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ABSTRACT

Unsupervised representation learning is essential in the field of machine learning,
and accurate neighbor clusters of representation show great potential to support
unsupervised image classification. This paper proposes a VAE (Variational Au-
toencoder) based network and a clustering method to achieve adaptive neighbor
clustering to support the self-supervised classification. The proposed network en-
codes the image into the representation with boundary information, and the pro-
posed cluster method takes advantage of the boundary information to deliver adap-
tive neighbor cluster results. Experimental evaluations show that the proposed
method outperforms state-of-the-art representation learning methods in terms of
neighbor clustering accuracy. Particularly, AC-VAE achieves 95% and 82% ac-
curacy on CIFAR10 dataset when the average neighbor cluster sizes are 10 and
100. Furthermore, the neighbor cluster results are found converge within the clus-
tering range (α ≤ 2), and the converged neighbor clusters are used to support the
self-supervised classification. The proposed method delivers classification results
that are competitive with the state-of-the-art and reduces the super parameter k in
KNN (K-nearest neighbor), which is often used in self-supervised classification.

1 INTRODUCTION

Unsupervised representation learning is a long-standing interest in the field of machine learning
(Peng et al., 2016a; Chen et al., 2016; 2018; Deng et al., 2019; Peng et al., 2016b), which offers
a promising way to scale-up the usable data amount for the current artificial intelligence methods
without the requirement for human annotation by leveraging on the vast amount of unlabeled data
(Chen et al., 2020b;a). Recent works (Chen et al., 2020b;a; He et al., 2020) advocate to structure the
unsupervised representation learning at the pre-training stage and then apply semi-supervised or self-
supervised techniques on the learned representations in the fine-tuning stage. So the representation
learning acts as a feature extractor, which extracts semantic features from the image, and well-
extracted features should lead to excellent classification performance (He et al., 2020). Moreover,
representation learning assigns close vectors to images with similar semantic meanings, thus making
it possible to cluster the same meaning images together (Xie et al., 2016; Van Gansbeke et al.,
2020). When no label is available, unsupervised or self-supervised classification methods rely on the
neighbor clustering to provide the supervisory signal to guide the self-supervised fine-tuning process
(Van Gansbeke et al., 2020; Xie et al., 2016). In this scenario, accurately clustering neighbors among
representations is crucial for the followed classification fine-tuning.

In many of the prior unsupervised methods (Van Gansbeke et al., 2020; Xie et al., 2016), the neighbor
clustering process is performed by KNN (k-nearest neighbor) based methods. However, KNN based
methods introduce k as a super parameter, which needs to be fine-tuned regarding different datasets.
In an unsupervised setup, selecting a suitable k without any annotation or prior knowledge is not
straightforward. Therefore it is desirable to have a neighbor clustering process that automatically
adapts to different datasets, thus eliminating the need for pre-selecting the super parameter k.

To achieve adaptive neighbors clustering, the proposed method tries to encode the image repre-
sentation into the multivariate normal distribution, as the multivariate normal distribution provides
distance information, such as z-score, which can naturally adapt to different datasets without the help
of any additional mechanism. Prior works (Kingma & Welling, 2013; Higgins et al., 2016; Burgess
et al., 2018) showed VAE’s ability to encode images into multivariate normal distributions; nonethe-
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less, these works struggled to extract high-level semantic features, as most of them were trained by
image recovery tasks, which encourages the network to focus on the low-level imagery features.
Consequently, the extracted low-level features cannot be utilized in the unsupervised classification
method, which needs semantic features to function.
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Figure 1: The proposed clustering method includes a VAE based network and z-score based cluster
methods. The VAE based network encodes the image into the multivariate normal distribution, and
the z-score based clustering method takes advantage of the distribution’s boundary information.

To provide VAE with the ability to extract the high-level semantic features, as well as to utilize
its strength to produce adaptive clusters, this paper proposes a framework, AC-VAE, including a
VAE based network and a z-score based clustering method, as shown in Figure 1. The VAE based
network encodes the image into the multivariate normal distribution N (µ,Σ), The distribution’s
mean µ is taken as the representation; meanwhile, its z-score provides the boundary information
that can naturally adapt to different datasets. The proposed clustering method takes advantage of the
boundary information to achieve adaptive neighbor clustering. The proposed framework’s efficacy
is evaluated on CIFAR10, CIFAR100-20, and SLT datasets, and it surpasses the current state-of-the-
art methods in neighbor clustering on these datasets. Particularly, AC-VAE achieves 95% and 82%
accuracy on CIFAR10 dataset when the average neighbor cluster sizes are 10 and 100, surpassing
the current state-of-the-art method by a margin of 10%. Our main innovations and contributions can
be summarized as follows:

• This work proposed a VAE based network to encode the image into the representation with
its boundary information. The representation and boundary information are retrieved from
the multivariate normal distribution, which encoded from the image. The efficacy of the
adaptive boundary is demonstrated by neighbor clustering results.

• In this work, a loss function is proposed based on consistency regulation to train the VAE-
based network for extracting the high-level semantic feature from the image. Experiments
demonstrate that the proposed method assigns close vectors to images with similar semantic
meanings.

• This work proposed a clustering method to take advantage of the adaptive boundary of each
representation. The proposed method delivers high accuracy neighbor clusters. Besides,
the neighbor clusters are found converge within the clustering range (α ≤ 2), and the self-
supervised learning framework utilizing the converged clusters delivers competitive results
without the need of a pre-selecting parameter k.

2 RELATED WORKS

Many frameworks cluster the dataset directly into semantic classes, and train the network in an end-
to-end manner (Asano et al., 2019; Caron et al., 2019; Haeusser et al., 2018; Yang et al., 2016; Xie
et al., 2016). Although the end-to-end training method is easy to apply, the network’s initialization
largely influences these frameworks’ performance. Therefore, complex mechanisms (such as cluster
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reassignment) are needed to assist the clustering process. As an alternative approach, methods
(Caron et al., 2018; Hu et al., 2017; Yang et al., 2016) based on maximizing the mutual information
between image augmentations are proposed to address this issue.

In contrast to end-to-end training, the multi-stage method (Van Gansbeke et al., 2020) is introduced,
which first aim to obtain accurate neighbor clusters from the representation learning, then apply
these neighbor clusters in the followed finetuning, and this method made breakthroughs in unsuper-
vised classification. This method depend mainly on the accurate neighbor cluster results from the
representation learning. A large number of representation learning methods (Doersch et al., 2015;
Gidaris et al., 2018; Noroozi & Favaro, 2016; Pathak et al., 2016; Zhang et al., 2016) have been
introduced, and these methods usually assign pretext tasks to the network, and the network learns
the image representation by solving these tasks. However, most of these methods aim to use the
learned representations to serve the following supervised or semi-supervised tasks. Therefore, the
neighbor clustering performance of these learned representations is not optimized, and few of these
methods have strong neighbor clustering performance. SimCLR (Chen et al., 2020a) and MoCo (He
et al., 2020) utilizing consistency regularization outstanding other methods in neighbor clustering
performance and assisted SCAN framework (Van Gansbeke et al., 2020) to reach the state-of-the-art
results in unsupervised classification tasks. However, the SCAN framework needs to pre-select the
super parameter k to perform the KNN clustering from the starter.

This paper aims to provide an adaptive clustering method that needs no super parameters by creating
the boundary for each representation. The representation and its boundary information are retrieved
from a VAE based structure. VAE based networks are typically used for image generation tasks
(Kingma & Welling, 2013; Razavi et al., 2019) or disentanglement tasks (Higgins et al., 2016;
Burgess et al., 2018). Although VAE shows the potential to encode images into multivariate normal
distributions (Razavi et al., 2019; Burgess et al., 2018), the efficacy of utilizing VAE to extracting
high-level representations is not heavily studied. Besides, VAEs are usually trained by different
forms of image recovery tasks, which keep VAE away from extracting high-level semantic features.

This paper adopts the consistency regulation to train the proposed VAE based network for extract-
ing the high-level representation and its boundary information. Moreover, a clustering method is
proposed to utilize this boundary information to deliver adaptive cluster results. In the end, these
adaptive clusters are utilized in the unsupervised classification task.

3 METHOD

The following sections presents the generative network that produces the representation and its
boundary information first, and then introduces the cluster method that benefits from the bound-
ary information.

3.1 GENERATIVE MODEL

In the unsupervised setup, the ground truth of the desired image representation is not available.
However, there are general assumptions about the desired presentation’s behavior pattern, i.e., how
desired representations should interact with each other, such as images showing the same kind of
object should have similar semantic representations. This paper introduces the latent vector that
controls the representation’s behavior pattern and utilizes a VEA based network to generate repre-
sentation from this latent vector. The proposed network aims to generate representations that follow
the behavior assumption of the expected representation. In that case, the generated representation
and the expected one would share the same latent vector, as the latent vector decides the represen-
tation’s behavior pattern. However, the generated representation may differ from the expected one,
even when they have the same behavior pattern. It is hard to directly generate the desired represen-
tation, which needs the ground truth to train from the starter. Therefore, this paper adopts the latent
vector as a close approximation of the desired representation.

The proposed VAE based network is shown in Figure 2. This paper states the latent vector as a
multivariate normal distribution N (x;µ,Σ) encoded from the image x by an encoder e(x). Then,
a sample z is drawn from this distribution with a stochastic process. This random process creates
variations that support tryouts to find this latent vector’s acceptable range in the training stage.
Besides, the distribution’s mean µ is also taken as a standard latent vector to provide a short-cut for
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better encoder training. As the encoder is a deep neural network for extracting high-level semantic
features, the stochastically sampled latent vector z cannot provide a stable guide to train the deep
encoder. The sum of the sampled latent vector z and the standard latent vector µ is fed into the
decoder d(x) to generate the representation r.
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Figure 2: The framework of the proposed VAE based network.

The network is trained by the behavior regulations, which impose regulations on the generated
representation. This work adopts consistency regulation, a commonly used behavior assumption
of the semantic representation, which regulates an image and its argumentations to have the same
semantic representation. The consistency regulation can be performed by minimizing the behavior
loss stated in Equation (1).

BLx = d(ri, r
′
i) = d(v(xi), v(T (xi))), (1)

in which, T (xi) is the augmentation of image xi, ri is the representation of xi generated by the
proposed network v(.), and d(, ) measures the distance of two representations.

As the proposed network is based on VAE, the loss function of the vanilla VAE (Kingma & Welling,
2013) is adapted to train the proposed network by replacing its image recovery loss with the behavior
loss BLx. The loss function is used to train the proposed network is shown in Equation (2).

Ez∼Q(z|x)[log(P (r|z))−KL[Q(z|x)||P (z)], (2)

in which, P (r|z) is distribution of the representation r generate by latent vector z, P (z) is the
distribution of the latent vector, Q(z|x) is the distribution of z given x, and KL[Q(z|x)||P (z)] is
the KL divergence between Q(z|x) and P (z).

As mentioned earlier, the latent distribution will act as a close approximation of the desired represen-
tation. The mean µ will be regarded as the image representation, and the z-score of the distribution
characterizes its boundary information.

3.2 NEIGHBOR CLUSTERING METHOD

This work clusters the images based on the boundary information based on z-score. The insight is
that, when an image is encoded into the distribution, the image’s close variations should be located
within a small z-score range of this distribution. Figure 3 (a) illustrates the representation and its
boundary information, z-score range, in a five-dimensional distribution. For neighbor clustering, the
neighbor that its means µ fall into the required z-score ranges will be clustered, and an illustrated
cluster criterion is shown in Figure 3 (b). This cluster criterion is strict, as it requires the clustered
neighbor not only close to the root of the cluster but also has a similar flow as the root.

For fast calculation, this work proposes a z-score based distance-vector, in which each element of
this vector corresponds to the distance at each dimension. The z-score is used because the direct
compression of z-scores between different normal distributions is veiled. The proposed z-score
based distance-vector d(xi,xj) between xi and xj shows in Equation (3).

d(xi,xj) = α
abs(µi − µj)

2σi
− 0.5, (3)
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in which, µi is the mean of xi’s latent distribution, and σi is the diagonal elements of the covariance
matrix Σ. The α controls the z-score range to be used. When α = 1, the distance is normalized by
the z-score range [-1, 1]. This work will expand the z-score range to increase the cluster size until it
reaches [-2,2], covering more than 95% of the normal distribution. However, the sample falls out of
the z-score range of [-2,2] is most unlikely from this distribution’s population, therefore, the z-score
range is limited within [-2, 2]. To be clustered, all element of the z-score based distance vector
should not larger than 0. Besides, d(xi,xj) may not equal d(xi,xi), as the z-score range of different
representations may differ from each other, as demonstrated in Figure 3 (c).

By modifying α in Equation (3), the z-score based distance will change accordingly. The cluster
threshold α indicates how strict the clustering criterion is: small α will tighten the cluster restriction,
and large α will reduce the restriction. As the experiment in section 4 will demonstrate, cluster
converging after α surpasses a certain value are observed on all evaluated datasets, so the α needs
no fine-tuning for each dataset.

Notably, the early converge is observed in the experiments, in which the cluster size stops from
increasing before reached the desired cluster number. This situation is introduced by the strict clus-
tering method, which requires the neighbor representation to satisfy the criterion in all dimensions.
In some cases, the clustering criteria are hard to reach; hence the clustering process stops. To address
this issue, this work introduces the loose match strategy and a parameter θ ( 0 < θ < 1 ). Instant
of requiring a full match in every dimension as the standard clustering process, a certain mismatch,
1 − θ, is accepted, as demonstrated in Figure 3 (d). The loose match strategy is a backup method
and is unnecessary for the unsupervised classification, which will be demonstrated in the experiment
section.
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Figure 3: (a) Representation A is illustrated as a five-dimensional distribution. The dots represent
the mean of each dimension, and its z-score range is indicated by the bars; (b) Representation B is
clustered by A, as all the means of B fall into the z-score range of A. However, representation C
cannot join the A’s cluster as some of C’s means fall out of the required z-score range. (c) Represen-
tation A cannot be clustered by B, even representation B is clustered by A. Because B has a narrow
z-score range; (d) With the loose match strategy, the representation D can be accepted to join the A’s
cluster, although one of its means cannot fall into the required z-score range.

4 EXPERIMENTS

This paper first evaluates the neighbor cluster performance of the proposed method. Then it uses the
neighbor cluster results in a self-supervised classification framework to demonstrate the potential to
adapt the proposed method to support self-supervised classification. At last, additional feature of
the proposed method is introduced.

4.1 EXPERIMENTAL SETUP

Experiments are performed on CIFAR10 (Krizhevsky et al., 2009), CIFAR100-20 (Krizhevsky et al.,
2009) and STL10 (Coates et al., 2011). The proposed network is trained on the training set of all
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Table 1: Neighbor Cluster Results on Training Set

CIFAR10 CIFAR100-20 STL
Methods 10 50 100 10 50 100 10 50 100

Rot + KNN 65.58 62.06 60.08 51.76 51.41 50.38 60.69 54.71 50.02
InstDisc 1 + KNN 74.73 73.96 73.08 56.66 56.41 54.28 71.52 61.82 55.38
InstDisc 2 + KNN 71.33 67.78 64.38 57.76 56.36 55.68 66.24 59.71 54.78

MoCo + KNN 75.28 70.72 68.27 56.92 56.49 54.83 71.97 57.66 59.89
SimCLR + KNN 81.53 76.76 73.58 61.56 54.05 49.33 75.82 67.11 62.58

VAE + KNN 75.71 73.34 72.32 59.27 52.04 48.38 74.71 72.83.08 58.92
AC-VAE 95.25 87.72 82.27 68.75 65.51 62.48 92.75 87.93 85.42

datasets. For all experiences, the same set of configurations is applied. A ResNet-34 is adopted as
the encoder network, and a two-layer full connection is utilized as the decoder network. The latent
distribution dimension is set as 512, and the decoded representation vector has a size of 64. Both the
encoder and the decoder networks are initialized randomly. Besides, the NT Xent loss (Chen et al.,
2020a) and its augmentation strategy are used for the behavior loss implementation.

4.2 EVALUATION OF NEIGHBOR CLUSTER

The neighbor cluster performance is evaluated under cluster sizes of 10, 50, and 100, as it is desired
that a clustering method can maintain high accuracy when keep increasing the cluster size. The
accuracy of the neighbor cluster is obtained by averaging all neighbor clusters’ accuracy. While
in the proposed method, neighbor clusters have different cluster sizes, the average cluster size is
used for convenient comparison. For comparison, two instant discrimination based methods (Caron
et al., 2018; 2019), Rot (Coates et al., 2011), SimCLR (Doersch et al., 2015), and MoCo (Gidaris
et al., 2018) are chosen, as they all use consistency regulation to perform unsupervised represen-
tation learning. To get the cluster results, a KNN is applied to the learned representation. For the
proposed VAE based network, both KNN and z-score based methods are employed for clustering.
The comparing methods are not suitable to use the z-score based clustering method, as it requires the
distributional information. The neighbor cluster accuracy on the training set is studied, as the neigh-
bor cluster results on the training set will be utilized to support the self-supervised classification
training.

The neighbor cluster accuracy comparison on the training set is shown in Table 1. The proposed VAE
based network with KNN is compared with others to demonstrate its ability to project the same
meaning images to close representations. With KNN clustering, the proposed method’s accuracy
is lower than the state-of-the-art, SimCLR. This is because the sampling process introduced by
the proposed network creates uncertainty in the representation, which contributes the decline of
accuracy. After the KNN is replaced by the z-score based clustering method, the proposed methods
(AC-VAE) outperformed all other methods in all cases. Notably, around 10% increases are found
when cluster size is 10 on CIFAR10 and STL datasets. This performance comes from the z-score
based cluster method, which uses the boundary information to exclude those nearby samples that do
not have the same flow shape. Figure 4 is used to demonstrate the efficacy of the proposed clustering
method. In Figure 4, the representations from different classes overlap each other in some areas. It
is hard for the method that only considers the distance to deliver a highly accurate cluster.

To utilize the neighbor cluster method in unsupervised classification, the parameter α’s effect on the
cluster size and cluster accuracy is also studied. The results are shown in Figure 5. Clusters have
been found naturally converged in the training set of all three datasets within the range of 0 < α ≤ 2.
As shown in Figure 5 (a), the cluster size remains the same after the threshold α reaches a certain
point. These results benefit from encoding the image as the distribution. For a distribution, most
of its population will fall into its z-score range of [-2, 2] (α = 2), covering 95% of the distribution
population. During the network training, the VAE-based network should push samples with the
similar meanings into this high-possibility region. This analysis matches the experiment results, in
which the converges happened before the z-score range expands to [-2, 2], as shown in Figure 5.
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Figure 4: Visualization of representation produced by VAE based network using t-sne (Maaten &
Hinton, 2008) for dimensionality reduction.

Table 2: The α and θ applied in the experiments

Dataset CIFAR10 CIFAR100-20 STL
Cluster Size 10 50 100 10 50 100 10 50 100

α 0.52 0.94 1.28 1.45 1.62 1.72 0.57 1.24 1.42
θ N/A N/A N/A N/A 0.95 0.91 N/A 0.89 0.92

To get the results mentioned in Table 1, the α and θ listed in Table 2 are applied. However, these
super parameters are precisely selected for easy compassion to the KNN based clustering results.
In practice, there is no need to fine-select α nor θ to reach a specific cluster size unless a particular
neighbor cluster size is highly desired.

number and cluster accuracy under different threshold !. As shown in Figure 4.a the cluster 
remains the same after the threshold ! reaches a certain point. These results imply that our 
method proved a converged cluster result. As shown in Figure 4. b, after the cluster converged, 
the accuracy of the cluster remains 87% on Cifar10 dataset.  This behavior is offered by the 
cluster method. Our cluster method only clusters the representation when every dimension of the 
representation falls into the boundary. As the representation is a high dimensional distribution, 
this boundary requires the neighbor has the same manifold to be clustered. 

    

Figure 4. (a) the clustered neighbor number when vs. threshold !,  (b) the average cluster accuracy vs. threshold !. 

Curriculum learning with phototypes. As training processes, the representation’s clustering 
ability increased without hugely sacrifice the accuracy of the clustering results. This suggests the 
framework produces a natural curriculum learning, in which easy samples fist start to collect 
data, and complex samples will collect data along with the network training progress. Besides, 
we visualize the porotypes from each class. The results are shown together in Fig. 5.  
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Figure5. Prototype images on the different datasets, (a) Cifar10, (b) Cifar100-20, (c) STL 
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Figure 5: (a) the clustered size increases as α increases and reaches converged number within α ≤ 2;
(b) the cluster accuracy decreased as the α increases and maintains the accuracy within α ≤ 2.

4.3 SELF SUPERVISED CLASSIFICATION

In order to demonstrate the efficacy of utilizing the proposed method to perform unsupervised classi-
fication, the self-supervised classification framework SCAN (Van Gansbeke et al., 2020) is adapted
by replacing its KNN based neighbor clustering method with the proposed method to perform the
unsupervised classification. The converged clusters showed in section 4.2 are utilized, in which all
the clusters are naturally converged without using the loose match strategy nor fine-tuning α. There-
fore, the self-adaptive cluster results are used to perform the unsupervised classification. As Table 3
demonstrated, the framework utilizing the adaptive cluster results outperform most of the comparing
methods. When compared to the state-of-the-art (SCAN, Van Gansbeke et al. (2020)), the proposed
method still delivers competitive results without selecting super parameter k.
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Table 3: The Unsupervised Classfication results

Methods CIFAR10 CIFAR100-20 STL
DEC (Xie et al., 2016) 30.1 18.5 35.9
ADC (Haeusser et al., 2018) 32.5 16.0 53.0
DeepCluster (Caron et al., 2018) 37.4 18.9 33.4
DAC (Chang et al., 2017) 52.2 23.8 47.0
IIC (Ji et al., 2019) 61.7 25.7 59.6
SCAN with KNN clustering 87.6 45.9 76.7
SCAN with AC-VAE 79.2 40.2 71.8

4.4 OTHER ADVANTAGES

The proposed method also has additional advantages, desired in the unsupervised setup, such as
prototype selecting. As different representation has different boundary information, some samples
will cluster far more neighbors than others under the same z-score range, so each class’s prototype
can be easily identified as those who cluster the most neighbors. The selected prototypes of each
dataset are shown in Figure 6.

(a)

(b)

(c)

Figure 6: Prototype images on the different datasets: (a) Cifar10, (b) Cifar100-20, (c) STL.

5 CONCLUSION

This paper proposes AC-VAE, including a VAE based network and a clustering method. The VAE
based network encodes the image into the multivariate normal distributions. The semantic represen-
tation and its boundary can be retrieved from this distribution. The clustering method takes advan-
tage of the boundary information to achieve adaptive neighbor clustering. Experiments demonstrate
that the proposed VAE-based network has the ability to project images with the same semantic
meaning into close representations. Experiments also show the efficacy of the proposed method to
from adaptive clusters. This work attempts to push the edge of fully unsupervised classification by
omitting a critical super-parameter k in the state-of-the-art method. Experiments show that the nat-
urally converged cluster supports the unsupervised classification framework to deliver competitive
results.
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