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Abstract
The goal of continual learning is to find a model
that solves multiple learning tasks which are pre-
sented sequentially to the learner. A key chal-
lenge in this setting is that the learner may forget
how to solve a previous task when learning a new
task, a phenomenon known as catastrophic for-
getting. To address this challenge, many practical
methods have been proposed, including memory-
based, regularization-based, and expansion-based
methods. However, a rigorous theoretical under-
standing of these methods remains elusive. This
paper aims to bridge this gap between theory and
practice by proposing a new continual learning
framework called Ideal Continual Learner (ICL),
which is guaranteed to avoid catastrophic forget-
ting by construction. We show that ICL unifies
multiple well-established continual learning meth-
ods and gives new theoretical insights into the
strengths and weaknesses of these methods. We
also derive generalization bounds for ICL which
allow us to theoretically quantify how rehearsal
affects generalization. Finally, we connect ICL
to several classic subjects and research topics of
modern interest, which allows us to make histori-
cal remarks and inspire future directions.

1. Introduction
The goal of building intelligent machines that are adaptive
and self-improving over time has given rise to the continual
learning paradigm, where the learner needs to solve multi-
ple tasks presented sequentially (Thrun & Mitchell, 1995).
In this setting, a key challenge known as catastrophic for-
getting (McCloskey & Cohen, 1989) is that, unlike humans,
the agent may forget how to solve past tasks (i.e., exhibit

1Mathematical Institute for Data Science, Johns Hopkins Uni-
versity, Baltimore, USA 2Innovation in Data Engineering and
Science (IDEAS), University of Pennsylvania, Philadelphia, USA
3NORCE Norwegian Research Centre, Norway. Correspondence
to: Liangzu Peng <lpenn@seas.upenn.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

larger errors on past tasks), after learning the present one.
To address this problem, many practical methods have been
proposed. For example, memory-based methods store data
from past tasks and use it to solve the present task (Lopez-
Paz & Ranzato, 2017), regularization-based methods add
some regularization terms to the loss in order to prevent
overfitting to the current task (Kirkpatrick et al., 2017), and
expansion-based methods expand the network architecture
to accommodate learning a new task (Rusu et al., 2016).

Deep continual learning methods that embody either of these
three ideas, or combinations thereof, have greatly improved
the empirical performance in resisting catastrophic forget-
ting (Liu, 2022).1 While these methods have evolved so
rapidly, at least two questions remain under-explored:

(Q1) Is there any mathematical connection between con-
tinual learning and other conceptually related fields? The
answer seems elusive even for multitask learning (i.e., joint
training of all tasks): Chaudhry et al. (2020) and Mirzadeh
et al. (2021), among many others, advocated that performing
multitask learning gives the best performance for continual
learning, while Wu et al. (2022) claimed the opposite.

(Q2) How does the rehearsal mechanism provably affect
generalization? Lopez-Paz & Ranzato (2017) claimed
that rehearsal (i.e., joint training with part of previous
data stored in memory and the data of the present task)
would result in overfitting (and jeopardize generalization).
Chaudhry et al. (2019) rebutted against this claim by empiri-
cal evidence, while Verwimp et al. (2021) offered empirical
counter-evidence for what Chaudhry et al. (2019) argued.
Indeed, the answer to (Q2) has been unclear, which is why
Verwimp et al. (2021) posed this as a serious open problem.

Our Contributions. In this paper, we focus on theoretically
understanding continual learning and catastrophic forgetting
by trying to answer Questions (Q1) and (Q2). In particular:

• We propose a general framework for continual learning,
called the Ideal Continual Learner (ICL), and we show that,
under mild assumptions, ICL never forgets. This charac-
terization of never forgetting makes it possible to address
Questions (Q1) and (Q2) via dissecting the optimization and
generalization properties of ICL.

1We discuss the most relevant references in the main paper as
we proceed, and we review related works in detail in the appendix.
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§2 Optimization Basics of Continual Learning

§2.2 & §2.3 Definition of ICL (Definition 1) & ICL never forgets (Proposition 1)

§2.4 & §2.5 ICL is a bilevel optimizer (Propositions 2 and 3) & ICL is a multitask learner (Proposition 4)

§3 Examples of ICL & Understanding Deep Continual Learning

§3.1.3 ICL is a memory-based (projection-based) method (Proposition 6 and Remark 3)

§3.2.3 ICL is an expansion-based method & wide neural networks forget less catastrophically

§4 Generalization Basics of Continual Learning

§4.3 ICL and constrained learning & ICL is a regularization-based method
§4.4 Generalization guarantees of rehearsal (Theorem 3) & remarks on memory selection methods

Table 1: Structure and messages of the paper.

Figure 1: The Ideal Continual Learner (ICL) and related
subjects. The exact connections between ICL and these
subjects are discussed throughout the paper and appendix.

• Question (Q1) is considered throughout the paper: We
bring to light the connection of ICL to many other fields—
visualized in Figure 1—including set-theoretical estimation
(§2.3), bilevel optimization (§2.4), multitask learning (§2.5),
deep continual learning (§3), incremental SVD (§3.2), and
constrained learning (§4.2). In particular, we dissect ICL
in two examples, continual learning regression (§3.1) and
continual matrix factorization (§3.2), showing that ICL
is a memory-based optimization method for the former
example and an expansion-based for the latter. We also
connect ICL to regularization-based methods (§4.2). These
shed considerable lights on many aspects of existing deep
continual learning methods, e.g., their failure cases, the
role of memory and network widths, and so on. With all
these connections, we provide historical context and novel
insights for future research avenues.
• Question (Q2) is explored in §4, where we prove the gen-
eralization properties of ICL based on the classic statistical

learning frameworks. Crucially, our theory quantifies how
rehearsal influences generalization, shedding light on (Q2).

Since the paper consists of multiple messages relevant to
continual learning, it might be beneficial to overview them
in Table 1, which includes direct links to the contents and
aims at helping the reader navigate.

2. Continual Learning Basics: Optimization
2.1. Problem Setup

Consider tasks 1, . . . , T , where task t can be solved by
minimizing some problem of the form

Gt := argmin
w∈W

Lt(w;Dt). (1)

Here, Dt is the given data set for task t, and Gt is the set
of global minimizers of the objective Lt (1). By continual
learning, we mean solving the tasks sequentially from task
1 to task T and finding some ground truth in the hypothesis
space W ⊂ Rn that minimizes all losses (1); if an algo-
rithm can do so, then we say it never forgets. While each
task could have a different hypothesis space, we trade this
generality for simplifying the presentation.

For such ground truth to exist, we need a basic assumption:
Assumption 1 (Shared Multitask Model†). All tasks (1)
share a common global minimizer, i.e., ∩Tt=1Gt ̸= ∅.

The intuition behind Assumption 1, which generalizes those
of Evron et al. (2022) and Peng & Risteski (2022), is that if
∩Tt=1Gt = ∅ then there is no shared global minimizer and
continual learning without forgetting is infeasible. Assump-
tion 1 might be relaxed into the existence of approximate
common global minimizers; we do not pursue this idea here.

Note that verifying whether ∩Tt=1Gt is empty or not is in
general NP-hard even when every Gt is a “simple” polytope
(Tiwary, 2008), which is the main reason that Knoblauch
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et al. (2020) asserts continual learning without forgetting is
in general NP-hard. However, Assumption 1 sidesteps the
curse of the NP-hardness, and makes it possible to solve the
continual learning problem computationally efficiently.

2.2. The Ideal Continual Learner† (ICL†)

The main role of this section and the paper, is this:
Definition 1 (The Ideal Continual Learner†, ICL†). With
K0 := W , ICL† is an algorithm that solves the following
program sequentially for t = 1, 2, . . . , T :

Kt ← argmin
w∈Kt−1

Lt(w;Dt). (2)

The symbol † in Definition 1 is a reminder that ICL† has
not been proved (until §4) to be a learner in the statistical
learning sense. Recursion (2) asks for a lot: Computing the
entire set K1 of global minimizers is hard enough, let alone
constraining over it, recursively! Indeed, we use the word
“ideal” to imply that ICL† is not realizable at the current
stage of research. However, take a leap of faith, and we will
see many pleasant consequences of ICL† under Assumption
1, where the theoretical significance of ICL† is treasured.

An immediate observation is that W = K0 ⊃ · · · ⊃ KT ,
that is Kt shrinks (more precisely, does not grow) over time.
An analogy can be made from two perspectives. From a hu-
man learning perspective, Kt can be viewed as a knowledge
representation: After continually reading a 1000-page book,
one internalizes the knowledge and represents the whole
book with a few key notations or formulas, or with a single
cheatsheet (but see also Remark 5, Grow = Shrink). From a
control perspective, the analogy is that the uncertainty Kt

over the true solutions reduces as ICL† learns from data
and tasks. In fact, as we will review in Appendix E, ICL†

is closely related to set-theoretical estimation in control
(Combettes, 1993; Kieffer et al., 1998).

2.3. ICL† is Sufficient and Minimal

In this section, we show that the Ideal Continual Learner† is
sufficient (Fisher, 1922) and minimal (Lehmann & Scheffé,
1950), which are two general and fundamental properties in
the information-theoretical and statistical sense.

Sufficiency. It has been held that “... preventing forgetting
by design is therefore not possible [even if all losses Lt

(1) are the same]” (van de Ven et al., 2022). Nevertheless,
under Assumption 1, ICL† never forgets by design:
Proposition 1 (Sufficiency). Under Assumption 1, ICL†

solves all tasks optimally. In other words, we have Kt =
∩ti=1Gi for every t = 1, . . . , T .

Minimality. Here we show (with rigor) that the knowl-
edge representation Kt is minimal (given the order of the

tasks). Consider the first two tasks, which are associated
with objective functions L1 and L2 and global minimizers
G1 and G2 respectively. Assume that G1 and G2 intersect
(Assumption 1), and let ŵ ∈ G1 ∩ G2. A learner solves the
first task by minimizing L1 (1), stores some information I1,
and proceeds to the second (the stored information I1 could
consist of some data samples, gradients, global minimizers,
and so on). If the stored information I1 is not enough to
reveal that ŵ is optimal to task 1, then it is impossible for
the learner to figure out that ŵ is actually simultaneously
optimal to both tasks—even if it could find later that ŵ is
optimal to task 2. Thus, either the learner would conclude
that no common global minimizer exists and Assumption 1
is violated, or catastrophic forgetting inevitably takes place.
In an independent effort, Peng & Risteski (2022) made a
similar argument specifically for two-layer neural networks.
Our argument is more general, and is for a different purpose.

Note that ŵ can be any element of K2 = G1 ∩ G2. Thus,
storing a proper subset ofK2 is sub-optimal since that might
exclude global minimizers (e.g., ŵ) of subsequent tasks cor-
responding to t > 2 and lead to catastrophic forgetting. In
light of this, we observe that catastrophic forgetting can only
be prevented if we store the entire setKt or its equivalent in-
formation (we will soon see some equivalent representations
of Kt). In this sense, we say the knowledge representation
Kt is minimal. It is the two properties, sufficiency and min-
imality, which ICL† (Definition 1) enjoys, that justify the
naming: the Ideal Continual Learner† that never forgets.

2.4. ICL† = Bilevel Optimizer

Since the constraint w ∈ Kt−1 of (2) requires w to be a
global minimizer of all previous tasks, for each task ICL†

needs to solve a bilevel program (2), which is in general
difficult (Vicente & Calamai, 1994; Jiang et al., 2022). How-
ever, with Assumption 1, we can describe (2) in a relatively
simple way. The first description is immediate:
Proposition 2. Under Assumption 1, for every t = 1, . . . , T ,
the recursion (2) of ICL† is equivalent to

min
w∈W

Lt(w;Dt)

s.t. Li(w;Di) ≤ ci, ∀i = 1, . . . , t− 1,
(3)

where ci is the minimum value of Li(w;Di) overW , com-
puted during solving previous tasks.

In Proposition 2, the inequality of Li(w;Di) ≤ ci can be re-
placed by equality =, and the constraint of (3) is understood
as trivially fulfilled if t = 1.
Remark 1 (Kt = Loss + Data). If we store all data and losses,
we can recover Kt via minimizing (3), hence (obviously)
memorizing data and losses can prevent forgetting.

A formulation similar to (3) is known in the literature; see,
e.g., Lopez-Paz & Ranzato (2017). However, as in many
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continual learning papers, their formulation is dominated by
computational considerations in the deep learning context,
e.g., their ci is the loss of a sufficiently trained deep network
for the i-th task over part of data samples; it is not neces-
sarily a minimum value. Such approach, though practically
important, makes it hard to derive theoretical properties.

ICL† is also equivalent to the following formulation:
Proposition 3. Assume objective functions L1, . . . , LT are
convex and differentiable. LetW = Rn. Under Assumption
1, each step (2) of ICL† is equivalent to

min
w∈Rn

Lt(w;Dt)

s.t. ∇Li(w;Di) = 0, ∀i = 1, . . . , t− 1,
(4)

Remark 2 (Kt = Gradient Equations). If we store all equa-
tions ∇Li(w;Di) = 0, we can recover Kt via solving (4),
so memorizing these equations resists forgetting.

More generally, a common idea in bilevel programming is
to rewrite the lower-level problem (e.g., w ∈ Kt−1) as KKT
conditions, and many algorithms exist for the latter formu-
lation; see, e.g., Dempe & Dutta (2012) and the follow-up
works. While it is beyond the scope of the paper, contex-
tualizing these ideas for implementing ICL† (2) is an im-
portant direction that would inspire novel and theoretically
grounded continual learning algorithms. Note that bilevel
programming has been used for continual learning (Borsos
et al., 2020), but the use is mainly for selecting which data
samples to store in the memory.

2.5. ICL† = Multitask Learner†

Under Assumption 1, the following connection between
continual learning and multitask learning arises naturally:
Proposition 4 (ICL† = Multitask Learner†). Let α1, . . . , αt

be arbitrary positive numbers. Recall Kt is defined in (2) as
the output of ICL†. Under Assumption 1, we have

Kt = argmin
w∈W

t∑
i=1

αiLi(w;Di), ∀t = 1, . . . , T. (5)

Assumption 1 implies that ICL† never forgets and provides
the best performance for continual learning, and that mini-
mizing the multitask loss (5) recovers ICL†. Hence, under
Assumption 1, minimizing the multitask loss yields the best
performance for continual learning. This simple result ad-
dresses issues pertaining to Question (Q1).

3. Examples of ICL†

This section discusses ICL† for two examples, continual lin-
ear regression (§3.1), continual matrix factorization (§3.2).
By way of examples, we acquire some understanding of
existing deep continual learning practices (§3.1.3, §3.2.3).

3.1. Continual Linear Regression

In §3.1.1, we review the problem setup of continual lin-
ear regression (Evron et al., 2022). In §3.1.2 we present
the implementation of ICL† for continual linear regression.
In §3.1.3 we draw connections to deep continual learning,
shedding light on memory-based optimization methods.

3.1.1. BACKGROUND AND PROBLEM SETUP

In continual linear regression, the data Dt := (Xt,yt) of
each task t consists of a feature matrix Xt ∈ Rmt×n and
a response vector yt ∈ Rmt ; here mt is the number of
samples of task t and n their dimension, and the loss Lt is

Lt(w; (Xt,yt)) = ∥Xtw − yt∥22. (6)

The set Gt of global minimizers for each task (6) is exactly
an affine subspace. Under Assumption 1, the intersection
of these affine subspaces is not empty, and finding one el-
ement in that intersection would solve all tasks optimally.
Note that, if Xt is of full column rank, then solving task
t yields a unique solution, which is optimal to all tasks by
Assumption 1. To avoid this trivial case, we follow Evron
et al. (2022) and assume Xt is rank-deficient for every t.
Studying continual regression is of interest as (continual) re-
gression is closely related to deep (continual) learning in the
neural tangent kernel regime (Jacot et al., 2018). Moreover,
as will be shown in §3.1.3, ICL† connects continual linear
regression to deep continual learning even more tightly.

With some initialization, the algorithm of Evron et al. (2022)
proceeds in a successive (or alternating) projection fashion
(Figure 2a). When presented with task t, it projects onto
the affine subspace Gt = {w ∈ Rn : X⊤

t Xtw = X⊤
t yt};

this projection can be implemented via invoking a singular
value decomposition (SVD) or leveraging the implicit bias
of (stochastic) gradient descent. Evron et al. (2022) em-
ployed the latter approach as it is memoryless, i.e., it does
not use any extra storage except the estimate and current
data. However, being memoryless might entail catastrophic
forgetting in the worst case (Evron et al., 2022, Theorem 7).

3.1.2. IMPLEMENTING ICL†

Our ICL† method is illustrated in Figure 2b. As per (2),
ICL† sets W ← Rn, finds the affine subspace G1 of task
1, uses it to regularize task 2, finds their common solutions
G1 ∩ G2, and so forth. We describe some more details next.

Let ŵt ∈ Kt be a common global minimizer to tasks
1, . . . , t. Let Kt be an orthonormal basis matrix2 for the
intersection of the nullspaces of X1, . . . ,Xt. Note that

2To simplify the presentation, we did not annotate some matrix
sizes or subspace dimensions. It is understood that such matrices
are of suitable sizes and subspaces of appropriate dimensions.
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Initialization

(a) Evron et al. (2022)

Task 1

Task 2

(b) ICL† (Ours)

Figure 2: For two tasks, Evron et al. (2022) follow the ar-
rows (2a) and project the current estimate onto the affine
subspace of solutions (blue or black), in an alternating fash-
ion, eventually reaching a common solution (red). Instead,
ICL† solves task 1, stores the affine subspace (2b, blue),
uses it to regularize task 2 and finds all solutions (2b, red).

w ∈ Kt if and only if w can be written as w = ŵt +Kta
for some coefficient vector a, so for implementing ICL†

we will compute and store (ŵt,Kt). Such computation is
summarized in the following proposition:

Proposition 5. ICL† for continual linear regression can be
implemented as follows. Given data (X1,y1), one can com-
pute (ŵ1,K1) via SVD. With t > 1, given (ŵt−1,Kt−1)
and data (Xt,yt), one can compute (ŵt,Kt) via solving

min
w∈Kt−1

∥Xtw − yt∥22 (7)

⇔min
a
∥Xt(ŵt−1 +Kt−1a)− yt∥22 (8)

In particular, (8) can be solved via SVD.3

Compared to the method of Evron et al. (2022), ICL† uses
some extra storage for Kt to attain optimality and resist
catastrophic forgetting; note though that the storage con-
sumption never grows as KT ⊂ · · · ⊂ K1. Finally, note that
for continual linear regression, one can formulate ICL† in
different ways than (8); see, e.g., Proposition 5.5 of (Evron
et al., 2023) (based on Fisher information) and Proposition
3 (based on the first-order optimality conditions).

3.1.3. CONNECTIONS TO DEEP CONTINUAL LEARNING

We first connect ICL† to the orthogonal gradient descent
method (OGD) of Farajtabar et al. (2020):

Proposition 6 (Informal). When applied to continual linear

3The use of SVD is to find singular vectors corresponding to
the extreme singular values (in particular, zero singular values)
of a given matrix. A basic fact from numerical linear algebra is
that, in general, the extreme singular vectors of a given matrix
can only be found iteratively and therefore inexactly (Trefethen
& Bau, 1997, Lecture 25). Thus, the implementations that we
suggested for continual linear regression (§3.1.2) and continual
matrix factorization (§3.2.2) only approximately implement ICL†;
note though that such approximation quality is typically very high
due to the existence of industry-strength SVD algorithms.

regression, the OGD method consists of the updates

w+ ← w − γKt−1K
⊤
t−1h, (9)

where h is the gradient of the objective of (7), γ stepsize,
and w (resp. w+) the previous (resp. current) iterate.
Moreover, OGD converges to a global minimizer of (7).

We prove Proposition 6 in Appendix C, where we also re-
view the OGD method; see Bennani et al. (2020); Doan et al.
(2021) for different theoretical aspects of OGD.

Since regression can be viewed as a single-layer linear net-
work with a least-squares loss, formula (9) can be extended
into deep continual learning in a layer-wise manner. This
viewpoint allows us to make the following connection:
Remark 3. For continual linear regression, the methods of
Zeng et al. (2019); Saha et al. (2021); Wang et al. (2021b);
Kong et al. (2022) are of the form (9), and so they all con-
verge “approximately” to global minimizers of (7); these
methods differ mainly in how the projection Kt−1K

⊤
t−1 is

approximated and stored. For deep continual learning, their
methods perform (9) in a layer-wise manner, with different
projections to update the parameters of every linear layer.

We review the methods of Remark 3 in Appendix D.1. By
showing that these methods can be derived from the prin-
cipled objective (7) of ICL†, we make them more inter-
pretable. For example, Kong et al. (2022) approximate
Kt−1K

⊤
t−1 better than Zeng et al. (2019); not surprisingly,

Kong et al. (2022) gets better performance (see their Table
1). Moreover, we provide an important failure case. Note
that all these methods (including OGD) approximately solve
(7) and the correctness of (7) relies on Assumption 1. As
a consequence, in the absence of Assumption 1, all these
methods (and ICL†) might be obsessed with the past:

Example 1 (Past = Present). Consider the continual linear
regression problem (6), and assume G1 and G2 are two par-
allel and non-intersecting affine subspaces. In this situation,
ICL† will compute K1 = G1 and K2 = G1. In other words,
it will get stuck to optimal points of task 1, contained in K1,
failing to track optimal points of task 2.

3.2. Continual Matrix Factorization

The structure of this section parallels that of §3.1. In §3.2.1.
We introduce the problem of continual matrix factorization;
this problem arises as a generalization of Peng & Risteski
(2022). In §3.2.2, we present the implementation of ICL†

for this problem. In §3.2.3, we make connections to deep
continual learning, highlighting expansion-based methods.

3.2.1. BACKGROUND AND PROBLEM SETUP

The continual matrix factorization setting is as follows. The
data Dt := Yt of task t is a matrix Yt, and every column of
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Yt lies in some (linear) subspace St of Rn; we assume the
columns of Yt span St without loss of generality. Each task
t consists of factorizing Yt into two matrices U and C such
that UC = Yt. This corresponds to minimizing

Lt

(
(U ,C);Yt

)
= ∥UC − Yt∥2F, (10)

which is a matrix factorization problem. With the identity
matrix I ,2, we assume U⊤U = I . The goal of continual
matrix factorization is to factorize the whole data matrix
[Y1 · · · YT ] into U and C such that [Y1 · · · YT ] = UC,
under the constraint that Yt is presented sequentially. Under
certain conditions, matrix factorization (10) is equivalent to
two-layer linear neural networks, with C being the first layer
of weight parameters and U the second (Baldi & Hornik,
1989; Vidal, 2020; Peng & Risteski, 2022). In that sense,
analyzing continual matrix factorization would facilitate
understanding deep continual learning.

Peng & Risteski (2022) performed one such analysis, based
on prior works on orthogonal gradient descent (Farajtabar
et al., 2020; Chaudhry et al., 2020) and matrix factoriza-
tion (Ye & Du, 2021). They assumed that the rank r of
[Y1 · · · YT ] is known, and that each Yt is a vector. With
r given, Peng & Risteski (2022) maintain a basis matrix
U with r columns throughout the learning process. Their
method is not memory-efficient for two reasons: (i) Storing
r columns is unnecessary when the learner has not encoun-
tered the r-th sample (this extra consumption of memory is
negligible for small r, though); (ii) their algorithm further-
more requires storing two projection matrices. In §3.2.2, we
will show that ICL† can handle the more general situation
where the rank r is unknown, and it also overcomes the
memory inefficiency of Peng & Risteski (2022).

3.2.2. IMPLEMENTING ICL†

To fully understand ICL† for continual matrix factorization,
we first establish a basic geometric understanding of the
problem and then discuss how to store Kt efficiently, and
finally, we describe the implementation details.

Basic Subspace Geometry. Minimizing (10) in variable C
with U fixed reveals that the optimal C is exactly U⊤Yt,
so (10) is equivalent to ∥UU⊤Yt − Yt∥2F, an objective
function for principal component analysis (PCA). In this
way, continual matrix factorization relates to streaming PCA
(Mitliagkas et al., 2013; Peng & Risteski, 2022), incremen-
tal SVD (Bunch & Nielsen, 1978), and subspace tracking
(Balzano et al., 2018). We review these subjects in Appendix
F to highlight the connection to ICL†.

Geometrically, every orthonormal basis of any subspace2

containing St is a global minimizer of this PCA objective.
In other words, any global minimizer of (10) is of the form
(U ,U⊤Yt), where U is orthonormal with its range space
range(U) containing St. Ignoring the role of U⊤Yt for

simplicity, we can write the set Gt of global minimizers as

Gt :=
{
U : U⊤U = I, St ⊂ range(U) ⊊ Rn

}
;

we ruled out the case range(U) = Rn as this indicates
trivial solutions. Assumption 1 implies the intersection

∩ti=1Gi = {U : U⊤U = I,
∑t

i=1
Si ⊂ range(U) ⊊ Rn}

is non-empty, which implies dim(
∑T

t=1 St) < n or equiva-
lent that the data matrix [Y1 · · · YT ] is rank-deficient. Note
that this is a weaker assumption than that of Peng & Risteski
(2022), who assumed the rank of [Y1 · · · YT ] is given.

Storing Kt. To implement ICL† under Assumption 1, we
need to store Kt = ∩ti=1Gi in a memory-efficient man-
ner. Since we know that any orthonormal matrix whose
range space contains

∑t
i=1 Si is an element of Kt (and vice

versa), storing Kt is equivalent to storing the subspace sum∑t
i=1 Si. Indeed, storing

∑t
i Si gives enough information

about Kt, which prevents forgetting (recall the minimality
of Kt, §2.3). With this viewpoint, we will maintain an or-
thonormal basis matrix Kt of

∑t
i=1 Si to implement ICL†,

where each subspace Si will be learned from data Yi.

Implementation Details. For t = 1, we can compute the
orthonormal basis K1 of S1 via an SVD3 on Y1; e.g., set
K1 to be the matrix whose columns are left singular vectors
of Y1 corresponding to its non-zero singular values.

For t > 1, we need to compute Kt from Yt and Kt−1, under
the inductive assumption that Kt−1 is an orthonormal basis
matrix of

∑t−1
i=1 Si. Since Kt−1 consists of orthonormal

matrices U whose range spaces contain range(Kt−1), we
know that U ∈ Kt−1 if and only if U⊤U = I and U is
of the form [Kt−1 Ut] (up to some isometry). As such, the
recursion (2) of ICL† is equivalent to

argmin
U∈Kt−1

∥∥UU⊤Yt − Yt

∥∥2
F

⇔ U t ∈ argmin
Ut

∥∥[Kt−1 Ut] [Kt−1 Ut]
⊤Yt − Yt

∥∥2
F

⇔ U t ∈ argmin
Ut

∥∥UtU
⊤
t Yt − Yt

∥∥
F

where we defined Yt := (I −Kt−1K
⊤
t−1)Yt and used the

fact K⊤
t−1Ut = 0. Similarly to the case t = 1, U t can

be computed via an SVD on Yt, and the rank of Yt deter-
mines the number of its columns. Setting Kt ← [Kt−1 U t]
furnishes a desired orthonormal basis for

∑t
i=1 Si.

Remark 4 (New Knowledge = New Parameters). If St is
contained in

∑t−1
i=1 Si, then there is no new “knowledge” to

learn and Yt = 0; in this case we set Kt ← Kt−1. The
amount of new knowledge is encoded as the rank of Yt,
which determines the number of new parameters to add.
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3.2.3. CONNECTIONS TO DEEP CONTINUAL LEARNING

In §3.2.2, ICL† is shown to be an expansion-based method
that grows the columns of the orthonormal basis Kt adap-
tively. Recall that the challenges of designing expansion-
based methods include (1) how many parameters to add
and (2) where to add them. For the problem of continual
matrix factorization, ICL† addresses these two challenges
perfectly by leveraging the eigen structures of features Yt

or projected features Yt. To our knowledge, no expansion-
based methods in deep continual learning have exploited
such structures; this implies an important extension as future
work. Also, different from many existing expansion-based
methods (as Yan et al. (2021) reviewed), ICL† does not
require the identity of the task at the test time.

The other important aspect that ICL† reveals is the role
of the network width in resisting catastrophic forgetting.
Indeed, the matrix Kt can be viewed as the second layer of a
two-layer linear network, and the growth of its columns cor-
responds to increasing the network width. This principled
way of increasing the network width complements the em-
pirical claim of Mirzadeh et al. (2022) and the experimental
observation of Rusu et al. (2016); Yoon et al. (2018): Wide
neural networks forget less catastrophically. Two remarks
are in order, to finish the section:

Remark 5 (Grow = Shrink). While Kt shrinks in contin-
ual linear regression and we have Kt ⊂ Kt−1 in general,
we see that, in continual matrix factorization, Kt grows its
columns as ICL† is presented with more subspaces. How-
ever, the sum

∑t
i=1 Si can be uniquely identified with the

intersection ∩ti=1S⊥i of the orthogonal complement S⊥i , and
therefore if we store a basis matrix for ∩ti=1S⊥i (instead of
for

∑t
i=1 Si), then the memory consumption shrinks over

time. We will elaborate on this idea in Appendix G.

Remark 6 (Remember = Forget). While Kt−1 remembers
all common global minimizers, ICL† actually forgets Kt−1

as it never updates Kt−1. Put differently, the ability of a
learner to improve the performance on previous tasks with
knowledge from new tasks is desired (only) when previ-
ous tasks are solved sub-optimally; such ability is typically
called positive backward transfer (Lin et al., 2022b).

4. Continual Learning Basics: Generalization
In this section we prove that ICL† is a learner in the statis-
tical learning sense (therefore we can remove †); see, e.g.,
Shalev-Shwartz & Ben-David (2014); Mohri et al. (2018)
for some basics of statistical learning. Towards that goal, we
now reframe our problem setup in a statistical learning envi-
ronment. Assume that, for task t, the dataset Dt = {dti}mt

i=1

consists of mt independent and identically distributed sam-
ples dti

i.i.d.∼ Dt, where Dt is some (unknown) data distribu-

tion for task t, and the objective Lt (2) is given as

Lt(w;Dt) :=
1

mt

mt∑
i=1

ℓt(w;dti), (11)

where ℓt(w;dti) is the loss on sample dti evaluated at w.
Hence, (2) becomes an empirical risk minimization problem,
and ICL† becomes a (constrained) empirical risk minimizer.

Corresponding to (11) is the statistical learning task

G∗t := argmin
w∈W

Ed∼Dt
[ℓt(w;d)]. (12)

To proceed, we need the assumption of shared multitask
model and the Ideal Continual Learner (without †):
Assumption 2 (Shared Multitask Model). ∩Tt=1G∗t ̸= ∅.
Definition 2 (The Ideal Continual Learner, ICL). With
K∗

0 :=W , for t = 1, 2, . . . , T , the algorithm ICL solves

K∗
t ← argmin

w∈K∗
t−1

Ed∼Dt
[ℓt(w;d)]. (13)

Much of what we said to ICL† and Assumption 1 applies
to the Ideal Continual Learner (ICL) and Assumption 2;
we shall not repeat here. Instead, we will investigate the
possibility of minimizing (12) or (13) via ICL†.

One difficulty of such investigation is as follows. While
Gt of (1) approaches G∗t of (12) as sample size mt tends to
infinity, in general we have Gt ̸= G∗t when mt is finite. As
such, Assumptions 1 and 2 are different (though related),
and, in general, one of them does not imply the other. As
a consequence, the sufficiency of ICL under Assumption
2 does not imply the sufficiency of ICL†, which requires
Assumption 1 (cf. Proposition 1); and vice versa. This
difficulty disappears if we make both Assumptions 1 and 2,
which, however, would ask for too much.

We will proceed with either Assumption 1 (§4.1) or As-
sumption 2 (§4.2), but not both. To do so, we need some
assumptions on the objective functions Lt and hypothesis
spaceW , which are standard in statistical learning:
Assumption 3 (Uniform Convergence). Let B and M be
two positive constants. Assume ∥w∥2 ≤ B for every w ∈
W . Assume that ℓt(w;d) is M -Lipschitz in w for every
sample d ∼ Dt and every t = 1, . . . , T , i.e.,

|ℓt(w;d)− ℓt(w
′;d)| ≤M · ∥w −w′∥2, ∀w,w′ ∈ W.

These assumptions suffice to ensure uniform convergence
(Shalev-Shwartz et al., 2009, Thm 5): For fixed t and δ ∈
(0, 1), with probability at least 1− δ we have (∀w ∈ W)

|Lt(w;Dt)− Ed∼Dt
[ℓt(w;d)]| ≤ ζ(mt, δ), (14)

where ζ(mt, δ) := O

(
MB

√
n log(mt) log(n/δ)√

mt

)
approaches zero as the sample size mt tends to infinity.
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The term ζ(mt, δ) defined in (14) serves as a uniform con-
vergence bound and will appear frequently in our generaliza-
tion bounds. While ζ(mt, δ) approaches zero as the sample
size mt tends to infinity (assuming other terms are fixed),
it is also controlled by other factors as (14) suggests. First
of all, it depends on the failure probability δ, and we would
like to set δ small. Second, it depends on the Lipschitz
continuity constant M of the loss function; in the context
of deep learning, M is controlled by network architectures
and its value is typically unknown, although it might be
estimated in certain cases via computationally intensive
algorithms (Fazlyab et al., 2019). Third, ζ(mt, δ) also de-
pends on the dimension n of the variable w (e.g., the number
of parameters in a deep network). In particular, we have
ζ(mt, δ) = O(

√
n log n/mt) (ignoring other parameters),

and so, for ζ(mt, δ) to be small, we need mt ≫ n log n.

4.1. ICL† Learns All Tasks

In this section, we proceed with Assumption 1 and without
Assumption 2. Our main result is this (see also Figure 3):

Theorem 1 (ICL† ⇒ All-Task Learner). Let c∗t be the
minimum value of (12). Let ŵ ∈ KT . Let δ ∈ (0, 1) and
ζ(mt, δ) be as in Assumption 3. Under Assumptions 1 and
3, with probability at least 1− δ, we have (∀t = 1, . . . , T )

c∗t ≤ Ed∼Dt [ℓt(ŵ;d)] ≤ c∗t + ζ(mt, δ/T ). (15)

As (14) implies, an exponentially large T would make the
numerator of the error term ζ(mt, δ/T ) in (15) large, while
a large number of samples mt would make it small. In the
extreme case T →∞, it is necessary to have mt →∞, oth-
erwise ζ(mt, δ/T ) would be infinity and the upper bound of
(15) would be invalid. In the current deep continual learning
practice, though, T is of the constant order, e.g., T ≤ 1000
(Lesort et al., 2022). Note then that, for fixed T and δ, as
the sample size mt tends to∞ for every t = 1, . . . , T , we
have ζ(mt, δ/T ) → 0, in which case ICL† becomes an
all-task learner: Every point ŵT of KT that it finds reaches
the minimum values of all learning tasks (12).
Remark 7 (Approximate Sufficiency). Assumptions 1 and 3
promise ŵ (15) to be an approximate global minimizer to
all learning tasks (12); or we might say that they make ICL
approximately sufficient even without Assumption 2.

4.2. Relaxed Continual Learner† = ICL

Here, we consider Assumption 2, at the risk that ICL†

might not be sufficient. However, by deriving generalization
bounds, we will prove that a relaxation of ICL† is ICL.

While ICL† can perform arbitrarily worse for certain patho-
logical cases in the absence of Assumption 1 (as Example
1 showed), Assumptions 2 and 3 come into play, making
ICL† approximately sufficient (similarly to Remark 7):

Proposition 7 (Approximate Sufficiency). Let δ ∈ (0, 1).
Assumptions 2, 3 imply there is a point w ∈ W satisfying

Lt(w;Dt) ≤ ct + ζ(mt, δ/T ), ∀t = 1, . . . , T

with probability at least 1 − δ. Here ct and ζ(mt, δ) are
respectively defined in Proposition 2 and Assumption 3.

In the absence of Assumption 1, the constraint of ICL† in
Proposition 2 might be prohibitive and lead to sub-optimal
solutions (cf. Example 1). This is why we relax it as per
Proposition 7 by some additive factor:

Definition 3 (Relaxed Continual Learner†). WithK0 :=W ,
the relaxed Continual Learner† is an algorithm that solves
the following program sequentially for t = 1, 2, . . . , T :

min
w∈W

Lt(w;Dt) (16)

s.t. Li(w;Di) ≤ ci + ζ(mi, δ/t), ∀i = 1, . . . , t− 1

We can now state the following (see also Figure 3):

Theorem 2 (Relaxed Continual Learner† ≈ ICL). Let δ ∈
(0, 1). Let c∗t be the minimum of (12) and ζ(mt, δ) defined
in (14). Suppose Assumptions 2 and 3 hold. With probability
at least 1 − δ, the relaxed Continual Learner† is feasible,
and its global minimizer w satisfies (∀t = 1, . . . , T )

c∗t ≤ Ed∼Dt
[ℓt(w;d)] ≤ c∗t + ζ(mt, δ/T ). (17)

4.3. ICL and Constrained Learning

Similarly to Proposition 2, the constraint w ∈ K∗
t−1 of ICL

can be written as inequality constraints Ed∼Di [ℓi(w;d)] ≤
c∗i (∀i = 1, . . . , t − 1), where c∗i is the minimum for task
i (12). If the values of c∗i are instead determined by appli-
cations (not as minima of prior tasks), then the resulting
learning problem coincides with constrained learning (Cha-
mon et al., 2022). Constrained learning naturally arises
when learning under certain requirements, e.g., robustness
(Zhang et al., 2019; Robey et al., 2021), safety (Paternain
et al., 2019), or fairness (Cotter et al., 2019). In a dif-
ferent line of research, constrained learning is also called
stochastic optimization with expectation constraints (Yu
et al., 2017; Bedi et al., 2019; Madavan & Bose, 2021;
Akhtar et al., 2021). For both problems, several algorithms
have recently emerged with theoretical guarantees. For ex-
ample, Chamon et al. (2022) solve the constrained learning
problem using Lagrangian multipliers, which can be viewed
as a regularization-based method as per a common deep
continual learning taxonomy. Left though to future work,
leveraging this line of research might be key to improving
the current continual learning systems. Finally, note that
Chamon et al. (2022) developed generalization bounds for
constrained learning via different mathematical mechanisms
(e.g., primal-dual analysis), and we refer the reader to their
works for a detailed exposition of these ideas.
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Assumption 1

The Ideal Continual Learner†

Assumption 3

Assumption 2

The Ideal Continual Learner

Figure 3: Figure 3 is designed to help the reader understand our results of §4.1 and §4.2 at a high level, and it can be read as
follows. Assumptions 1 and 2 guarantee the sufficiency of the Ideal Continual Learner† and the Ideal Continual Learner,
respectively, and this is denoted by solid arrows in the figure. Assumptions 1 and 3 indicate an approximate sufficiency of
the Ideal Continual Learner† (cf. Theorem 1 and Remark 7), and this is denoted by a dashed arrow in the figure.

4.4. ICL and Rehearsal

Using the ICL framework, we can now acquire a theoretical
understanding of research and debate (Q2). For each task
t = 1, . . . , T − 1, assume we stored st samples (out of mt),
and we now face task T . We rehearse, i.e., retrain with all
stored samples and data of task T , to minimize

min
w∈W

1

mT

mT∑
i=1

ℓT (w;dTi) +

T−1∑
t=1

1

st

st∑
i=1

ℓt(w;dti). (18)

Rehearsal has shown good empirical performance in deep
continual learning; see, e.g., Chaudhry et al. (2019); Prabhu
et al. (2020); Zhang et al. (2022); Bonicelli et al. (2022). For
the first time to our knowledge, a theoretical justification
that accounts for its effectiveness is provided here:
Theorem 3 (Rehearsal ≈ ICL). Under Assumptions 2 and
3, with probability at least 1− δ, every global minimizer w
of the rehearsal objective (18) satisfies

T∑
t=1

c∗t ≤
T∑

t=1

Ed∼Dt [ℓt(w;d)] ≤
T∑

t=1

c∗t + ERROR

where ERROR := ζ(mT , δ/T ) +

T−1∑
t=1

ζ(st, δ/T ).

(19)

Note how (19) reveals the way rehearsal affects gener-
alization: A larger memory buffer (st) means a smaller
ζ(st, δ/T ), implying better generalization. Crucially, this
bound remains the same as long as we store the same num-
ber of samples for each task (say st) regardless of which
samples we store (a natural consequence of the i.i.d. as-
sumption). This deviates from the trendy idea of selecting
representative samples in recent methods—reportedly, these
methods do not necessarily outperform a simple random
selection mechanism (Araujo et al., 2022). Due to space,
more elaborations are put in Appendix B.2.

We can then compare the relaxed Continual Learner† (§4.2)
and rehearsal (§4.4). Note first that one could also im-
plement the relaxed Continual Learner† using a subset of

samples similar to rehearsal. Theoretically, the relaxed Con-
tinual Learner† enjoys stronger generalization guarantees
than rehearsal: Theorem 2 bounds generalization errors for
individual tasks, while Theorem 3 only gives a bound on
the multitask error. Computationally, rehearsal is simpler
to implement than the relaxed Continual Learner† and can
maintain good performance (Chaudhry et al., 2019; Prabhu
et al., 2020; Zhang et al., 2022; Bonicelli et al., 2022).

5. Conclusion
Under the ICL framework, we derived and justified many
existing methods in deep continual learning. Put conversely,
all roads lead to Rome: Many prior continual learning meth-
ods developed with different insights and different moti-
vations turn out to be (approximately) ICL. Importantly,
we made several connections to other research fields. This
activates opportunities for improving the existing (deep)
continual learning systems, for which we venture to hope
that ICL serves as a primary design principle.

The ICL framework in its present form comes with limita-
tions. On the theoretical side, we tacitly assumed that the
samples of each task t are drawn i.i.d. from distribution Dt

in our generalization theory. While this i.i.d. assumption is
standard in classic statistical learning, dispensing with it and
accounting for out-of-distribution data within tasks is left as
future work. On the algorithmic front, we emphasize that,
in general, and particularly for deep continual learning, it
is by no means easy to develop an exact implementation of
ICL, which constitutes a major limitation of the proposed
framework. Nevertheless, our paper has suggested many
possibilities for approximating the Ideal Continual Learner.
We believe devising such approximations with problem-
specific insights will be a promising research direction.
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Lehmann, E. L. and Scheffé, H. Completeness, similar
regions, and unbiased estimation: Part i. Sankhyā: The
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A. Structure of The Appendix
We structure the appendix as follows:

• In Appendix B, we elaborate on several points for the reader to better understand and appreciate the main paper.

• In Appendix C, we prove Proposition 6, showing that OGD is approximately the Ideal Continual Learner† in the case
of continual linear regression.

• In Appendix D, we review related works on continual learning, emphasizing deep continual learning methods that we
mentioned in Remark 3, existing assumptions on task relationships, and existing theoretical papers.

• We review related works in other related fields that are visualized in Figure 1. The emphasis is put on their connections
to the Ideal Continual Learner and on detailed comparisons of our approach to related works.

– In Appendix E, we review related works in set-theoretical estimation. This allows us to understand the Ideal
Continual Learner from different perspectives.

– In Appendix F, we review streaming PCA, incremental SVD, and subspace tracking. An important remark there
is that expansion-based methods can be traced back to Bunch & Nielsen (1978) who proposed a method for
incremental SVD.

• In Appendix G, as promised in Remark 5, we present a dual approach to continual matrix factorization, where the
storage consumption shrinks over time.

B. Elaboration on The Main Paper
Here we take the opportunity to elaborate on several points omitted in the main paper due to the lack of space.

B.1. Elaboration on Terminologies

• At first glance the Ideal Continual Learner seems to implicitly assume that the task identities are given during training,
and therefore it can not be applied to the more general and more challenging case of task-agnostic or task-free continual
learning, where in the training phase the learner has no access to task identities (Zeno et al., 2018; 2021; Aljundi et al.,
2019a; Lee et al., 2020; Jin et al., 2021; Wang et al., 2022c; Pourcel et al., 2022; Ye & Bors, 2022). However, for
task-agnostic or task-free continual learning, we receive a batch of samples each time, and we can simply regard it
as a task, and compute the set of common global minimizers for this batch of data. Then we can formulate (2) for
the next task (i.e., the next batch). Summarized informally, ICL is task-agnostic. However, a major limitation of this
task-agnostic formulation of ICL is that it leads to a very large T , which compromises the generalization bounds
derived in the main paper.

• Methods of Remark 3 project the gradients onto certain subspaces, so they can be thought of as regularizing the
gradients. This is why these methods are called regularization-based methods in the taxonomy of Qu et al. (2021).
In the paper, we call them memory-based optimization methods, as they need to store some projection matrices and
we believe it is important to highlight this extra memory consumption for continual learning. We used the phrase
expansion-based methods, while architecture-based methods and structure-based methods are popular alternatives.

• While our formulation of the continual learning problem is general (e.g., each task can have different losses), our
examples of continual linear regression and continual matrix factorization (§3) are specific in the sense that each
task has the same loss and it is just that data samples are different for every task. This specific setting is called
domain-incremental learning in the taxonomy of van de Ven et al. (2022). Quote van de Ven et al. (2022):

Using task-specific components in this scenario is, however, only possible if an algorithm first identifies the task, but
that is not necessarily the most efficient strategy. Preventing forgetting ‘by design’ is therefore not possible with

domain-incremental learning, and alleviating catastrophic forgetting is still an important unsolved challenge.

That said, we proved that continual learning without forgetting is possible under Assumption 1.
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B.2. Elaboration on Memory Selection Methods

Here we review related works on memory selection methods for rehearsal in light of Theorem 3.

Arguably, rehearsal is a very simple and effective idea that balances memory consumption and the amount of forgetting.
It has been commonly believed that, quoting Chaudhry et al. (2019), “... the sample that the learner selects to populate
the memory becomes crucial”. Based on prior works (Vitter, 1985; Lopez-Paz & Ranzato, 2017; Rebuffi et al., 2017;
Riemer et al., 2019), Chaudhry et al. (2019) summarized four (seven resp.) basic methods for selecting samples. More
recently, based on Isele & Cosgun (2018); Hayes & Kanan (2021), Araujo et al. (2022) further included three more basic
methods, and compared the seven methods for natural language processing applications. The setting of Araujo et al. (2022)
is domain-incremental learning, and our generalization bound (19) applies to the rehearsal mechanism verbatim, under the
same assumptions. (Our result for the constrained optimization formulation is not applicable as it requires task identities.)

Table 1 of Araujo et al. (2022) presents the performance of these seven methods for text classification and question answering,
while Table 2 presents running times. From the two tables, one can observe the performance difference between N. Random
and Reservoir is statistically insignificant. Figure 1 of Araujo et al. (2022) further shows that the two sampling methods, N.
Random and Reservoir, tend to keep nearly the same number of samples for each task, while the samples that N. Random
selects and those that Reservoir selects are in general very different. This corresponds well to Theorem 3, which formalizes
an intuitive fact that selecting which samples to store does not matter under if the samples within each task fulfill the i.i.d.
assumption. In particular, our generalization bound (19) is sensitive mainly to the number of samples for every task.

It is thus important to ruminate on whether selecting the so-called representative or diverse samples is relevant for improving
continual learning systems (Araujo et al., 2022). We believe that selecting representative samples from each task or in a
streaming setting can still be beneficial (Borsos et al., 2020; Sun et al., 2022) if the datasets contain some out-of-distribution
data. This prompts incorporating an out-of-distribution detection module into continual learning frameworks.

C. Orthogonal Gradient Descent and Proposition 6
C.1. Orthogonal Gradient Descent for Deep Continual Learning

We first review the orthogonal gradient descent algorithm (OGD) of Farajtabar et al. (2020) for deep continual learning in
image classification. In this image classification application, the dataset Dt for task t is {xti,yti}mt

i=1, where xti is some
input image and yti is an one-hot vector of class labels. The training objective for task t in this context is typically written as

min
w∈Rn

mt∑
i=1

ℓCE(f(w;xti);yti),

where ℓCE(·, ·) is the softmax cross entropy loss, and f represents a deep network parameterized by w ∈ Rn. The key
idea of OGD is that, after training on task 1 via gradient descent and obtaining a good (if not optimal) estimate w̃1, the
training on task 2 is still via gradient descent, but the gradient is replaced by its projection onto the orthogonal complement
of the range space of∇f1 := [∇f(w̃1;x11), . . . ,∇f(w̃1;x1m1

)]. Here, the gradient∇ is evaluated with respect to the first
parameter of f (e.g., network weights). This idea is easily extended to multiple tasks. In particular, suppose we are now
going to solve task t. For i = 1, . . . , t− 1, let w̃i be the network weights obtained via training for tasks 1, . . . , i sequentially.
For training on task t, The OGD method performs gradient descent, with the gradient replaced by its projection onto the
orthogonal complement of the range space of

∇Ft−1 := [∇f1, . . . ,∇ft−1], ∇fi := [∇f(w̃i;xi1), . . . ,∇f(w̃i;ximi
)] (∀i = 1, . . . , t− 1).

In deep learning, the numbers of parameters and data samples are very large, so storing ∇Ft−1 is prohibitive. This is
improved by several recent follow-up works, which we mentioned in Remark 3 and will review in Appendix D.1. Note
that we will derive a theoretical analysis of OGD for continual linear regression (Appendix C.3), and our analysis is also
applicable to methods of Remark 3 under similar assumptions.

C.2. Orthogonal Gradient Descent for Continual Linear Regression

We now derive the OGD algorithm for continual linear regression. For each task t, the model is f(w;Xt) := Xtw and the
loss is the MSE loss. So we have∇fi = X⊤

i for every i = 1, . . . , t− 1 (i.e., the gradient is constant). Therefore,

∇Ft−1 := [∇f1, . . . ,∇ft−1] = [X⊤
1 , . . . ,X⊤

t−1].
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Denote by range(·) and null(·) the range space and nullspace of some matrix, respectively. By basic linear algebra we have(
range(∇Ft−1)

)⊥
=

(
range

(
[X⊤

1 , . . . ,X⊤
t−1]

))⊥

= null
(
[X⊤

1 , . . . ,X⊤
t−1]

⊤)
= null(X1) ∩ · · · ∩ null(Xt−1)

= range(Kt−1).

(20)

Here we recall that we defined Kt−1 as an orthonormal basis matrix of null(X1) ∩ · · · ∩ null(Xt−1) in §3.1. Since
K⊤

t−1Kt−1 is the identity matrix, the matrix representation of this projection is Kt−1K
⊤
t−1. When solving task t, OGD

projects the gradient of the loss ∥Xtw − yt∥22 at each iteration onto range(Kt−1), and then performs a descent step with
this modified gradient. We next describe the OGD algorithm more formally.

Let k be an iteration counter, γ(k)
t the stepsize for task t at iteration k. Set the initialization w

(0)
t for task t as the final

weight w̃t−1 after training the previous tasks sequentially, i.e., w(0)
t ← w̃t−1, while for the first task we use an arbitrary

initialization w
(0)
1 . For task 1, OGD performs gradient descent

w
(k+1)
1 ← w

(k)
1 − γ

(k)
1 h

(k)
t , h

(k)
1 := 2X⊤

1 (X1w
(k)
1 − y1).

For task t > 1, its update rule is defined as (recall (9))

w
(k+1)
t ← w

(k)
t − γ

(k)
t ·Kt−1K

⊤
t−1h

(k)
t , h

(k)
t := 2X⊤

t (Xtw
(k)
t − yt). (21)

C.3. Theoretical Analysis of Orthogonal Gradient Descent for Continual Linear Regression

In this section we interpret what we meant by Proposition 6. Let us start with a simplified situation where OGD is assumed
to already find a common global minimizer of the first t− 1 tasks.
Proposition 8. Let t > 1. Suppose Assumption 1 holds for continual linear regression. Assume that the weight w̃t−1

produced by OGD after training the first t− 1 tasks is a common global minimizer of tasks 1, . . . , t− 1. Then the update
formula (21) of OGD for task t is equivalent to a gradient descent step applied to the objective (8) of ICL†.

Proof. Since OGD is initialized at a common global minimizer w(0)
t = w̃t−1, we can write w

(0)
t = w̃t−1 +Kt−1a

(0)
t for

a unique a
(0)
t (actually a

(0)
t = 0). Define Xt := XtKt−1 and

a
(1)
t := a

(0)
t − γ

(0)
1 g

(0)
1 , g

(0)
1 := 2X

⊤
t (Xta

(0)
t +Xtw̃t−1 − yt). (22)

Note that (22) is exactly a gradient descent step applied to (8) (with ŵt−1 replaced by a “different” particular solution w̃t−1

of first t− 1 tasks). As per (21), the first iteration of OGD is

w
(1)
t ← w

(0)
t − γ

(0)
t ·Kt−1K

⊤
t−1

(
2X⊤

t (Xtw
(0)
t − yt)

)
⇔ w

(1)
t = w̃t−1 +Kt−1a

(0)
t − γ

(0)
t ·Kt−1

(
2X

⊤
t

(
Xt(w̃t−1 +Kt−1a

(0)
t )− yt

))
⇔ w

(1)
t = w̃t−1 +Kt−1(a

(0)
t − γ

(0)
t g

(0)
1 )

⇔ w
(1)
t = w̃t−1 +Kt−1a

(1)
t

(23)

Now we see from (22) and (23) that the first iteration of OGD can be thought of first computing the coefficient vector a(1)
t

via gradient descent (22) and then updating w
(1)
t via w(1)

t = w̃t−1+Kt−1a
(1)
t . Since w̃t−1 and Kt−1 are fixed, the update

of w(1)
t in the first iteration of OGD can actually be viewed as calculating a

(1)
t implicitly. Finally, one can easily verify that

the above derivation applies to any iteration k (e.g., by changing the indices from 0 to k and from 1 to k + 1).

With a suitable choice of stepsizes, gradient descent converges to an optimal solution to (8) at the number of iterations k
approaches infinity; see, e.g., Theorem 2.1.14 of Nesterov (2018). As a consequence, under the assumption of Proposition 8,
the OGD algorithm applied to continual linear regression converges to an optimal solution of (7) as k →∞.

The above analysis relies on simplified assumptions that OGD can find an exact solution to the first t− 1 tasks, and that one
can run OGD for infinitely many iterations. Dispensing with these assumptions to reach a similar conclusion is not hard:
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Proposition 9. Assume t > 1. Suppose Assumption 1 holds for continual linear regression. Let w̃t−1 be the weight
produced by the OGD algorithm after training the first t− 1 tasks. Then the update formula (21) of the OGD algorithm for
task t is equivalent to a gradient descent step applied to the following problem

min
a
∥Xt(w̃t−1 +Kt−1a)− yt∥22. (24)

Proof. The proof follows directly from that of Proposition 8.

The only difference of (24) from the objective (8) of ICL† is that w̃t−1 now might not be optimal for all previous tasks.
Therefore, OGD is approximately equivalent to ICL†, and its approximation quality depends on how close w̃t−1 is to the
set Kt−1 of common solutions to previous t− 1 tasks.

D. Continual Learning: Related Works
There are now many existing methods for (deep) continual learning, including regularization-based methods (Kirkpatrick
et al., 2017; Zenke et al., 2017; Liu et al., 2018; Ritter et al., 2018; Lesort et al., 2019; Park et al., 2019; Yin et al., 2020;
Zhou et al., 2021; Heckel, 2022), memory-based methods (Robins, 1993; Shin et al., 2017; Rebuffi et al., 2017; Lopez-Paz
& Ranzato, 2017; Chaudhry et al., 2019; Aljundi et al., 2019b; Buzzega et al., 2020; Verwimp et al., 2021; Bang et al., 2021;
Kim et al., 2022; Zhang et al., 2022; Wang et al., 2022a; Saha & Roy, 2023), expansion-based methods (Rusu et al., 2016;
Yoon et al., 2018; Mallya & Lazebnik, 2018; Li et al., 2019; Hung et al., 2019; Ramesh & Chaudhari, 2022; Douillard et al.,
2022), or combinations thereof (Yan et al., 2021; Xie et al., 2022; Wang et al., 2022b; Frascaroli et al., 2023); for surveys,
see, e.g., Parisi et al. (2019); De Lange et al. (2022); Qu et al. (2021); Shaheen et al. (2022); van de Ven et al. (2022).

Our review here has two purposes. First, we will discuss the methods of Remark 3 in detail as they are highly related to
ICL†. Second, we will discuss related theoretical works through the lens of task relationships.

D.1. Memory-Based Optimization Methods (Projection-Based Methods)

The Basic Idea. Suppose now we have a three-layer deep network f in the following form:

f
(
(W1,W2,W3);X

(0)
t

)
:= σ3(σ2(σ1(X

(0)
t W1)W2)W3) (25)

Here, each σi is some non-linearity activation function, Wi matrices of learnable weights, and X
(0)
t an input data matrix at

the t-th batch (or for the t-th task). Every column of X(0)
t is a data sample, and the number of columns corresponds to the

batch size. We consider three layers as an example; what follows applies to multiple layers and is without loss of generality.

Let us write the network f (25) equivalently as

f
(
(W1,W2,W3);X

(0)
t

)
= σ3(X

(2)
t W3), X

(2)
t := σ2(X

(1)
t W2), X

(1)
t := σ1(X

(0)
t W1). (26)

To proceed, suppose for every j = 0, 1, 2 the intersection ∩t−1
i=1null(X(j)

i ) of nullspaces is not empty, and denote by K
(j)
t−1

an orthonormal basis matrix of ∩t−1
i=1null(X(j)

i ). This matrix K
(j)
t−1 plays the same role as the matrix Kt−1 that we defined

for continual linear regression (§3.1), and the difference is that we now defined such matrices for every linear layer.

Suppose now we have the data X
(0)
t for task (batch) t available. Let G1,G2 and G3 be the gradients calculated via data

X
(0)
t and they account respectively for weights W1,W2, and W3. Let γ1, γ2, γ3 be stepsizes. Then the weight update

W+
1 ←W1 − γ1K

(1)
t−1(K

(1)
t−1)

⊤G1

W+
2 ←W2 − γ2K

(2)
t−1(K

(2)
t−1)

⊤G2

W+
3 ←W3 − γ2K

(3)
t−1(K

(3)
t−1)

⊤G3

(27)

never changes the output of f on previous batches; for every i < t, it holds that

X
(0)
i W+

1 = X
(0)
i W1, X

(1)
i W+

2 = X
(1)
i W2, X

(2)
i W+

3 = X
(2)
i W3

⇒ f
(
(W+

1 ,W+
2 ,W+

3 );X
(0)
i

)
= f

(
(W1,W2,W3);X

(0)
i

)
.
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Yet, (27) can decrease the loss of the current data X(0)
t . This makes storing K

(j)
t−1 an appealing approach for preventing for-

getting. In reality, each X
(j)
i might not have a nullspace (for a small enough batch size), and the intersection ∩t−1

i=1null(X(j)
i )

might simply be empty. A simple and effective rescue is to perform certain low-rank approximations; we will not go into the
details here, and we omit some practically important implementation details.

The Literature. The literature of continual learning has followed a slightly longer and perhaps more vivid trajectory to
eventually identify the role of the projection matrix K

(j)
t−1(K

(j)
t−1)

⊤ in resisting forgetting. We review this trajectory next.

Inspired by classic works on adaptive filtering (Haykin, 2002) and recursive least-squares (Singhal & Wu, 1989) in signal
processing, Zeng et al. (2019) proposed to set the projection matrix to be I − (X

(j)
1 )⊤

(
X

(j)
1 (X

(j)
1 )⊤ + λI

)−1
X

(j)
1 for

the task 1 and update it for later tasks as in recursive least-squares. Here λ > 0 is some hyper-parameter and I identity
matrix, and they are used to prevent the case where X

(j)
1 (X

(j)
1 )⊤ is not invertible. The method of Zeng et al. (2019) can be

understood as recursive least-squares applied to deep networks in a layer-wise manner.

If the batch size is large enough, then X
(j)
1 (X

(j)
1 )⊤ is in general invertible, and if λ = 0 then I −

(X
(j)
1 )⊤

(
X

(j)
1 (X

(j)
1 )⊤

)−1
X

(j)
1 is exactly a projection onto the nullspace of X

(j)
1 . While Guo et al. (2022) showed

that updating λ in a certain way at every batch improves the empirical performance, inverting X
(j)
1 (X

(j)
1 )⊤ + λI might not

be necessary if the goal is to compute (approximate) the nullspace of X(j)
1 , which can be done via SVD. In fact, doing SVD

would also eliminate the hyper-parameter λ.

Improvements over the strategy of Zeng et al. (2019) are given by independent efforts from Wang et al. (2021b) and Saha et al.
(2021). Wang et al. (2021b) maintain a weighted4 sum of covariance matrix (X

(j)
i )⊤X

(j)
i , where i ranges over previous

tasks 1, . . . , t− 1, and then extract an orthonormal basis matrix K(j) the nullspace of some low-rank approximation of this
weighted sum. Such K(j) would be the desired K

(j)
t−1 defined above, if the intersection ∩t−1

i=1null(X(j)
i ) were not empty. On

the other hand, Saha et al. (2021) maintain an orthonormal basis for a low-rank approximation of [(X(j)
1 )⊤, . . . , (X

(j)
t−1)

⊤],
and they project the gradient onto the orthogonal complement of the subspace spanned by this basis. In light of (20), the
methods of Saha et al. (2021) and Wang et al. (2021b) are in principle equivalent, and their difference in performance (as
reported by Kong et al. (2022)) relies on implementation details. Furthermore, their approaches are dual to each other and
are the two sides of the same coin: Wang et al. (2021b) (approximately) maintains a basis for ∩t−1

i=1null(X(j)
i ) and Saha et al.

(2021) for the orthogonal complement of ∩t−1
i=1null(X(j)

i ); see Appendix G for another example of this duality.

We stress that the provable success of these methods relies on Assumption 1, or otherwise pathological cases might arise;
recall Example 1 (Past = Present) and see Lin et al. (2022a) for a different example. Finally, we refer the reader to Kong
et al. (2022); Liu & Liu (2022); Lin et al. (2022a) for further developments on this line of research.

D.2. Theoretical Aspects of Continual Learning Through The Lens of Task Relationship

In order to develop any useful theory for continual learning or related problems that involve multiple tasks, the first step is to
make suitable assumptions on the task relationship (or task similarity, or task relatedness). In the literature, there are several
candidate assumptions available for modeling the task relationship, which we review here.

One early assumption on the task relationship is given by Baxter (2000) in the context of learning to learn, who assumed a
statistical data and task generation model such that, a hypothesis space that contains good solutions for a new task can be
learned from sufficiently many samples of old tasks. An analogous example can be made in our context: ICL† learns Kt

from old tasks, which serves as the hypothesis space for the next task.

The task relationship proposed by Ben-David & Borbely (2008) involves a family of functions F . Ben-David & Borbely
(2008) define two tasks as F -related if the data generation distribution of one task can be transformed into that of the other
by some function in F . This assumption is adopted recently by Ramesh & Chaudhari (2022) and Prado & Riddle (2022)
to provide insights on generalization for continual learning. A drawback of this assumption is that the F-relatedness is
typically characterized by an abstract and combinatorial notion of the generalized VC dimension, which in our opinion is
less intuitive and less “tangible” than Assumptions 1 and 2.

Lee et al. (2021) and Asanuma et al. (2021) contextualize the task relationship in a teacher-student network setup. The tasks

4In principle (say if the nullspaces of X(j)
i intersect), different weights would result in the same nullspace.
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are defined by the teacher networks and the similarity of two given tasks is quantified by the difference in the weights of the
two corresponding teacher networks. It appears to us that the insights Lee et al. (2021) and Asanuma et al. (2021) delivered
under this teacher-student assumption are now limited to only two tasks.

Yet another task relationship is that every objective Lt is the composition of two functions ft ◦ g, where the function
g : Rn → Rs is referred to as the shared representation; see, e.g., Maurer et al. (2016); Balcan et al. (2015); Tripuraneni
et al. (2021); Du et al. (2021). The point is that, if g has been learned from old tasks and fixed, and if n≫ s, learning a
new task would be more sample-efficient as the dimension of the search space reduces from n to a much smaller s. Li et al.
(2022) and Cao et al. (2022) recently explored this idea in the continual learning context with certain new insights, while
their settings are from ours. It is possible to obtain stronger generalization bounds and improve our results by leveraging this
assumption of a shared representation, at the cost of obtaining a less general theorem than Theorems 1 and 2.

The task relationship that we consider in this paper is defined by Assumption 1 or 2, that is all tasks share at least a common
global minimizer. As mentioned in the main paper, this assumption generalizes those of Evron et al. (2022) and Peng &
Risteski (2022). While we show that Assumptions 1 and 2 are quite powerful and leads to many pleasant results, in the
future we would like to study how strong Assumption 1 or 2 is for continual learning and come up with other alternatives.

E. Set-Theoretical Estimation
In the main paper, we mentioned that ICL† is related to set-theoretical estimation in control. Here, we elaborate on this
statement by reviewing related works and interpreting ICL† from a control and set-theoretical perspective.

E.1. Ideal Continual Learner† = Predictor + Corrector

State estimation is a fundamental problem in control. From the data D0, D1, . . . , DT observed sequentially over time and
the initial state w0 ∈ W ⊂ Rn, the goal of state estimation is to estimate the subsequent states w1, . . . ,wT ∈ Rn, assuming
the following equations5:

wt = ft−1(wt−1)

Dt−1 = ht−1(wt−1)
t = 1, . . . , T (28)

Here, ft is some known function that transfer state wt into wt+1, and ht is a known function that maps state wt into our
observation Dt. Of course, T is allowed to be∞.

Since the initial state w0 belongs toW and the subsequent state wt fulfills (28), wt must belong to some set depending
onW , data D0, . . . , DT , and (28). Such dependency was described by Witsenhausen (1968) in the case where ft−1 and
ht−1 are linear maps, and was made mathematically precise by Kieffer et al. (1998) with a recursive algorithm. Defining
K0 ←W , the algorithm of Kieffer et al. (1998) consists of two steps for every t = 1, . . . , T :

(Prediction) Gt ← ft−1(Kt−1)

(Correction) Kt ← h−1
t (Dt) ∩Gt

In words, the prediction step collects all possible states Gt that can be transferred from Kt−1, and the correction step rules
out the states that are inconsistent with data Dt.

In light of Kieffer et al. (1998) and as the notations suggest, we have the following description of ICL†:

Proposition 10 (Ideal Continual Learner† = Predictor + Corrector). Under Assumption 1, the recursion (2) of ICL† is
equivalent to

(Prediction) Gt ← argmin
w∈W

Lt(w;Dt)

(Correction) Kt ← Kt−1 ∩ Gt
(29)

The prediction step (29) involves solving a single task, while the correction step requires computing the intersection of two
complicated sets. Finally, the prediction-correction description also requires storing the knowledge representation Kt.

5This is a simplified model, e.g., we did not describe the control signals that enable state transfer, but this is enough for illustration.
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E.2. Ideal Continual Learner† = Set Intersection Learner†?

Background. Combettes (1993) formulated a general estimation problem that encompasses many signal processing and
control applications. The formulation of Combettes (1993) can be described as follows. Suppose we are given some
information D1, . . . , DT , from which we want to estimate a certain variable ŵ. Each piece of information Dt determines
a set Gt in which w∗ lies. Assuming we can compute Gt from Dt, the problem of estimating ŵ reduces to computing (a
point of) the set intersection ∩Tt=1Gt. If the information we have is inconsistent (e.g., due to noise or out-of-distribution
measurements), the intersection ∩Tt=1Gt might be empty. This is a more challenging situation, which might result in an
NP-hard problem (as we discussed in the main paper). As in Assumption 1, we assume ∩Tt=1Gt is non-empty, therefore the
difficulty of finding a point in ∩Tt=1Gt largely depends on the shape of each set Gt.

Computing Set Intersections. Suppose ∩Tt=1Gt ̸= ∅. Finding a point in ∩Tt=1Gt is a classic problem and has been of great
interest nowadays due to many modern applications. Classic methods include the alternating projection method of John von
Neumann in 1933 for the case of two intersecting affine subspaces (as Lindstrom & Sims (2021) surveyed); the methods of
Karczmarz (1937) and Cimmino (1938) for the case where Gt’s are finitely many affine hyperplanes (as Combettes (1993)
reviewed); the method of Boyle & Dykstra (1986) for computing a point in the intersection of two convex sets; as well as
many extensions of these methods for finitely many convex sets and even non-convex sets. We refer the reader to Borwein &
Tam (2014) for some equivalence among these methods and to Theodoridis et al. (2010); Lindstrom & Sims (2021) and
some references of Borwein & Tam (2014) for surveys. See also Evron et al. (2022) where some extensions of Karczmarz
(1937) were discussed in a continual learning context.

The Continual Learning Context. The Ideal Continual Learner† (ICL†) might be viewed as a method that computes the
set Gt of global minimizes for each task t and then computes their intersection ∩Tt=1Gt. If all objectives Lt’s are convex,
then in general Gt is a convex set, and it is possible to implement ICL† via computing intersections of convex sets. However,
there are still several issues that make the continual learning problem harder than computing set intersections:

• The first difficulty is to find a representation of Gt that is amenable to alternating optimization (we discussed several
equivalent representations of Gt in §2). Such representation should consume as less memory as possible, and yet might
purely rely on a user’s choice; e.g., one might revisit past tasks as an implicit way of storing Gt (Evron et al., 2022).

• The other difficulty occurs when there are infinitely many tasks (T =∞), and this basically rules out the chance of
storing all sets Gt’s. Similar issues have been considered in the signal processing context, where one is given the set
Gt sequentially; see Theodoridis et al. (2010) for a review. However, theoretical guarantees of existing methods in
that line of research are about convergence to ∩∞t=t0Gt for some number t0 (potentially unknown), not to ∩∞t=1Gt. The
reason that t0 is in general unknown is this: These methods are some variants of alternating projections, which might
forget the very first set G1 after projecting onto later sets.

F. Streaming PCA, Incremental SVD, and Subspace Tracking
As mentioned in the main paper, the continual matrix factorization formulation is related to several classic problems,
streaming principal component analysis (PCA), incremental singular value decomposition (SVD), and subspace tracking.
These problems have been extensively studied in machine learning, numerical linear algebra, and signal processing
communities. While we refer the reader to Balzano et al. (2018) and Vaswani et al. (2018) for comprehensive reviews, we
discuss several related methods here, aiming at highlighting their connections to continual learning.

Streaming PCA. PCA refers to modeling a data matrix [Y1 · · · YT ] with some low-dimensional subspace, and it is a
century-old topic (Pearson, 1901) that has many applications and extensions (Jolliffe, 2002; Vidal et al., 2016). Streaming
PCA differs from PCA in that one receives Y1, . . . ,YT sequentially, and each Yt is seen only once. A popular method for
streaming PCA is due to Oja (1982). Assume we want to project the data onto a r-dimensional subspace of Rn, with r a
hyper-parameter. The method of Oja (1982) initializes a random orthonormal matrix U (1) ∈ Rn×r, updates

U (k+1) ← orth
(
U (k) + γ(k)YkY

⊤
k U (k)

)
(30)

at iteration k with stepsize γ(k). Here orth(·) orthogonalizes an input matrix (e.g., via QR or SVD decomposition). The
update (30) can be regarded as a stochastic projected gradient descent method; in particular, γ(k) →∞, then (30) becomes
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a stochastic version of the power method that computes r eigenvectors of [Y1 · · · YT ] corresponding to r maximum
eigenvalues. Similarly to SGD or the algorithm of Evron et al. (2022), in the worse case, this stochastic method forgets if it
does not revisit past data, and even if [Y1 · · · YT ] is exactly of rank r; note that we did not give a formal proof for this
claim, but it can be derived by combining the minimality of Kt (§2.3) with problem-specific arguments.

Incremental SVD. The incremental SVD problem is to compute the SVD of [Y1 Y2] from the SVD of a matrix Y1 =
U1Σ1V

⊤
1 . This is a different and slightly more difficult goal from continual matrix factorization, which aims to estimate

(an orthonormal basis matrix of) a subspace sum. Of course, we could do incremental SVD for increasingly more data,
and extract the desired basis matrix from the final SVD decomposition of [Y1 · · · Yt]; in other words, incremental SVD
algorithms can be used to solve the continual matrix factorization problem. The issue is that it takes more memory to store
the SVD than storing only a basis matrix as in our approach, and potentially takes more time for computation.

To better understand the matter, we review a popular incremental SVD method, described in Section 3 of Brand (2002) (see
also Bunch & Nielsen (1978)). With Y2 := (I −U1U

⊤
1 )Y2 and a QR-decomposition Q2R2 = Y2 of Y2, we have

[Y1 Y2] = [U1Σ1V
⊤
1 Y2]

= [U1 Q2]

[
Σ1 U⊤

1 Y2

0 R2

] [
V1 0
0 I

]⊤

Since [U1 Q2] and
[
V1 0
0 I

]
have orthonormal columns, computing the SVD of [Y1 Y2] reduces to computing the SVD

U2Σ2V
⊤
2 of the middle matrix

[
Σ1 U⊤

1 Y2

0 R2

]
. Indeed, with SVD U2Σ2V

⊤
2 , we can obtain the desired decomposition of

[Y1 Y2] as U2Σ2V
⊤
2 , where U2 and V2 are defined as

U2 ← [U1 Q2]U2, V2 = V1V2. (31)

Note that this approach can also be regarded as an expansion-based method, and by design it never forgets when applied to
continual matrix factorization. However, it requires an extra QR decomposition, and it requires an SVD on a larger matrix
than in our approach (§3.2). A subtler drawback is that this method performs SVD and then multiplication (31) to obtain the
orthonormal basis. This is potentially numerically unstable; as Brand (2006) later commented:

Over thousands or millions of updates, the multiplications may erode the orthogonality of U ′ [e.g., U2] through numerical
error... [Brand (2006) described some ad-hoc remedy] ... It is an open question how often this is necessary to guarantee a

certain overall level of numerical precision.

This numerical issue does not exist in our approach, where our multiplication is followed by an SVD; then from the SVD we
directly extract the desired basis matrix, which is typically orthonormal up to machine accuracy given the numerical stability
of SVD algorithms (preconditioned if necessary). The reason that we could do so, though, stems from the fact that we need
only to compute an orthonormal basis of the subspace sum S1 + · · ·+ St for the continual matrix factorization problem,
which is arguably simpler than incrementally updating the SVD. As a final remark, our approach can be extended to update
the U and V matrices for incremental SVD, at the potential cost that updating the singular values could be numerically
unstable. Nevertheless, discussing these is beyond the scope of the paper, and hence we omit the details.

Subspace Tracking. Suppose now we receive data Y1, . . . ,YT sequentially, with St = range(Yt). In the problem of
subspace tracking, we assume St changes slowly, as t increases, and the goal at task t or time t is to estimate St. To do so, a
classic idea (e.g., see Yang (1995; 1996)) is to define a forgetting factor β with 0≪ β ≤ 1, and minimize the following
objective in a streaming fashion:

min
U

T∑
t=1

βT−t∥Yt −UU⊤Yt∥2F. (32)

Here, the forgetting factor β discounts the previous samples, accounting for the fact that St is slowly changing; more
generally, such factor β also appears in many classic reinforcement learning algorithms as a discount rate to discount
the past rewards (Sutton & Barto, 2018). There are also works that make mathematically precise assumptions on how
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St changes over time. For example, St could be slowly rotated, or keep static for a sufficiently long time until changing
(Narayanamurthy & Vaswani, 2018). Intuitively, making how St changes precise give chances to design better algorithms,
although we shall not review these approaches. The point here is that, this classic line of research furnished the very
rudimentary idea of what is recently known as selective forgetting or active forgetting in the deep continual learning context
(Aljundi et al., 2018; Wang et al., 2021a; Shibata et al., 2021; Liu et al., 2022). Of course, achieving selective or active
forgetting in a principled way for deep continual learning is much harder than for subspace tracking.

G. A Dual Approach to Continual Principal Component Analysis

Background. In §3.2, we considered continual matrix factorization where task t is associated with the loss
Lt

(
(U ,C);Yt

)
= ∥UC − Yt∥2F, and this loss is equivalent to a PCA objective ∥UU⊤Yt − Yt∥2F in variable U , as-

suming U⊤U is the identity matrix. Since U gradually grows its columns to accommodate new tasks, this might eventually
consume too much memory. As promised in Remark 5, we now address this issue, using the following key observation:
If U and B are orthonormal basis matrices2 of some linear subspace and its orthogonal complement, respectively, then
UU⊤ +BB⊤ is the identity matrix, and we have

∥UU⊤Yt − Yt∥2F = ∥BB⊤Yt∥2F = ∥Y ⊤
t B∥2F. (33)

Note that relation (33) was discussed by Tsakiris & Vidal (2018) in a different context, in comparison to the algorithm of
Lerman et al. (2015). In that line of research, U is typically referred to as the primal representation of the subspace St and
B the dual representation. To conclude, we can use ∥Y ⊤

t B∥2F as the objective for task t, and the aim for task t is to find an
orthonormal basis matrix for subspace S⊥t , which is uniquely identified with St. The goal of continual principal component
analysis is to find the subspace intersection ∩ti=1S⊥i upon encountering task t (∀t).

Implementing The Ideal Continual Learner†. We now describe ICL† for solving the problem of continual PCA. Denote
by Bt a basis matrix for ∩ti=1S⊥i with B⊤

t Bt = I , we have ∥Y ⊤
i Bt∥F = 0 for every i = 1, . . . , t. Therefore, for each

task, we maintain and update Bt. To start with, set B1 to be the matrix whose columns are all right singular vectors of Y ⊤
t

corresponding to its zero singular values. Suppose now t > 1 and we are given Bt−1 and Yt, and we wish to compute a Bt.
Of course ∩ti=1S⊥i ⊂ ∩

t−1
i=1S⊥i , hence Bt has fewer or equal columns than Bt−1 and each column of Bt can be represented

as a linear combination of columns of Bt−1. Therefore, parameterize Bt as Bt = Bt−1Ct, and we solve

Ct ∈ argmin
Ct

∥Y ⊤
t Bt−1Ct∥2F s.t. (Bt−1Ct)

⊤Bt−1Ct = I

⇔ Ct ∈ argmin
Ct

∥Y ⊤
t Bt−1Ct∥2F s.t. C⊤

t Ct = I,

where the equivalence is due to B⊤
t−1Bt−1 = I . As a result, we can set Ct to be the matrix whose columns are all right

singular vectors of Y ⊤
t Bt−1 corresponding to its zero singular values. This concludes how ICL† can be implemented for

continual PCA.

Summary. We now see two sides of the same coin: We can implement ICL† for continual matrix factorization (or continual
PCA), using either the primal or dual representation. The primal representation (Ut) grows while the dual representation
(Bt) shrinks. This is not to say that the dual representation is always better. The dual representation saves memory (and is
thus preferred) if and only if dim(

∑t
i=1 Si) exceeds half of the ambient dimension. Hence, a better implementation for

continual matrix factorization (or continual PCA) would switch the representation from primal to dual, as t increases such
that dim(

∑t
i=1 Si) is greater than that threshold. Nevertheless, the total memory needed in both representations is bounded

above by n× dim(
∑t

i=1 Si). This seems to contradict the results of Knoblauch et al. (2020) and Chen et al. (2022), which
suggest that continual learning without forgetting would require memory to grow linearly with the number T of tasks. The
catch is that, besides other differences in settings, their results are for the worst-case scenario, while our continual matrix
factorization or continual PCA setting is quite specific and does not belong to the worst case.

H. Proofs
Proof of Proposition 1. Clearly K1 = G1. Assume Kt−1 = ∩t−1

i=1Gi. Since Lt is minimized over Gt (1) and ∩ti=1Gi ̸= ∅,
the set of global minimizers of (2) is ∩ti=1Gi. By definition (2) we have Kt = ∩ti=1Gi. The proof is complete by
induction.
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Proof of Proposition 4. Let ŵt ∈ Kt = ∩ti=1Gi, then we have

min
w∈W

t∑
i=1

αiLi(w;Di) ≥
t∑

i=1

αi min
w∈W

Li(w;Di)

=

t∑
i=1

αiLi(ŵt;Di).

(34)

Since ŵt is feasible to the multitask objective (5), the minimum value of the multitask objective is attained exactly when
each objective Li is minimized, meaning that Kt is the set of global minimizers of the multitask objective.

Proof of Theorem 1. Assumption 1 and Proposition 1 imply ŵ is a common global minimizer of all empirical tasks (1). For
t = 1, . . . , T , let w∗

t ∈ G∗t be a global minimizer of learning task t (12). Applying a union bound to (14), we get

Ed∼Dt
[ℓt(ŵ;d)]− Lt(ŵ;Dt) ≤ ζ(mt, δ

′),

Lt(w
∗
t ;Dt)− Ed∼Dt

[ℓt(w
∗
t ;d)] ≤ ζ(mt, δ

′),
(35)

for all t = 1, . . . , T , with probability at least 1 − Tδ′. Summing up the inequalities of (35) and noticing Lt(ŵ;Dt) ≤
Lt(w

∗
t ;Dt) and c∗t = Ed∼Dt [ℓt(w

∗
t ;d)], we then obtain

Ed∼Dt
[ℓt(ŵ;d)] ≤ c∗t + 2ζ(mt, δ

′) = c∗t + ζ(mt, δ
′).

The last equality is due to the big-O notation (14). With δ := δ′/T we finish the proof.

Proof of Proposition 5. Given (X1,y1), we can compute K1 via an SVD on X1, e.g., set K1 to be the matrix whose
columns are right singular vectors of X1 corresponding to its zero singular values. We can compute a particular solution
ŵ1 := X†

1y1 to the normal equations X⊤
1 X1w = X⊤

1 y1; here X†
1 denotes the pseudoinverse of X1, and can be computed

from SVD of X1.

For the case t > 1, suppose we are given (ŵt−1,Kt−1) and data (Xt,yt). Then, by the definitions of (ŵt−1,Kt−1) and
Kt−1, the equivalence between (7) and (8) is immediate.

The normal equations of (8) are given by (Xt := XtKt−1)

X
⊤
t Xta = X

⊤
t (yt −Xtŵt−1).

Therefore, we can compute ât = X
†
t(yt −Xtŵt−1) as a global minimizer of (8), where the pseudoinverse X

†
t can be

calculated via an SVD on Xt. Then a common global minimizer ŵt ∈ Kt is given as ŵt = ŵt−1 +Kt−1ât. It remains to
compute an orthonormal basis matrix Kt for the intersection of the nullspaces of X1, . . . ,Xt, that is the intersection of the
nullspace of Xt and the range space of Kt−1. This can be done as follows. First, compute an orthonormal basis for the
nullspace of Xt, then left-multiply this basis by Kt−1. This yields the desired Kt.

Proof of Proposition 7. The proof is obtained in the same way as in Theorem 1, by exchanging the empirical part (e.g.,
Lt(w, Dt) and ct) with the population part (e.g., Ed∼Dt

[ℓt(w;d)] and c∗t ).

Proof of Theorem 2. The feasibility of the relaxed Continual Learner† follows from Proposition 7, which also suggests that

Lt(w;Dt) ≤ ct + ζ(mt, δ/T ), ∀t = 1, . . . , T (36)

with probability at least 1− δ. Note that in (36) the uniform convergence bound of Assumption 3 was invoked for each task,
meaning that we have Ed∼Dt

[ℓt(w;d)] ≤ Lt(w;Dt) + ζ(mt, δ/T ) and ct ≤ c∗t + ζ(mt, δ/T ). Substitute them into (36)
to get Ed∼Dt

[ℓt(w;d)] ≤ c∗t + 3ζ(mt, δ/T ), finishing the proof.

Proof of Theorem 3. By Proposition 7, with probability at least 1− δ, we have w satisfying

1

mT

mT∑
i=1

ℓT (w;dTi) +

T−1∑
t=1

1

st

st∑
i=1

ℓt(w;dti) ≤ cT + ζ(mT , δ/T ) +

T−1∑
t=1

(
ĉt + ζ(st, δ/T )

)
,
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where ĉt is the minimum of 1
st

∑st
i=1 ℓt(w;dti) overW , and cT the minimum of 1

mT

∑mT

i=1 ℓT (w;dTi) overW . Then, the
proof technique of Theorem 2 implies (19), and the proof is complete.
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