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ABSTRACT

Stein variational gradient descent (SVGD) is a particle based approximate infer-
ence algorithm. Many variants of SVGD have been proposed in recent years,
including the hybrid kernel variant (h-SVGD), which has demonstrated promising
results on image classification with deep neural network ensembles. In this paper,
we demonstrate the ability of h-SVGD to alleviate variance collapse, a problem
that SVGD is known to suffer from. Unlike other SVGD variants that alleviate
variance collapse, h-SVGD does not incur additional computational cost, nor does
it require the target density to factorise. We also develop the theory of h-SVGD
by demonstrating the existence of a solution to the hybrid Stein partial differential
equation. We highlight a special case in which h-SVGD is a kernelised Wasser-
stein gradient flow on a functional other than the Kullback-Leibler divergence,
which is the functional describing the SVGD gradient flow. By characterising the
fixed point in this special case, we show that h-SVGD does not converge to the
target distribution in the the mean field limit. Other theoretical results include a
descent lemma and a large particle limit result. Despite the bias in the mean field
limiting distribution, experiments demonstrate that h-SVGD remains competitive
on high dimensional inference tasks whilst alleviating variance collapse.

1 INTRODUCTION

Stein variational gradient descent (SVGD) is a variational inference algorithm that generates samples
from a target probability density (Liu & Wang, 2016). It has proven useful in many tasks in Bayesian
inference and machine learning. SVGD evolves an interacting particle system until the particles
resemble a sample from a target density. The dynamics of this system include a driving term that
moves particles to regions of high probability, and a repulsive term that repels particles from one
another. This repulsive term prevents particles from converging to the same mode. It has been
shown that within a unit ball of a reproducing kernel Hilbert space (RKHS), the SVGD update
direction optimally reduces the Kullback-Leibler (KL) divergence between the target density and
the approximating density (Liu & Wang, 2016). The reproducing kernel of this RKHS appears in
both the driving and repulsive terms, making the choice of kernel a key ingredient for SVGD.

SVGD is known to suffer from the curse of dimensionality through variance collapse (Wang et al.,
2018; Ba et al., 2019) whereby the marginal variances of the particles underestimate the true
marginal variances of the target in high dimensions. Capturing the variance of the posterior is
critical for uncertainty quantification in Bayesian statistics since variance is often used as a measure
of confidence in an estimate. Zhuo et al. (2018) explained that this phenomenon is due to the size of
the repulsive term of the update direction scaling inversely with dimension. This enables the driving
term to dominate in high dimensions, thereby forcing particles to converge to the mode(s) of the
target. This insight suggests that strengthening the repulsive term in SVGD should lead to better
variance estimation, an idea which we explore in Sections 3 and 4.

The theoretical properties of vanilla SVGD have been studied extensively. Liu (2017) showed that
the empirical measure of the particles converges weakly to the target distribution. SVGD in the mean
field regime has been described as a gradient flow on the KL divergence (Liu & Wang, 2016) and
the chi-squared divergence (Chewi et al., 2020). Furthering this geometric point of view, Duncan
et al. (2023) developed the Stein geometry along with its associated tangent spaces and geodesics,
leading to guidelines for choosing kernels to improve convergence. The existence and uniqueness
of the solution to the Stein partial differential equation (PDE) was established by Lu et al. (2019).
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Various descent lemmas bounding the decrease in KL divergence at each iteration have also been
established (Liu, 2017; Korba et al., 2020; Salim et al., 2022).

Many variants of SVGD have also been proposed in recent years, some offering improvements
and others providing generalisations. Riemannian SVGD (Liu & Zhu, 2018) generalises SVGD by
allowing for target densities on Riemannian manifolds, not just Euclidean spaces. Matrix SVGD
(Wang et al., 2019) replaces the scalar valued kernel with a matrix valued kernel to incorporate
preconditioning information and speed up particle exploration. Message passing SVGD (Zhuo et al.,
2018) and graphical SVGD (Wang et al., 2018) focus on target densities that factorise according to
a graph structure. This approach reduces variance collapse in high dimensions by converting the
problem to a collection of low dimensional problems. Projected SVGD (Chen & Ghattas, 2020),
sliced SVGD (Gong et al., 2021) and Grassman SVGD (Liu et al., 2022) also mitigate the issue
of variance collapse by updating particles within lower dimensional subspaces, which comes at the
expense of additional computation.

In this work, we study a variant called hybrid kernel Stein variational gradient descent (h-SVGD).
The name comes from its use of two distinct kernels for the driving and repulsive terms with the
aim of mitigating variance collapse. This variant was originally proposed by D’Angelo et al. (2021)
in the context of training deep neural network ensembles by sampling from the distribution of net-
work parameters. In that setting, two particles may parameterise networks with very similar outputs
despite being far apart in the weight space. Their insight was to encourage functional diversity be-
tween networks in the ensemble by using a standard kernel in the driving term, but a functional
kernel in the repulsive term. In this neural network ensemble setting, h-SVGD demonstrated better
performance than other variants on image classification. Annealed SVGD (D’Angelo & Fortuin,
2021) may also be considered an example of h-SVGD. In this variant, the driving kernel is a scalar
multiple γ(ℓ) ∈ [0, 1] of the repulsive kernel, and this factor γ(ℓ) gradually increases to 1 as the
iteration ℓ increases. Numerical experiments show that annealed SVGD improves the ability of par-
ticles to escape local modes. Scaling one of the update terms has also been used as a computational
technique to aid other SVGD variants when training Bayesian neural networks (Gong et al., 2021).

Although preliminary numerical experiments have shown the benefits of h-SVGD (D’Angelo et al.,
2021), the theoretical results for SVGD do not directly apply in the hybrid kernel setting due to the
presence of a second kernel. In this paper, we address this theoretical gap and reinforce the practical
benefits of h-SVGD through the following contributions.

• We establish existence of a solution to the hybrid Stein PDE and a kernelised Wasserstein
gradient flow interpretation. Through the study of this gradient flow, we demonstrate that
h-SVGD does not converge to the target distribution in the mean field limit.

• Other theoretical contributions include quantifying the rate of dissipation of the gradient
flow functional, along with a discrete time version, otherwise known as a descent lemma.

• Despite not converging to the target distribution, numerical experiments show that h-SVGD
can mitigate variance collapse in the finite particle regime at negligible additional cost,
whilst remaining competitive at high dimensional inference tasks.

In Section 2 we clarify notation, recall necessary theory, and outline the vanilla and hybrid SVGD
algorithms. Section 3 contains the theoretical contributions, with proofs relegated to Appendix A.
Numerical experiments are in Section 4 with additional experiments and details in Appendix B.

2 BACKGROUND

2.1 NOTATION

Let X ⊆ Rd. Let π denote the target probability density on X and let sπ(x) = ∇x log π(x).
We will often write π for the corresponding measure as well. Assume that π(x) = e−V (x) for
some potential V . Let P(X ) be the set of probability measures on X and let PV (X ) denote the
subset where ∥µ∥PV

:=
∫
X (1 + V (x))dµ(x) < ∞. For p ≥ 1, let Pp(X ) be the subset where

∥µ∥Pp
:=

∫
X ∥x∥

pdµ(x) < ∞ and define the Wasserstein p-distance between the two measures

µ, ν ∈ Pp(X ) as Wp(µ, ν) :=
(
infγ∈Γ(µ,ν)

∫
∥x− y∥pdγ(µ, ν)

)1/p
, where Γ(µ, ν) is the set of

couplings between µ and ν. Let L∞
c (X ) denote the set of probability densities bounded almost
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everywhere with compact support. Let L2(µ) denote the set of functions that are square integrable
with respect to the measure µ. Given µ ∈ P(X ) and a smooth, invertible transform T : X → X , let
T#µ denote the pushforward measure of µ through T . The KL divergence between two measures
µ, ν ∈ P(X ) is denoted by KL(µ ∥ ν). Fourier transforms are denoted by F .

2.2 REPRODUCING KERNEL HILBERT SPACES

A function k : X × X → R is positive definite if
∑

i,j aik(xi,xj)aj > 0 for any a1, . . . , ad ∈ R
and x1, . . . ,xd ∈ X . Given a Hilbert spaceH of functions ϕ : X → R, a function k : X ×X → R
is said to be a reproducing kernel forH if it satisfies the reproducing property, ϕ(x) = ⟨ϕ, k(x, ·)⟩H
for all ϕ ∈ H. A positive definite k : X × X → R admits a unique Hilbert space H of functions
ϕ : X → R for which the Dirac functionals δx : H → R, δxϕ = ϕ(x) are all continuous and k is
a reproducing kernel. This Hilbert space is called the reproducing kernel Hilbert space (RKHS) of
k and it is equal to the closure of the span of {k(x, ·) : x ∈ R}. Let Hd = H × · · · × H denote
the Hilbert space of functions ϕ : X → Rd whose components are all in H, and equip it with the
usual inner product ⟨ϕ, ψ⟩Hd =

∑d
i=1⟨ϕi, ψi⟩H. Given two kernels k1, k2 : X × X → R, let

H1,H2 denote their respective RKHS. An important kernel used throughout this paper is the radial
basis function (RBF) kernel kRBF(x,y;h) := exp(−∥x− y∥22 /(2h)) with bandwidth h > 0. For
a thorough treatment of RKHS we refer the reader to (Aronszajn, 1950; Steinwart & Christmann,
2008; Berlinet & Thomas-Agnan, 2011).

2.3 STEIN VARIATIONAL GRADIENT DESCENT

The key result from (Liu & Wang, 2016) identifies a transform T : X → X that optimally decreases
the KL divergence from an arbitrary probability measure to π. More precisely, let H be an RKHS
with kernel k : X × X → R and consider transforms of the form T (x) = x + ϵϕ(x) where ϵ > 0
and ϕ is in the unit ball {ϕ ∈ Hd : ∥ϕ∥Hd ≤ 1}. The maximum value of

−∇ϵKL(T#µ ∥ π)|ϵ=0 (1)

occurs at ϕkµ,π/
∥∥ϕkµ,π∥∥Hd , where

ϕkµ,π(·) := Ex∼µ [k(x, ·)sπ(x) +∇xk(x, ·)] . (2)

When µ is an empirical distribution (i.e. a sum of Dirac measures), the expectation in (2) can be
computed exactly by summing over the particles of each Dirac measure. Using this observation,
the SVGD algorithm starts with an initial set of N particles (xi

0)
N
i=1 and iteratively applies the

transform T with (2) as the update direction. At each iteration ℓ, this yields a set of particles (xi
ℓ)

N
i=1

and a corresponding empirical distribution µℓ = 1
N

∑
i δxi

ℓ
. This is captured in Algorithm 1. The

intention is that after sufficiently many iterations, the set of particles will resemble samples from π
and expectations of the form Ex∼πh(x) can be approximated by Ex∼µℓ

h(x) = 1
N

∑
i h(x

i
ℓ). We

also recall the definition of the kernelised Stein discrepancy (KSD) from (Liu et al., 2016),

Sk(µ, π) := Ex,y∼µ

[
(sπ(x)− sµ(x))

⊤k(x,y)(sπ(y)− sµ(y))
]
. (3)

Algorithm 1 Stein Variational Gradient Descent (Liu & Wang, 2016)

Input: A target probability distribution π, a kernel k, an initial set of particles (xi
0)

N
i=1 in X , and

a sequence of step sizes (ϵℓ).
Output: A set of particles (xi)Ni=1 in X whose empirical distribution approximates π.
for iteration ℓ do

xi
ℓ+1 ← xi

ℓ + ϵℓϕ̂
∗
µℓ,π

(xi
ℓ), ∀ i = 1, . . . , N

ϕ̂∗µℓ,π
(x) =

1

N

N∑
j=1

(
k(xj

ℓ ,x)∇xj
ℓ
log π(xj

ℓ) +∇xj
ℓ
k(xj

ℓ ,x)
)

(4)

3
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2.4 HYBRID KERNEL STEIN VARIATIONAL GRADIENT DESCENT

The SVGD update in (4) contains two terms, each using the same kernel. The first term, often
referred to as the driving term, uses the score function to move particles towards regions of high
probability density, and the repulsive term prevents particles from collapsing at the modes. The
h-SVGD variant proposed by D’Angelo et al. (2021) uses a different kernel in each term. Let k1
denote the kernel that appears alongside the score function, and let k2 denote the repulsive kernel.
For the remainder of this paper, k1 and k2 will both be positive definite. We present h-SVGD in
Algorithm 2.

Algorithm 2 Hybrid Kernel Stein Variational Gradient Descent

Input: A target probability distribution π, two kernels k1, k2, an initial set of particles (xi
0)

N
i=1 in

X , and a sequence of step sizes (ϵℓ).
Output: A set of particles (xi)Ni=1 in X whose empirical distribution approximates π.
for iteration ℓ do

xi
ℓ+1 ← xi

ℓ + ϵℓϕ̂
∗
µℓ,π

(xi
ℓ), ∀i = 1, . . . , N

ϕ̂∗µℓ,π
(x) =

1

N

N∑
j=1

(
k1(x

j
ℓ ,x)∇xj

ℓ
log π(xj

ℓ) +∇xj
ℓ
k2(x

j
ℓ ,x)

)
(5)

3 THEORETICAL RESULTS

3.1 DEFINITIONS AND ASSUMPTIONS

A function f : X → R is in the Stein class of π if it is smooth and satisfies the identity∫
x∈X ∇x (f(x)π(x)) dx = 0. A function f = (f1, . . . , fd) : X → Rd is in the Stein class of
π if each fi is in the Stein class of π. A kernel k : X × X → R is in the Stein class of π if it has
continuous second order partial derivatives and both k(x, ·) and k(·,y) are in the Stein class of π
for all x,y ∈ X . The hybrid Stein operator acts on a pair of kernels k1, k2 : X × X → R by

Sπ ⊗ (k1, k2)(x, ·) := k1(x, ·)sπ(x) +∇xk2(x, ·),
provided k1 and k2 both belong to the Stein class of π. This reduces to the Stein operator defined in
(Liu et al., 2016) when k1 = k2. Motivated by the h-SVGD update in (5), define the update direction

ϕk1,k2
µ,π (·) := Ex∼µ [Sπ ⊗ (k1, k2)(x, ·)] , (6)

and write ϕ∗ = ϕk1,k2
µ,π /

∥∥ϕk1,k2
µ,π (·)

∥∥
H1

. Let G( · ; k1, µ, π) := Ex∼µ [k1(x, ·)sπ(x)] denote the
gradient term and R( · ; k2, µ) := Ex∼µ [∇xk2(x, ·)] the repulsive term. We can then write
ϕk1,k2
µ,π (·) = G( · ; k1, µ, π) +R( · ; k2, µ). The update transform

T k1,k2
µ,π (x) = x+ ϵϕk1,k2

µ,π (x) (7)

and the map Φk1,k2
π : µ 7→

(
T k1,k2
µ,π

)
#
µ characterise the h-SVGD dynamics. For each ℓ, define

µN
ℓ+1 := Φk1,k2

π (µN
ℓ ), µ∞

ℓ+1 := Φk1,k2
π (µ∞

ℓ ), (8)

where µN
0 is the empirical measure of the initial particles (xi

0)
N
i=1 drawn i.i.d. from some µ∞

0 .

All technical assumptions required in the theorems throughout this section are detailed here for
completeness. The first set of assumptions relate to the potential of the target distribution.

(A1) V ∈ C∞(X ), V ≥ 0, and lim|x|→∞ V (x) = +∞.
(A2) There exist constants CV > 0 and q > 1 such that for all x,y ∈ X ,

|∇V (x)|q ≤ CV (1 + V (x))

and
sup

θ∈[0,1]

∣∣∇2V (θx+ (1− θ)y)
∣∣q ≤ CV (1 + V (x) + V (y)).

4
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(A3) For any α, β > 0, there exists a constant Cα,β > 0 such that

|y| ≤ α |x|+ β =⇒ (1 + |x|)(|∇V (y)|+
∣∣∇2V (y)

∣∣) ≤ Cα,β(1 + V (x)).

(A4) The Hessian HV of V is well-defined and ∥HV ∥op ≤M for some M > 0.

Assumptions (A1), (A2) and (A3) are identical to those in (Lu et al., 2019). Assumption (A4) is
identical to Assumption (A2) in (Korba et al., 2020), and Assumption 2.1 in (Salim et al., 2022).
We remark that Assumptions (A2) and (A3) simply control the decay of the tails of π. The above
assumptions are all satisfied by normal distributions, mixtures thereof, as well as many continuous
distributions from the exponential family. The following assumptions are also required to ensure
sufficient regularity of the kernel functions.

(B1) There exist symmetric functions K1,K2 : X → R such that k1(x,y) = K1(x − y),
k2(x,y) = K2(x − y), K1 is C2 with bounded derivatives, and K2 is C4 with bounded
derivatives. By symmetric, we mean Ki(x) = Ki(−x) for all i = 1, 2 and x ∈ X . We use
B > 0 as a bound for all derivatives in the proofs.

(B2) There exists a constant D > 0 such that both k1 and ∇k2 and are D-Lipschitz, and
∇V (·)k1(·, z) is D-Lipschitz for each z. That is,

|k1(x,x′)− k1(y,y′)| ≤ D (∥x− y∥2 + ∥x
′ − y′∥2) ,

∥∇xk2(x,x
′)−∇yk2(y,y

′)∥ ≤ D (∥x− y∥2 + ∥x
′ − y′∥2) ,

∥∇V (x)k1(x, z)−∇V (y)k1(y, z)∥ ≤ D (∥x− y∥2)
for all x,x′,y,y′, z ∈ X .

Assumption (B1) is a slight relaxation of Assumption 2.1 in (Lu et al., 2019), and contains Assump-
tion 2.6 in (Salim et al., 2022). The first two parts of Assumption (B2) are hybrid kernel versions
of Assumption (B2) from (Korba et al., 2020), and the third part of Assumption (B2) relaxes the
restrictive Assumption (B1) from (Korba et al., 2020).

3.2 LARGE PARTICLE LIMIT

We begin our theoretical study with a result ensuring convergence of h-SVGD in the large particle
limit. The single kernel version (Korba et al., 2020, Proposition 7) of the following result uses an
assumption that is quite restrictive. It requires |V (x)| ≤ CV for some constant CV > 0, which
rules out even a normal target distribution. We relax this with the third part of Assumption (B2) and
provide an updated proof in the appendix.
Proposition 3.1. Assume (A1), (A4), (B1) and (B2), and let T > 0. For any 0 ≤ ℓ ≤ T

ϵℓ
, there

exists a constant L depending on k1, k2 and π such that

E
[
W 2

2 (µ
N
ℓ , µ

∞
ℓ )

]
≤ 1

2
√
N

√
var(µ∞

0 )eLT (e2LT − 1).

3.3 HYBRID STEIN PDE

In the continuous time limit, equation (5) becomes a coupled system of differential equations,

dxi

dt
=

1

N

N∑
j=1

(
k1(xj ,xi)∇xj

log π(xj) +∇xj
k2(xj ,xi)

)
, i = 1, . . . , N. (9)

In the mean field limit, integration by parts yields
dx

dt
=

∫ (
k1(x

′,x)∇x′ log π(x′) +∇x′k2(x
′,x)

)
ρ(x′)dx′ (10)

= Tk1,ρ (∇ log π) (x)− Tk2,ρ (∇ log ρ) (x) (11)

where Tk,ρ : L2(ρ)d → Hd
k is the Hilbert-Schmidt operator (Tk,ρf)(·) =

∫
k(·,x)f(x)dρ(x) for

a kernel k. Recalling that V is the potential of π and so V = − log π, this mean field limit can be
described by the hybrid Stein partial differential equation

∂tρt = ∇ · (ρt (K1 ∗ ∇V ρt +K2 ∗ ∇ρt)) . (12)

5
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Definition 3.1. Given a probability measure ν on Rd, a map X(t,x; ν) : [0,∞)×Rd → Rd that is
C1 with respect to t and satisfies

∂tX(t,x; ν) = − (K1 ∗ (∇V ρt)) (X(t,x; ν))− (∇K2 ∗ ρt) (X(t,x; ν))

ρt = X(t, ·, ν)#ν (13)
X(0,x; ν) = x

is called a mean field characteristic flow of (10) or of (12).

We now generalise Theorem 2.4 from (Lu et al., 2019), ensuring the existence of a solution to
the hybrid Stein PDE. First, define the set Y := {u ∈ C(X ,X ) : supx∈X |u(x)− x| <∞} with
dY (u, v) = supx∈X |u(x)− v(x)| and note that (Y, dY ) is a complete metric space.

Proposition 3.2. Assume (A1), (A2), (A3) and (B1), and let T > 0. Then there is a unique solution
X(·, ·, ν) ∈ C1([0, T ];Y ) to (13) and the corresponding ρt is a weak solution to (12) satisfying

∥ρt∥PV
≤ ∥π∥PV

exp (Cmin (∥∇K1∥∞ , ∥∇K2∥∞) t) (14)

for some constant C > 0 depending on K1, K2 and V .

The second kernel enables a stronger bound than Theorem 2.4 from (Lu et al., 2019) by careful
modification of the proof (see Appendix A). In particular, ensuring that ∥∇K1∥∞ < ∥∇K2∥∞
when choosing K2 yields a stronger bound in (14) than if K1 were used for both kernels. We
remark that this bound describes regularity of the solution to the PDE, not a rate of convergence.

3.4 KERNELISED WASSERSTEIN GRADIENT FLOW AND ASYMPTOTIC DENSITY: k2 = ck1

Zhuo et al. (2018) uncovered a correlation between dimension and the magnitude of the repulsive
force. Under some technical conditions, for any α, δ ∈ (0, 1), they show that SVGD under an RBF
kernel yields ∥R( · ; k2, µ)∥∞ = O(d−α) with probability at least 1− δ. This suggests that simply
scaling the repulsive force by dα for some α ∈ (0, 1) should offset the decrease in ∥R( · ; k2, µ)∥∞
in high dimensions, thereby alleviating variance collapse at negligible additional computational cost.
Scaling the repulsive kernel in this way corresponds to h-SVGD where k1 is an RBF kernel and
k2 = dαk1. This motivates our study of the h-SVGD gradient flow under the special case k2 = ck1.

Recall that the Wasserstein gradient flow on a functional F is the time evolution of the probability
measure ρt that minimises F(ρ). This is described by a PDE and the Wasserstein gradient is defined
through the Wasserstein distance W2. We refer the reader to (Ambrosio et al., 2005; Santambrogio,
2015) for further details.

In the case where k = k1 = k2, (10) and (12) describe a kernelised Wasserstein gradient flow of the
form ∂tρt = ∇ · (ρtTk,ρt

∇WF(ρt)), where

F(ρ) = KL(ρ ∥ π) = Ex∼ρ [log ρ(x)− log π(x)]

is the KL divergence functional (Liu, 2017). This has functional derivative δF
δρ = log ρ− log p+ 1

up to a constant, and Wasserstein gradient

∇WF(ρ) = ∇
δF
δρ

(ρ) = ∇ log ρ−∇ log π. (15)

Then (11) can be written as

dx

dt
= −Tk,ρ∇WF(ρ),

and the corresponding Fokker-Planck equation is

∂tρt = ∇ · (ρtTk,ρt
(∇ log ρt −∇ log π)) (16)

where {ρt : t ≥ 0} is a curve of probability densities. The following result generalises this gradient
flow interpretation to the case where k2 = ck1. Note that it applies to any positive definite kernel
k1, not just the RBF kernel as discussed earlier.

6
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Proposition 3.3. Given a positive definite kernel k1 and constant c > 0, let k2 = ck1. Then the
mean field dynamics of h-SVGD describe a kernelised Wasserstein gradient flow on the functional

F(ρ) = Ex∼ρ [c log ρ− log π(x)] , (17)

whose Wasserstein gradient is

∇WF(ρ) = c∇ log ρ−∇ log π. (18)

The corresponding continuity equation is

∂tρt = ∇ · (ρtTk1,ρt
(c∇ log ρt −∇ log π)) . (19)

Even in this simple hybrid kernel setting, the following result establishes that the limiting distribution
ρ∗ of the mean field regime is not equal to the target distribution π.
Corollary 3.4. If k2 = ck1 for some constant c > 0 where k1 is a positive definite kernel, then the
mean field h-SVGD has a fixed point ρ∗(x) ∝ π(x)1/c.

Although Corollary 3.4 applies to any target density π satisfying (A1), it is especially insightful
to consider a normal target. If π(x) = N (x;µ,Σ), then ρ∗(x) = N (x;µ, cΣ). So scaling
the repulsive kernel k2 will adjust the variance of the target by the same factor. This supports
the motivation that scaling the repulsive kernel should offset the variance underestimation in high
dimensions at a negligible additional cost. This idea will be revisited in Section 4.

We now generalise an existing result (Korba et al., 2020, Proposition 1) that describes the dissipa-
tion of the KL divergence along the SVGD gradient flow. The result below describes the dissipation
of the functional in (17) along the h-SVGD gradient flow, ensuring that the functional always de-
creases. It also describes the dissipation of the KL divergence with respect to the mean field limiting
distribution ρ∗, which we emphasise is not equal to the target distribution π, as per Corollary 3.4.
Proposition 3.5. Under the assumptions of Proposition 3.3,

d

dt
F(ρt) = −c2 ∥Tk1,ρt

(∇ log ρ−∇ log ρ∗)∥2Hd
1
+ c

∫
ρt(x)

∂

∂t
log ρt(x)dx, (20)

d

dt
KL(ρt ∥ ρ∗) = −c ∥Tk1,ρt(∇ log ρ−∇ log ρ∗)∥2Hd

1
+

∫
ρt(x)

∂

∂t
log ρt(x)dx, (21)

where ρ∗(x) ∝ π(x)1/c is the mean field fixed point. Furthermore,∫
ρt(x)

∂

∂t
log ρt(x)dx ≤ 0,

so d
dtF(ρt) ≤ 0 and d

dtKL(ρ ∥ ρ∗) ≤ 0 for t ≥ 0, and d
dtF(ρ

∗) = 0.

The following descent lemma is adapted from (Liu, 2017, Theorem 3.3) and it provides a discrete
time version of Proposition 3.5. We use µℓ to denote discrete time steps of the algorithm, as defined
in (8), as opposed to ρt for the continuous time analysis. We remark that other descent lemmas for
SVGD have been established (Korba et al., 2020; Salim et al., 2022).

Proposition 3.6. Set ϵℓ = (2 supx σ(∇ϕ∗ + ∇ϕ∗⊤))−1 where σ(·) denotes the spectral radius
of a matrix. Define the quantity R = supx{ 12 ∥∇ log π∥Lip k(x,x) + 2∇x,yk(x,x)} where
∇x,yk(x,x) =

∑
i ∂xi∂yik(x,y)|x=y . Then

1

ϵℓ

(
F(µ∞

ℓ+1)−F(µ∞
ℓ )

)
≤ −(1− ϵℓR)cS(µℓ, ρ

∗).

This result ensures that for a sufficiently small step size ϵℓ, the functional F will decrease at each
step of the algorithm, until µℓ approaches ρ∗.

3.5 KERNELISED WASSERSTEIN GRADIENT FLOW: THE GENERAL CASE

In this section, we present a generalisation of Proposition (3.3) and discuss some difficulties in
finding kernels that satisfy the required conditions. For ease of presentation, we restrict our attention
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to d = 1. We assume (B1) throughout, and also assume that any required Fourier transforms exist.
Define the function r : X → R by

r(x; ρ) := F−1

(
F (K2)

F (K1)
·F (∇ρ)

)
(x) (22)

and let R : X → R denote a function satisfying∇R(x; ρ) = r(x; ρ)/ρ(x).
Proposition 3.7. Assume that both r and R exist. Then the corresponding continuity equation is

∂tρt = ∇ · (ρtTk1,ρt
(∇R(· ; ρt)−∇ log π)) . (23)

If in addition ∫
∂

∂ϵ
R(x; ρ+ ϵχ)d(ρ+ ϵχ)(x)

∣∣∣∣
ϵ=0

= 0 (24)

for any measure χ = ρ̃ − ρ with ρ̃ ∈ L∞
c (X ) ∩ P(X ), then the mean field dynamics of h-SVGD

describe a kernelised Wasserstein gradient flow on the functional
F(ρ) = Ex∼ρ [R(x; ρ)− log π(x)] , (25)

whose Wasserstein gradient is
∇WF(ρ) = r(x; ρ)/ρ(x)−∇ log π(x). (26)

Note that when k2 = ck1, we have F (K2)/F (K1) = c and so r(x; ρ) = c∇ρ(x). Therefore,
R(x; ρ) = c log ρ(x), and so (23) reduces to (19). Furthermore, the left hand side of (24) is equal
to c

∫
dχ(x) = c

∫
dρ̃(x) − c

∫
dρ(x) = 0 because ρ̃, ρ are both probability measures. So (24) is

satisfied in this special case.

We remark that verifying (24) remains a challenge in general hybrid kernel settings. However,
the derivation of the continuity equation does not rely on (24), so we can gain some insights into
the steady state by studying when (23) is equal to zero. We present a specific example below to
demonstrate the behaviour of SVGD in the general hybrid kernel setting. In particular, the form of
the target π and the mean field steady state ρ∗ can look quite different, even under a hybrid kernel
setting as simple as two RBF kernels with different bandwidths.
Proposition 3.8. Let h1, h2, σ > 0 such that ∆h := h2 − h1 ̸= 0. Let k1(x, y) = kRBF(x, y;h1)

and k2(x, y) = kRBF(x, y;h2), and let π(x) ∝ exp(−α exp( x
2

2β )) be the target on X = R where

α =

√
h2
h1
·
√

σ2

σ2 +∆h
· σ

2

∆h
, β =

σ2(σ2 +∆h)

∆h
.

Then ρ∗(x) = N (x; 0, σ2) is a fixed point of the h-SVGD mean field dynamics.

We emphasise that the k2 = ck1 case studied in the previous section is the focus of this paper due
to its capacity to alleviate variance collapse. We leave a more detailed study of the general hybrid
setting for future work.

4 EXPERIMENTS

The problem of variance collapse in SVGD has been successfully mitigated in the setting of proba-
bilistic graphical models where the conditional dependence structure enables π to be factorised and
R( · ; k2, µ) to be replaced with a set of lower dimensional repulsive forces (Zhuo et al., 2018).
Other methods such as S-SVGD (Gong et al., 2021) and GSVGD (Liu et al., 2022) have demon-
strated that variance collapse can be avoided, at the expense of additional computational cost. In
particular, S-SVGD requires computation of the optimal test directions, and GSVGD requires the
projectors to be updated at each step. Our numerical experiments demonstrate that in the absence of
a conditional dependence structure, and without incurring additional computational cost, h-SVGD
can mitigate variance collapse while improving the inference capabilities of SVGD. In light of the
discussion following Corollary 3.4, we argue that this mitigation occurs because the higher variance
in the mean field limit offsets the variance underestimation in the finite particle setting. We measure
variance collapse using dimension averaged marginal variance (DAMV), 1

d

∑d
j=1 Varj

(
{xi}Ni=1

)
,

as is standard in the literature (Zhuo et al., 2018; Ba et al., 2019; 2021; Gong et al., 2021). Further
details on the the experimental details can be found in Appendix B.
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4.1 MULTIVARIATE GAUSSIAN MIXTURE

In this first example, we sample from a high-dimensional Gaussian distribution, a setting which has
been explored previously to study variance collapse (Gong et al., 2021; Liu et al., 2022; Zhuo et al.,
2018). We use a target distribution π = N (0, Id) for dimensions up to d = 100. We choose to
sample N = 50 particles in order to demonstrate the performance of h-SVGD when d is much
greater than N , as is often the case in high dimensional Bayesian inference. Particles are initialised
fromN (21d, 2Id), where 1d is the vector of ones, and each SVGD variant is run for 2000 iterations
with an initial step size of ϵ = 0.01, adapted using AdaGrad. We run SVGD and S-SVGD with the
RBF kernel kRBF and compare against h-SVGD with kernels k1 = kRBF and k2 = f(d)kRBF for
the following choices of factor f ,

f(d;α) := dα, α ∈ (0, 1), (27)

f(d;α1, α2, c) :=
cdα1 + d1+α2

c+ d
, α1, α2 ∈ (0, 1), c > 0. (28)

All algorithms use an adaptive bandwidth h = med2/ log(N) where med is the median pairwise
distance between particles (Liu & Wang, 2016). For S-SVGD, there is one bandwidth per dimension,
so the median distances are computed along each projection, as described in (Gong et al., 2021). All
configurations are run 5 times and results for each configuration are averaged.

Figure 1 demonstrates that h-SVGD provides a noticeable uplift in marginal variance estimation
under the repulsive factors f(d; 0.5) and f(d; 0.8) when compared to SVGD, although increasing
α too much leads to overestimation, especially in lower dimensions. The motivation for (28) was
the observation that the variance estimation of (27) is better in lower dimensions for smaller α,
and better in higher dimensions for larger α. Since f(d;α1, α2, c) =

c
c+df(d;α1) +

d
c+df(d;α2),

this choice should enable the advantages of both small and large α for moderately large c. Figure 1
demonstrates that choosing α1 = 0.5, α2 = 0.8 and c = 100 provides consistent variance estimation
up to d = 100. An interesting avenue for future research would be to develop a more principled
method of choosing such a a repulsive factor. The techniques in (Zhuo et al., 2018, Propositions
1-2) offer a promising direction. We remark that S-SVGD estimates the variance fairly consistently
as the dimension increases. However, this comes at a significant increase in runtime, whereas there
is no noticeable difference between the runtimes of SVGD and h-SVGD.

(a) DAMV (b) Time (seconds)

Figure 1: DAMV and runtime for different SVGD variants sampling from N (0, Id).

4.2 BAYESIAN NEURAL NETWORK

In this section, we sample weights from a Bayesian neural network. Aside from scaling the repul-
sive kernel by f(d; 0.5, 0.8, 100), as defined in (28) during the previous experiment, our setup is
identical to (Liu & Wang, 2016). For completeness, details are included in Appendix B. Table 1
shows that with no additional computational cost, the problem of variance collapse is mitigated un-
der h-SVGD through an increased DAMV. Following Corollary 3.4, one may interpret the increased
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variance in the mean field limit as an offset to the variance underestimation in finite dimensions,
leading to improved variance estimation under h-SVGD. Table 2 demonstrates that it remains com-
petitive at inference through improved test log-likelihood (LL) for all datasets and improved root
mean squared error (RMSE) for all but one dataset. We observe that for two datasets, Kin8nm and
Protein, h-SVGD enjoys an improvement in RMSE and LL despite a small decrease in the DAMV.
This suggests that the improved performance may be linked to another property of h-SVGD. We
leave further exploration of such properties for future work. Appendix B includes a comparison of
the same metrics between h-SVGD and S-SVGD to emphasise that the improvement in variance
estimation comes at a lower cost.

Table 1: DAMV and runtime in seconds of SVGD and h-SVGD.

DAMV Runtime (seconds)
Dataset SVGD h-SVGD SVGD h-SVGD
Boston 0.051 ± 0.011 0.087 ± 0.0100.087 ± 0.0100.087 ± 0.010 28.9 ± 1.4 28.5 ± 0.928.5 ± 0.928.5 ± 0.9
Concrete 0.084 ± 0.01 0.102 ± 0.0060.102 ± 0.0060.102 ± 0.006 28.7 ± 1.3 28.7 ± 1.3
Energy 0.065 ± 0.015 0.106 ± 0.0110.106 ± 0.0110.106 ± 0.011 30.8 ± 2.8 30.7 ± 2.230.7 ± 2.230.7 ± 2.2
Kin8nm 0.105 ± 0.0030.105 ± 0.0030.105 ± 0.003 0.093 ± 0.003 35.9 ± 1.335.9 ± 1.335.9 ± 1.3 36.0 ± 1.3
Naval 0.059 ± 0.004 0.068 ± 0.0110.068 ± 0.0110.068 ± 0.011 33.4 ± 0.833.4 ± 0.833.4 ± 0.8 34.5 ± 0.9
Combined 0.128 ± 0.008 0.138 ± 0.0060.138 ± 0.0060.138 ± 0.006 36.3 ± 1.536.3 ± 1.536.3 ± 1.5 36.7 ± 2.4
Protein 0.089 ± 0.0010.089 ± 0.0010.089 ± 0.001 0.084 ± 0.001 72.7 ± 1.072.7 ± 1.072.7 ± 1.0 72.8 ± 1.7
Wine 0.068 ± 0.005 0.075 ± 0.0050.075 ± 0.0050.075 ± 0.005 29.5 ± 1.429.5 ± 1.429.5 ± 1.4 29.8 ± 1.1
Yacht 0.060 ± 0.020 0.121 ± 0.0120.121 ± 0.0120.121 ± 0.012 29.3 ± 0.429.3 ± 0.429.3 ± 0.4 29.8 ± 1.3
Year 0.011±NA 0.012±NA0.012±NA0.012±NA 673±NA 666±NA666±NA666±NA

Table 2: Average RMSE and LL of SGVD and h-SVGD evaluated on the test dataset.

Test RMSE Test LL
Dataset SVGD h-SVGD SVGD h-SVGD
Boston 3.094 ± 0.579 3.001 ± 0.5843.001 ± 0.5843.001 ± 0.584 -2.123 ± 0.116 -1.988 ± 0.221-1.988 ± 0.221-1.988 ± 0.221
Concrete 5.857 ± 0.468 5.210 ± 0.5295.210 ± 0.5295.210 ± 0.529 -2.616 ± 0.099 -2.535 ± 0.179-2.535 ± 0.179-2.535 ± 0.179
Energy 1.528 ± 0.169 1.040 ± 0.1281.040 ± 0.1281.040 ± 0.128 -1.702 ± 0.094 -0.805 ± 0.104-0.805 ± 0.104-0.805 ± 0.104
Kin8nm 0.124 ± 0.005 0.090 ± 0.0030.090 ± 0.0030.090 ± 0.003 -1.293 ± 0.108 0.468 ± 0.0900.468 ± 0.0900.468 ± 0.090
Naval 0.006 ± 0.000 0.004 ± 0.0000.004 ± 0.0000.004 ± 0.000 -1.353 ± 0.161 -0.090 ± 0.105-0.090 ± 0.105-0.090 ± 0.105
Combined 4.105 ± 0.220 4.057 ± 0.2184.057 ± 0.2184.057 ± 0.218 -2.459 ± 0.051 -2.354 ± 0.052-2.354 ± 0.052-2.354 ± 0.052
Protein 4.791 ± 0.025 4.600 ± 0.0264.600 ± 0.0264.600 ± 0.026 -2.633 ± 0.035 -2.456 ± 0.017-2.456 ± 0.017-2.456 ± 0.017
Wine 0.637 ± 0.044 0.626 ± 0.0450.626 ± 0.0450.626 ± 0.045 -1.463 ± 0.120 -0.750 ± 0.097-0.750 ± 0.097-0.750 ± 0.097
Yacht 1.677 ± 0.5711.677 ± 0.5711.677 ± 0.571 1.861 ± 0.662 -1.587 ± 0.120 -0.813 ± 0.227-0.813 ± 0.227-0.813 ± 0.227
Year 8.837±NA 8.689±NA8.689±NA8.689±NA −2.883±NA −2.872±NA−2.872±NA−2.872±NA

5 CONCLUSION

We developed the mean field theory of h-SVGD by proving the existence of a solution to the hybrid
Stein PDE and identifying it as a gradient flow on a functional other than the KL divergence. We
characterised the mean field fixed point for the special case k2 = ck1 and demonstrated that h-SVGD
does not converge to the target in the mean field limit. We provided a result on the dissipation of the
new functional, as well as a discrete time version, otherwise known as a descent lemma. We also
highlighted the complexities of the gradient flow in the general hybrid kernel setting. Experimental
results demonstrated that h-SVGD can alleviate variance collapse in high dimensions at a much
lower cost than other SVGD variants. We also showed that h-SVGD maintains its performance
on high dimensional inference tasks, whilst improving variance estimation without the additional
computational cost required of other SVGD variants. One interesting direction for future research
is to find a principled method of scaling the repulsive kernel, using the theoretical analysis in (Zhuo
et al., 2018) as a starting point. Another avenue is to further develop the theory of h-SVGD in the
general hybrid kernel setting.
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A PROOFS

Lemma A.1. Under assumptions (A1), (A4), (B1), (B2) the map

(z, µ) 7→ E(z, µ) :=

∫
X
−k1(x, z)∇V (x) +∇xk2(x, z)dµ(x)

is L-Lipschitz. That is,

∥E(z, µ)− E(z′, µ′)∥2 ≤ L(∥z − z′∥2 +W2(µ, µ
′))

where L > 0 depends on k1, k2 and V .

Proof. Largely following the proof of Lemma 14 (Korba et al., 2020), choosing an optimal coupling
γ of µ and µ′,

∥E(z, µ)− E(z′, µ′)∥2 ≤
∣∣∣∣Eγ [∇V (x)(k1(x, z)− k1(x′, z′))]

+ Eγ [(∇V (x′)−∇V (x))k1(x
′, z′)]

+ Eγ [∇xk2(x, z)−∇x′k2(x
′, z′)]

∣∣∣∣
≤ DEγ [∥x− x′∥2 + ∥z − z′∥2]
+BMEγ [∥x− x′∥2]
+DEγ [∥x− x′∥2 + ∥z − z′∥2]
≤ (2D +BM) (∥z − z′∥2 +W2(µ, µ

′)) .

Note that the second term is bounded using the relaxed Assumption (B2) and there is no need to
require that |V | is bounded by a constant.

Proof of Proposition 3.1. This follows identically to the proof of (Korba et al., 2020, Proposition 7)
with Lemma A.1 in place of Lemma 14.

Proof of Proposition 3.2. The proof largely follows those of (Lu et al., 2019, Theorems 2.4 and 3.2)
with some minor adjustments. Notably, after fixing r > 0 and defining

Yr :=

{
u ∈ Y : sup

x∈X
|u(x)− x| < r

}
and the complete metric space

Sr := C([0, T0];Yr),

dS(u, v) := sup
t∈[0,T0]

dY (u(t), v(t))

for some sufficiently small T0 (to be determined later), the operator G : u(t, ·) 7→ G(u)(t, ·) must be
modified to act on u ∈ Sr via

G(u)(t,x) = x−
∫ t

0

∫
X
∇K2(u(s,x)− u(s,x′))ν(dx′)ds

−
∫ t

0

∫
X
K1(u(s,x)− u(s,x′))∇V (u(s,x′))ν(dx′)ds.

Note that we use G instead of the F used in (Lu et al., 2019) to avoid confusion between the func-
tional F defined in (17). The same techniques of (Lu et al., 2019) are sufficient to establish the
required bounds to show that G is a contraction on Sr for sufficiently small T0. Note that Assump-
tions (B1), (A2) and (A3) are used to establish this. So the unique fixed point X(·, ·; ν) ∈ Sr of G
solves (13) in the interval [0, T0].

The min (∥∇K1∥∞ , ∥∇K2∥∞) term emerges because the telescoping in (Lu et al., 2019, Equation
(3.8)) can be performed with either kernel. The remainder of the proof follows (Lu et al., 2019,
Theorems 2.4 and 3.2).
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Proof of Proposition 3.3. Following (Santambrogio, 2015, Definition 7.12), a functional derivative
of F is a measurable function δF

δρ (ρ) satisfying

d

dϵ
F(ρ+ ϵχ)

∣∣∣∣
ϵ=0

=

∫
δF
δρ

(ρ)dχ

for all perturbations χ = ρ̃−ρ with ρ̃ ∈ L∞
c (X )∩P(X ). If it exists, δF

δρ (ρ) is unique up to additive
constants.

We first compute

d

dϵ
F(ρ+ ϵχ)

∣∣∣∣
ϵ=0

=
d

dϵ

(∫
c log(ρ(x) + ϵχ(x))ρ(x)dx+ ϵ

∫
c log(ρ(x) + ϵχ(x))χ(x)dx

−
∫

log π(x)ρ(x)dx− ϵ
∫

log π(x)χ(x)dx

)∣∣∣∣
ϵ=0

=

(∫
c

χ(x)

ρ(x) + ϵχ(x)
ρ(x)dx+

∫
c log(ρ(x) + ϵχ(x))χ(x)dx

+ ϵ

∫
c

χ(x)

ρ(x) + ϵχ(x)
χ(x)dx−

∫
log π(x)χ(x)dx

)∣∣∣∣
ϵ=0

=

∫
c log ρ(x)− log π(x)χ(x)dx+ c

∫
χ(x)dx. (29)

Since ρ, ρ̃ ∈ P(X ), the final integral is zero. So the functional gradient of F is
δF
δρ

(ρ) = c log ρ− log π.

Its Wasserstein gradient is then

∇WF(ρ) = c∇ log ρ−∇ log π.

Since k2 = ck1, equation (10) can be written as
dx

dt
=

∫ (
k1(x

′,x)∇x′ log π(x′) + c∇x′k1(x
′,x)

)
ρ(x′)dx′

=

∫
k1(x

′,x)∇x′ log π(x′)ρ(x′)− ck1(x′,x)∇x′ρ(x′)dx′

=

∫
k1(x

′,x)∇x′ log π(x′)ρ(x′)− ck1(x′,x)∇x′ log ρ(x′)ρ(x′)dx′

= Tk1,ρ(∇ log π − c∇ log ρ)(x)

= −Tk1,ρ(∇WF(ρ))(x).

The continuity equation ∂tρt +∇ ·
(
ρt

dx
dt

)
= 0 then becomes

∂tρt = ∇ · (ρtTk1,ρ(∇WF(ρ))(x))
= ∇ · (ρtTk1,ρt

(c∇ log ρt −∇ log π)) .

Proof of Corollary (3.4). A measure ρ∗ satisfying c∇ log ρ∗ = ∇ log π will be a fixed point because
this would imply∇WF(ρ) = 0. Solving this for ρ∗, we have

c∇ log ρ∗(x) = ∇ log π(x)

c log ρ∗(x) = log π(x) +A

log(ρ∗(x)c) = log(eAπ(x))

ρ∗(x)c = eAπ(x)

ρ∗(x) = eA/cπ(x)1/c

14
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for some A ∈ R.

Proof of Proposition 3.5. Using (19), integration by parts, and the fact that Tk1,ρ : L2(ρt)
d → Hd

1

is the adjoint of the inclusion ı : Hd
1 → L2(ρt)

d,

d

dt
F(ρt) =

d

dt

∫
ρt(x) (c log ρt(x)− log π(x)) dx

=

∫
(c log ρt(x)− log π(x))

∂

∂t
ρt(x) + cρt(x)

∂

∂t
log ρt(x)dx

=

∫
(c log ρt(x)− log π(x))∇ · (ρt(x)Tk1,ρt

(c∇ log ρt(x)−∇ log π)(x)) dx

+

∫
cρt(x)

∂

∂t
log ρt(x)dx

= −
∫
∇ (c log ρt(x)− log π(x)) · Tk1,ρt

(c∇ log ρt −∇ log π)(x)ρt(x)dx

+

∫
cρt(x)

∂

∂t
log ρt(x)dx

= −⟨c∇ log ρt −∇ log π, Tk1,ρt(c∇ log ρt −∇ log π)⟩L2(ρt)d

+

∫
cρt(x)

∂

∂t
log ρt(x)dx

= −∥Tk1,ρt
(c∇ log ρt −∇ log π)∥2Hd

1
+ c

∫
ρt(x)

∂

∂t
log ρt(x)dx

= −c2 ∥Tk1,ρt(∇ log ρt −∇ log ρ∗)∥2Hd
1
+ c

∫
ρt(x)

∂

∂t
log ρt(x)dx. (30)

Also,

F(ρt) = Ex∼ρt
[c log ρt(x)− log π(x)]

= Ex∼ρt [c log ρt(x)− log (Aρ∗(x)c)]

= cEx∼ρt
[log ρt(x)− log ρ∗(x)] + log(A)

= cKL(ρt ∥ ρ∗) + log(A) (31)

for some A ∈ R, we have 1
c

d
dtF(ρt) =

d
dtKL(ρt ∥ ρ∗). Therefore,

d

dt
KL(ρt ∥ ρ∗) = −

1

c
∥Tk1,ρt(c∇ log ρt −∇ log π)∥2Hd

1
+

∫
ρt(x)

∂

∂t
log ρt(x)dx

= −c
∥∥∥Tk1,ρt

(∇ log ρt −∇ log π1/c)
∥∥∥2
Hd

1

+

∫
ρt(x)

∂

∂t
log ρt(x)dx

= −c ∥Tk1,ρt
(∇ log ρt −∇ log ρ∗)∥2Hd

1
+

∫
ρt(x)

∂

∂t
log ρt(x)dx.

To simplify notation in the calculations below, set u = Tk1,ρt(c∇ log ρt) and v = Tk1,ρt(∇ log π).
Recall the identity

⟨u, u− v⟩ = 1

2

(
∥u∥2 + ∥u− v∥2 − ∥v∥2

)
. (32)

15
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Now we apply the multivariate chain rule to the remainder term along with the fact about the adjoint
of Tk1,ρt

, the identity in (32), and the triangle inequality. This gives∫
ρt(x)

∂

∂t
log ρt(x)dx =

∫
ρt(x)∇ log ρt(x) ·

dx

dt
dx

= −
∫
ρt(x)∇ log ρt(x) · Tk1,ρt(c∇ log ρt −∇ log π)(x)dx (33)

= −⟨∇ log ρt, Tk1,ρt
(c∇ log ρt −∇ log π)⟩L2(ρt)d

= −⟨Tk1,ρt
(∇ log ρt), Tk1,ρt

(c∇ log ρt −∇ log π)⟩Hd
1

= −1

c
⟨u, u− v⟩Hd

1

=
1

2c

(
−∥u∥2Hd

1
+ ∥v∥2Hd

1
− ∥u− v∥2Hd

1

)
≤ 1

2c

(
−∥u∥2Hd

1
+ ∥u− v∥2Hd

1
+ ∥u∥2Hd

1
− ∥u− v∥2Hd

1

)
= 0.

The final statement that d
dtF(ρ

∗) = 0 follows from equations (30) and (33) by observing that
c∇ log ρ∗ −∇ log π = 0.

Proof of Proposition 3.6. This follows from applying Theorem 3.3 (Liu, 2017) with ρ∗ instead of
the target, then substituting in (31).

Proof of Proposition 3.7. To recover the continuity equation, apply the convolution theorem to (22)

F−1

(
F (K2)

F (K1)
·F (∇ρ)

)
(x) = r(x; ρ)

F (K2)(ω) ·F (∇ρ)(ω) = F (K1)(ω) ·F (r)(ω)

F (K2 ∗ ∇ρ)(ω) = F (K1 ∗ r)(ω)
(K2 ∗ ∇ρ)(x) = (K1 ∗ r)(x)∫

K2(x− y)∇ log ρ(y)ρ(y)dy =

∫
K1(x− y)

r(y)

ρ(y)
ρ(y)dy

(Tk2,ρ∇ log ρ) (x) = (Tk1,ρ(r/ρ)) (x)

Equation (10) can now be rewritten as

dx

dt
=

∫ (
k1(x

′, x)∇x′ log π(x′) +∇x′k2(x
′, x)

)
ρ(x′)dx′

=

∫
k1(x

′, x)∇x′ log π(x′)ρ(x′)− k2(x′, x)∇x′ρ(x′)dx′

=

∫ (
k1(x

′, x)∇x′ log π(x′)− k2(x′, x)∇x′ log ρ(x′)
)
ρ(x′)dx′

= (Tk1,ρ∇ log π) (x)− (Tk2,ρ∇ log ρ) (x)

= (Tk1,ρ (∇ log π −∇R(· ; ρ))) (x),

where∇R(x; ρ) := r(x;ρ)
ρ(x) , yielding the continuity equation (23).

16
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As in the proof of Proposition 3.3, let χ = ρ̃− ρ with ρ̃ ∈ L∞
c (X ) ∩ P(X ). We first compute

d

dϵ
F(ρ+ ϵχ)

∣∣∣∣
ϵ=0

=
d

dϵ

(∫
R(x; ρ+ ϵχ)dρ(x) + ϵ

∫
R(x; ρ+ ϵχ)dχ(x)

−
∫

log π(x)dρ(x)− ϵ
∫

log π(x)dχ(x)

)∣∣∣∣
ϵ=0

=

(
d

dϵ

∫
R(x; ρ+ ϵχ)dρ(x) +

∫
R(x; ρ+ ϵχ)dχ(x) + ϵ

d

dϵ

∫
R(x; ρ+ ϵχ)dχ(x)

−
∫

log π(x)dχ(x)

)∣∣∣∣
ϵ=0

=

∫
R(x; ρ)− log π(x)dχ(x)

+

(∫
∂

∂ϵ
R(x; ρ+ ϵχ)dρ(x) + ϵ

∫
∂

∂ϵ
R(x; ρ+ ϵχ)dχ(x)

) ∣∣∣∣
ϵ=0

=

∫
R(x; ρ)− log π(x)dχ(x) +

∫
∂

∂ϵ
R(x; ρ+ ϵχ)d(ρ+ ϵχ)(x)

∣∣∣∣
ϵ=0

. (34)

By assumption, the remainder term above is equal to zero and the functional derivative of F is
therefore

δF
δρ

(ρ) = R1(x; ρ)− log π(x),

so its Wasserstein gradient is

∇WF(ρ) = ∇
δF
δρ

(ρ)

= R(x; ρ)−∇ log π(x).

Proof of Proposition 3.8. A direct computation of (22) along with the definitions of r and R yields

F (K2)(ω)

F (K1)(ω)
·F (∇ρ∗)(ω) =

√
h2
h1
· exp(−2π2ω2∆h) · 2πiω exp(−2π2ω2σ2)

=

√
h2
h1
· 2πiω · exp(−2π2ω2(σ2 +∆h))

r(x; ρ∗) = −
√
h2
h1
· 1√

2π
· x

(σ2 +∆h)3/2
· exp

(
− x2

2(σ2 +∆h)

)
∇R(x; ρ∗) = −

√
h2
h1
· σ

(σ2 +∆h)3/2
· x exp

(
− x2

2(σ2 +∆h)

)
· exp

(
x2

2σ2

)
= −

√
h2
h1
· σ

(σ2 +∆h)3/2
· x exp

(
− ∆hx2

2σ2(σ2 +∆h)

)
.
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Now computing∇ log π, using some A ∈ R for the normalising constant, we have

π(x) = A exp

(
−α exp

(
x2

2β

))
log π(x) = log(A)− α exp

(
x2

2β

)
∇ log π(x) = −αx

β
exp

(
x2

2β

)
= −

√
h2
h1
· σ

(σ2 +∆h)3/2
· x exp

(
− ∆hx2

2σ2(σ2 +∆h)

)
.

Since∇R(x; ρ∗) = ∇ log π(x), equation (23) implies that ρ∗ is a fixed point.

B ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

B.1 BAYESIAN NEURAL NETWORK

The results presented in Section 4.2 follow the settings of (Liu & Wang, 2016). In particular, we use
normal priors for the network weights and Gamma priors for the inverse covariances. There is one
hidden layer with 50 units for most datasets, Protein and Year being the exceptions with 100 units
each. The datasets are randomly partitioned into 90% for training and 10% for testing with results
averaged over 20 trials, Protein and Year being the exceptions with 5 trials and 1 trial respectively.
The number of particles in each case is 20, the activation function is RELU(x) = max(0, x), the
number of iterations is 2000, and the mini-batch size is 100 for all datasets except for Year, which
uses a mini-batch size of 1000.

We recreate Tables 1 and 2 below, this time comparing h-SVGD against S-SVGD (Gong et al.,
2021). Table 3 shows that h-SVGD outperforms S-SVGD in mitigation of variance collapse on
all but one dataset. We note that h-SVGD achieves this with a significantly faster runtime for all
datasets, which is due to S-SVGD requiring additional optimistaion of the projection matrix. Table
4 shows that S-SVGD and h-SVGD are comparable in both RMSE and LL metrics. The h-SVGD
algorithm achieves a better LL score on more datasets, but S-SVGD achieves a better RMSE score
on more datasets.

Table 3: DAMV and runtime in seconds of S-SVGD and h-SVGD.

DAMV Runtime (seconds)
Dataset S-SVGD h-SVGD S-SVGD h-SVGD
Boston 0.035 ± 0.002 0.087 ± 0.0100.087 ± 0.0100.087 ± 0.010 208 ± 13 28.5 ± 0.928.5 ± 0.928.5 ± 0.9
Concrete 0.070 ± 0.004 0.102 ± 0.0060.102 ± 0.0060.102 ± 0.006 148 ± 56 28.7 ± 1.328.7 ± 1.328.7 ± 1.3
Energy 0.053 ± 0.005 0.106 ± 0.0110.106 ± 0.0110.106 ± 0.011 156 ± 28 30.7 ± 2.230.7 ± 2.230.7 ± 2.2
Kin8nm 0.083 ± 0.002 0.093 ± 0.0030.093 ± 0.0030.093 ± 0.003 141 ± 3.9 36.0 ± 1.336.0 ± 1.336.0 ± 1.3
Naval 0.070 ± 0.0210.070 ± 0.0210.070 ± 0.021 0.068 ± 0.011 237 ± 11 34.5 ± 0.934.5 ± 0.934.5 ± 0.9
Combined 0.118 ± 0.005 0.138 ± 0.0060.138 ± 0.0060.138 ± 0.006 116 ± 18 36.7 ± 2.436.7 ± 2.436.7 ± 2.4
Protein 0.057 ± 0.006 0.084 ± 0.0010.084 ± 0.0010.084 ± 0.001 390 ± 20 72.8 ± 1.772.8 ± 1.772.8 ± 1.7
Wine 0.029 ± 0.002 0.075 ± 0.0050.075 ± 0.0050.075 ± 0.005 210 ± 10 29.8 ± 1.129.8 ± 1.129.8 ± 1.1
Yacht 0.066 ± 0.009 0.121 ± 0.0120.121 ± 0.0120.121 ± 0.012 97.9 ± 1.2 30.0 ± 1.330.0 ± 1.330.0 ± 1.3
Year 0.012±NA 0.012±NA 12488±NA 666±NA666±NA666±NA
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Table 4: Average RMSE and LL of SSGVD and h-SVGD evaluated on the test dataset.

Test RMSE Test LL
Dataset S-SVGD h-SVGD S-SVGD h-SVGD
Boston 3.024 ± 0.604 3.001 ± 0.5843.001 ± 0.5843.001 ± 0.584 -2.088 ± 0.322 -1.988 ± 0.221-1.988 ± 0.221-1.988 ± 0.221
Concrete 5.073 ± 0.5225.073 ± 0.5225.073 ± 0.522 5.210 ± 0.529 -2.563 ± 0.239 -2.535 ± 0.179-2.535 ± 0.179-2.535 ± 0.179
Energy 0.923 ± 0.1230.923 ± 0.1230.923 ± 0.123 1.040 ± 0.128 -0.631 ± 0.162-0.631 ± 0.162-0.631 ± 0.162 -0.805 ± 0.104
Kin8nm 0.084 ± 0.0030.084 ± 0.0030.084 ± 0.003 0.090 ± 0.003 0.232 ± 0.135 0.468 ± 0.0900.468 ± 0.0900.468 ± 0.090
Naval 0.003 ± 0.000 0.004 ± 0.0000.004 ± 0.0000.004 ± 0.000 -0.624 ± 0.161 -0.090 ± 0.105-0.090 ± 0.105-0.090 ± 0.105
Combined 4.028 ± 0.224.028 ± 0.224.028 ± 0.22 4.057 ± 0.218 -2.335 ± 0.066-2.335 ± 0.066-2.335 ± 0.066 -2.354 ± 0.052
Protein 4.581 ± 0.0264.581 ± 0.0264.581 ± 0.026 4.600 ± 0.026 -2.526 ± 0.045 -2.456 ± 0.017-2.456 ± 0.017-2.456 ± 0.017
Wine 0.676 ± 0.051 0.626 ± 0.0450.626 ± 0.0450.626 ± 0.045 -1.261 ± 0.172 -0.750 ± 0.097-0.750 ± 0.097-0.750 ± 0.097
Yacht 1.664 ± 0.6071.664 ± 0.6071.664 ± 0.607 1.861 ± 0.662 -0.788 ± 0.511-0.788 ± 0.511-0.788 ± 0.511 -0.813 ± 0.227
Year 8.922±NA 8.689±NA8.689±NA8.689±NA -2.940±NA -2.872±NA-2.872±NA-2.872±NA
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