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Abstract001

Large Language Models (LLMs) excel at pro-002
viding information acquired during pretraining003
on large-scale corpora and following instruc-004
tions through user prompts. This study inves-005
tigates whether the quality of LLM responses006
varies depending on the demographic profile of007
users. Considering English as the global lingua008
franca, along with the diversity of its dialects009
among speakers of different native languages,010
we explore whether non-native English speak-011
ers receive lower-quality or even factually in-012
correct responses from LLMs more frequently.013
Our results show that performance discrepan-014
cies occur when LLMs are prompted by native015
versus non-native English speakers and persist016
when comparing native speakers from West-017
ern countries with others. Additionally, we018
find a strong anchoring effect when the model019
recognizes or is made aware of the user’s na-020
tiveness, which further degrades the response021
quality when interacting with non-native speak-022
ers. Our analysis is based on a newly collected023
dataset with over 12,000 unique annotations024
from 124 annotators, including information on025
their native language and English proficiency.026

1 Introduction027

English, as the global lingua franca, is predominant028

in large-scale text corpora used to train Large Lan-029

guage Models (LLMs) (Ziems et al., 2023; Zhang030

et al., 2023), including widely used datasets like031

CommonCrawl. These datasets are primarily tai-032

lored to an English-speaking audience located in033

the United States, and are mainly composed of priv-034

ileged English dialects from wealthier educated ur-035

ban zones (Talat et al., 2022; Ziems et al., 2023;036

Ryan et al., 2024; Gururangan et al., 2022). This037

biased training dataset composition permeates the038

LLM, resulting in models tailored to these English039

dialects (Santy et al., 2023; Hall et al., 2022). This040

highlights underlying design biases in LLMs, a041

phenomenon where certain design choices result042
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Answer GPT4oAnnotator
Prompt

In this task, you are given an impractical statement. You are also
given three reasons (associated with "A", "B", "C") explaining why

this statement doesn't make sense. You must choose the most
corresponding reason explaining why this statement doesn't make

sense.

We eat many people
[Annotator Prompt]

Understood!

A. It is phyiscally impossible to eat people.
B. We only eat one person, not many.

C. Humans do not eat other humans as that
would be cannibalism.

A. We are not hungry.
B. People can't be eaten.

C. Eating people is a crime
B

C

🧑

🧑 🤖

👍

👎

Figure 1: An example prompt of a native and non-native
English speaker and the corresponding output given by
GPT4o. The desired output is C. The model selects
an incorrect answer choice for the non-native English
speaker, although semantically the same message was
conveyed.

in improved downstream performance for specific 043

sub-populations (Santy et al., 2023). Consequently, 044

their effectiveness considerably decreases when 045

prompted in other languages or even in underrep- 046

resented English dialects (Lai et al., 2023; Zhang 047

et al., 2023; Bang et al., 2023; Ziems et al., 2023; 048

Ryan et al., 2024). 049

LLMs are highly sensitive to prompt formula- 050

tions (Beck et al., 2024; Chakraborty et al., 2023). 051

Ryan et al. (2024) show how models’ responses 052

are tailored to Western English dialects, with 053

prompt selection impacting LLMs’ preference tun- 054

ing. Therefore, prompting models in other dialects 055

can result in performance differences due to these 056

design biases. Ziems et al. (2023) even provide a 057

dataset covering multiple English dialects. How- 058

ever, unlike those studies focusing only on English 059

dialects from English-speaking countries, our re- 060

search also incorporates participants from countries 061

where English is not an official language. 062

In this paper, we find performance differences 063
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when LLMs are prompted by native versus non-064

native English speakers. More specifically, models065

often generate inaccurate responses for non-native066

speakers and rate the native prompts more posi-067

tively than intended. We collect a dataset compris-068

ing over 12,000 unique prompts from native and069

non-native English speakers around the world, and070

demonstrate how different prompt formulations can071

lead to worse performance despite conveying the072

same message. An example of a prompt in our073

dataset is shown in Figure 1. Moreover, we find that074

these performance differences increase when com-075

paring native English speakers from Western coun-076

tries (US, UK, Canada) with other native and non-077

native English speakers. Furthermore, when the078

model recognizes or is informed about the user’s079

nativeness, a strong anchoring effect occurs, where080

the added information substantially affects model081

performance, leading to increased bias towards na-082

tive English speakers.083

Our contributions are as follows:084

• We quantitatively and qualitatively analyze the085

performance of LLMs on objective and subjec-086

tive classification tasks, as well as generative087

tasks, when prompted by native and non-native088

English speakers089

• We investigate the impact on the LLM perfor-090

mance when the nativeness of the user is explic-091

itly stated or inferred by the model.092

• We publish our multilingual instruction-tuning093

dataset1 containing over 12,000 unique prompts094

from a diverse group of native and non-native095

English speakers worldwide, including transla-096

tions of the prompts into eight different native097

languages.098

2 Related work099

Model Positionality and Design Bias. Model po-100

sitionality, coined by Cambo and Gergle (2022),101

refers to the social and cultural position of a model,102

influenced by the stakeholders involved in its devel-103

opment, such as annotators and developers. This104

positionality affects the inclusivity of LLMs, as105

they evolve with certain biases that may disad-106

vantage specific populations. (Cambo and Gergle,107

2022; Santy et al., 2023). Design biases arise when108

researchers make choices that improve model per-109

formance for specific sub-populations (Santy et al.,110

1https://anonymous.4open.science/r/native_en_
bias-EDC5

2023). A notable example is the overrepresenta- 111

tion of English pretraining corpora, which leads 112

to disproportionate performance improvements in 113

English compared to other languages (Qin et al., 114

2023; Blasi et al., 2022; Joshi et al., 2020). 115

Effect of demographic background on LLM per- 116

formance. Recent literature suggests that LLM 117

performance on subjective tasks is influenced by 118

the demographic attributes of the user (Beck et al., 119

2024; Santy et al., 2023). Moreover, when assigned 120

a persona, LLMs reveal deep inherent stereotypes 121

against various socio-demographic groups (Cheng 122

et al., 2023; Gupta et al., 2023; Deshpande et al., 123

2023). For example, Gupta et al. (2023) show how 124

ChatGPT3.5, when asked to solve a math question 125

while adopting the identity of a physically disabled 126

person, generates that it cannot answer the ques- 127

tion, as a physically disabled person. Furthermore, 128

Barikeri et al. (2021) demonstrate that LLMs can 129

infer demographic attributes from dialog interac- 130

tions. Additionally, research shows biases in favor 131

of Western populations (Santy et al., 2023; Durmus 132

et al., 2023). In model alignment literature, Ryan 133

et al. (2024) show this similar bias within prefer- 134

ence models and Gururangan et al. (2022) illustrate 135

that even within a Western country like the US, 136

GPT3 prefers the more privileged dialects. Finally, 137

Ziems et al. (2023) have provided a cross-dialectal 138

English dataset for countries with English as an 139

official language. Building on these findings, we 140

extend the research to include non-native English 141

speakers, who use English dialects influenced by 142

their native languages. Furthermore, while Gupta 143

et al. (2023) assign a persona to the model, we ana- 144

lyze performance differences of LLMs both with 145

and without explicitly informing the model about 146

the user’s native language and thus with and with- 147

out assigning a persona to the prompt writer. 148

3 Methodology 149

Given the sensitivity of LLMs to prompt formula- 150

tion (Beck et al., 2024; Chakraborty et al., 2023), 151

the diversity of English dialects (Ziems et al., 2023; 152

Ryan et al., 2024), and alignment of models to- 153

wards Western native English speakers (Ryan et al., 154

2024; Santy et al., 2023; Gururangan et al., 2022), 155

we hypothesize that these design choices affect 156

LLM performance when interacting with native 157

versus non-native English speakers. Furthermore, 158

we hypothesize that the specific English dialect 159

learned may influence the responses from LLMs, 160
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particularly if the LLMs are optimized for English161

variants from the US, UK, and other predominantly162

English-speaking countries, as shown by i.e. Santy163

et al. (2023). We also anticipate that performance164

differences will increase when a model is explicitly165

informed about the user’s nativeness. Considering166

the LLM’s ability to infer demographic annotator167

information from text (Staab et al., 2023), we also168

expect the LLM to infer a user’s nativeness and that169

this correct inference leads to greater performance170

differences.171

To test these hypotheses, we collected a new172

dataset containing both classification and genera-173

tion tasks, along with information about the native174

languages of the annotators, as this is lacking in ex-175

isting literature. An overview of our methodology176

and experimental setup is shown in Figure 2.177

3.1 Dataset178

We selected ten diverse datasets from various natu-179

ral language instruction tasks2 (Mishra et al., 2022;180

Wang et al., 2022), covering classification (subjec-181

tive and objective) and generation tasks. These182

tasks, representing typical LLM interactions, fol-183

low a standard instruction pattern and should not184

inherently favor native speakers. The tasks include185

paraphrasing, article generation based on a sum-186

mary or title, sentiment analysis, natural language187

understanding, and multiple-choice answering.188

From each original dataset, we randomly selected189

100 examples, ensuring they were correctly anno-190

tated and free of offensive language. Additionally,191

we included one extra example per dataset to serve192

as a tutorial for the annotator to get used to the task.193

More information about the different tasks in-194

cluded in our dataset can be found in Appendix A.195

3.2 Annotations196

We required the annotators to have a minimum197

level of English equivalent to a high school or uni-198

versity degree to ensure English proficiency. Each199

annotator worked on 20 to 240 examples, and we200

gathered them through direct recruitment, opting201

for an open annotation process rather than an ex-202

isting annotation platform to ensure high-quality203

annotations. All annotators were reimbursed at a204

rate of at least 12.11 euros per hour.205

In addition to gathering self-reported linguistic206

information, i.e. the respective native language,207

level of English, and frequency of English use,208

2https://github.com/allenai/
natural-instructions

we also collected information from native English 209

speakers about how they learned English. To inves- 210

tigate our hypotheses, we categorize English speak- 211

ers based on their nativeness and based on their 212

learning contexts. The term Western native refers 213

to native English speakers who learned English 214

from native speakers from countries like the UK, 215

US, Australia, or Canada. The term not Western 216

native refers to all other annotators in our dataset. 217

Annotators performed different tasks depending 218

on the assigned datasets. An example annotation is 219

shown in Figure 2, where a task definition is pro- 220

vided together with an impractical statement. The 221

annotator has to provide the [Annotator PROMPT] 222

based on the task definition and the desired output, 223

which is C in this example. More details about the 224

annotation setup can be found in Appendix C. 225

Before including the annotations in our final 226

dataset, they were validated. An annotation was 227

deemed invalid if it met any of the following crite- 228

ria: 1) The response was unrelated to the task, i.e. 229

"I don’t know / understand", or a response for a dif- 230

ferent topic or question. 2) The response contained 231

(part of) the answer. 3) The response did not follow 232

the required format or task definition. 4) The an- 233

notator misunderstood the task. Examples for each 234

validation criterion are included in Appendix B. 235

After validation, we removed instances with 236

more than 50% rejected annotations to ensure the 237

quality of the dataset. In total, we removed 12 238

examples entirely and a total of 162 individual an- 239

notations. Our final dataset contains 12,519 anno- 240

tations from 124 annotators. More information on 241

the dataset statistics can be found in Appendix D3. 242

4 Experimental setup 243

4.1 Gathering LLM responses 244

Using gathered annotations, we conducted exper- 245

iments with the chat-versions of well-established 246

LLMs, as these are used in daily life. An 247

overview of the checkpoints per model is shown 248

in Appendix F. We included GPT3.54, GPT4o5, 249

Haiku (Anthropic, 2024), Sonnet (Anthropic, 250

2024),using the appropriate APIs, and Qwen1.5 251

7B6 (Bai et al., 2023) in line with the provided 252

3Due to the nature of the tasks, we did not calculate inter-
annotator agreement scores, as annotators were providing
prompts, and invalid prompts were filtered out.

4https://openai.com/index/
gpt-3-5-turbo-fine-tuning-and-api-updates/

5https://openai.com/index/hello-gpt-4o/
6We ran the experiments for Qwen using A100 GPUs.
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Dataset Selection Annotation Process Validation

Ground Truth Prompt Models

Task definition 🧑
Understood!🤖

Instruction
[Annotator Prompt]🧑

Desired Output🤖
... 🧑Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M

123 .

0987654321

valid invalid

Task Definition🧑
Understood!

🧑

🤖

🤖

Classification Tasks

Abductivenli
Timetravel
Amazon Food Rating
McTaco
TweetQA
Commonsense

Classification Tasks Generation TasksGenerationTasks

StoryCloze
CNN Dailymail
CODA19
Paraphrasing

Classification Tasks: Original label 

Generation Tasks:

Task Definition 🧑
Understood!🤖

🧑

🤖

Results

Native vs. Non-
native

Evaluation

Data Collection

🧑

Understood!🤖

Task Definition🧑

🤖

Validation Criteria:
1) The response was unrelated to the task or a response for a
 different topic or question.
2)The response contained (part of) the answer.
3)The response did not follow the required format or task
definition.
4)The annotator misunderstood the task.

Figure 2: Methodology and experimental setup. The upper part of the figure shows the data collection steps. After
gathering the different datasets, study participants annotated the examples. Then we validated them and used them
as input to generate LLM responses. The lower part of the figure shows the evaluation phase. Before gathering the
results, we got a new ground truth value for the dataset based on the original example for the generation tasks.

licenses and all consistent with the intended use.253

This set includes models of varying sizes, different254

performances, and from different developers, en-255

suring a diverse representation. Moreover, Qwen,256

developed by Chinese researchers, provides an in-257

teresting comparison in terms of design bias.258

We experimented with various prompt schemata,259

structuring our methodological setup as follows.260

Firstly, we analyzed the results on our dataset with-261

out any modifications, comparing responses for na-262

tive and non-native English speakers. Additionally,263

we distinguished between Western native English264

speaking and not Western native English speaking.265

Secondly, we hypothesize that the bias becomes266

more pronounced when adding explicit information267

on whether the annotator is a native or non-native268

English speaker, thereby analyzing whether an an-269

choring effect occurs. Anchoring is a term used270

for human cognitive bias indicating that a person271

might insufficiently change its estimates away from272

an initially provided value (Jones and Steinhardt,273

2022; Tversky and Kahneman, 1974). This effect274

is demonstrated in LLMs by Jones and Steinhardt275

(2022), who found that code generation models276

modify their outputs to align with related solutions277

included in the prompt. Finally, we analyze the per-278

formance difference when letting the model first279

guess the nativeness of the annotator. 280

4.2 Evaluation 281

To measure the bias within the models, we look into 282

the performance difference between two groups, i.e. 283

native versus non-native and Western native versus 284

not Western native. We measure these performance 285

differences across classification tasks and genera- 286

tive tasks. Concretely, native bias measured for the 287

classification tasks is defined as follows: 288

∆native = ϕ (M (T | xnative) , ψ) 289

∆non-native = ϕ (M (T | xnon-native) , ψ) 290

with native bias discriminative = ∆native − 291

∆non-native, template T , user prompt x, model M, 292

accuracy ϕ, and original ground truth ψ. The native 293

generative bias is defined as follows: 294

∆native = ϕ
(
M (T | xnative) ,M

(
T | xoriginal

))
295

∆non-native =ϕ(M (T | xnon-native) ,

M
(
T | xoriginal

)
)

296
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with native bias generative = ∆native −∆non-native,297

template T , user prompt x, model M, performance298

metric ϕ, and generated ground truth from the orig-299

inal prompt M
(
T | xoriginal

)
. The Western native300

bias can be similarly inferred.301

Classification tasks. When assessing classification302

tasks, we focus on the accuracy of the predictions.303

We only consider classifications as correct if they304

follow the instructions correctly or if the correct305

classification can be determined automatically.306

Generative tasks. In assessing the generative tasks,307

we include the following metrics: BLEU, ROUGE,308

BERT-score, and BART-score. These metrics are309

explained in detail in Appendix G.310

The performance metrics for generative tasks are311

calculated using the LLM-generated gold answer312

as reference. This gold answer was generated us-313

ing the original prompt in the dataset as displayed314

in Figure 2. We used this instead of the original315

gold answer in the dataset, given that optimal an-316

swers are model and context-dependent. By em-317

ploying the LLM-generated gold answers, we align318

responses for each model. We include the results,319

using the original gold output in Appendix.320

5 Results321

In line with our hypotheses, the results indicate322

performance differences between native and non-323

native English speakers and Western native and324

not Western native speakers for GPT4o, Sonnet,325

and Qwen for the classification tasks, as shown in326

Figures 3 and 4. However, the generative tasks in-327

dicate no or even opposite preferences as displayed328

in Figure 5. Furthermore, informing the models329

about the user’s nativeness further reduces answer330

quality for non-native English speakers, also result-331

ing in a strong anchoring effect.332

5.1 Classification tasks333

Do LLMs perform better for certain groups on334

objective classification tasks? Figure 3 shows335

the overall average performance for the different336

models and groups on the objective classification337

tasks. These contain all classification tasks, except338

the Amazon Food review task.339

Figure 3a shows that only GPT4o and Qwen340

7B perform better for the native group of anno-341

tators. All other models provide on-par results for342

both groups. Interestingly, Qwen, which is predom-343

inantly trained on Chinese text, also prefers native344

English speakers over non-native English speakers.345

0
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Na�ve Non-na�ve

(a) Native vs. non-native
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0,6

0,7

0,8

0,9

1

GPT3.5 GPT4o Haiku Sonnet Qwen7B

Western na�ve Not Western na�ve

(b) Western native vs. not

Figure 3: Overall average accuracy of the objective
classification tasks per model and group.

Given that GPT4o is the best-performing model 346

from our set, the results indicate that its superior 347

performance may come at the cost of being more 348

specifically tailored to native English speakers. 349

Figure 3b indicates that beside GPT4o and 350

Qwen 7B, also Sonnet shows a higher perfor- 351

mance for the Western native English speakers. 352

Interestingly, the performance difference between 353

the two groups for Qwen has decreased, compared 354

to Figure 3a, indicating that the model is less tai- 355

lored towards Western native English. 356

Similarly, GPT 3.5 performs best for the not 357

Western English speakers. The results suggest 358

that GPT4o, a larger and generally more effective 359

model than GPT3.5, is more sensitive to prompts 360

from native and non-native speakers, leading to the 361

observed performance disparity. Additionally, this 362

behavior is not exclusive to the two GPT models. A 363

comparison between Haiku and Sonnet, both part 364

of the Claude3 family, reveals that Sonnet also ex- 365

hibits greater sensitivity to prompts from Western 366

native English speakers. 367

Can we make similar conclusions for the sub- 368

jective classification task? 369

Surprisingly, Figure 4 shows the opposite effect 370

in comparison to the objective classification tasks, 371

preferring both the non-native and not Western na- 372

tive English speakers. This finding is remarkable, 373

given the results in the subjective classification lit- 374

erature (Santy et al., 2023; Durmus et al., 2023). 375

To understand this contrasting phenomenon, we 376

first analyzed the results for both the native and non- 377

native English speakers, and the Western native and 378

not Western native English speakers, in depth. We 379

find that for the native English-speaking group, 380

the models often predict the rating more posi- 381

tively than actually intended, and this effect is 382

even more pronounced for the Western native 383

English speakers. While for the non-native En- 384

glish group and not Western native English speak- 385

ing group, GPT4o predicted 50% of all wrongly 386

predicted annotations to be more positive than in- 387
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Figure 4: Overall average accuracy of the subjective
classification task per model and group.

correct information wrong information
model native non-native native non-native

GPT3.5 0.84 0.82 0.84 0.84
GPT4o 0.94 0.93 0.94 0.93
Haiku 0.86 0.84 0.85 0.86
Sonnet 0.86 0.66 0.66 0.86
qwen 7B 0.83 0.82 0.83 0.83

Table 1: Overall average accuracy of all classification
tasks per model when adding correct/wrong information
about whether or not the prompt was written by a native
English speaker.

tended, this was 60% for the native English speak-388

ing group and even 70% for the Western native389

English speaking group for GPT4o indicating cul-390

tural differences. More details about these different391

distributions for the different models can be found392

in Appendix H.393

Although we find that GPT4o seems to be most394

tailored towards the native English speakers, it395

tends to estimate native or Western native responses396

more positive than non-native responses. This im-397

plies cultural differences in this subjective classifi-398

cation, indicating that these models do not always399

align with native or Western native opinions as pre-400

viously shown in the literature.401

What is the effect on the performance when402

informing the model about the nativeness of the403

annotator?404

For these experiments, we added information about405

the user’s nativeness to the system prompt. More406

specifically, we asked the model to respond as if it407

is interacting with a native or non-native English408

speaker respectively.409

Table 1 shows that when adding information410

about the nativeness of the annotator to the system411

prompt when generating the predictions, the bias to-412

wards the native English-speaking group becomes413

more pronounced. All models show better per-414

formance for the native English speaking group415

in comparison to the non-native English speak-416

ers. The biggest performance difference is seen for417

Sonnet. When looking into these results, we find418

that Sonnet started answering several questions lan-419

model guess
native

guess
non-native

guess
native

correctly

guess
non-native
correctly

GPT3.5 0.78 0.77 0.76 0.73
GPT4o 0.83 0.83 0.83 0.81
Haiku 0.65 0.64 0.53 0.64
Sonnet 0.65 0.65 0.53 0.56
qwen 7B 0.69 0.70 0.61 0.76

Table 2: Overall average accuracy of all classification
tasks per model and group when guessed by the model
whether the person is a native or non-native speaker, and
when it is guessed correctly.

guages other than English, such as Spanish, French 420

or Indonesian. This is remarkable and demonstrates 421

a clear anchoring effect, considering we only in- 422

structed the model to respond as if interacting with 423

a non-native English speaker without specifying 424

another language. 425

When we inaccurately labeled native speakers 426

as non-native and vice versa, we observed that 427

only the Claude models adhered to this incorrect 428

information, showing a preference toward the non- 429

native group. GPT4o still performs better on the 430

native prompts, and both Qwen and GPT3.5 now 431

show equal performance, compared to the slight 432

preference towards the native group in our previous 433

experiment. This indicates that GPT4o is most ro- 434

bust against the additional information on the user’s 435

nativeness, concentrating primarily on the prompt 436

itself. It thus seems to be better hedged against di- 437

rect bias being added. The same applies to GPT3.5 438

and Qwen, however to a lesser extent given that 439

adding information that mislabels the non-native 440

English speakers as native English speakers does 441

enhance performance. 442

What is the result of first asking the model to 443

guess about the nativeness of the prompt writer? 444

In these experiments, the model first guesses the 445

user’s nativeness from their annotation, and then 446

generates a task response within the same chat. 447

Table 2 shows that for Haiku and GPT3.5, first 448

explicitly letting the model guess about the native- 449

ness of the prompt writer, results in a better score 450

for the prompts that were indicated to be native 451

than the ones that were seen as non-native. GPT4o 452

and Sonnet seem on par for both predicted groups. 453

However, when analyzing the performance of the 454

prompts that were guessed correctly, we do see a 455

large performance difference for both groups for 456

GPT3.5 and GPT4o. Haiku, Sonnet and Qwen, on 457

the other hand, show a preference for non-native 458

English speakers. The performance difference for 459

Haiku between the two correctly guessed groups is 460
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Figure 5: Overall average BLEU score of the generation
tasks per model and group.

remarkable. It seems that the model has predicted461

many well-performing non-native annotations to462

be actually native. Thus, despite this opposite per-463

formance difference, it does show the underlying464

bias within Haiku to associate better-performing465

prompts with native speakers. Interestingly, Qwen466

performs best for the non-native group. For Sonnet,467

the overall accuracy has dropped significantly in468

this experimental set-up. Moreover, both Qwen and469

Sonnet have correctly guessed a very low amount470

of annotations. This is mainly due to the models’471

indecisiveness.472

5.2 Generative tasks473

Do we find similar performance differences for474

the generative tasks?475

On average, we do not see a clear performance476

difference for all generative tasks between the na-477

tive English speakers and the non-native English478

speakers. Figure 5 shows a slightly higher perfor-479

mance for Qwen for non-native English speakers480

and both Qwen and Haiku perform better for West-481

ern native English speakers. All figures display482

only the BLEU score, but similar trends are shown483

by the other metrics. All performance metrics are484

included in Appendix L.485

When analyzing these results per dataset, we find486

that the best-performing group depends on the spe-487

cific task at hand. In general, the generative tasks488

can be divided into two groups: group one with489

CODA19, which includes a medical research arti-490

cle generation task, and the paraphrasing dataset,491

group two with StoryCloze and CNN Dailymail.492

We find that all models prefer the non-native En-493

glish speakers or not Western native English speak-494

ers for group one. Most models prefer (Western)495

native English speakers for group two. Detailed496

results are included in Table 17 in Appendix.497

In interpreting these results, it is important to498

consider the specific nature of the generation tasks499

involved. CODA19 comprises medical articles that500

utilize specialized medical terminology. Given that501

correct information wrong information
model native non-native native non-native

GPT3.5 0.45 0.39 0.39 0.42
GPT4o 0.46 0.46 0.45 0.47
Haiku 0.45 0.45 0.44 0.45
Sonnet 0.45 0.45 0.45 0.45
qwen 7B 0.41 0.42 0.41 0.42

Table 3: Overall average BLEU score of generative
tasks per model when adding correct/wrong information
about whether or not the prompt was written by a native
English speaker.

most annotators were unfamiliar with this vocab- 502

ulary, native English speakers did not have a spe- 503

cific advantage over non-native speakers. Addi- 504

tionally, research articles are commonly written 505

in English by authors from various backgrounds. 506

Therefore, it might be that this specific task is ro- 507

bust against the native and non-native preference. 508

Finally, for the paraphrasing task, we found that 509

native and non-native English annotators handled 510

this task differently. While native English speak- 511

ers often paraphrased the sentences more freely, 512

non-native English speakers closely followed the 513

original structure, mainly providing synonyms and 514

maintaining the original sentence’s format. An ex- 515

ample is added in Appendix J. 516

How does informing the model about the 517

user’s nativeness impact performance? 518

Interestingly, only for GPT3.5 adding correct in- 519

formation about the user’s nativeness results in a 520

better performance for the native group versus the 521

non-native group, as shown in Table 3. Qwen even 522

displays the opposite effect, resulting in a lower 523

performance for the native group. The other mod- 524

els are equally preferring both groups. However, 525

when looking into the specific datasets, we again 526

find that the result differs depending on the task. 527

For both GPT3.5 and GPT4o, a better performance 528

is found for native English speakers for StoryCloze 529

and CNN Dailymail, while the other datasets are 530

preferred for non-native speakers. Qwen and Haiku 531

on the other hand, perform better for the non-native 532

English speakers on all datasets, even when given 533

the information that the prompt writer is a non- 534

native speaker. Sonnet performs best for the native 535

group for StoryCloze, all other datasets prefer the 536

non-native group or are on par. 537

Additionally, when incorrect information about 538

the user’s nativeness is introduced, we find that all 539

models show improved performance for the non- 540

native group, which is presented to the model as 541

native speakers. This is a remarkable finding, as 542

it emphasizes the importance of the prompt over 543
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model guess
native

guess
non-native

guess
native

correctly

guess
non-native
correctly

GPT3.5 0.42 0.42 0.45 0.42
GPT4o 0.46 0.46 0.47 0.46
Haiku 0.44 0.45 0.34 0.43
Sonnet 0.44 0.45 0.39 0.46
Qwen 7B 0.39 0.39 0.43 0.33

Table 4: Overall average BLEU score for all generative
tasks per model and group when guessed by the model
whether the person is a native or non-native speaker, and
when it is guessed correctly.

the user’s nativeness, unlike in classification tasks.544

GPT3.5 is particularly sensitive to the inclusion545

of incorrect information regarding the user’s na-546

tiveness, with metrics across all datasets increas-547

ingly favoring the non-native English speakers and548

diminishing the performance of the native group549

when compared to the addition of correct infor-550

mation. GPT4o, still prefers the native group for551

StoryCloze and CNN Dailymail. The model thus552

shows similar robustness as for the classification553

tasks. In this experiment, Haiku and Qwen per-554

form even better for the non-native group. Sonnet,555

however, is a bit more robust than Haiku.556

What is the result of first asking the model to557

guess about the nativeness of the prompt writer?558

Table 4 shows the average BLEU scores when the559

model (correctly) guessed whether or not the writer560

of the prompt was a native English speaker. Over-561

all, there is no distinct performance variation based562

on the model’s general guesses. However, when563

looking at the guesses that were made correctly,564

differences emerge. All models now perform bet-565

ter for the native group on average, except Haiku566

and Sonnet. For the individual datasets, we find567

that CNN Dailymail performs better for the native568

group, but again CODA19 and Paraphrasing per-569

form better for the non-native group. Similar to the570

classification tasks, GPT3.5 is more influenced by571

this additional information than GPT4o.572

6 Discussion573

In our experiments, we define native bias, or west-574

ern native bias, as the model’s performance dis-575

parity when prompted by native versus non-native576

English speakers, or Western versus not Western577

natives respectively. We find that there are perfor-578

mance differences when the model is prompted579

by people from different backgrounds.580

In fact, we find that for the objective classifi-581

cation tasks, the larger models perform better for582

the native or Western native groups compared to583

the non-native and not Western native groups re- 584

spectively. For the subjective classification task, 585

however, we find an opposite effect, where the 586

model interprets prompts of (Western) native En- 587

glish speakers to be more positive than intended. 588

The generative tasks show no clear performance dif- 589

ferences in general, but the bias varies per dataset. 590

Moreover, a strong anchoring effect occurs 591

when the model knows whether or not the 592

prompt writer is a native English speaker, either 593

by correctly guessing, or by inserted informa- 594

tion in the system prompt. The bias is so deeply 595

engraved that informing the models of the wrong 596

native and non-native groups, results in a prefer- 597

ence towards the group that was indicated as native. 598

The model is largely led by this added information, 599

more than by the prompt itself. However, we find 600

differences between the models. GPT4o appears 601

most resistant to this anchoring effect, while Son- 602

net on the other hand even changes the language 603

of the response based on this anchor. Furthermore, 604

this anchoring effect seems to be less present for 605

the generative tasks than for the classification tasks. 606

Interestingly, the results also suggest that the 607

more advanced versions of models, such as 608

GPT4o compared to GPT3.5 and Sonnet com- 609

pared to Haiku, tend to be more sensitive to 610

the subtleties of native English. On the other 611

hand, we also notice that they are less sensitive 612

to added explicit information of the nativeness or 613

non-nativeness of the annotator, and thus seem to 614

be better hedged against explicitly added bias. 615

7 Conclusion 616

In this work, we analyze bias in LLMs towards 617

native English speakers. More specifically, we an- 618

alyze whether models perform better for native 619

compared to non-native English speakers. We also 620

analyze whether the models are even further tuned 621

towards Western native English speakers. We find 622

that there are performance differences between na- 623

tive and non-native prompts. More specifically, 624

models become more inaccurate for the latter and 625

this effect is even more pronounced for the Western 626

native English versus not Western native English 627

comparison. Furthermore, we find a strong an- 628

choring effect when information about the user’s 629

nativeness is added or inferred by the model. For 630

our experiments, we used a newly collected dataset 631

consisting of over 12,000 unique prompts from a 632

diverse set of annotators. 633
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8 Limitations634

Our dataset contained a very diverse set of annota-635

tors. Nevertheless, it would be interesting to have636

more study participants for every sub-population,637

such that general findings at sub-population level638

could be made as well. Furthermore, our experi-639

ments contained mostly annotators having a self-640

reported level of English of C1 and C2. It would be641

very interesting to analyze the effects on the perfor-642

mance of LLMs when prompted by people having643

different levels of English as this will probably also644

be impactful. Additionally, our results were only645

gathered for five different models. It would be646

insightful to extend this analysis to more models,647

as every model is trained differently and therefore648

these design choices might lead to different biases649

within the model. Finally, the main limitation of us-650

ing LLMs and especially the closed-source variant651

thereof, is the lack of reproducibility of the results.652

9 Ethical considerations653

We included human annotators in this study. All654

annotators were paid for the provided annotations655

and the annotations were done on a voluntary base.656

Moreover, our paper shows some of the conse-657

quences of unfair design choices when develop-658

ing models. We think this work is important to659

highlight the necessity of taking into account mul-660

tiple English dialects, as these models should work661

equally well for everyone. In this paper, we focus662

on the English language. We wanted to point out663

that even in English, this problem of not having664

enough diversified training data might also result665

in performance differences among certain popu-666

lations. However, this does not mean that other667

languages do not require the same attention.668
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A Dataset overview869

We used the datasets as they were assembled870

by Mishra et al. (2022) and Wang et al. (2022).871

Table 5 shows an overview of the selected datasets,872

together with their task ID in the original instruc-873

tions dataset. The task definition given in the table874

is the one we used when prompting the models. For875

CNN Dailymail and CODA19, this differs from the876

original task definition in the dataset because we877

flipped the task. Instead of letting our annotators878

write the article, we asked them to write the sum-879

mary or title respectively. Datasets Abductivenli,880

Timetravel, Amazonfood, McTaco, TweetQA, and881

Commonsense are thus classification tasks, while882

datasets StoryCloze, CNN Dailymail, CODA19,883

and Paraphrase are generation tasks.884

B Annotation validation885

Examples for each of the criteria of an invalid an-886

notation are shown in Table 6.887

For the annotations that did not follow the re-888

quired format, we tried to change it into the correct889

format without changing the content of the prompt,890

if possible (i.e. removing Question: ). If this was891

not possible, the annotation was rejected.892

C Annotation set-up893

We have set up an annotation platform to gather894

the annotations. The annotators first get informa-895

tion about the task. They will get a task definition,896

prompt where part of the answer is marked out897

with the placeholder [YOUR PROMPT], and the898

desired output of the LLM. The annotators should899

complete the prompt such that the desired output900

would be generated by the LLMs. Figure 6 shows901

a screenshot of the landing page of the annotation902

platform together with annotation instructions. An903

example of an annotation that had to be annotated904

Figure 6: Screenshot of the landing page of the annota-
tion platform.

Figure 7: An annotation example of the Abductivenli
dataset.

is shown in Figure 7. We have anonymized all 905

annotations by only providing the self-reported lin- 906

guistic information in the dataset along with the 907

user id number. 908

D Dataset Statistics -Annotations 909

The native-bias dataset consists of 12,519 anno- 910

tations from 124 annotators. Our dataset initially 911

contained 1,000 different examples. After deleting 912

the examples that were not validly annotated by at 913

least 50 % of annotators, we retained 988 examples 914

for 10 different tasks. 915

The annotators have varying native languages 916

as shown in Table 7. The languages are shown in 917

isocode format. Moreover, per native language, we 918

have also included the average validation rate, that 919

is the amount of annotations per person that were 920

valid over the total number of annotated examples. 921

922

Table 8 shows an overview of the number of an- 923

notators per group and set-id. All annotators were 924

given sets of examples that had to be annotated. 925

Every example has a unique set-id. 926

D.1 Prompt length 927

Table 9 shows the average prompt length per 928

dataset and per group. It is interesting to note the 929

large difference for the CNN dailymail dataset, 930

where the non-native English speakers have 931

provided on average longer summaries. For 932

11
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Task ID Name Task Definition
task069 Abductivenli In this task, you will be shown a short story with a beginning, two potential middles, and an ending. Your job is to choose the middle

statement that makes the story coherent / plausible by writing 1̈ör 2̈ïn the output. If both sentences are plausible, pick the one that
makes most sense.

task105 Story Cloze In this task, you’re given four sentences of a story written in natural language. Your job is to complete the end part of the story by
predicting the appropriate last sentence which is coherent with the given sentences.

task065 Timetravel In this task, you are given a short story consisting of exactly 5 sentences where the second sentence is missing. You are given two
options and you need to select the one that best connects the first sentence with the rest of the story. Indicate your answer by ’Option
1’ if the first option is correct, otherwise ’Option 2’. The incorrect option will change the subsequent storyline, so that at least one of
the three subsequent sentences is no longer consistent with the story.

task588 Amazonfood rating In this task, you’re given a review from Amazon’s food products. Your task is to generate a rating for the product on a scale of 1-5
based on the review. The rating means 1: extremely poor, 2: poor, 3: neutral or mixed, 4: good, 5: extremely good.

task020 Mctaco The answer will be ’yes’ if the provided sentence contains an explicit mention that answers the given question. Otherwise, the answer
should be ’no’. Instances where the answer is implied from the sentence using ïnstinctör c̈ommon sense(̈as opposed to being written
explicitly in the sentence) should be labeled as ’no’.

task241 TweetQA In this task, you are given a context tweet, a question and the corresponding answer of the given question. Your task is to classify this
question-answer pair into two categories: (1) ÿesïf the given answer is right for question, and (2) n̈oïf the given answer is wrong for
question.

task1553 CNN Dailymail In this task, you are given highlights ,i.e., a short summary, in a couple of sentences, of news articles and you need to generate the
news article with a maximum length of 2 paragraphs.

task1161 CODA19 In this task, you’re given a title from a research paper and your task is to generate a paragraph for the research paper based on the
given title. Under 10 lines is a good paragraph length.

task177 Paraphrase This is a paraphrasing task. In this task, you’re given a sentence and your task is to generate another sentence which express same
meaning as the input using different words.

task295 Commonsense In this task, you are given an impractical statement. You are also given three reasons (associated with Ä,̈ B̈,̈ C̈)̈ explaining why this
statement doesn’t make sense. You must choose the most corresponding reason explaining why this statement doesn’t make sense.

Table 5: Overview of the different datasets used for the experiments in this paper.

Criteria Dataset Example desired answer
The response is unrelated to the task
or it includes a response for a differ-
ent topic or question

TweetQA Context: I lost the role in 50 Shades of Grey so you won’t be hearing from me
for awhile— Lena Dunham (@lenadunham) September 2, 2013 Question: which
countries are next to France? Answer: liverpool and everybody.

no

The response contains (part of) the
answer.

Amazonfood These are Amazon fish fingers, 5 stars from me - extremely good! 5

The response does not follow the re-
quired format or task definition.

TweetQA Context: Kasich’s daughter on his dance moves: "You’re not going to go on ’Danc-
ing with the Stars’" #KasichFamily CNN Politics (@CNNPolitics) April 12, 2016
Question: no, as he is terrible at dancing Answer: dozen

no

The person misunderstood the task. Commonsense He is wearing a green car choose an alphabet rating for this sentence, "A" for
unreasonable meaning, otherwise "B"

A

Table 6: Examples for the criteria of an invalid annotation.

Native
language

Number of
annotators Languages Validation rate

Other 36

BG, SL, RU, SW,
ML, HU, FA, VI,
BE, EL, TN, ID,
PL, MR, TR, PT,
ET, RO, FIL, UR,

SQ

0.83

NL 23 0.80
EN 28 0.83
ZH 11 0.82

EN, other 9 PA, JA, SW, UR,
VI, MR, EL 0.86

EN, ZH 1 0.88
ES 5 0.77
FR 4 0.94
IT 3 0.94
HI 2 0.93
AR 1 0.94
ES, Other 1 CA 0.84

Table 7: Overview of the native languages of the anno-
tators and the validation rate per native language.

Set-
ids

Native or not Western native
or not Total

Native Non-
native Western Not

Western
10 7 16 5 18 23
20 7 12 4 15 19
30 7 10 4 13 17
40 4 8 3 9 12
50 4 9 2 11 13
60 5 14 3 16 19
70 5 11 4 12 16
80 3 10 3 10 13
90 4 10 4 10 14

100 6 5 4 7 11

Table 8: Overview of the number of annotators per
group and set.

Dataset
ids

Native or not Western native
or not

native non-native not Western
native

Western
native

0 11.08 10.17 11.52 10.14
1 9.15 8.94 8.31 9.26
2 9.40 9.71 9.73 9.58
3 14.95 13.00 14.8 13.39
4 7.56 7.57 7.41 7.61
5 7.53 7.74 6.91 7.93
6 59.32 66.14 56.48 66.41
7 12.09 11.74 12.04 11.77
8 11.28 11.38 11.38 11.34
9 25.91 28.30 24.65 28.66

Table 9: Average prompt length per group and dataset.

the Western native English group versus the not 933

Western native English group, the summaries for 934

the latter are on average 10 words longer than for 935

the former. 936

937

D.2 Time analysis annotators 938

Table 10 shows an overview of the average duration 939

of annotating one example per group in minutes. 940

Table 11, on the other hand, shows the average time 941

for annotating the given set in hours. 942

E Prompt templates 943

General 944

system prompt:You are a helpful assistant. 945

12



group duration (in min)
native 2.07

non native 3.27
Western native 1.87

not Western native 3.25

Table 10: Average duration of annotating 1 example per
group, in minutes

Set-ids Native or not Western native
or not

native non-native Western
native

not Western
native

10 2.70 3.06 2.33 3.12
20 3.22 4.01 3.72 3.71
30 3.05 5.95 3.68 5.09
40 3.31 5.12 2.95 5.04
50 4.82 4.68 2.98 5.04
60 1.30 3.37 1.33 3.10
70 1.39 3.66 1.45 3.46
80 2.39 4.54 2.39 4.54
90 4.63 7.14 4.63 7.14
100 2.79 3.39 2.03 3.65

Table 11: Average overall duration of annotating all
annotations in set per group, in hours

chat history:946

User: task definition,947

Assistant:’Understood’,948

User: Full English Prompt949

950

Add Native951

system prompt:You are a helpful assistant. Re-952

spond as if you are interacting with a native En-953

glish speaker954

chat history:955

User: [task definition],956

Assistant:Understood,957

User: [Full English Prompt]958

959

Add Non-Native960

system prompt:You are a helpful assistant. Re-961

spond as if you are interacting with a non-native962

English speaker963

chat history:964

User: [task definition],965

Assistant:Understood,966

User: [Full English Prompt]967

968

Guess Native969

system prompt: You are a helpful assistant.970

chat history1:971

User: Guess whether the writer of the following972

prompt is a native or non-native English speaker:973

[ANNOTATOR PROMPT],974

975

chat history2:976

Task Task definition
StoryCloze Only respond with the predicted

last sentence.
AmazonFood Only respond with the rating.
McTaco Only respond with "yes" or

"no".
TweetQA Only respond with "yes" or

"no".
CNN Dailymail Only respond with the news ar-

ticle.
CODA19 Only respond with the para-

graph.
Paraphrase Only respond with the para-

phrased sentence.
Commonsense Only respond with the letter in-

dicating the most corresponding
reason.

Table 12: Overview of the added instructions per dataset
to ensure consistent answers from the LLMs.

User: Guess whether the writer of the following 977

prompt is a native or non-native English speaker: 978

[ANNOTATOR PROMPT], 979

Assistant:[RESPONSE], 980

User: Next, execute the following task taking this 981

information into account. [task definition], 982

Assistant:Understood, 983

User: [Full English Prompt] 984

Since we found that some of the models were not 985

following the task definitions correctly for some 986

of the tasks, we added extra instructions as to how 987

the model should reply. Table 12 shows the instruc- 988

tions that were added to the task definition for the 989

different datasets. 990

F Checkpoints models 991

We used the following checkpoints of the different 992

models: 993

GPT 3.5 was made by OpenAI7. We used gpt-3.5- 994

turbo-0125. 995

GPT 4o was made by OpenAI8. We used gpt-4o- 996

2024-05-13. 997

Haiku was made by Anthropic (Anthropic, 2024). 998

We used claude-3-Haiku-20240307. 999

Sonnet was made by Anthropic (Anthropic, 2024). 1000

We used claude-3-Sonnet-20240229. 1001

Qwen 7B is an open source model made by 1002

the Alibaba group (Bai et al., 2023). We used 1003

Qwen/Qwen1.5-7B-Chat 1004

7https://openai.com/index/
gpt-3-5-turbo-fine-tuning-and-api-updates/

8https://openai.com/index/hello-gpt-4o/
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G Evaluation metrics1005

BLEU.9 This established performance measure re-1006

lies on counting the n-gram overlap between candi-1007

date and reference sentence(Papineni et al., 2002).1008

ROUGE.10 This metric is commonly used for1009

summarization tasks and calculates the n-gram re-1010

call between a reference and candidate summary.1011

We employ ROUGE-1, ROUGE-2, and ROUGE-L1012

(Lin, 2004).1013

BERT-score.11 This evaluation metric calcu-1014

lates and aggregates a similarity score between1015

the BERT input embeddings for both the can-1016

didate and reference sentences. We employed1017

microsoft/deberta-xlarge-mnli which was men-1018

tioned to be the best-performing model at the mo-1019

ment of writing the paper (Zhang et al., 2019).1020

BART-score.12 This evaluation measure ap-1021

proaches the evaluation as a text-generation task,1022

including all parameters learned during the pre-1023

training phase (Yuan et al., 2021). All metrics were1024

implemented using the default metrics of the used1025

packages.1026

H Distribution Amazon food reviews1027

Figures 8 and 9 show an overview of the wrong1028

predictions of the AmazonFood review dataset for1029

the different groups and models. This shows the1030

distribution between what was predicted and what1031

should be predicted. We only consider here the1032

cases where the model predicted one of the given1033

ratings, and excluded cases where no prediction1034

was given. As shown, for both the native and West-1035

ern native group, we find a large amount of mis-1036

classification for the highest rating. Additionally,1037

neutral is not often predicted for these classes com-1038

pared to the other groups.1039

I Results Sonnet different languages1040

When adding that the model is interacting with a1041

non-native English speaker, we find that Sonnet1042

starts to answer in different languages. We find1043

that for 668 prompts the model answers in Spanish,1044

for 25 sentences in French, and for 5 sentences in1045

Indonesian. There were a couple of other languages1046

that also occurred sporadically. An overview is1047

9https://www.nltk.org/api/nltk.translate.bleu_
score.html

10https://huggingface.co/spaces/
evaluate-metric/rouge

11https://huggingface.co/spaces/
evaluate-metric/bertscore

12github.com/neulab/BARTScore

Language Times Occurring
es 668
fr 25
id 5
it 2
lt 1

sw 1
ru 1

Table 13: Occurrences of different languages in Sonnet

shown in Table 13. However, these answers were 1048

not related to the native language of the prompt 1049

writer. This phenomenon was encountered mainly 1050

for the Timetravel dataset. Interestingly, this effect 1051

was not seen for the other models, not even for 1052

Haiku. 1053

J Example Paraphrase 1054

As said, there are differences between native and 1055

non-native speakers as to how they perceived the 1056

paraphrasing task. For example given this desired 1057

output: At this time of rapid change, those who lag 1058

behind fall into irrelevance. Native speakers came 1059

up with very freely paraphrased sentences, such 1060

as: If you are not adapting to the quick changes of 1061

the world, you will not succeed. while non-native 1062

speakers stuck to In this fast changing ages, who- 1063

ever is lagging becomes irrelevant. When giving 1064

these different sentences to the model to paraphrase, 1065

the result for the more freely paraphrased sentences 1066

might cause the model to shift away further from 1067

the initial sentence or gold answer. 1068

K Prompt guess native 1069

For this prompt, the number of identified correct 1070

predictions by the models was gathered automati- 1071

cally. Table 14 shows an overview of the correctly 1072

identified native and non native prompts for the en- 1073

tire dataset. In total there are 4264 native prompts 1074

and 8255 non-native prompts in our dataset. Many 1075

of the incorrectly predicted prompts, where in fact 1076

indecisive guesses or when the model was in doubt. 1077

L Generative results 1078

Tables 15 and 16 show the full performance metrics 1079

for the different experiments throughout the paper. 1080

Table 17 shows the overall average BLEU scores 1081

per dataset and model. All models perform better 1082

or equally well for the non-native group for the 1083

14
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(a) Overview of the wrong predictions for the native En-
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(b) Overview of the wrong predictions for the non-native
English speakers.

Figure 8: Overall misclassification for native and non-native English speakers
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(a) Overview of the wrong predictions for the Western
native English speakers.
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(b) Overview of the wrong predictions for the not Western
native English speakers.

Figure 9: Overall misclassification for Western native English speakers and not Western native English speakers

model
amount guess

native
correctly

amount guess
non-native
correctly

GPT3.5 350 3080
GPT4o 114 436
Haiku 164 914
Sonnet 87 304
qwen 7B 95 152

Table 14: Amount of times the user’s nativeness was
correctly guessed by the different models.

CODA19, which includes a medical research arti-1084

cle generation task, and Paraphrase dataset. Inter-1085

estingly, for the other tasks, only Qwen and GPT3.51086

show better performance for the native group on the1087

Story Cloze dataset and GPT3.5 also on the CNN1088

article generation. For the Western native and not1089

Western native groups, all models perform better1090

on the CODA19 and Paraphrasing datasets for the1091

not Western group, and all models prefer the West-1092

ern group for the Story Cloze dataset, except Haiku.1093

For the CNN dailymail dataset, we find some con-1094

flicting performance differences, with GPT4o per-1095

forming better for the Western group, while Qwen1096

prefers the non-Western group.1097

Tables 18, 19, 20, 21, and 22 show per model1098

all different performance measures for the native 1099

groups. 1100

M Overall results per prompt 1101

Tables 23, 24, 25, 26, and 27 show an overview of 1102

the overall average results per group, model, and 1103

prompt. 1104

N Generative results original label 1105

Tables 28, 29, 30, 31, and 32 show the results for 1106

the overall average results for the generative tasks 1107

per model on the original ground truth label in the 1108

dataset. 1109
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GPT3.5 GPT4o Haiku Sonnet Qwen7B
group native non-native native non-native native non-native native non-native native non-native
BLEU 0.44 0.44 0.47 0.47 0.45 0.45 0.45 0.45 0.41 0.42

ROUGE-1 0.39 0.39 0.40 0.41 0.40 0.41 0.38 0.38 0.38 0.38
ROUGE-2 0.15 0.15 0.15 0.16 0.16 0.16 0.13 0.14 0.14 0.14
ROUGE-L 0.29 0.29 0.29 0.29 0.29 0.3 0.27 0.27 0.27 0.27
BERTscore

precision 0.72 0.72 0.72 0.72 0.72 0.72 0.71 0.71 0.7 0.7

BERTscore
recall 0.72 0.72 0.72 0.72 0.71 0.72 0.71 0.71 0.7 0.7

BERTscore
F1 0.72 0.72 0.72 0.72 0.71 0.72 0.71 0.71 0.7 0.7

BARTscore
faithful -2.8 -2.81 -2.95 -2.97 -2.88 -2.9 -3.12 -3.13 -3.13 -3.1

BARTscore
precision -2.73 -2.73 -2.74 -2.75 -2.7 -2.71 -2.86 -2.86 -2.91 -2.9

BARTscore
recall -2.73 -2.70 -2.78 -2.76 -2.68 -2.66 -2.88 -2.87 -2.93 -2.92

BARTscore
F1 -2.70 -2.69 -2.74 -2.73 -2.66 -2.66 -2.84 -2.84 -2.89 -2.88

Table 15: Overall average generative performance metrics for all generative tasks per model and group.

GPT3.5 GPT4o Haiku Sonnet Qwen7B

group western
native

not western
native

western
native

not western
native

western
native

not western
native

western
native

not western
native

western
native

not western
native

BLEU 0.44 0.44 0.47 0.47 0.44 0.45 0.45 0.45 0.41 0.42
ROUGE-1 0.39 0.39 0.4 0.41 0.4 0.41 0.38 0.38 0.38 0.38
ROUGE-2 0.15 0.15 0.16 0.15 0.15 0.16 0.14 0.14 0.14 0.14
ROUGE-L 0.29 0.29 0.29 0.29 0.29 0.3 0.27 0.27 0.27 0.27
BERTscore

precision 0.72 0.72 0.72 0.72 0.71 0.72 0.71 0.71 0.7 0.7

BERTscore
recall 0.72 0.72 0.72 0.72 0.71 0.72 0.71 0.71 0.7 0.7

BERTscore
F1 0.72 0.72 0.72 0.72 0.71 0.72 0.71 0.71 0.7 0.7

BARTscore
faithful -2.8 -2.81 -2.96 -2.96 -2.89 -2.89 -3.13 -3.12 -3.12 -3.1

BARTscore
precision -2.72 -2.73 -2.73 -2.75 -2.7 -2.7 -2.85 -2.87 -2.92 -2.9

BARTscore
recall -2.73 -2.71 -2.77 -2.76 -2.69 -2.66 -2.88 -2.87 -2.95 -2.91

BARTscore
F1 -2.7 -2.69 -2.73 -2.73 -2.67 -2.66 -2.84 -2.84 -2.9 -2.87

Table 16: Overall average generative performance metrics for all generative tasks per model and group.

model GPT3.5 GPT4o Haiku Sonnet Qwen 7B
dataset native non-native native non-native native non-native native non-native native non-native
Story Cloze 0.39 0.38 0.41 0.41 0.37 0.36 0.39 0.39 0.39 0.38
CNN dailymail 0.46 0.45 0.53 0.53 0.49 0.49 0.5 0.5 0.43 0.43
CODA19 0.55 0.56 0.57 0.58 0.57 0.58 0.57 0.58 0.52 0.53
Paraphrasing 0.36 0.36 0.35 0.37 0.36 0.38 0.32 0.33 0.31 0.33

model GPT3.5 GPT4o Haiku Sonnet Qwen 7B
dataset Western non Western Western non Western Western non Western Western non Western Western non Western
Story Cloze 0.4 0.38 0.43 0.41 0.36 0.37 0.4 0.39 0.39 0.38
CNN dailymail 0.46 0.46 0.54 0.53 0.49 0.49 0.50 0.50 0.42 0.43
CODA19 0.55 0.56 0.58 0.58 0.57 0.58 0.58 0.58 0.52 0.53
Paraphrasing 0.35 0.36 0.35 0.37 0.35 0.38 0.32 0.33 0.3 0.33

Table 17: Average BLEU scores per dataset and model for the native-non-native group and the Western non Western
group.

dataset id StoryCloze CNN Dailymail CODA19 Paraphrase
group native non-native native non-native native non-native native non-native
BLEU 0.39 0.38 0.46 0.45 0.55 0.56 0.36 0.36

ROUGE-1 0.39 0.38 0.39 0.38 0.43 0.45 0.35 0.36
ROUGE-2 0.19 0.19 0.11 0.11 0.14 0.15 0.15 0.14
ROUGE-L 0.34 0.34 0.22 0.22 0.26 0.27 0.32 0.32

BERTscore precision 0.74 0.74 0.66 0.66 0.70 0.71 0.77 0.78
BERTscore recall 0.74 0.74 0.67 0.67 0.70 0.71 0.76 0.76

BERTscore F1 0.74 0.74 0.66 0.66 0.70 0.71 0.77 0.77
BARTscore faithful -3.32 -3.35 -2.3 -2.29 -2.87 -2.87 -2.70 -2.71

BARTscore precision -2.45 -2.48 -2.83 -2.87 -2.77 -2.71 -2.86 -2.85
BARTscore recall -2.47 -2.49 -2.68 -2.66 -2.8 -2.74 -2.96 -2.94

BARTscore F1 -2.43 -2.45 -2.74 -2.75 -2.78 -2.72 -2.87 -2.86

Table 18: Average Performance metrics per dataset for the native-non-native group for GPT3.5.
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dataset id StoryCloze CNN Dailymail CODA19 Paraphrase
group native non-native native non-native native non-native native non-native
BLEU 0.41 0.41 0.53 0.53 0.57 0.58 0.35 0.37

ROUGE-1 0.41 0.41 0.42 0.42 0.41 0.43 0.36 0.37
ROUGE-2 0.25 0.23 0.11 0.12 0.12 0.13 0.14 0.14
ROUGE-L 0.38 0.38 0.21 0.21 0.23 0.24 0.32 0.34

BERTscore precision 0.76 0.75 0.65 0.66 0.69 0.7 0.78 0.79
BERTscore recall 0.76 0.75 0.67 0.67 0.69 0.69 0.76 0.76

BERTscore F1 0.76 0.75 0.66 0.66 0.69 0.7 0.77 0.77
BARTscore faithful -3.52 -3.53 -2.65 -2.62 -3.15 -3.18 -2.48 -2.52

BARTscore precision -2.42 -2.42 -2.89 -2.92 -2.9 -2.88 -2.77 -2.76
BARTscore recall -2.38 -2.4 -2.82 -2.81 -2.96 -2.92 -2.95 -2.9

BARTscore F1 -2.36 -2.38 -2.85 -2.86 -2.92 -2.9 -2.82 -2.79

Table 19: Average Performance metrics per dataset for the native-non-native group for GPT4o.

dataset id StoryCloze CNN Dailymail CODA19 Paraphrase
group native non-native native non-native native non-native native non-native
BLEU 0.37 0.36 0.49 0.49 0.57 0.58 0.36 0.38

ROUGE-1 0.39 0.38 0.39 0.4 0.45 0.46 0.38 0.4
ROUGE-2 0.2 0.19 0.12 0.12 0.15 0.16 0.16 0.18
ROUGE-L 0.36 0.36 0.22 0.22 0.26 0.27 0.34 0.36

BERTscore precision 0.75 0.75 0.63 0.63 0.7 0.7 0.78 0.79
BERTscore recall 0.75 0.75 0.65 0.65 0.69 0.7 0.77 0.77

BERTscore F1 0.75 0.75 0.64 0.64 0.7 0.7 0.77 0.78
BARTscore faithful -3.28 -3.31 -2.59 -2.57 -2.85 -2.88 -2.78 -2.82

BARTscore precision -2.39 -2.42 -2.97 -2.99 -2.66 -2.66 -2.78 -2.76
BARTscore recall -2.39 -2.4 -2.82 -2.8 -2.71 -2.66 -2.82 -2.79

BARTscore F1 -2.35 -2.37 -2.88 -2.88 -2.68 -2.65 -2.76 -2.73

Table 20: Average Performance metrics per dataset for the native-non-native group for Haiku.

dataset id StoryCloze CNN Dailymail CODA19 Paraphrase
group native non-native native non-native native non-native native non-native
BLEU 0.39 0.39 0.5 0.5 0.57 0.58 0.32 0.33

ROUGE-1 0.38 0.38 0.41 0.41 0.42 0.43 0.3 0.31
ROUGE-2 0.18 0.18 0.12 0.12 0.13 0.14 0.1 0.11
ROUGE-L 0.33 0.34 0.22 0.22 0.24 0.25 0.27 0.28

BERTscore precision 0.74 0.74 0.65 0.64 0.7 0.7 0.76 0.76
BERTscore recall 0.74 0.74 0.66 0.66 0.69 0.7 0.74 0.75

BERTscore F1 0.74 0.74 0.65 0.65 0.69 0.7 0.75 0.75
BARTscore faithful -3.29 -3.29 -2.88 -2.86 -3.07 -3.08 -3.24 -3.26

BARTscore precision -2.5 -2.49 -3 -3.03 -2.78 -2.79 -3.16 -3.16
BARTscore recall -2.48 -2.47 -2.91 -2.91 -2.83 -2.8 -3.31 -3.29

BARTscore F1 -2.46 -2.45 -2.94 -2.95 -2.8 -2.78 -3.18 -3.17

Table 21: Average Performance metrics per dataset for the native-non-native group for Sonnet.

dataset id StoryCloze CNN Dailymail CODA19 Paraphrase
group native non-native native non-native native non-native native non-native
BLEU 0.39 0.38 0.43 0.43 0.52 0.53 0.31 0.33

ROUGE-1 0.4 0.4 0.38 0.39 0.4 0.41 0.33 0.34
ROUGE-2 0.24 0.23 0.1 0.1 0.1 0.11 0.12 0.12
ROUGE-L 0.38 0.37 0.19 0.19 0.22 0.22 0.29 0.3

BERTscore precision 0.75 0.75 0.63 0.63 0.68 0.68 0.74 0.75
BERTscore recall 0.75 0.75 0.64 0.64 0.68 0.69 0.72 0.73

BERTscore F1 0.75 0.75 0.64 0.64 0.68 0.68 0.73 0.74
BARTscore faithful -3.59 -3.55 -2.82 -2.78 -3.21 -3.25 -2.87 -2.83

BARTscore precision -2.45 -2.43 -3 -3 -3.02 -3.02 -3.2 -3.14
BARTscore recall -2.47 -2.49 -2.92 -2.91 -3.07 -3.02 -3.28 -3.24

BARTscore F1 -2.41 -2.42 -2.94 -2.95 -3.03 -3.01 -3.17 -3.13

Table 22: Average Performance metrics per dataset for the native-non-native group for Qwen.

Standard Native Prompt Non-Native Prompt Guess Native Guess Native correctly
group native non-native native non-native native non-native native non-native native non-native

accuracy 0.81 0.82 0.83 0.84 0.83 0.82 0.78 0.77 0.76 0.73
BLEU 0.44 0.44 0.42 0.42 0.39 0.39 0.42 0.42 0.45 0.42

ROUGE-1 0.39 0.39 0.38 0.38 0.36 0.37 0.37 0.37 0.39 0.37
ROUGE-2 0.15 0.15 0.14 0.14 0.13 0.13 0.13 0.13 0.14 0.12
ROUGE-L 0.29 0.29 0.28 0.28 0.27 0.28 0.27 0.27 0.27 0.27

BERTscore precision 0.72 0.72 0.72 0.72 0.72 0.73 0.72 0.72 0.72 0.71
BERTscore recall 0.72 0.72 0.71 0.71 0.7 0.7 0.71 0.71 0.71 0.71

BERTscore F1 0.72 0.72 0.72 0.71 0.71 0.71 0.71 0.71 0.72 0.71
BARTscore faithful -2.8 -2.81 -2.75 -2.79 -2.72 -2.71 -2.78 -2.78 -2.74 -2.75

BARTscore precision -2.73 -2.73 -2.7 -2.75 -2.69 -2.7 -2.77 -2.78 -2.73 -2.84
BARTscore recall -2.73 -2.7 -2.76 -2.76 -2.8 -2.79 -2.76 -2.75 -2.76 -2.77

BARTscore F1 -2.7 -2.69 -2.7 -2.73 -2.72 -2.72 -2.74 -2.74 -2.72 -2.78

Table 23: Overall average generative performance metrics for all generative tasks per group and prompt of GPT3.5.
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Standard Native Prompt Non-Native Prompt Guess Native Guess Native correctly
group native non-native native non-native native non-native native non-native native non-native

accuracy 0.91 0.91 0.91 0.91 0.91 0.91 0.83 0.83 0.83 0.81
BLEU 0.47 0.47 0.46 0.47 0.45 0.46 0.46 0.46 0.47 0.46

ROUGE-1 0.4 0.41 0.4 0.4 0.39 0.4 0.39 0.4 0.39 0.4
ROUGE-2 0.15 0.16 0.15 0.15 0.14 0.15 0.15 0.15 0.12 0.13
ROUGE-L 0.29 0.29 0.28 0.29 0.28 0.29 0.28 0.29 0.24 0.27

BERTscore precision 0.72 0.72 0.72 0.72 0.72 0.73 0.72 0.72 0.68 0.71
BERTscore recall 0.72 0.72 0.72 0.72 0.71 0.71 0.71 0.72 0.69 0.71

BERTscore f1 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.69 0.71
BARTscore faithful -2.95 -2.97 -2.95 -2.94 -2.87 -2.88 -2.92 -2.91 -2.46 -2.7

BARTscore precision -2.74 -2.75 -2.76 -2.74 -2.73 -2.72 -2.75 -2.74 -2.78 -2.73
BARTscore recall -2.78 -2.76 -2.8 -2.77 -2.82 -2.8 -2.81 -2.79 -2.71 -2.83

BARTscore f1 -2.74 -2.73 -2.76 -2.73 -2.75 -2.73 -2.76 -2.74 -2.73 -2.76

Table 24: Overall average generative performance metrics for all generative tasks per group and prompt of GPT4o.

Standard Native Prompt Non-Native Prompt Guess Native Guess Native correctly
group native non-native native non-native native non-native native non-native native non-native

accuracy 0.84 0.85 0.84 0.85 0.83 0.83 0.65 0.64 0.53 0.64
BLEU 0.45 0.45 0.45 0.45 0.44 0.45 0.44 0.45 0.34 0.43

ROUGE-1 0.4 0.41 0.4 0.41 0.4 0.41 0.39 0.39 0.35 0.38
ROUGE-2 0.16 0.16 0.15 0.16 0.15 0.17 0.14 0.15 0.15 0.13
ROUGE-L 0.29 0.3 0.29 0.3 0.29 0.3 0.28 0.28 0.31 0.27

BERTscore precision 0.72 0.72 0.71 0.72 0.71 0.72 0.71 0.71 0.73 0.71
BERTscore recall 0.71 0.72 0.71 0.72 0.71 0.72 0.71 0.71 0.73 0.71

BERTscore f1 0.71 0.72 0.71 0.72 0.71 0.72 0.71 0.71 0.73 0.71
BARTscore faithful -2.88 -2.9 -2.9 -2.9 -2.88 -2.89 -2.97 -2.97 -3.31 -2.95

BARTscore precision -2.7 -2.71 -2.7 -2.69 -2.7 -2.7 -2.85 -2.87 -2.71 -2.91
BARTscore recall -2.68 -2.66 -2.69 -2.66 -2.7 -2.66 -2.75 -2.74 -2.66 -2.81

BARTscore f1 -2.66 -2.66 -2.67 -2.65 -2.67 -2.66 -2.77 -2.78 -2.64 -2.83

Table 25: Overall average generative performance metrics for all generative tasks per group and prompt of Haiku.

Standard Native Prompt Non-Native Prompt Guess Native Guess Native correctly
group native non-native native non-native native non-native native non-native native non-native

accuracy 0.86 0.86 0.86 0.86 0.66 0.66 0.65 0.65 0.53 0.56
BLEU 0.45 0.45 0.45 0.45 0.45 0.45 0.44 0.45 0.39 0.46

ROUGE-1 0.38 0.38 0.38 0.39 0.38 0.38 0.37 0.38 0.34 0.38
ROUGE-2 0.13 0.14 0.14 0.14 0.13 0.14 0.13 0.13 0.1 0.13
ROUGE-L 0.27 0.27 0.27 0.27 0.27 0.27 0.26 0.26 0.24 0.25

BERTscore precision 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.7
BERTscore recall 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.7

BERTscore f1 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.7
BARTscore faithful -3.12 -3.13 -3.13 -3.14 -3.08 -3.09 -3.1 -3.1 -3.04 -3.06

BARTscore precision -2.86 -2.86 -2.87 -2.87 -2.87 -2.87 -2.88 -2.89 -2.89 -2.95
BARTscore recall -2.88 -2.87 -2.87 -2.85 -2.89 -2.88 -2.89 -2.89 -3.01 -2.88

BARTscore f1 -2.84 -2.84 -2.85 -2.83 -2.85 -2.84 -2.86 -2.86 -2.89 -2.88

Table 26: Overall average generative performance metrics for all generative tasks per group and prompt of Sonnet.

Standard Native Prompt Non-Native Prompt Guess Native Guess Native correctly
group native non-native native non-native native non-native native non-native native non-native

accuracy 0.82 0.81 0.82 0.82 0.82 0.82 0.69 0.7 0.61 0.76
BLEU 0.41 0.42 0.41 0.42 0.41 0.42 0.39 0.39 0.43 0.33

ROUGE-1 0.38 0.38 0.38 0.38 0.38 0.38 0.34 0.35 0.38 0.32
ROUGE-2 0.14 0.14 0.14 0.14 0.14 0.14 0.1 0.1 0.12 0.07
ROUGE-L 0.27 0.27 0.27 0.27 0.27 0.27 0.23 0.23 0.24 0.21

BERTscore precision 0.7 0.7 0.7 0.7 0.7 0.7 0.65 0.65 0.63 0.63
BERTscore recall 0.7 0.7 0.7 0.7 0.7 0.7 0.68 0.68 0.67 0.67

BERTscore f1 0.7 0.7 0.7 0.7 0.7 0.7 0.66 0.66 0.65 0.65
BARTscore faithful -3.13 -3.1 -3.11 -3.11 -3.11 -3.11 -3.73 -3.73 -3.28 -3.64

BARTscore precision -2.91 -2.9 -2.91 -2.91 -2.91 -2.91 -3.74 -3.76 -3.46 -3.89
BARTscore recall -2.93 -2.92 -2.93 -2.91 -2.92 -2.91 -3.15 -3.14 -3.03 -3.25

BARTscore f1 -2.89 -2.88 -2.89 -2.88 -2.88 -2.88 -3.38 -3.38 -3.21 -3.51

Table 27: Overall average generative performance metrics for all generative tasks per group and prompt of Qwen.

Standard Native Prompt Non-Native Prompt Guess Native Guess Native correctly
group native non-native native non-native native non-native native non-native native non-native
BLEU 0.21 0.22 0.21 0.21 0.21 0.21 0.21 0.22 0.21 0.22

ROUGE-1 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.28 0.27
ROUGE-2 0.08 0.08 0.08 0.09 0.09 0.09 0.08 0.09 0.09 0.09
ROUGE-L 0.2 0.21 0.2 0.21 0.21 0.21 0.2 0.21 0.2 0.21

BERTscore precision 0.68 0.69 0.69 0.69 0.69 0.7 0.68 0.69 0.68 0.69
BERTscore recall 0.64 0.64 0.63 0.64 0.63 0.64 0.64 0.64 0.61 0.64

BERTscore F1 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.64 0.66
BARTscore faithful -2.8 -2.81 -2.75 -2.79 -2.72 -2.71 -2.78 -2.78 -2.74 -2.75

BARTscore precision -2.84 -2.82 -2.8 -2.8 -2.75 -2.73 -2.84 -2.83 -2.72 -2.85
BARTscore recall -3.29 -3.26 -3.3 -3.27 -3.29 -3.27 -3.28 -3.25 -3.34 -3.25

BARTscore F1 -3.01 -2.99 -2.99 -2.98 -2.96 -2.94 -3.0 -2.99 -2.97 -3.0

Table 28: Overall average generative performance metrics for all generative tasks per group and prompt of GPT3.5
for the original gold answer.
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Standard Native Prompt Non-Native Prompt Guess Native Guess Native correctly
group native non-native native non-native native non-native native non-native native non-native
BLEU 0.28 0.28 0.27 0.27 0.26 0.27 0.27 0.27 0.18 0.26

ROUGE-1 0.3 0.31 0.3 0.3 0.3 0.3 0.3 0.3 0.27 0.31
ROUGE-2 0.09 0.1 0.09 0.1 0.1 0.1 0.09 0.1 0.08 0.11
ROUGE-L 0.22 0.23 0.22 0.22 0.22 0.23 0.22 0.22 0.18 0.23

BERTscore precision 0.68 0.68 0.68 0.68 0.68 0.69 0.68 0.68 0.67 0.69
BERTscore recall 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.62 0.65

BERTscore F1 0.66 0.67 0.66 0.67 0.67 0.67 0.66 0.67 0.64 0.67
BARTscore faithful -2.95 -2.97 -2.95 -2.94 -2.87 -2.88 -2.92 -2.91 -2.46 -2.7

BARTscore precision -2.89 -2.88 -2.89 -2.86 -2.85 -2.83 -2.88 -2.85 -2.79 -2.74
BARTscore recall -3.25 -3.22 -3.25 -3.22 -3.24 -3.22 -3.27 -3.23 -3.29 -3.2

BARTscore F1 -3.03 -3.01 -3.03 -3.0 -3.0 -2.98 -3.03 -3.0 -3.0 -2.92

Table 29: Overall average generative performance metrics for all generative tasks per group and prompt of GPT4o
for the original gold answer.

Standard Native Prompt Non-Native Prompt Guess Native Guess Native correctly
group native non-native native non-native native non-native native non-native native non-native
BLEU 0.25 0.26 0.26 0.26 0.26 0.26 0.25 0.25 0.18 0.26

ROUGE-1 0.29 0.29 0.29 0.29 0.29 0.29 0.28 0.29 0.24 0.3
ROUGE-2 0.08 0.08 0.08 0.09 0.09 0.09 0.08 0.08 0.05 0.08
ROUGE-L 0.21 0.21 0.21 0.21 0.21 0.21 0.2 0.21 0.2 0.22

BERTscore precision 0.67 0.67 0.67 0.68 0.67 0.68 0.67 0.67 0.66 0.67
BERTscore recall 0.64 0.64 0.64 0.65 0.64 0.64 0.64 0.65 0.7 0.65

BERTscore F1 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.65 0.67 0.66
BARTscore faithful -2.88 -2.9 -2.9 -2.9 -2.88 -2.89 -2.97 -2.97 -3.31 -2.95

BARTscore precision -2.86 -2.86 -2.85 -2.85 -2.85 -2.86 -2.98 -2.98 -2.96 -2.96
BARTscore recall -3.33 -3.32 -3.33 -3.31 -3.33 -3.32 -3.33 -3.32 -3.31 -3.31

BARTscore F1 -3.04 -3.04 -3.04 -3.03 -3.04 -3.04 -3.11 -3.1 -3.08 -3.09

Table 30: Overall average generative performance metrics for all generative tasks per group and prompt of Haiku
for the original gold answer.

Standard Native Prompt Non-Native Prompt Guess Native Guess Native correctly
group native non-native native non-native native non-native native non-native native non-native
BLEU 0.25 0.25 0.25 0.25 0.26 0.26 0.25 0.25 0.2 0.24

ROUGE-1 0.27 0.27 0.27 0.28 0.28 0.28 0.27 0.27 0.24 0.27
ROUGE-2 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.06 0.07
ROUGE-L 0.19 0.19 0.19 0.19 0.2 0.2 0.19 0.19 0.19 0.18

BERTscore precision 0.66 0.67 0.66 0.67 0.67 0.67 0.66 0.66 0.66 0.66
BERTscore recall 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.66 0.63

BERTscore F1 0.65 0.65 0.65 0.66 0.66 0.66 0.65 0.65 0.66 0.64
BARTscore faithful -3.12 -3.13 -3.13 -3.14 -3.08 -3.09 -3.1 -3.1 -3.04 -3.06

BARTscore precision -3.06 -3.05 -3.08 -3.08 -3.06 -3.05 -3.06 -3.07 -3.08 -3.07
BARTscore recall -3.31 -3.3 -3.3 -3.3 -3.29 -3.29 -3.31 -3.31 -3.33 -3.36

BARTscore F1 -3.14 -3.13 -3.15 -3.15 -3.13 -3.13 -3.14 -3.14 -3.17 -3.17

Table 31: Overall average generative performance metrics for all generative tasks per group and prompt of Sonnet
for the original gold answer.

Standard Native Prompt Non-Native Prompt Guess Native Guess Native correctly
group native non-native native non-native native non-native native non-native native non-native
BLEU 0.27 0.27 0.27 0.27 0.27 0.27 0.23 0.24 0.17 0.25

ROUGE-1 0.29 0.29 0.29 0.29 0.28 0.29 0.26 0.27 0.28 0.3
ROUGE-2 0.08 0.08 0.08 0.08 0.08 0.08 0.06 0.06 0.08 0.08
ROUGE-L 0.2 0.21 0.2 0.21 0.2 0.21 0.18 0.19 0.18 0.23

BERTscore precision 0.66 0.67 0.66 0.67 0.66 0.67 0.62 0.62 0.62 0.62
BERTscore recall 0.64 0.65 0.64 0.65 0.65 0.65 0.63 0.63 0.61 0.65

BERTscore F1 0.65 0.66 0.65 0.66 0.65 0.65 0.62 0.62 0.61 0.64
BARTscore faithful -3.13 -3.1 -3.11 -3.11 -3.11 -3.11 -3.73 -3.73 -3.28 -3.64

BARTscore precision -3.07 -3.05 -3.06 -3.06 -3.07 -3.07 -3.82 -3.83 -3.51 -3.94
BARTscore recall -3.29 -3.27 -3.29 -3.27 -3.29 -3.27 -3.41 -3.39 -3.4 -3.33

BARTscore F1 -3.14 -3.12 -3.13 -3.12 -3.14 -3.13 -3.55 -3.53 -3.4 -3.56

Table 32: Overall average generative performance metrics for all generative tasks per group and prompt of Qwen7B
for the original gold answer.
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