 0.386 0.405 0.414 0.419 0.384 0.402 0.386 0.400 1.295 0.713
192 0.437 0.433 0.435 0.432 0.441 0.436 0.460 0.445 0.436 0.429 0.437 0.432 1.325 0.733
336 0.480 0.457 0.482 0.459 0.487 0.458 0.501 0.466 0.491 0.469 0.481 0.459 1.323 0.744
720 0.575 0.522 0.561 0.516 0.503 0.491 0.500 0.488 0.521 0.500 0.519 0.516 1.339 0.756

ET
T

h2

96 0.301 0.348 0.300 0.346 0.297 0.349 0.288 0.338 0.340 0.374 0.333 0.387 0.432 0.422
192 0.365 0.394 0.365 0.394 0.380 0.400 0.388 0.400 0.402 0.414 0.477 0.476 0.534 0.473
336 0.394 0.422 0.387 0.416 0.428 0.432 0.426 0.433 0.452 0.452 0.594 0.541 0.591 0.508
720 0.414 0.443 0.429 0.450 0.427 0.445 0.431 0.446 0.462 0.468 0.831 0.657 0.588 0.517

ET
T

m
1 96 0.328 0.364 0.322 0.360 0.334 0.368 0.329 0.367 0.338 0.375 0.345 0.372 1.214 0.665

192 0.365 0.389 0.364 0.387 0.377 0.391 0.367 0.385 0.374 0.387 0.380 0.389 1.261 0.690
336 0.390 0.405 0.390 0.406 0.426 0.420 0.399 0.410 0.410 0.411 0.413 0.413 1.283 0.707
720 0.463 0.443 0.465 0.443 0.491 0.459 0.454 0.439 0.478 0.450 0.474 0.453 1.319 0.729

ET
T

m
2 96 0.184 0.266 0.185 0.267 0.180 0.264 0.175 0.259 0.187 0.267 0.193 0.292 0.266 0.328

192 0.255 0.313 0.246 0.307 0.250 0.309 0.241 0.302 0.249 0.309 0.284 0.362 0.340 0.371
336 0.297 0.343 0.303 0.344 0.311 0.348 0.305 0.343 0.321 0.351 0.369 0.427 0.412 0.410
720 0.382 0.393 0.385 0.393 0.412 0.407 0.402 0.400 0.408 0.403 0.554 0.522 0.521 0.465

21

Published in Transactions on Machine Learning Research (05/2025)

Table 5: Forecasting mean squared errors (MSEs) and mean absolute errors (MAEs) of different models
on three datasets, with lookback window TL = 96 and forecasting horizon TP = 96. For each dataset and
metric, the best result is in bold and the second best result is underlined.

Dataset Traffic Weather ETTm1
Metric MSE MAE MSE MAE MSE MAE

AIKAE with RevIN 0.450 0.301 0.171 0.216 0.322 0.360
without RevIN 0.497 0.299 0.167 0.226 0.350 0.386

IKAE-zp with RevIN 0.452 0.304 0.174 0.219 0.331 0.365
without RevIN 0.507 0.300 0.170 0.227 0.349 0.380

IKAE with RevIN 0.460 0.313 0.174 0.220 0.328 0.364
without RevIN 0.517 0.317 0.168 0.225 0.342 0.377

Linear with RevIN 0.644 0.390 0.194 0.234 0.349 0.369
without RevIN 0.649 0.397 0.201 0.266 0.345 0.377

2023) RevIN. We work with TL = TP = 96, which means that the linear model without RevIN may be
seen as a dynamic mode decomposition (Schmid, 2010) with a delay embedding of size 96. We perform the
ablation study on three datasets: Traffic, Weather and ETTm1. For each model, the architecture is kept
the same for each dataset. The IKAE and AIKAE have an invertible encoder comprising 4 coupling layers
of width 256. For the AIKAE, the augmentation encoder has the same architecture as in the main results.
The optimizer is Adam with a learning rate of 10−3, and the batch size is 4 for the ETTm1 dataset and 32
for the two other datasets.

The results obtained by the eight described models are reported in table 5. Although we use our own imple-
mentation of the linear models in order to limit the risk of differing implementation choices influencing the
study, we obtain consistent results with the implementations of Zeng et al. (2023) and Li et al. (2023). From
these results, one can see that the addition of RevIN often (though not always) improves the performance
of all backbone models. In addition, the gains obtained by using a more complex embedding appear to be
complementary to the gains of RevIN. In particular, the delay AIKAE model without RevIN outperforms
the delay IKAE without RevIN, which itself outperforms the linear model without RevIN. Thus, this study
shows that resorting to an invertible nonlinear embedding of the input data improves the results compared
to a simple linear model, and that the results are further improved when additionally increasing the di-
mension of this embedding with an AIKAE. Besides, the superiority of IKAE-zp to IKAE (either with or
without RevIN) cannot be clearly established, and thus AIKAE remains the strongest of the tested KAE
architectures in this benchmark.

E.3 Influence of the lookback window size

It has been repeatedly observed in previous works (e.g. Zeng et al. (2023); Nie et al. (2023); Liu et al. (2024))
that many Transformer-based models for long-term time series forecasting do not benefit from an increased
size TL of the lookback window. Indeed, for many of these models, the forecasting performance stagnates
or even decreases as the length of the lookback window increases, which has been attributed to a distracted
attention over the input. In contrast, simple linear models have been shown to greatly benefit from a longer
window of observations. Thus, we now assess the performance of the IKAE and AIKAE models as the size
of the lookback window increases. We work in the same setting as Zeng et al. (2023), where we evaluate the
forecasting performance for a prediction window of size TP = 720 according to varying input sizes TL from
48 to 720. For each lookback length, we train our two models as well as the DLinear model of Zeng et al.
(2023) and 4 Transformer-based models: the base Transformer (Vaswani, 2017), Informer (Zhou et al., 2021),
Autoformer (Wu et al., 2021) and FEDformer (Zhou et al., 2022). For the DLinear and Transformer models,
we use the code of Zeng et al. (2023). For our IKAE and AIKAE models, in order to keep the experiment as
fair as possible, we use the same architecture and training hyperparameters for every lookback length, i.e. 4
coupling layers of width 256 and a batch size of 512.

22

Published in Transactions on Machine Learning Research (05/2025)

48 72 96 120 144 168 192 336 504 672 720
Lookback length

0.20

0.25

0.30

0.35

0.40

0.45
M

SE

AIKAE
IKAE

DLinear
Transformer

Informer
Autoformer

FEDformer

48 72 96 120 144 168 192 336 504 672 720
Lookback length

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

M
AE

AIKAE
IKAE

DLinear
Transformer

Informer
Autoformer

FEDformer

Figure 4: Mean squared error (left) and mean average errors (right) obtained by different models for predic-
tions of TP = 720 time steps on the ECL dataset, as a function of the lookback window size TL.

Table 6: Mean and standard deviation of the MSE and MAE, over 5 random initializations of the parameters,
for IKAE and AIKAE models on the ECL and Weather datasets.

Model IKAE AIKAE
Metric MSE MAE MSE MAE

ECL

96 0.1588 ± 0.0005 0.2518 ± 0.0006 0.1533 ± 0.0010 0.2469 ± 0.0011
192 0.1727 ± 0.0004 0.2652 ± 0.0003 0.1667 ± 0.0003 0.2592 ± 0.0003
336 0.1892 ± 0.0004 0.2818 ± 0.0004 0.1838 ± 0.0006 0.2768 ± 0.0004
720 0.2267 ± 0.0001 0.3134 ± 0.0006 0.2235 ± 0.0027 0.3101 ± 0.0020

Weather

96 0.1573 ± 0.0007 0.2085 ± 0.0008 0.1603 ± 0.0020 0.2110 ± 0.0009
192 0.1932 ± 0.0018 0.2450 ± 0.0016 0.1946 ± 0.0028 0.2451 ± 0.0027
336 0.2374 ± 0.0011 0.2810 ± 0.0010 0.2374 ± 0.0013 0.2806 ± 0.0011
720 0.3168 ± 0.0014 0.3328 ± 0.0013 0.3167 ± 0.0013 0.3335 ± 0.0008

The results of this experiment are summarized in figure 4. From this figure, one can see that none of the
Transformer models is characterized by consistently decreasing error metrics as the size of the lookback
window increases. Only the AIKAE, IKAE and DLinear models exhibit this behavior. While the AIKAE
and IKAE models outperform the DLinear models for shorter lookback windows (as could be seen from the
main results in table 1), DLinear performs best for longer lookback windows. Thus, this experiments shows
that the delayed Koopman autoencoder models do not share the same flaws as many Transformer models,
but still struggle to compete with linear models when a very large window of past observations is available.

E.4 Sensitivity to the initialization

Here, we study the sensitivity of the delayed IKAE and AIKAE models to the initialization of their parameters
before training. We focus on two datasets: ECL and Weather. For each prediction length of these datasets, we
separately train 5 instances of IKAE and AIKAE models. These instances differ only by their initializations,
each associated to a different fixed random seed. We report the mean and the standard deviations of the
mean squared errors and mean absolute errors over these 5 seeds in table 6. From these results, one can
see that the performance of our models are very stable across different initializations, since the standard
deviations of the MSE and MAE are small in comparison to their associated means.

E.5 Sensitivity to hyperparameter choices

Here, we study the performance of our models according to different training hyperparameters. Namely,
we study the influence of the learning rate, the number of coupling layers in the invertible encoder ϕ, and
the hidden dimension of the MLP used in each of these coupling layers. We study learning rates of value

23

Published in Transactions on Machine Learning Research (05/2025)

0.0002 0.0005 0.001 0.002

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44
M

SE

Learning rate, ETTh2

3 4 6
0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

M
SE

Coupling layers, ETTh2

128 256 512
0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

M
SE

Layers width, ETTh2

0.0002 0.0005 0.001 0.002
0.42

0.44

0.46

0.48

0.50

0.52

0.54

M
SE

Learning rate, Traffic

3 4 6

0.44

0.46

0.48

0.50

0.52

M
SE

Coupling layers, Traffic

96 steps 192 steps 336 steps 720 steps
128 256 512

0.44

0.46

0.48

0.50

0.52

M
SE

Layers width, Traffic

Figure 5: Summary of hyperparameter sensitivity analysis for delayed AIKAE and IKAE, on the ETTh2
(top) and Traffic (bottom) datasets. We study the influence of three hyperparameters: the learning rate
(left), the number of coupling layers (middle) and the width of the layers (right). The full lines represent
AIKAE models while the dashed lines represent IKAE models.

{0.0002, 0.0005, 0.001, 0.002} (as a reminder, all of our models in the main results are trained with learning
rate 0.001). We consider numbers of layers in the range {3, 4, 6}, and hidden dimensions of values {128,
256, 512}. We focus our study on two datasets: ETTh2 and Traffic, for which we run our models in the
same conditions as in the main results, with prediction lengths TP ∈ {96, 192, 336, 720}. For the learning
rate study, we always use the architecture which performed the best in the main results. Conversely, for the
two other studies, the hyperparameters other than the one under study are fixed to their values in the best
found configuration of the hyperparameter search detailed in section D.

The test MSE that we obtain are summarized in figure 5. These results show a relative robustness of the
models to the choice of the learning rate. In fact, it seems that, although our main results are all obtained
with a learning rate of 0.001, increasing this value to 0.002 (or including it in the hyperparameter search)
might further improve the performance. Besides, one can see that increasing the number of parameters of
the models (through the number or width of the layers) generally improves the performance on the Traffic
dataset, but not necessarily on the ETTh2 dataset, which is consistent with the results of e.g. Liu et al.
(2024). When specifically comparing AIKAE to IKAE models (respectively represented by full and dashed
lines), one can see that the advantage of AIKAE is not clear for ETTh2 but significant for Traffic, which is
consistent with the results of table 1. Interestingly, it appears that an AIKAE with layer width 128 performs
slightly better than an IKAE with layer width 512 on the Traffic data. These models have respective
parameter counts of around 125K and 210K, and thus one can say that the augmentation encoder enables a
much greater parameter efficiency for this dataset.

E.6 Case studies for long-term time series forecasting

In order for the reader to have a more intuitive idea of the quality of our model predictions, we now display
some results obtained on randomly selected samples of the test subsets of datasets from the long-term time
series forecasting benchmark. On figures 6 and 7, we respectively plot predictions on test samples from the
ECL dataset and from the Weather dataset. In both cases, we show the predictions made over 96 time steps
(left) and 336 time steps (right), with both an IKAE model and an AIKAE model, using the same context

24

Published in Transactions on Machine Learning Research (05/2025)

0 25 50 75 100 125 150 175 200
1.5

1.0

0.5

0.0

0.5

Context
Groundtruth
IKAE prediction
AIKAE prediction

0 100 200 300 400
1.5

1.0

0.5

0.0

0.5

Context
Groundtruth
IKAE prediction
AIKAE prediction

Figure 6: Predictions with AIKAE and IKAE models from a same context window in the test subset of the
ECL dataset, over 96 time steps (left) and 336 time steps (right).

0 25 50 75 100 125 150 175 200

0.8

1.0

1.2

1.4

1.6

Context
Groundtruth
IKAE prediction
AIKAE prediction

0 100 200 300 400

0.8

1.0

1.2

1.4

1.6

Context
Groundtruth
IKAE prediction
AIKAE prediction

Figure 7: Predictions with AIKAE and IKAE models from a same context window in the test subset of the
Weather dataset, over 96 time steps (left) and 336 time steps (right).

window of TL = 96 time steps. From these figures, one can see that the predictions of the AIKAE and IKAE
are qualitatively very similar.

F Additional results for satellite image time series forecasting

F.1 Influence of the size of the augmentation encoding

As stated in the main text, the worse results of the IKAE model compared to other Koopman autoencoder
variants may be explained by the fact that the size of the input state is too low to obtain a good enough
Koopman invariant subspace of the system. Here, we seek to obtain an empirical assessment of how the
size of the augmentation encoding for AIKAE models affects the satellite image time series forecasting
performance. As a reminder, the augmentation encoding for the AIKAE model results in table 2 is of size
p = 16, resulting in a global latent space of size d = n + p = 36. Besides, the IKAE model may be seen
as a special case of an AIKAE where p = 0. Building on these 2 cases, we train new AIKAE models with
augmentation encoding sizes of 2, 4, 8 and 32. For all of these models, the other training hyperparameters
are kept the same as in the AIKAE model from the main results. The reported results correspond to means
over 5 random initializations of the parameters of the models. The full results are reported in table 7.

25

Published in Transactions on Machine Learning Research (05/2025)

Table 7: Mean squared errors (MSEs) and mean absolute errors (MAEs) obtained by averaging the perfor-
mance of 5 instances of each model. The models are pre-trained on the Fontainebleau area, and then used
as variational data assimilation priors, following equation 17. We study varying sizes of the augmentation
encoding in the AIKAE, reminding that an augmentation size of 0 corresponds to an IKAE models.

Dataset Fontainebleau Orléans
Metric MSE MAE MSE MAE

Augmentation size 0 0.00128 0.0224 0.00382 0.0399
Augmentation size 2 0.00110 0.0216 0.00362 0.0392
Augmentation size 4 0.00109 0.0212 0.00359 0.0388
Augmentation size 8 0.00105 0.0210 0.00314 0.0365
Augmentation size 16 0.00108 0.0204 0.00297 0.0356
Augmentation size 32 0.00118 0.0214 0.00365 0.0388

Several conclusions can be drawn from table 7. First, even a very low-dimensional augmentation encoding
(i.e. augmentation size 2) can have a significant impact on the results. A potential explanation for this is
that the augmentation variables of the latent space may represent more complex quantities since they are not
structurally in bijection with the input. In addition, one can see that the performance gradually improves
with increasing sizes of the augmentation encoding until the optimal value p = 16, and then degrades for the
size p = 32. This shows that a large augmentation encoding might lead to an overfitting model. Overall, one
can see that the performance of the model is very sensitive to p, which should therefore be chosen carefully
in order to attain optimal results.

F.2 Influence of the linearity loss on the augmentation encoding

In theory, in order for an AIKAE model to actually learn a Koopman invariant subspace of the studied
dynamical system, one should have that the time propagation of an encoding at time t by τ time steps leads
to the encoding of the state at time t + τ . This observation is the reason for the usage of a linearity loss
function for Koopman autoencoder models, as explained e.g. by Lusch et al. (2018). With the notations of
the AIKAE, the linearity loss, which we indeed use for training all Koopman autoencoder variants, can be
written as

Llin(Φ,K) = Ext,τ ||Kτ Φ(xt) − Φ(xt+τ)||2. (22)
However, for the AIKAE in particular, we have noted in section 3.1 that only the invertible part of the
encoding is directly related to the input space, and that the augmentation part of the encoding might be
interpreted as containing the "static features" of the state. Thus, one might question the importance of
actually ensuring that the augmentation part of the encoding follows a linear dynamics. Inspired by this
observation, one may generalize equation 22 to a weighted version as

Llin,α(Φ,K) = Ext,τ ||[Kτ Φ(xt)]1:n − ϕ(xt+τ)||2 + αExt,τ ||[Kτ Φ(xt)]n+1:d − χ(xt+τ)||2. (23)

In this variant, the case where α = 1 corresponds to the unweighted version of equation 22, while α = 0
means that only the invertible part of the encoding is expected to evolve linearly in time. In between these
two cases, one might imagine choosing any value of α between 0 and 1 to determine the relative importance
of the linearity of the invertible and augmentation parts of the encoding. A value α > 1 would mean that
it is more important for the augmentation part za

t than for the invertible part zi
t to follow linear dynamics,

which seems quite counter-intuitive.

In order to get some insight on these possible variants of the linearity loss function for the AIKAE model,
we now examine three cases:

• the case α = 1, as presented in the main results of table 2,

• the case α = 0, where only the linearity of the invertible part zi
t is required,

• the case α = 1/2, where the linearity of zi
t is twice as important as the linearity of za

t .

26

Published in Transactions on Machine Learning Research (05/2025)

Table 8: Mean squared errors (MSEs) and mean absolute errors (MAEs) obtained by averaging the perfor-
mance of 5 instances of each model. The models are pre-trained on the Fontainebleau area, and then used
as variational data assimilation priors, following equation 17. The models differ by the expression of the pa-
rameter α in their linearity loss term during training, following equation 23. The case α = 1, corresponding
to the main results of table 2, clearly leads to the best performance.

Dataset Fontainebleau Orléans
Metric MSE MAE MSE MAE
α = 1 0.00108 0.0204 0.00297 0.0356
α = 1/2 0.00114 0.0211 0.00335 0.0377
α = 0 0.00131 0.0223 0.00349 0.0382

0 250 500 750 1000 1250 1500 1750
Time (days)

0.0

0.2

0.4

0.6

0.8

Re
fle

ct
an

ce

KAE
IKAE
IKAE-zp
AIKAE
assimilated data
extrapolated data

Figure 8: Assimilated trajectories by different models on the B7 spectral band, for a randomly selected pixel
of the test Orléans area. The dashed vertical line marks the limit between the window of assimilated data
(on the left) and the extrapolation window (on the right).

For each of these three cases, we train 5 instances of the AIKAE model starting from the exact same 5 random
initializations, and otherwise following the same training procedure as in the main results. The means of the
mean squared errors and mean absolute errors for each variant on the Fontainebleau and Orléans areas are
listed in table 8.

From the results of table 8, one can see that the best performance are obtained with α = 1, i.e. in the case
where the linearity loss is implemented as an unweighted least squares calculation. The loss of accuracy
when deviating from this case is significant. For the considered task, this result may be explained by the
fact that the testing task is to perform a very long-term forecasting using an assimilation of the initial latent
state while the training task involves naive forecasting on a relatively shorter timespan. In this context, the
promotion of the linearity of the augmentation part of the encoding might be seen as a regularization of the
model, bringing a significant boost to the test performance. One might expect that, in simpler setups, this
observation might not always be true.

27

Published in Transactions on Machine Learning Research (05/2025)

F.3 Graphical results for satellite image time series forecasting

On figure 8, some assimilated trajectories are plotted on the B7 spectral band (i.e. the most energetic one
for our data). The trajectories result from an assimilation of the data snapshots before the dashed line, using
the best trained instance of respectively the KAE, IKAE, IKAE-zp and AIKAE models. On this example,
the IKAE model clearly does not fit the assimilated data as well as the other models, which confirms our
observation that the limited latent dimension might hurt the expressive power of this model. When it comes
to extrapolating beyond the assimilated datapoints, the AIKAE model clearly performs best, followed by
the IKAE-zp, which is consistent with the global results of table 2.

28

	Introduction
	Background and related works
	Our proposed Koopman autoencoder architectures
	Augmented invertible Koopman autoencoder
	Delayed Koopman autoencoders

	AIKAE as a variational data assimilation prior
	Long-term time series forecasting experiments
	Variational data assimilation on satellite image time series
	Conclusion
	Reconstruction abilities of older Koopman-based methods
	Stochastic modeling abilities of invertible Koopman autoencoders
	Description of the long-term time series datasets
	Implementation details for delayed Koopman autoencoders
	Additional long-term time series forecasting results
	Extended forecasting results
	Ablation study
	Influence of the lookback window size
	Sensitivity to the initialization
	Sensitivity to hyperparameter choices
	Case studies for long-term time series forecasting

	Additional results for satellite image time series forecasting
	Influence of the size of the augmentation encoding
	Influence of the linearity loss on the augmentation encoding
	Graphical results for satellite image time series forecasting

