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ABSTRACT

Instruction-tuning, which fine-tunes the language model (LM) on various down-
stream tasks with task instruction, has improved the zero-shot task generalization
performance. However, instruction-tuned LMs still struggle to generalize to chal-
lenging unseen tasks containing novel labels. In this paper, we propose FLIPPED
LEARNING, an alternative method of instruction-tuning which trains the LM to
generate the task instruction given the input instance and label. During inference,
the LM trained with FLIPPED LEARNING, referred to as FLIPPED, selects the label
option that is most likely to generate the task instruction. On 14 tasks of the BIG-
bench benchmark, the 11B-sized FLIPPED outperforms zero-shot T0-11B (Sanh
et al., 2021) and even a 16 times larger 3-shot GPT-3 (175B) (Brown et al., 2020)
on average by 8.4% and 9.7% points, respectively. FLIPPED gives particularly
large improvements on tasks with unseen labels, outperforming T0-11B by up
to +20% average F1 score. This indicates that the strong task generalization of
FLIPPED comes from improved generalization to novel labels.

1 INTRODUCTION

Large Language Models (LMs) pretrained on a vast amount of corpora are capable of solving var-
ious downstream tasks through instructions (task prompts) concatenated with the input instances
without any task-specific fine-tuning (Brown et al., 2020; Rae et al., 2021; Chowdhery et al., 2022;
Zhang et al., 2022). Previous work has shown that fine-tuning the LM on various downstream
tasks by generating the correct answer given a prompted input (instruction and input), also referred
to as instruction-tuning, leads to significant improvement in zero-shot task generalization (Sanh
et al., 2021; Wei et al., 2021; Wang et al., 2022). However, Webson & Pavlick (2021); Min et al.
(2022c) show that LMs instruction-tuned through this standard approach are sensitive to different la-
bel words, implying that standard instruction-tuned LMs often fail to generalize to tasks that contain
novel labels.
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Figure 1: Inference of DIRECT, CHANNEL and
FLIPPED to select an appropriate label from label op-
tions. Unlike DIRECT and CHANNEL, FLIPPED com-
putes the conditional probability of instruction given in-
put+label.

In this paper, we introduce an alterna-
tive instruction-tuning method called FLIPPED
LEARNING that flips the task instruction and la-
bel space, training the underlying LM to gen-
erate the instruction when given the input in-
stance and label. This differs from the standard
instruction-tuning methods which train the LM
to generate the label given instruction and in-
put instance (DIRECT) or generate instruction
and input instance given the label (CHANNEL).
Also, we add an unlikelihood loss for FLIPPED
LEARNING, making the LM not generate the
task instruction for an incorrect label option.
During inference, the LM trained via FLIPPED
LEARNING, referred to as FLIPPED, selects the label option that is most likely to generate the task
instruction, as shown in Figure 1.
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Evaluation on 14 datasets from BIG-Bench (Srivastava et al., 2022) demonstrate that FLIPPED is
effective (Figure 2), not only showing state-of-the-art performance compared to all LMs regard-
less of size in the zero-shot setting, but also outperforming much larger GPT-3 175B (3-shot) by a
significant margin, even without any demonstrations of the task (zero-shot).

We hypothesize that FLIPPED shows strong zero-shot generalization ability on unseen tasks be-
cause of the improved generalization capability to unseen labels. To test this hypothesis, we eval-
uate on various label pairs with different surface forms but with the same meaning (e.g. yes/no vs
agree/disagree). Results show FLIPPED has up to +20% average F1 score performance gap with
T0-11B, indicating that FLIPPED LEARNING indeed significantly improves label generalization ca-
pability. Because FLIPPED LEARNING conditions on the label instead of generating it, FLIPPED
LEARNING is likely to avoid label overfitting, resulting in improved label generalization, which
consequently leads to better task generalization.

2 FLIPPED LEARNING

2.1 INFERENCE OF PROBABILISTIC LMS

In this work, we focus on tasks with label options such as classification and multi-choice tasks
for both instruction-tuning and evaluation. For a given task T = {x, Y } where x is the input
instance and Y = {y1, ...yk} is label option set, we convert the data instance into a prompted version
{[I, x], L}. From {[I, x], L}, [I, x] denotes the prompted input instance including natural language
instruction I and L = {l1, ..., lk} denotes the natural language label option set where li = vI(yi)
and vI is the verbalizer corresponding to I . The goal during inference is to select the correct li from
L = {l1...lk} given I and x.

DIRECT method computes the conditional probability of the label given task instruction and input
instance. During inference, it selects the label that leads to the highest conditional probability:

argmax
li

P (li|I, x) (1)

This is the most common approach used for zero-shot inference of LMs (Brown et al., 2020; Chowd-
hery et al., 2022; Sanh et al., 2021; Wei et al., 2021).

CHANNEL method (Min et al., 2022a) computes the conditional probability of instruction and input
instance given a label. Using Bayes’ rule, the probability can be reparameterized as follows:

argmax
li

P (li|I, x) = argmax
li

P (I, x|li)P (li)

P (I, x)
= argmax

li

P (I, x|li) (2)

since P (I, x) is independent from li and P (li) =
1
|L| ; we assume the prior to be an uniform distri-

bution for tasks with label options.

FLIPPED LEARNING, our proposed method, computes the conditional probability of the task in-
struction given an input instance and a label. Different from previous approaches, we separate [I, x]
into I and x and use Bayes’ rule to reparameterize the conditional probability as follows:

argmax
li

P (li|I, x) = argmax
li

P (I|x, li)P (li, x)

P (I, x)
= argmax

li

P (I|x, li)P (li|x) ≈ argmax
li

P (I|x, li)

(3)
where we assume P (li|x) ≈ 1

|L| for simplicity. By considering P (I|x, li), we allow the LM to put
more focus on the task instruction. The intuition of FLIPPED LEARNING can be considered to be
similar to generative question answering (Lewis & Fan, 2018) which generates the question given
context and answer, but FLIPPED LEARNING generates the task instruction for task generalization.

2.2 INSTRUCTION-TUNING USING FLIPPED LEARNING

Next, we explain how we optimize the LM to utilize P (I|x, li) which requires adding in an unlike-
lihood loss during instruction-tuning. Given the sequence of task instruction I = (I1, .., IT ), we
denote the LM loss function as follows:

LLM = −
T∑

t=1

logP (It|x, lc, I<t) (4)
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where lc corresponds to the correct label option. By minimizing this loss function, the LM learns to
generate I when given the correct label option and the input instance. However, from preliminary
experiments, we observe that instruction-tuning the LM only on LLM results in ignoring the corre-
spondence between the input instance and label: instruction-tuned LM generates task instruction I
regardless of the correspondence of the label option. We conjecture that this is a result of shortcut
learning of large LMs (Du et al., 2022; Min et al., 2022c). To amplify the correspondence signal
between the input instance and the correct label, we add an unlikelihood loss (Tam et al., 2021; Liu
et al., 2022; Welleck et al., 2019) during instruction-tuning which can be denoted as follows:

LUL = −
T∑

t=1

log(1− P (It|x, lc′ , I<t)) (5)

where lc′ corresponds to an incorrect label option randomly sampled from the incorrect label option
set LC′ = {l|l ∈ L, l ̸= lc}. This unlikelihood loss term allows the LM to not generate the
task instruction if the label option does not correspond to the input instances. The final training
objective of FLIPPED LEARNING is the weighted sum of LLM and LUL where the weight λ is a
hyperparameter. By optimizing both likelihood and unlikelihood objectives, the LM is optimized to
generate the instruction when given the correct label and not generate the instruction when given the
incorrect label, strengthening the correspondence between the input instance and the correct label.

3 EXPERIMENTAL SETUP

Training For instruction-tuning, we utilize the 20 datasets of T0 (Sanh et al., 2021) instruction-
tuning datasets. We only train on tasks with label options and exclude tasks such as free-form
generation because FLIPPED LEARNING requires label options for unlikelihood training on incorrect
label options. We provide detailed training configurations in Appendix F and the full list of training
datasets in Appendix G.1.

Evaluation Following the evaluation setting of Sanh et al. (2021), we measure unseen task gen-
eralization performance on 14 tasks of BIG-bench which contain challenging and various tasks that
are unseen during instruction-tuning. For analysis of label generalization of classification tasks,
we evaluate on 5 datasets: 2 seen datasets during instruction-tuning (IMDB, PAWS) and 3 unseen
datasets (RTE, CB, WiC). We provide the full list of evaluation datasets in Appendix G.2 and more
details on the evaluation setting are specified in Appendix H.

Baselines We evaluate several baselines to observe the effectiveness of FLIPPED LEARNING: (1)
T0, an instruction-tuned LM by Sanh et al. (2021), (2) DIRECT, an instruction-tuned LM using
the same language modeling objective of T0-3B, but with our training configurations, (3) CHAN-
NEL, an instruction-tuned LM using noisy channel objective, (4) FLIPPED, LM instruction-tuned
through FLIPPED LEARNING, (7) GPT-3 (Brown et al., 2020), 175B sized pretrained LM, (8) PaLM
(Chowdhery et al., 2022), 540B sized pretrained LM.

4 EXPERIMENTAL RESULTS
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Figure 2: Mean Accuracy on 14 datasets from
the BIG-Bench benchmark. FLIPPED shows
the best performance among zero-shot LMs
and even better performance than GPT-3 175B
3-shot. Detailed result is shown in Table 1.

FLIPPED outperforms baselines. For the 14 BIG-
bench tasks of Table 1 and Figure 2, FLIPPED-3B
significantly outperforms all instruction-tuned models
with the same model size: +6.01% mean accuracy com-
pared to T0-3B and +4.82% mean accuracy compared
to DIRECT. FLIPPED-3B also outperforms 4x times
larger instruction-tuned T0-11B on average by +1.78%
points. This result is significant considering that the
effect of scaling law is strong for zero-shot general-
ization of instruction-tuned models (Wei et al., 2021;
Sanh et al., 2021; Wei et al., 2022). FLIPPED-11B even
shows better performance, outperforming T0-11B on
average by +8.38% points. Compared to even larger
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pretrained LMs evaluated in a few-shot setting, FLIPPED-11B outperforms 3-shot GPT-3 which
is 16x larger by 9.69% points on average. When compared to 1-shot PaLM which is 50x larger,
FLIPPED outperforms on 4 tasks out of the 14 tasks. This shows that FLIPPED is effective for gener-
alizing to unseen tasks that are challenging, resulting in the best performance on the zero-shot setting
even when compared to LMs with much larger sizes. We report the evaluation result on additional
14 English NLP tasks in Table 2 which further shows the effectiveness of FLIPPED LEARNING.
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Figure 3: Label generalization performance on 3 unseen and 2 seen datasets during instruction-tuning. We
evaluate on 20 different label pairs including many unseen labels. Result shows that FLIPPED significantly
outperforms other baseline models.

FLIPPED generalizes to unseen labels that are semantically the same. We analyze the label
generalization performance of FLIPPED compared to other baseline models by varying the surface
form the label options (e.g. yes/no vs agree/disagree) for 5 classification datasets: 3 datasets (RTE,
CB, WSC) for unseen tasks, and 2 datasets (IMDB, PAWS) for seen tasks during instruction-tuning.
We vary the label options to 20 different pairs that have the same meaning but different surface forms
including the original labels.1

Figure 3 shows the label generalization performance of T0-3B, DIRECT, T0-11B and FLIPPED-3B.
For unseen tasks, FLIPPED outperforms T0-3B by (+23.37%, +18.78%, +10.92%), outperforms DI-
RECT by (+16.42%, +13.46%, +7.82%), and outperforms CHANNEL by (+21.88%, 24.84%, 9.93%)
average F1 score on (RTE, CB, WSC) respectively. Even when compared with a 4x times larger
instruction-tuned LM (T0-11B), FLIPPED outperforms by (+19.72%, +12.32%, +10.81%) average
F1 score for (RTE, CB, WSC) respectively. This shows that FLIPPED can generalize to various novel
labels, which is what even larger instruction-tuned LMs trained through direct prompting cannot do.
Although baseline models outperform FLIPPED for best accuracy among different label pairs, this
is mostly when the label is seen during instruction-tuning (e.g. yes/no). The result of Figure 3 also
indicates that the classification tasks evaluation setting of Sanh et al. (2021) overestimates the true
generalization ability of LMs because Sanh et al. (2021) mostly evaluate unseen target tasks on la-
bels that are seen during instruction-tuning (yes/no), which is not guaranteed for a true zero-shot
generalization scenario.

Aligned with the experiments on the 3 unseen tasks, FLIPPED further outperforms baselines on the
2 seen tasks during instruction-tuning by a significant margin: (+25.55%, +46.68%) for T0-3B,
(+20.74%, +34.66%) for DIRECT, (+34.12%, +43.74%) for CHANNEL, and (+26.63%, +31.91%)
for T0-11B on (IMDB, PAWS). This further bolsters the hypothesis that standard instruction-tuning
leads to label overfitting, especially for seen tasks and FLIPPED LEARNING avoids this by condi-
tioning on the label option instead of generating it.

5 CONCLUSION

In this paper, we propose FLIPPED LEARNING, which is a instruction-tuning method that flips the
instruction and label space, training the LM to compute the conditional probability of the task in-
struction given input instance and label. Our findings show that by conditioning on the label space
instead of generating it, FLIPPED LEARNING avoids label overfitting, leading to better zero-shot
unseen task generalization capabilities especially for tasks that contain various novel labels.

1We provide the full list of 20 label options in Appendix J.
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A RELATED WORK

A.1 INSTRUCTION-TUNING

Prior work has shown that instruction-tuning, multitask fine-tuning on various downstream tasks
with task instructions included, enables zero-shot task generalization (Sanh et al., 2021; Wei et al.,
2021; Wang et al., 2022; Mishra et al., 2022). Specifically, Sanh et al. (2021); Wang et al. (2022)
have shown that moderate-sized LMs can also generalize to unseen tasks through instruction-tuning
and the generalization performance improves by scaling the number of training tasks, the number
of prompts per task, and the size of the LM. Based on this method, Ouyang et al. (2022) apply
reinforcement learning with human feedback after instruction-tuning to make better instruction-
following LMs. To improve the task generalization performance of instruction-tuned LMs, Lin
et al. (2022); Ye et al. (2022) suggest using a retrieval-based framework. Min et al. (2022b); Chan
et al. (2022); Chen et al. (2021) apply instruction-tuning by using input-label pairs instead of task
instructions.

A.2 NOISY CHANNEL PROMPTING

When performing classification tasks, zero-shot LMs (Brown et al., 2020; Chowdhery et al., 2022)
compute the conditional probability of the labels given input instances concatenated with instruc-
tions or demonstrations, referred to as direct prompting. On the other hand, noisy channel prompting
reverts the input and the output space, making LMs generate every word in the input instances when
conditioned on the label (Min et al., 2022a; Lazaridou et al., 2022). Specifically, Min et al. (2022b)
apply noisy channel prompting during instruction-tuning, optimizing the model to generate the in-
put instance given the concatenation of demonstrations and the label. Motivated from Min et al.
(2022b), we optimize the model to generate only the task instruction while conditioning on the input
and label (example shown in Figure 1). While Honovich et al. (2022); Gupta et al. (2022) have
similar intuition of guessing the instruction given input and label, they only do flipping on either
training or inference, not both.

A.3 LABEL GENERALIZATION

Previous work has shown that LMs are very sensitive to different label surface forms, indicating
poor robustness. Zhao et al. (2021) show that even 175B-sized GPT-3 suffers from high sensitivity
and propose contextual calibration to solve this issue. Holtzman et al. (2021); Shi et al. (2022)
define this problem as surface form competition and propose Domain Conditional Pointwise Mutual
Information scoring or fuzzy verbalizers to mitigate this problem. For instruction-tuning, Webson
& Pavlick (2021) analyze the effect of various label surface forms for a instruction-tuned LM and
find that instruction-tuned LMs are more sensitive to label surface forms than different wordings of
the prompt, which suggests that the instruction-tuned LMs overfit to the label space provided during
instruction-tuning. This shows that instruction-tuned LMs cannot generalize to unseen label space,
indicating poor label generalization.

B ABLATION STUDIES

In this section, we analyze the effect of unlikelihood training. Also, we vary the number of
instruction-tuning datasets of FLIPPED to analyze the effect of the number of datasets on task gener-
alization. We evaluate on 14 English NLP tasks and report average F1 score on 7 classification tasks
and mean accuracy on 7 multi-choices tasks respectively.

B.1 EFFECT OF UNLIKELIHOOD TRAINING

As mentioned in Section 2.2 and shown in Figure 4, we observe that FLIPPED LEARNING ignores
the input instance-label correspondence if unlikelihood loss is not added, hurting the performance
significantly. We additionally analyze if the strong task generalization of FLIPPED is solely coming
from unlikelihood training by applying unlikelihood training on DIRECT, which is our strong base-
line. As shown in the performance of DIRECT+UL in Figure 4, unlikelihood training worsens the
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Figure 4: FLIPPED trained on varying numbers of datasets. FLIPPED W/O UL indicates ablation
of FLIPPED without unlikelihood training. We also analyze the effect of unlikelihood training on
DIRECT (DIRECT+UL). Left: Average F1 score of 7 classification tasks. Right: Average accuracy
of 7 multi-choice tasks. All models are 3B-sized instruction-tuned LMs.

task generalization performance especially for classification tasks while giving marginal improve-
ment on multi-choice tasks, underperforming FLIPPED for both types of tasks. This shows that the
effectiveness of FLIPPED LEARNING is not coming from unlikelihood training itself; both factors of
FLIPPED LEARNING, flipping the label and instruction space and unlikelihood training, are needed
to generalize effectively on unseen target tasks.

B.2 NUMBER OF DATASETS

Instruction-tuned LMs via direct prompting shows improved performance when the number of
datasets increases (Sanh et al., 2021; Wang et al., 2022; Wei et al., 2021). We also analyze if
this phenomenon holds for FLIPPED LEARNING by varying the number of datasets per task cluster;
we increase the total number of datasets by 4, 8, and 20. As shown in Figure 4, the performance
of FLIPPED increases as the number of datasets increases, similar to LMs trained through direct
prompting. Interestingly, using only 8 datasets to instruction-tune FLIPPED also shows strong per-
formance, outperforming DIRECT model trained with 20 datasets on multi-choice tasks. Also, this
efficient but effective model significantly outperforms T0-3B, while only using 20% of the number
of datasets and 5% token updates. This shows that FLIPPED LEARNING can result in generaliza-
tion to unseen tasks while using only a few number of datasets, making not only effective but also
efficient zero-shot learners.

C ADDITIONAL EXPERIMENTS

For the 14 common English NLP tasks which are consisted of 7 classification and 7 multi-choice
tasks shown in Table 2, FLIPPED-3B outperforms baseline models with the same model size (T0-3B,
DIRECT, CHANNEL) on task generalization performance by a significant margin, largely reducing
the gap between T0-11B. FLIPPED-11B shows the best performance on average, outperforming
T0-11B by 1.73% points. Also, FLIPPED shows the lowest standard deviation among multiple
different evaluation instructions compared to other instruction-tuned baseline models, including T0-
11B. This indicates that FLIPPED is not only effective for zero-shot task generalization but also
robust to different surface forms of the instruction.

Concurrent work of Chung et al. (2022) show that scaling the number of training datasets (up to 473
datasets) during instruction-tuning results in state-of-the-art performance on challenging tasks such
as the MMLU benchmark (Hendrycks et al., 2020). From the findings of Section B.2, we also expect
that scaling up the number of datasets during instruction-tuning can improve the performance further.
Similar to the approach of Chung et al. (2022), we scale up the number of datasets during instruction-
tuning by adding generation tasks that are used to train the T0++ model (Sanh et al., 2021). For
generation tasks, we train with the same training objective as classification tasks. For unlikelihood
training of generation tasks, we sample an incorrect label option from a different training instance
of the same dataset which is different from the correct label option. The number of training datasets
in total is 52 and we refer to the model trained with FLIPPED LEARNING with these datasets as
FLIPPED+. We evaluate FLIPPED+ on the zero-shot setting of the MMLU benchmark and compare
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Zero-shot Few-shot

Dataset (metric)
T0 DIR. CHAN. FLIP. T0 FLIP. GPT-3 PALM GPT-3 (3) PALM (1)
3B 3B 3B 3B 11B 11B 175B 540B 175B 540B

Known Un. 47.83 63.04 52.17 71.74 58.70 86.96 60.87 56.52 50.00 67.39
Logic Grid 41.10 35.90 30.90 41.70 38.30 42.50 31.20 32.10 31.10 42.20
Strategy. 52.79 53.28 53.01 53.19 52.75 53.23 52.30 64.00 57.10 69.00
Hindu Kn. 25.71 50.29 16.57 47.43 29.71 52.57 32.57 56.00 58.29 94.86
Movie D. 52.85 47.15 51.06 47.93 53.69 48.49 51.40 49.10 49.40 57.20
Code D. 46.67 33.33 71.67 45.00 43.33 60.00 31.67 25.00 31.67 61.67
Concept 45.52 58.14 35.67 61.64 69.29 64.93 26.78 59.26 35.75 80.02
Language 14.84 22.01 11.55 19.01 20.20 26.87 15.90 20.10 10.90 37.30
Vitamin 58.89 63.83 15.73 57.07 64.73 65.57 12.30 14.10 52.70 70.40
Syllogism 52.94 49.85 50.43 50.56 51.81 50.39 50.50 49.90 52.80 52.20
Misconcept. 50.23 50.23 47.79 46.58 50.00 54.34 47.95 47.49 60.27 77.63
Logical 46.64 38.06 25.73 59.82 54.86 64.56 23.42 24.22 33.93 34.42
Winowhy 44.29 44.33 55.36 53.33 52.11 55.08 51.50 45.30 56.50 47.50
Novel Con. 15.63 3.13 15.63 25.00 15.63 46.88 46.88 46.88 56.25 59.38

BIG-bench AVG 42.56 43.75 38.07 48.57 46.79 55.17 38.23 42.14 45.48 60.80

Table 1: Task generalization performance on 14 BIG-bench tasks. DIR. denotes DIRECT, CHAN. denotes
CHANNEL, and FLIP. denotes FLIPPED. Parentheses in the Few-shot column denote the number of shots.
FLIPPED performs the best on average for zero-shot setting.

Dataset (metric)
T0 DIR. CHAN. FLIP. T0 FLIP. GPT-3
3B 3B 3B 3B 11B 11B 175B

RTE (F1) 61.89 72.83 36.62 71.03 80.91 72.20 40.68
CB (F1) 30.94 49.81 22.35 52.27 53.82 61.51 29.72
ANLI R1 (F1) 24.39 30.17 21.30 33.92 34.72 34.93 20.90
ANLI R2 (F1) 23.73 28.23 21.44 32.62 31.25 32.59 22.50
ANLI R3 (F1) 23.45 30.41 22.50 34.65 33.84 34.77 23.77
WSC (F1) 54.64 50.35 46.38 52.82 58.36 49.88 26.24
WiC (F1) 38.53 36.42 38.69 37.36 51.64 39.26 45.36
COPA 75.88 89.63 50.13 89.88 91.50 90.75 91.00
Hellaswag 27.43 31.61 20.82 41.64 33.05 41.97 78.90
StoryCloze 84.03 94.24 57.84 95.88 92.40 96.12 83.20
Winogrande 50.97 55.96 50.99 58.56 59.94 66.57 70.20
PIQA 56.63 62.60 47.08 67.32 67.67 71.65 81.00
ARC-Chall 51.10 49.30 29.23 49.63 56.99 64.62 51.40
OpenbookQA 42.66 54.00 38.57 62.11 59.11 72.54 68.80

En NLP AVG 46.16 52.54 36.00 55.69 57.51 59.24 52.41
En NLP STD (↓) 4.74 4.36 4.58 3.29 5.24 3.11 -

Table 2: Zero-shot task generalization performance on 14 English NLP tasks consisted of 7 classifi-
cation and 7 multi-choice tasks. 11B-sized FLIPPED (FLIP.) shows the best performance on average
and also shows the best robustness to different evaluation instructions (lower STD).
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Figure 5: Zero-shot MMLU accuracy when scaling the number of datasets during instruction-tuning.
FLAN-T5 (Chung et al., 2022) is trained on 473 datasets (1,836 tasks). Although FLIPPED trained
with 52 datasets (FLIPPED+) uses about 10% of training datasets compared to FLAN-T5, it largely
reduces the performance gap. Left: Average accuracy of 3B-sized models on MMLU benchmark.
Right: Average accuracy of 11B-sized models on MMLU benchmark.

the performance with T0 models (Sanh et al., 2021) and FLAN-T5 (Chung et al., 2022) on the same
model size, shown in Figure 5.

Consistent with the result of Section B.2, FLIPPED LEARNING additionally benefits from the scale of
the number of datasets: FLIPPED+ outperforms FLIPPED for both 3B and 11B sized models. Com-
pared to T0 models, which do not always benefit from scaling the number of datasets, FLIPPED+
shows significant improvement. Moreover, while only using about 10% of the number of training
datasets compared to FLAN-T5, FLIPPED+ largely reduces the performance gap between FLAN-
T5. We suggest that using less number of training datasets during instruction-tuning but resulting in
strong zero-shot performance is important because it is closer to a true zero-shot setting.

D LIMITATIONS

In this work, we do not explore FLIPPED for performing unseen tasks that do not have label op-
tions such as free-form generation. However, we believe FLIPPED can be used for these tasks as
well by obtaining the list of label options from a different LM, which we leave for future work.
FLIPPED LEARNING also assumes that the task instruction and input instance can be separated dur-
ing zero-shot inference. However, although instruction-based benchmarks such as Natural Instruc-
tions (Mishra et al., 2022; Wang et al., 2022) define the prompted input as a naı̈ve concatenation of
task instruction and input instance, this is not guaranteed for prompt libraries such as Promptsource
(Bach et al., 2022). Therefore, FLIPPED LEARNING needs additional techniques to separate the task
instruction and the input instances as shown in Section 2.1.

E ILLUSTRATION OF DENOISING OBJECTIVE

As shown in Figure 6, FLIPPED LEARNING uses a denoising objective while instruction-tuning
to effectively separate the prompted input obtained through Promptsource (Bach et al., 2022) into
task instruction and the input instance. By replacing task instruction as sentinel tokens, FLIPPED
LEARNING makes the LM generate the task description that corresponds to the sentinel tokens.

F TRAINING CONFIGURATIONS

For backbone LM of FLIPPED, we use T5.1.1 (Raffel et al., 2019) which is pre-trained on a denoising
objective while we use T5-LM adapted model (Lester et al., 2021) for DIRECT and CHANNEL which
is continually trained T5.1.1 model on language modeling objective for 100B additional tokens. We
use a different backbone LM for FLIPPED LEARNING because the instruction-tuning objective is de-
noising objective while DIRECT and CHANNEL is language modeling objective. From preliminary
experiments, we observe that the language modeling training objective of DIRECT and CHANNEL
on T5.1.1 model leads to poor performance. Also, denoising objective of FLIPPED LEARNING on
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input: The girl was found in Drummondville.<extra_id_0>

Drummondville contains the girl.<extra_id_1>


output: Yes

 <extra_id_0>  Using only the above description and what you know about the world, 

is "<extra_id_1> " definitely correct? Yes or no?

P(I |x, y)

Figure 6: Illustration of denoising objective of FLIPPED LEARNING. Given, an input instance with
sentinel tokens, FLIPPED LEARNING makes the LM generate the task instruction corresponding to
the sentinel tokens for a correct label option.

T5-LM adapted model leads to poor performance. Following Sanh et al. (2021); Raffel et al. (2019),
we limit the number of data instances for each dataset to 500,000 to resolve data instance imbalance
during instruction-tuning. We train each model for 5K steps, with a batch size of 240. We set in-
put and output sequence lengths as 512 and 128 respectively for FLIPPED-3B. For FLIPPED-11B,
we set input and output sequence lengths as 384 and 64 respectively for computational efficiency.
For DIRECT and CHANNEL, we set the learning rate as 1e-4 and for FLIPPED, we set the learning
rate as 5e-5 because the training objective is different (generation vs denoising). We set the weight
hyperparameter of likelihood and unlikelihood loss as λ = 3. Note that our total training compute
used during instruction-tuning is around 5% that of the training compute used to train the original
T0: different from Sanh et al. (2021) which uses the batch size of 1024, sequence length of 1024,
training steps of 12,200, we use a batch size of 240, half of the sequence length, training steps of
5,000 leading to 4.8% token updates compared to T0. For FLIPPED+, we almost keep the training
configurations of FLIPPED with only a few variations. Unlike FLIPPED, we limit the number of data
instances for each dataset to 50,000 to resolve data instance imbalance during instruction-tuning.
Also, for 3B-sized FLIPPED+, we train for 10K steps during instruction-tuning due to the increased
number of datasets. For 11B-size FLIPPED+, we keep the number of training steps to 5K steps due
to computational costs.

G TRAINING AND EVALUATION DATASETS

G.1 INSTRUCTION-TUNING DATASETS

We use 4 task clusters for instruction-tuning of DIRECT, CHANNEL and FLIPPED: sentiment
classification, paraphrase, topic classification, which is 20 datasets in total. We use imdb (Maas
et al., 2011), amazon polarity (McAuley & Leskovec, 2013), rotten tomatoes (Pang & Lee,
2005), yelp review full (Zhang et al., 2015b), app reviews for sentiment, glue/qqp (Wang et al.,
2018), paws/labeled final (Zhang et al., 2019), glue/mrpc (Dolan & Brockett, 2005) for para-
phrase, ag news (Zhang et al., 2015a), dbpedia 14 (Lehmann et al., 2015) for topic classification,
cos e/v1.11 (Rajani et al., 2019), dream (Sun et al., 2019), quail (Rogers et al., 2020), quartz (Tafjord
et al., 2019b), social i qa (Sap et al., 2019), wiqa (Tandon et al., 2019), cosmos qa (Huang et al.,
2019), qasc (Khot et al., 2020), quarel (Tafjord et al., 2019a), sciq (Welbl et al., 2017) for multi-
choice QA.

G.2 EVALUATION DATASETS

We evaluate on 14 datasets of BIG-bench benchmark (Srivastava et al., 2022): Known Unknown,
Logic Grid, StrategyQA, Hindu Knowledge, Movie Dialog, Code Description, Conceptual, Lan-
guage ID, Vitamin C, Syllogisms, Misconceptions, Logical Deduction, Winowhy, Novel Concepts,
following Sanh et al. (2021). For English NLP tasks in Table 2, in addition to 11 unseen evalua-
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Classification Multi-choice

T0-3B 36.79 55.53
T0-3B + Calibration 33.59 46.40
FLIPPED 44.95 66.43

Table 3: Effect of calibration on T0-3B instruction-tuned LM. Results show that the performance
worsens if calibration is applied especially for multi-choice tasks.

tion datasets from Sanh et al. (2021), we add 3 unseen question-answering datasets from Lin et al.
(2022), resulting in 7 classification (RTE (Dagan et al., 2005), CB(De Marneffe et al., 2019), ANLI
R1,R2,R3 (Nie et al., 2020) WSC (Levesque et al., 2012), WiC (Pilehvar & Camacho-Collados,
2019)) and 7 multi-choice datasets (COPA (Roemmele et al., 2011), Hellaswag (Zellers et al.,
2019), Storycloze (Mostafazadeh et al., 2016), PIQA (Bisk et al., 2020), ARC-Challenge (Clark
et al., 2018), OpenbookQA (Mihaylov et al., 2018)). We exclude SQuAD2.0 which is included in
evaluation setting of Lin et al. (2022) because it does not have label options.

H EVALUATION SETTING

For each of the BIG-bench tasks, we report the accuracy of a single instruction for each task follow-
ing the convention of past work (Sanh et al., 2021; Lin et al., 2022). Furthermore, we additionally
evaluate on 14 English NLP unseen tasks, consisting of 7 classification and 7 multi-choice datasets,
also following the setting of Sanh et al. (2021); Lin et al. (2022) shown in Table 2. For evaluation
metric, we use Macro-F12 for classification and accuracy for multi-choice tasks, following Min et al.
(2022b;c). We also report the average standard deviation among different evaluation instructions,
indicating the robustness of different wordings of the evaluation instruction (the lower, the better).
For the result of PaLM and GPT-3 of Table 1, we use the performance reported in the paper. For
the result of GPT-3 on zero-shot setting in Table 2, we use the performance reported in the paper
for multi-choice tasks while we rerun the experiments using OpenAI API for classification tasks
to report F1 scores. We used the prompt named ‘GPT-3 style’ for every dataset of Promtpsource
library. For experiments of Figure 3, we randomly sample 1,000 data instances for seen task label
generalization evaluation, for efficiency.

I CALIBRATION RESULTS

Previous work has used calibration methods to match the label distribution of the target task during
inference of zero-shot setting (Zhao et al., 2021; Holtzman et al., 2021). We also analyze if cali-
bration is effective for instruction-tuned LMs by applying contextual calibration on T0-3B. Because
we evaluate the zero-shot task generalization performance, we use the probability of the label given
an empty string for calibration. As shown in Table 3, applying calibration hurts the performance of
instruction-tuned LMs.

J LABEL PAIR VARIATIONS

We provide the list of variations of label pairs on Table 4 and Table 5. Table 4 shows the label pair
variation of binary classification datasets (RTE, WiC, IMDB, PAWS) while Table 5 shows the label
pair variation of CB, which consists of 3 label options.

2Macro-F1 is more appropriate for imbalanced classification than accuracy.
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yes no
true false

positive negative
right wrong

correct incorrect
agree disagree
good bad

guaranteed impossible
always never

affirmative contradicting
exactly not ever

undoubtedly not at all
fine disagreeable

good enough cannot be
definitely never

unquestionable no way
yep nope
yea nah

without doubt refused
willing unwilling

Table 4: List of 20 pairs of labels used to evaluate label generalization on binary classification
datasets (RTE, WiC, IMDB, PAWS).

yes no maybe
true false neither

positive negative inconclusive
right wrong perhaps

correct incorrect might be
agree disagree could be
good bad neutral

guaranteed impossible possible
always never sometimes

affirmative contradicting feasible
exactly not ever as it may be

undoubtedly not at all doubtfully
fine disagreeable conceivable

good enough cannot be can be
definitely never uncertain

unquestionable no way questionable
yep nope iffy
yea nah nn

without doubt refused controversial
willing unwilling not for sure

Table 5: List of 20 pairs of labels used to evaluate label generalization for CB, which has 3 label
options.
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