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ABSTRACT

Black-box tuning has attracted recent attention due to that the structure or inner
parameters of advanced proprietary models are not accessible. Proxy-tuning (Liu
et al., 2024) provides a test-time output adjustment for tuning black-box language
models. It applies the difference of the output logits before and after tuning a
smaller white-box ”proxy” model to improve the black-box model. However, this
technique serves only as a decoding-time algorithm, leading to an inconsistency
between training and testing which potentially limits overall performance. To ad-
dress this problem, we introduce Consistent Proxy Tuning (CPT), a simple yet
effective black-box tuning method. Different from Proxy-tuning, CPT addition-
ally exploits the frozen large black-box model and another frozen small white-box
model, ensuring consistency between training-stage optimization objective and
test-time proxies. This consistency benefits Proxy-tuning and enhances model
performance. Note that our method focuses solely on logit-level computation,
which makes it model-agnostic and applicable to any task involving logit classifi-
cation. Extensive experimental results demonstrate the superiority of our CPT in
both black-box tuning of Large-Language Models (LLMs) and Vision-Language
Models (VLMs) across various datasets.

1 INTRODUCTION
Although large-scale pretrained models have demonstrated strong generalization capabilities, they
can perform better on specific downstream tasks by fine-tuning. Several parameter-efficient fine-
tuning techniques have been developed to fine-tune Large Language Models (LLMs), such as
soft prompt tuning (Lester et al., 2021), adapters (Houlsby et al., 2019), Low-Rank Adaption
(LoRA) (Hu et al., 2021) and sparse tuning (Zaken et al., 2021). Similar approaches are also ap-
plied to fine-tune the pretrained Vision-Language Models (VLMs), including text/visual prompt
tuning (Zhou et al., 2022b;a; Bahng et al., 2022), adapter-based tuning (Zhang et al., 2022; Gao
et al., 2024), etc. Notice that these fine-tuning methods are usually under the strong assumption
that the model architectures are known and model parameters are accessible. However, for privacy
or commercial reasons, some advanced proprietary models are closed-source (i.e., black-box mod-
els). For instance, users of GPT-4 (Achiam et al., 2023) can only interact with the model through a
controlled interface and cannot access the model’s parameters or intermediate embeddings. There-
fore, these white-box optimization methods are infeasible for tuning the black-box models. Some
methods do focus on tuning the black-box models. For example, BBT (Sun et al., 2022b) and BBT-
v2 (Sun et al., 2022a) employs gradient-free strategies for fine-tuning of black-box LLMs, while
CBBT (Guo et al., 2023) and LFA (Ouali et al., 2023) fine-tune VLMs by adaptive or aligned
features. Nevertheless, all these methods require access to features within the model, which is not
applicable for more strict black-box scenarios.

Recently, Proxy-tuning (Liu et al., 2024) improves the large black-box model with proxy strategy,
i.e., improves the large black-box model by tuned/untuned smaller white-box models. Specifically,
during inference, the difference in logits between a tuned small model and an untuned small model
is used as an offset and added to the output logits of the large black-box model to generate the fi-
nal prediction. Proxy-tuning is more widely applicable and privacy-preserving compared to other
existing methods in that it requires minimum access to black-box models—basic access to output
logits will suffice. However, we note that there is an inconsistency between the optimization objec-
tive of Proxy-tuning (Liu et al., 2024) and the form of output ensemble during inference, i.e., only
a small white-box model alone is used for tuning while the ensemble of three models are used for
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predictions. Such inconsistency may lead to sub-optimal solutions for the proxy tuning optimization
objective, causing bottlenecks in model performance.

To reconcile the inconsistency in Proxy-tuning (Liu et al., 2024), in this paper we propose Consistent
Proxy Tuning (CPT), a simple yet effective proxy-tuning method. Specifically, during training stage
of the tunable small white-box model, CPT additionally incorporates the frozen large black-box
model and another frozen small white-box model. Given a training sample, these three models first
compute the logit scores for the input sample respectively. Then, the three sets of logits are ensem-
bled by using the same logits calculation formula of a test-time proxy in Proxy-tuning (Liu et al.,
2024). Finally, the tunable white-box model is optimized with the loss function computed with the
ensemble logits and the ground truth. During inference stage, we follow Liu et al. (2024) to employ
the proxy tuning for large black-box model. The whole pipeline of CPT is illustrated in Fig. 1.
Compared to vanilla Proxy-tuning (Liu et al., 2024), our CPT ensures consistency between the opti-
mization objective during the training of the small white-box model and the test-time inference with
proxy. This benefits the Proxy-tuning process and enhances the performance of the model.

Note that our method focuses solely on logit-level computation, thus holding the potential of being
a plug-and-play improvement for any black-box model fine-tuning tasks which involve logit-level
classification. In this paper, we show the effectiveness of CPT by applying it to two representa-
tive black-box tuning tasks respectively: black-box tuning of Large-Language Models (LLMs) and
black-box tuning of Vision-Language Models (VLMs). For black-box tuning of LLMs, we use a
LLAMA2 (Touvron et al., 2023) model with a lightweight architecture (e.g., LLAMA2-7B) to con-
sistently proxy-tune the LLAMA2 model with heavier architecture (e.g., LLAMA2-13B) on various
downstream natural language processing tasks. Our CPT outperforms Proxy-tuning (Liu et al., 2024)
by 2.20% in terms of mean accuracy across seven natural language processing datasets. For black-
box tuning of VLMs, we use a CLIP (Radford et al., 2021) with a lightweight image encoder (e.g.,
ResNet-50 (He et al., 2016)) to consistently proxy-tune the CLIP model with a heavier image en-
coder (e.g., ViT-B/16 (Dosovitskiy et al., 2020)) on image classification task. Our CPT outperforms
Proxy-tuning (Liu et al., 2024) by 1.24% in terms of mean accuracy across eight image classification
datasets.

In a nutshell, the main contributions of this paper are summarized as follows:

1) We propose Consistent Proxy Tuning (CPT), a simple yet effective proxy-tuning method
for black-box model optimization.

2) CPT introduces a frozen black-box large model and a frozen white-box small model into
the training of another tunable white-box small model, which ensures that the optimization
objectives during white-box training are consistent with the form of proxy-tuning during
inference.

3) CPT can be widely applied to a variety of black-box model fine-tuning tasks. Extensive ex-
periment results of the black-box tuning for VLMs and LLMs on various datasets demon-
strate the effectiveness of our CPT.

2 RELATED WORK

Efficient Fine-tuning. Large pretrained models, which are extensively trained on vast datasets,
demonstrate broad generalization capabilities across various tasks. To further improve the perfor-
mance of these models on specific downstream tasks, efficiently fine-tuning methods have been
proposed for large pretrain models. In the field of natural language processing, some approaches fo-
cus on designing lightweight components to fine-tune pretrained Large Language Models (LLMs).
For example, soft prompt tuning (Lester et al., 2021) introduces continuous learnable prompts other
than hard prompts. Adapter-based method (Houlsby et al., 2019) inserts learnable adapters into
Transformer (Vaswani et al., 2017), thus transferring to downstream tasks while preserving pre-
trained knowledge. Low-Rank Adaptation (LoRA) (Hu et al., 2021) freezes the pretrained model
weights and injects trainable rank decomposition matrices into each layer of the Transformer. BitFit
(Zaken et al., 2021) only tunes the bias terms of the model.

Many other works also explore how to efficiently fine-tune pretrained VLMs (e.g.CLIP (Radford
et al., 2021)). CoOp (Zhou et al., 2022b) designed learnable text prompts to better understand
natural language context. Then CoCoOp (Zhou et al., 2022a) further uses images as conditions
to constrain the optimization of text prompts. Visual prompting (Bahng et al., 2022) also shows
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that visual prompting is particularly effective for CLIP. Some works (Zhang et al., 2022; Gao et al.,
2024) adopts add adapters to the encoders of CLIP, thus to fit different tasks while preserving pretrain
knowledge.

However, these above strategies require access to the model’s internal parameters (white-box ac-
cess), which is not feasible for many of today’s sophisticated models. Such infeasibility calls for
new paradigms in fine-tuning black-box pretrained models.

Black-Box Tuning. Black-box large pretrained models require a special set of fine-tuning meth-
ods. For large language models, BBT (Sun et al., 2022b) achieves gradient-free optimization by
using covariance matrix adaptation evolution strategy (CMA-ES) (Hansen et al., 2003).However,
it requires permission from black-box model to use customized prompt embedding, which is not
feasible with some popular language models e.g., GPT-4 (Achiam et al., 2023). BBT-v2 (Sun et al.,
2022a) injects learnable prompt into layers of the LLM, which is also not applicable for language
model APIs. BDPL (Diao et al., 2022) investigates the possibilities of using discrete prompt to
help LLMs understand the task better. Proxy-tuning (Liu et al., 2024) considers training smaller
white-box models as proxy instead, and use the fine-tuned white-box experts to enhance black-box
LLMs. This approach has shown both effectiveness and promise, but it overlooks the inconsistency
between the training objective of small model and the joint test-time ensemble of large black-box
model and smaller proxy models. Zhang et al. (2020) also uses small models to indirectly fine-tune
large models, but they need access to the parameters of intermediate layers, which is not suitable for
scenarios where the parameters of the model cannot be accessed.

For vision-language models, BlackVIP (Oh et al., 2023) optimizes the coordinator which generates
visual prompts by zeroth-order optimization. However, the improvement in performance is limited.
Linear Feature Alignment (LFA) (Ouali et al., 2023) optimizes a projection layer to enhance the
alignment between pre-computed image features and class prototypes. CBBT (Guo et al., 2023)
optimizes textual prompt and feature output adaptation collaboratively. These two methods interact
with the black-box models at a feature level and requires access to output features, which leaves a
potential risk of being vulnerable to attacks e.g.membership inference attacks (MIA) (Carlini et al.,
2022). We focus on a more restrict black-model setting where only output logits other than output
features of a model is accessible.

Logits Arithmetic. Recently, some methods (Dou et al., 2019) have demonstrated the capability
of logits ensembling from multiple models in enhancing model performance. For example, Dou
et al. (2019) assembles multiple logits from models pretrained on different domains to achieve do-
main adaptation. DExperts (Liu et al., 2021) uses the difference in logits output between a toxic
model and a non-toxic model to assist language models in language detoxification. This paper also
explores the use of proxy (Liu et al., 2024) to “fine-tune” Large Language Models (LLMs) during
the inference stage. Contrastive Decoding (CD) (Li et al., 2022) leverages the differences in log-
likelihood between expert and amateur language models (LMs) of varying sizes by selecting tokens
that maximize this discrepancy. Some subsequent studies have also explored the effects of ensem-
bling output logits from different layers of models (Gera et al., 2023; Chuang et al., 2023) or the
effects of output logits from varying inputs (Pei et al., 2023; Shi et al., 2023). This paper proposes a
method that enhances a large black-box model using the output from a small white-box model and
an untuned one. Unlike Proxy-tuning (Liu et al., 2024), which overlooks the consistency between
proxy-independent training and proxy-dependent testing and results in suboptimal outcomes, our
method employs ensembled output logits from both black-box and white-box models as optimiza-
tion objectives. This approach ensures consistency in proxy techniques, thereby enhancing model
performance.

3 PROPOSED METHOD

3.1 REVISITING PROXY-TUNING

Given a large black-box LLM Ml(·;θp
l ) with inaccessible pretrained parameters θp

l , we only assume
access to the output logits across the entire output space. Since Ml is a black-box model, directly
fine-tuning it on downstream datasets with methods such as full fine-tuning or LoRA (Hu et al.,
2021) is not applicable, as these methods require access to the model parameters. To tackle this
problem, the novel practice of tuning models by proxy (Liu et al., 2024) improves a large black-
box model Ml with proxy i.e., smaller tuned white-box models. Specifically, during training stage,
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Figure 1: Illustration the comparison of our Consistent Proxy Tuning (CPT) with vanilla Proxy-
tuning (Liu et al., 2024). (a) and (b) respectively illustrate the training and inference stage of Proxy-
tuning. Notice that their optimization objectives and the formula of the proxy during inference
are inconsistent. In contrast, our CPT achieves consistency in these two aspects, as shown in (c).
Especially, when αtrain = 0 and αtest = 1, our CPT will degenerate into the “inconsistent” Proxy-
tuning.

a small white-box model Ms(·;θp
s ) with pretrained parameters θp

s is fine-tuned by downstream
dataset D with supervised learning paradigm. Given an input x and corresponding ground truth y,
the model is fine-tuned with the optimization objective of

θt
s = argmin

θs

E(x,y)∼D[L(Ms(x;θs),y)], (1)

where Ms(x;θs) with parameters θs denotes the output logits of model Ms, θt
s denotes the opti-

mized parameters and L is the classification loss function, e.g.cross entropy loss. During the infer-
ence stage, a test data x is fed to Ms(·;θt

s), Ms(·;θp
s ) and Ml(·;θp

l ) to obtain output scores zMt
s
,

zMp
s

and zMp
l
, respectively. Then, the final prediction probability of proxy-tuned models on input

x can be formally expressed as:

p(x) = zMt
s
+ (zMp

l
− zMp

s
). (2)

Eqn. 1 indicates that only the output of the small model Ms is involved in optimization during train-
ing stage. However, during the inference stage, the final prediction score is calculated by ensembling
the outputs from all three models, as shown in Eqn. 2. This inconsistency between training and in-
ference (Fig. 1 (a) and Fig. 1 (b)) limits the training process to only finding a sub-optimal solution
for the proxy-tuning model.

3.2 CONSISTENT PROXY TUNING (CPT)
In this paper, we aim to bridge the inconsistency between the use of test-time proxies and the separate
training process small white-box model. To this end, we propose Consistent Proxy Tuning (CPT)
method, which is illustrated in Fig. 1 (c). In contrast to the vanilla Proxy-tuning (Liu et al., 2024),
CPT additionally incorporates frozen Ms(·;θp

s ) and Ml(·;θp
l ) into the fine-tuning process of the

small white-box model, and the optimization objective is improved to compute the loss function
based on the ensemble of the outputs from the three models and the ground truth. Formally, the
optimization objective is modified as follows:

θt
s = argmin

θs

E(x,y)∼D[L(Ms(x;θs) + αtrain(Ml(x;θ
p
l )−Ms(x;θ

p
s )),y)], (3)

where αtrain is the coefficient that controls the impact of the offset obtained from Ml(x;θ
p
l ) −

Ms(x;θ
p
s ) on the training of Ms(;θs). Correspondingly, we introduce another coefficient αtest to

Eqn. 2 during inference stage:

p(x) = zMt
s
+ αtest(zMp

l
− zMp

s
). (4)

Especially, when αtrain = αtest, our CPT maintains strict consistency by leveraging the consis-
tent form of ensembling output logits from three models during both training and inference stages.
While when αtrain = 0 in Eqn. 3 and αtest = 1 in Eqn. 4, our CPT will degenerate into the “in-
consistent” vanilla Proxy-tuning, i.e., Eqn. 1 and Eqn. 2. In fact, Proxy-tuning can be considered
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as a special case of our CPT. In Sec. 4.3, we will explore how the combinations of different αtrain

and αtest impact model performance. Note that our method focuses solely on the computation be-
tween the output logits of the model. Therefore, CPT can be widely applicable to various black-box
model fine-tuning tasks which involve logit-level classification, such as image classification, image
segmentation (pixel-level classification), text generation (in-vocabulary classification), etc. Further-
more, the large black-box model Ml and the smaller model Ms are not required to be from the
same model family. They only require to share the same output space, e.g., the same classification
categories in image classification tasks or the same vocabulary in text generation tasks. This allows
our method to be flexibly applied to various combinations of black-box models and their white-box
proxies.

3.3 EXTENDING CPT TO VISION-LANGUAGE MODEL

To demonstrate that our method can be applied to other black-box model fine-tuning tasks involv-
ing logit-level classification, in this section we extend CPT to black-box Vision-Language Model
(VLM) fine-tuning. VLMs have shown impressive capabilities across a diverse array of applica-
tions. Here, we mainly focus on applying CPT to black-box tuning for CLIP (Radford et al., 2021)
on downstream image classification tasks. CLIP achieves image classification by calculating the
similarity between image embeddings and different text embeddings. Formally, CLIP employs an
image encoder Eimg(·|θimg) and a text encoder Etxt(·|θtxt), which are jointly pretrained with a
vast number of image-text pairs using a contrastive learning approach. Given an input image x and
multiple tokenized descriptive texts T = {t1, t2, . . . , tC} corresponding to C classes, the image
encoder and text encoder extract image embedding f , and text embeddings {gc}Cc=1 respectively,
where f = Eimg(x|θimg) and gc = Etxt(tc|θtxt). Then, the predicted logit score of class c is
computed by ⟨∥f∥2, ∥gc∥2⟩, where ∥ · ∥2 denotes the L2-normalization, and ⟨·, ·⟩ denotes the cosine
similarity of two embeddings. In the context of our CPT, we use a single symbol M∗(·|θ∗) (∗ can be
s or l) to briefly represent both Eimg(·|θimg) and Etxt(·|θtxt) of CLIP, where θ∗ represents the pa-
rameters of both θimg and θtxt. We use M∗(x,T|θ∗) to represent the classification logits predicted
by the CLIP model for given x and T. Therefore, the optimization objective of CPT for fine-tuning
the black-box VLM can be expressed as:

θt
s = argmin

θs

E(x,y)∼D[L(Ms(x,T;θs) + αtrain(Ml(x,T;θp
l )−Ms(x,T;θp

s )),y)]. (5)

In practice, we use the CLIP with a heavy image encoder (e.g., ViT-B/16 (Dosovitskiy et al., 2020))
as the large black box model, and an image encoder with a lighter image encoder (e.g., ResNet-
50 (He et al., 2016)) as the small white box model. During the training stage, we use templates like
“a photo of a [CLS]”, where [CLS] represents a certain class name, as inputs for the text encoder.
Regarding the fine-tuning strategy of the small white-box model, we fine-tune all parameters of its
image encoder and text encoder. In contrast to existing black-box fine-tuning methods for VLMs,
which require access to image and text embeddings (Ouali et al., 2023; Guo et al., 2023), our method
only requires access to cosine similarities (i.e., output logits). This illustrates that our method can
be applied to stricter black box model fine-tuning scenarios, where only logits are accessible.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. For applying CPT to black-box tuning for LLM, we evaluate our CPT on Trivi-
aQA (Joshi et al., 2017), ARC-challenge (Clark et al., 2018), commonsenseQA (Talmor et al.,
2018), Corpus of Linguistic Acceptability (CoLA) (Warstadt et al., 2019), Microsoft Research Para-
phrase Corpus (MRPC) (Dolan & Brockett, 2005), AG-News (Zhang et al., 2015) and Czech-to-
English (Xu et al., 2023). For applying CPT to Black-box Tuning for VLM, we evaluate our CPT o
CIFAR-10 (Krizhevsky et al., 2009), EuroSAT (Helber et al., 2019), Flowers102 (Nilsback & Zisser-
man, 2008), Stanford Cars (Krause et al., 2013), Oxford-IIIT Pets (Parkhi et al., 2012), Describable
Textures Dataset (DTD) (Cimpoi et al., 2014), Country-211 (Radford et al., 2021) and Domainnet-
10 (Peng et al., 2019). Please refer to the supplemental materials sppl. B for more details.

Baselines. For the experiments of both black-box tuning for LLM and VLM, we compare it with
several other tuning settings to demonstrate the effectiveness of our proposed CPT: a) Zero-shot
inference of pretrained black-box models on test set, which represents the baseline performance of
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Table 1: Comparison of our CPT with other counterparts for black-box LLM tuning on seven
natural language datasets. We treat LLAMA2-7B as the small white-box model and treat LLAMA2-
13B as the large black-box model. “pretrained” represents the zero-shot inference by their
official pretrained parameters. “LORA-tuned” represents directly fine-tuning the corresponding
model with LORA. Proxy-tuning (Liu et al., 2024) and CPT represent using a 7B model to
“proxy fine-tune” a 13B model, where the 7B model is trained using their method and our method,
respectively. “ARC-C” and “cs2en” are the abbreviation of ARC-challenge and Czech-to-English.

Model Accuracy (%) ↑ Mean Acc (%) ↑
TriviaQA ARC-C. commonsenseQA COLA MRPC AG-News cs2en.

LLAMA2-7B
pretrained 21.88 43.14 33.74 45.73 32.04 41.14 25.24 34.70
LORA-tuned 60.03 47.16 75.84 81.50 68.99 90.21 32.01 65.11

LLAMA2-13B
pretrained 36.76 53.85 35.71 70.95 67.96 64.15 33.19 51.80
Proxy-tuning 61.52 50.17 74.04 79.19 68.22 90.34 33.19 65.24
CPT (Ours) 62.79 55.85 76.41 82.26 69.77 90.91 34.07 67.44
LORA-tuned 66.58 66.22 81.90 84.65 68.99 90.65 35.54 70.64

Table 2: Comparison of our CPT with other counterparts for black-box VLM tuning on eight im-
age classification datasets. We treat CLIP with ResNet-50 (RN-50) as the small white-box model
and treat CLIP with ViT B/16 as the large black-box model. “full-tuned” represents directly
fine-tuning the whole image encoder and text encoder of CLIP. Proxy-tuning (Liu et al., 2024)
and CPT represent using a CLIP with RN-50 model to “proxy fine-tune” a CLIP with ViT B/16
model, where the CLIP with RN-50 model is trained using their method and our method, respec-
tively. “DM-10.”, “FL-102.”, “CF-10.”, “EUR.”, “SC.”, “OFP.” and “CT211” are the abbreviation
of Domainnet-10, Flowers102, CIFAR-10, EuroSAT, Stanford Cars, Oxford-IIIT Pets and Country-
211, respectively.

Model Accuracy (%) ↑ Mean Acc (%) ↑
DM-10. FL-102. CF-10. EUR. SC. OFP. DTD CT211.

CLIP RN-50
pretrained 81.15 66.09 70.37 36.16 53.94 85.69 40.27 14.18 55.98
full-tuned 88.83 74.78 94.13 98.44 74.43 87.38 65.32 20.20 75.43

CLIP ViT-B/16
pretrained 87.38 71.05 90.08 48.42 63.67 89.09 42.98 20.47 64.14
Proxy-tuning 90.14 76.96 95.21 98.33 76.93 89.10 65.69 25.07 77.17
CPT (Ours) 93.94 77.52 96.57 98.47 78.03 89.62 67.23 25.93 78.41
full-tuned 93.94 95.43 97.69 98.82 86.97 95.45 78.09 30.10 84.56

untuned black-box models. we compare our CPT with this untuned ones to show that our method
can effectively perform tuning for black-box models. b) Fine-tuning the black-box models with
Proxy-tuning (Liu et al., 2024). Proxy-tuning neglects the inconsistency between proxy-independent
optimization during training and proxy-dependent probability distribution in inference stage, which
results in sub-optimal solution. We compare CPT with Proxy-tuning to show that our model en-
hances performance by ensuring consistency between optimization objectives and inference-time
proxy process. c) Fine-tuning the black-box model with white-box tuning methods. In fact, this
tuning setting cannot be achieved in real-world scenarios for black-box model optimization due to
the inability to access the internal parameters of the black-box model. We only use this setting as an
ideal reference to assess how much our CPT lags behind direct fine-tuning in terms of performance.
Additionally, we also compared zero-shot inference and direct tuning of small white-box models on
each dataset.

Implementation Details. Please refer to the supplemental materials sppl. C for more details.

4.2 EXPERIMENTAL RESULTS

Tab. 1 and Tab. 2 shows the comparison of our CPT with other counterparts for black-box LLM
tuning and for black-box VLM tuning respectively. We report the Accuracy for each dataset as well
as the Mean Accuracy across all datasets.
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Table 3: Performance of our CPT on models
of different scale on MRPC (Dolan & Brockett,
2005) and ARC-challenge (Clark et al., 2018).
In this particular case, a black-box LLAMA2-
13B model is tuned with CPT with a white-box
LLAMA-3B model as proxy.

Model Accuracy (%) ↑
MRPC ARC-challenge

LLAMA-3B
pretrained 52.97 23.41
LORA-tuned 68.22 33.11

LLAMA2-13B
pretrained 67.96 53.85
Proxy-tuning 67.96 52.84
CPT (Ours) 68.48 67.70
LORA-tuned 70.54 66.22

Table 4: Comparison of our CPT with other
counterparts for black-box VLM tuning on
Stanford Cars (Krause et al., 2013) and Oxford-
IIIT Pets (Parkhi et al., 2012). The small
white-box model, i.e., CLIP RN-50, involved
in Proxy-tuning and our CPT are tuned with
CoOp (Zhou et al., 2022b).

Model Accuracy (%) ↑
Stanford Cars Oxford-IIIT Pets

CLIP RN-50
pretrained 53.94 85.69
CoOp-tuned 77.83 91.20

CLIP ViT-B/16
pretrained 63.67 89.09
Proxy-tuning 78.44 92.29
CPT (Ours) 81.66 93.21
CoOp-tuned 86.18 94.94

Results of Black-box LLM Fine-tuning. Tab. 1 shows the comparison results of black-box
LLM fine-tuning on seven datasets. Clearly, our CPT significantly enhance the performance of
pretrained model (i.e., 13B pretrained) across all datasets. Moreover, CPT also outperforms
Proxy-tuning (Liu et al., 2024) across all datasets, and surpass it by 2.20%, in terms of Mean Ac-
curacy, i.e., 65.24% → 67.44%. These results demonstrate that our CPT yields better fine-tuning
effects on black-box LLMs compared to Proxy-tuning. We also observed that the performance of
Proxy-tuning on several datasets are even worse than fine-tuning standalone white-box small mod-
els (i.e., LLAMA-7B LORA-tuned). For instance, on commonsenseQA, COLA, and MRPC, the
performance of Proxy-tuning are 1.80%, 2.31%, and 0.77% lower than that of 7B LORA-tuned,
respectively. Note that the output of Proxy-tuned is an ensemble of outputs from a tuned small
white-box model, a pretrained small white-box model, and a large black-box model. Therefore,
it only makes sense if the performance of the large model being proxied exceeds that of the small
model itself. However, the results of the ensemble by Proxy-tuning are worse than those of the single
model, which implies that Proxy-tuning is still sub-optimized. In contrast, our method outperforms
the 7B LORA-tuned across all datasets, also demonstrating that our CPT is superior to Proxy-
tuning. From this perspective, our CPT can also serve as a novel fine-tuning method for white-box
models. In this perspective, CPT seek guidance from a larger pretrained model to better fine-tune the
smaller one. More interesting, on MRPC and Ag-News, our CPT even outperforms the method that
hypothetically use white-box fine-tuning of large models (i.e., 13B LORA-tuned). These results
above fully demonstrate the effectiveness of our CPT for fine-tuning black-box LLM.
Results of black-box VLM fine-tuning. Tab. 2 shows the comparison results of black-box VLM
fine-tuning on eight datasets. Similar to the results of black-box LLM fine-tuning, the standout
aspects of our CPT can be summarized in the following four folds: 1) Our CPT significantly im-
proves the performance of pretrained VLM (i.e., ViT-B/16 pretrained), and achieving 14.26%
improvement in terms of Mean Accuracy, i.e., 64.14% → 78.41% . 2) Our CPT consistently out-
performs Proxy-tuning (Liu et al., 2024) across all datasets, obtaining 1.23% improvement in terms
of Mean Accuracy, i.e., 77.17% → 78.41%. 3) Proxy-tuning underperforms fine-tuning standalone
white-box small models (i.e., RN-50 full-tuned) on EuroSAT, i.e., 98.44% → 98.33%, while
CPT outperforms the RN-50 full-tuned across all datasets. 4) Our CPT shows comparable per-
formance with that of fine-tuning large models using white-box methods (ViT-B/16 full-tuned)
on DomainNet-10, i.e., 93.94% vs. 93.94%. To sum up, for both fine-tuning black-box LLM and
VLM tasks, our CPT significantly improves the performance of pretrained large black-box model,
and achieves higher performance compared to Proxy-tuning (Liu et al., 2024). This indicates that en-
suring the consistency between training objectives and the formula of test-time proxy indeed further
enhances the performance of the proxy-tuned model.

4.3 ABLATION STUDIES
Using CoOp for White-box tuning in CPT. Our CPT optimizes the large model on downstream
tasks by fine-tuning a small white-box model as a proxy. In fact, CPT flexibly accommodates var-
ious fine-tuning strategies for the small white-box model. In the main paper, we adopt the fully
fine-tuning for the image and text encoders of the small white-box model to act as a proxy (both
Proxy-tuning (Liu et al., 2024) and CPT) for the black-box VLM model. Here, we use CoOp (Zhou
et al., 2022b) to alternatively optimize the white-box model as an example to demonstrate CPT’s in-
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Table 5: Performance of our CPT on mod-
els of different scale on Stanford Cars (Krause
et al., 2013), Oxford-IIIT Pets (Parkhi et al.,
2012), DTD (Cimpoi et al., 2014) and Flow-
ers102 (Nilsback & Zisserman, 2008). In this
particular case, a black-box CLIP ViT-L/14
model is tuned with CPT with a white-box CLIP
RN-50 model as proxy.

Model Accuracy (%) ↑
SC. OFP. DTD. FL-102.

CLIP RN-50
pretrained 53.94 85.69 40.27 66.09
full-tuned 74.48 87.35 65.32 74.78

CLIP ViT-L/14
pretrained 76.74 93.49 52.93 77.54
Proxy-tuning 78.94 90.27 68.19 82.58
CPT (Ours) 81.69 91.58 69.31 84.75
full-tuned 91.92 97.00 82.07 97.35

Table 6: Performance of our CPT on mod-
els of different scale on Stanford Cars (Krause
et al., 2013), Oxford-IIIT Pets (Parkhi et al.,
2012), DTD (Cimpoi et al., 2014) and Flow-
ers102 (Nilsback & Zisserman, 2008). In this
particular case, a black-box CLIP ViT-L/14
model is tuned with CPT with a white-box CLIP
ViT-B/16 model as proxy.

Model Accuracy (%) ↑
SC. OFP. DTD. FL-102.

CLIP ViT-B/16
pretrained 63.67 89.09 42.98 71.05
full-tuned 86.97 95.45 78.09 95.43

CLIP ViT-L/14
pretrained 76.74 93.49 52.93 77.54
Proxy-tuning 88.67 96.18 78.09 96.02
CPT (Ours) 89.22 96.54 80.48 97.02
full-tuned 91.92 97.00 82.07 97.35

(a) Average

(d) Oxford-IIIT Pets(c) Stanford Cars

(b) ARC-challenge

α
tr
a
in

α
tr
a
in

αtest αtest

α
tr
a
in

α
tr
a
in

αtest αtest

Figure 2: Variation of the accuracy versus the varied αtrain and αtest on (b) ARC-challenge, (c)
Stanford Cars, (d) Oxford-IIIT Pets and the results of their (a) Average .

clusivity towards the chosen white-box fine-tuning method. CoOp uses a set of learnable vectors to
replace the text input template “a photo of a”, which can efficiently fine-tune CLIP on downstream
classification tasks. Tab. 4 shows the comparison results on Stanford Cars and Oxford-IIIT Pets.
Note that different from Tab. 2, Proxy-tuning and CPT in Tab. 4 represent the use of a small
white-box model fine-tuned with CoOp to act as a proxy for the black-box model. Similar to the re-
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sults in Tab. 2, when using CoOp to fine-tune the small model, our CPT can still effectively enhance
the performance of the large black-box model, and consistently outperforming Proxy-tuning.
Tuning Black-box Models under Different Scales with CPT Here we demonstrate the effective-
ness of our CPT method across various model architectures. In this case, we conduct experiments
under various model architectures on tuning LLMs and VLMs. The main results shown in Tab. 1
is obtained with LLAMA2-7B as white-box proxy model and LLAMA2-13B as the large black-box
model, and Tab. 2 is obtained with CLIP ResNet-50 as white-box proxy model and CLIP ViT-B/16
as the large black-box model. For tuning LLMs, we extend the experiment to tuning black-box
LLAMA2-13B with CPT, LLAMA-3B being the white-box proxy. For tuning VLMs, we extend the
experiment to tuning black-box CLIP ViT-L/14 with CPT, CLIP ResNet-50 and CLIP ViT-B/16 be-
ing white-box proxies respectively. The results in Tab. 3, Tab. 5 and Tab. 6 shows that CPT constantly
outperforms Proxy-tuning and other baseline methods with different pairs of proxies and black-box
models. Based on the experimental results, we infer that our method might also be effective in
fine-tuning larger black-box models (e.g., LLAMA2-70B). However, due to limited computational
resources, this part of the experiment will be left for future work.
Effect of varied αtrain and αtest. αtrain in Eqn. 3 and αtest in Eqn. 4 are hyper-parameters of
our CPT. They determines the extent to which the offset calculated by Ml(x;θ

p
l ) − Ms(x;θ

p
s )

affects the optimization objective and the proxy process. Intuitively, choosing a large αtrain will
amplify the impact of the difference between the outputs of the frozen large model and the small
model on the optimization objective, while choosing a smaller one reduces this impact. Similarly,
choosing different values of αtest will affect the final performance of the proxied model. Moreover,
the relative values of αtrain and αtest will affect the consistency between the training objective and
the proxy process during testing. Specifically, the closer these two coefficients are, the stronger
the consistency between the training objective and the proxy process during testing; conversely, the
further apart they are, the weaker the consistency.

In all main experiments, both of these two coefficients are set to 1 to keep a strict consistency. Here,
we further explore the impact of varied αtrain and αtest on performance of CPT. Fig. 2 shows the
performance of CPT under varied αtrain and αtest on ARC-challenge, Stanford Cars (c), Oxford-
IIIT Pets (d) and the results of their average (a). Each cell in this matrix represents the accuracy
under a specific set of αtrain and αtest. From Fig. 2, we can obtain the following observations: 1)
The areas where the model performs well are concentrated near the main diagonal of the matrix,
e.g., marked with a yellow elliptical curve in Fig. 2 (a). When αtrain and αtest are relatively close,
the model tends to perform better; conversely, when they are further apart, the model’s performance
tends to decline. This result indicates that ensuring the consistency between αtrain and αtest will
be beneficial to the model’s performance. This also indirectly supports our proposal in this paper
for ”ensuring the consistency between the optimization objectives and the proxy during testing can
benefit for fine-tuning.” In specific datasets, such as ARC-challenge and Stanford Cars, we can
also observe similar conclusions. Due to the limitations of our hyperparameter selection range, this
phenomenon is not observed in Fig. 2 (d). In Fig. 3 of supplemental material, we show the results
under a wider range of hyperparameters, where the phenomenon is consistent with the other two
datasets. 2) From the results of each dataset, it can be seen that when αtrain and αtest are close
but both are relatively small, the performance of CPT is poor. This phenomenon may suggest that
we should choose a relatively larger alpha when performing CPT. From the average results (2 (a)),
when αtrain and αtest are close and their values are between 1.2 and 2.0, the model performs well.
We suggest choosing these two hyperparameters from the above range to perform CPT, for example,
selecting αtrain = αtest = 1.2.

4.4 INFERENCE & TRAINING COST

Here, we take finetuning LLMs as an example to analyze the time overhead of our CPT in both
inference and training. Tab. 7 shows the comparison of our CPT with Proxy-tuning and single model
in terms of inference time. We measure inference cost by the time (seconds) it takes to process each
prompt-completion pair. Our analysis demonstrates that, like Proxy-tuning, our improved approach
incurs no additional computational costs during inference. For the trainging time cost, to be honest,
our method incurs higher costs than Proxy-tuning due to additional training-time predictions. We
mitigate this by efficiently implementing a one-time inference model output for both small un-tuned
and large black-box models at each step, storing them for future use. Tab. 8 shows the comparison
of our CPT with Proxy-tuning and single model in terms of training time. “Extra cost” refers to
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Table 7: Inference time cost of each compared method. Each value in the table represents the
seconds taken to infer a single sample.

Method Inference time per sample

TriviaQA ARC-C commonsenseQA COLA MRPC AG-News

LLAMA2-7B 0.024 0.025 0.024 0.029 0.026 0.027
LLAMA2-13B 0.033 0.038 0.035 0.041 0.040 0.040
Proxy-tuning (7B-to-13B) 0.101 0.109 0.102 0.123 0.109 0.101
CPT (7B-to-13B) 0.101 0.109 0.102 0.123 0.109 0.101

Table 8: Training time cost of each compared method on MRPC. Each value in the table represents
the minute taken to training on the whole dataset.

Method Basic time cost Extra time cost Total time cost

LLAMA2-7B-LORA 124.5 0 124.5
Proxy-tuning (7B-to-13B, LORA) 124.5 0 124.5
CPT (7B-to-13B, LORA) 124.5 3.8 128.3

the joint inference process involving both models. We enhance accuracy by 1.55% on the MRPC
dataset with a minimal 3.05% increase in training costs, training only for 2 epochs to maintain
efficiency. Extending training would spread the ”extra” costs across more epochs, reducing the cost
per epoch, thus improving accuracy more significantly for less additional cost percentage-wise. For
the VLM classification task, our efficient implementation slightly extends training time by minutes
or seconds over several hours. This negligible extra cost for both training and inference is practically
inconsequential.

5 LIMITATIONS

Increase in computational resources. While CPT does not necessarily increase computational
expenses compared to directly tuning the black-box model during training, it surely increases com-
putational expenses at inference stage. Facing the same problem with Proxy-tuning (Liu et al.,
2024), i.e., the time of inference increases because multiple models compute output logits jointly.
Also, compared to the normal inference of a single black-box model, Proxy-tuning and CPT require
more GPU memory to deploy the proxy models. Although we can implement CPT effectively by
computing classification logits of pretrained models on train/test dataset and storing them for further
use, the increase in computational expenses in inevitable during inference on new data.

6 BROADER IMPACTS

Please refer to Sppl. D for more details.

7 CONCLUSION

In this paper we proposed a simple yet effective black-box model tuning method named Consistent
Proxy Tuning (CPT). We notice that vanilla Proxy-tuning (Liu et al., 2024) trains the white-box
small model independently but uses an ensemble of the white-box and black-box models for in-
ference. This inconsistency between the training objective and inference can lead to the proxy
process being sub-optimal. In contrast, our CPT introduces the frozen black/white models into the
fine-tuning process of the small model, thereby ensuring consistency between training-stage opti-
mization objective and test-time proxy process. Our CPT can be plug-and-played for any black-box
model fine-tuning tasks which involve logit-level classification. Extensive experiment results of the
black-box tuning for VLMs and LLMs on many datasets demonstrate the effectiveness of our CPT.
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Supplemental Materials for CPT: Consistent Proxy Tuning for
Black-box Optimization

A DISCUSSION ABOUT EXPERIMENTS FOR INSTRUCTION-TUNING AND
CODE-ADAPTATION

Proxy-tuning (Liu et al., 2024) employed their approach for Instruction-Tuning and Code-
Adaptation tasks. In principle, we need to apply CPT to these two types of tasks and carry out
a comparison to better demonstrate the effectiveness of our approach. However, Proxy-tuning used
off-the-shelf models12 for these tasks, utilizing models trained by others without providing training
data or details. Lacking access to the original, proprietary training data and details, we cannot repli-
cate these models. Therefore, we conducted our instruction-tuning using an alternative dataset3, and
the experiment results are shown in Tab. 9.

Table 9: Comparison of Instruction-Tuning for tuning LLM. Proxy-tuning does not work on se-
lected dataset, making it impossible for us to work further on this basis.

Model Accuracy

LLAMA2 3b base 21.78.
LLAMA2 3b lora 35.37
LLAMA2 13b base 36.76
LLAMA2 13b Proxy-tuned (Liu et al., 2024) 29.46
LLAMA2 13b lora 90.14

We can see from above table that Proxy-tuning itself does not even work on this task/dataset, making
it impossible for us to work further on this basis. However, we do extend our experiments to more
new datasets and tasks (e.g. Arc-challenge, COLA, MRPC, AG-News, cs-to-en translation and cor-
ersponding tasks) which are not used in Proxy-tuning for a comprehensive analysis of our proposed
method. A summary of our examined datasets/tasks is shown in Tab. 10.

Table 10: Summary of our examined datasets/tasks in this paper.
Dataset TriviaQA ARC-C commonsenseQA COLA MRPC AG-News cs-to-en

Task QA-general QA-choice QA-choice acceptability paraphrase check text classification machine translation

Domain general knowledge natural science general knowledge linguistics paraphrase examples News Czech-to-English linguistics

B MORE DETAILS OF DATASETS

Datasets for LLMs. We evaluate our CPT on TriviaQA (Joshi et al., 2017), ARC-challenge (Clark
et al., 2018), commonsenseQA (Talmor et al., 2018), Corpus of Linguistic Acceptability
(CoLA) (Warstadt et al., 2019), Microsoft Research Paraphrase Corpus (MRPC) (Dolan & Brockett,
2005), AG-News (Zhang et al., 2015) and Czech-to-English translation subset of ALMA-Human-
Parallel (Xu et al., 2023). These datasets cover common natural language understanding tasks,
including question-answering, linguistic analysis, paraphrasing and translation. Note that some
datasets are often formulated as text classification tasks, for example, adding a classification header
to the last layer of the model to predict the result. However, this is not feasible for black-box
LLMs. Therefore, we convert all tasks into text generation tasks for processing. Specifically, for
each dataset, we construct specific prompts to standardize the output format of the model as much
as possible. We calculate the accuracy of the model by matching the text generated by the model
with the ground truth labels. Tab. 11 shows the details of each dataset, including train size, test

1https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
2https://github.com/Meta-Llama/codellama
3https://github.com/yizhongw/self-instruct/blob/main/data/gpt3_

generations/batch_221203/all_instances_82K.jsonl
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size and used prompts. During inference stage, {question} will be filled with a specific question
of one data point, combining with contextual template text to form a complete prompt as input to
the model. While during training stage, the answers will also be filled into the {prediction} and
combined with the previous question parts to form the input for training the model. All datasets for
LLMs are in the default version on their offical website. Licenses for datasets are also specified in
Tab. 11. N/A indicates that there is no explicit license on the official website and the we are reaching
out to original authors of the assets.

Datasets for VLMs. For applying CPT to Black-box Tuning for VLM, we first choose 7 well-
studied image classification datasets which cover a variety of data distributions, i.e., CIFAR-
10 (Krizhevsky et al., 2009), EuroSAT (Helber et al., 2019), Flowers102 (Nilsback & Zisserman,
2008), Stanford Cars (Krause et al., 2013), Oxford-IIIT Pets (Parkhi et al., 2012), Describable Tex-
tures Dataset (DTD) (Cimpoi et al., 2014), and Country-211 (Radford et al., 2021). Followed Li et
al. (Li et al., 2021), we also evaluate our CPT on one more challenging datasets with inner domain
gap, i.e., Domainnet-10 (Peng et al., 2019). Domainnet-10 contains top-10 classes based on data
amount in DomainNet which has 345 categories. For each dataset, we use specific prompts to the
mentioned in Sec. 3.3 to better adapt the model to domain-specific knowledge. And we utilize the
official category names provided in corresponding datasets to complete the template prompt. Tab. 12
shows the details of each dataset, including train size, test size and used prompts. All datasets for
VLMs are used in the torchvision version, except for Domiannet-10 (Li et al., 2021) dataset and
EuroSAT (Helber et al., 2019) dataset, which are in the same version with FedBN (Li et al., 2021).
Licenses for datasets are also specified in Tab. 12. N/A indicates that there is no explicit license on
the official website and the we are reaching out to original authors of the assets.

C IMPLEMENTATION DETAILS

All experiments are conducted with PyTorch toolkit (Paszke et al., 2019) on NVIDIA A100-40G
GPU. For black-box tuning of LLM, we use LLAMA2-7B as the small white-box model (i.e., Ms),
and use LLAMA2-13B as the large black-box model (i.e., Ml). For the training stage, we adopt
LoRA to fine-tune the small white-box model Ms(·;θp

s ) for computational efficiency. Note that the
large black-box model θpl and another small white-box θps are only responsible for providing output
logits for optimization objectives, and their own parameters are frozen throughout the entire training
stage. For training configurations, AdamW is used as the optimizer, with a initial learning rate of
1e-4, batch size is set to 1 and model is trained for 2 epochs. For black-box tuning of VLM, we
use CLIP with ResNet-50 as the small white-box model (i.e., Ms), and use CLIP with ViT-B/16
as the large black-box model (i.e., Ml). For the training stage, we fully fine-tune the whole image
encoder and text encoder of the white-box model Ms(·;θp

s ). For training configurations, Adam is
used as the optimizer, with a momentum of 0.9 and weight decay of 0.001, batch size is set to 128
and model is trained for 300 epochs. For all the experiments, we set αtrain = αtest = 1 by default.

D BROADER IMPACTS

Positive Impact: Fairness in AI. CPT aims to tune a black-box model with smaller ”proxies” con-
sistently, but it can also serve as a fine-tuning method for smaller models guided by large pretrained
models. Large-scale pretraining is more often on general knowledge than domain-specific knowl-
edge, so downstream tasks barely benefit from large-scale pretrained models without computation-
ally expensive fine-tuning. It is even less possible when large pretrained model is only accessible as
black-boxes. CPT fills the gap by joining the strength of large-scale general knowledge pretraining
and small-scale task-specific fine-tuning. From this perspective, CPT brings positive social impact
in that it finds a way of using general pretrain model to elevate task-specific fine-tuning of smaller
models. It is of great significance for individuals, organizations and regions without resources to
fine-tune large pretrain models for their own well-being, thus improving fairness of AI.

Negative Impact: Potential Misuse. Black-box language models, compared with white-box ones,
are more difficult to tune for specific tasks. While this limits the application of black-box language
models, it also prevents them from being misused to generate malignant content. However, the way
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(a) Oxford-IIIT Pets (b) Stanford Cars

α
tr
a
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α
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a
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αtest αtest

Figure 3: Variation of the accuracy versus the widely varied αtrain and αtest on (a) Oxford-IIIT
Pets (b) and Stanford Cars .

CPT tunes a black-box model formulates a by-pass around inaccessible parameters to output logits,
making the output logits as volunrable to harmful content as it is adjustable.

Harm control methods like gated release of models, API monitoring for misuse, limitation on access
frequency to prevent API-based CPT should be considered to minimize negative social impacts.

E EXTENDED RESULTS

In addition to the partial results shown in Fig. 2, we demonstrate the extensive results of CPT
on VLMs for Oxford-IIIT Pets dataset and Stanford Cars dataset. To demonstrate the impact of
”consistency”, i.e.the extent to which αtrain and αtest are close to each other. To better demonstrate
the whole pattern, we sample αtrain and αtest from 0.4 to 4 with an inverval of 0.4 for Oxford-IIIT
Pets dataset, and αtrain and αtest from 0.2 to 3.0 with an interval of 0.2 to 3.0 for Stanford Cars
dataset. Both matrices of results in Fig. 3 are obtained with the same setup with results in Tab. 2
except for αtrain and αtest. The extended results demonstrate the same pattern with that in Sec. 4,
i.e., the performance of the models are better when αtrain and αtest are closer and formulate a
”consistency”.
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Table 11: Details of each dataset of fine-tuning black-box LLM task.

Dataset Train size Test size Prompt License

TriviaQA (Joshi et al., 2017) 87,622 11,313
Question: {question}

Answer: {prediction}
Apache 2.0

ARC-challenge (Clark et al., 2018) 1,119 299

Question: {question}
Please choose:
A. {option A}

B. {option B}

C. {option C}

D. {option D}

Answer: {prediction}

Apache 2.0

commonsenseQA (Talmor et al., 2018) 9,741 1,221

Question: {question}
Please choose:
A. {option A}

B. {option B}

C. {option C}

D. {option D}

E. {option E}

Answer: {prediction}

N/A

COLA (Warstadt et al., 2019) 8,551 1,043

Sentence: {sentence}
Question: Is this sentence
linguistically acceptable?
(Yes or No)

Answer: {prediction}

N/A

MRPC (Dolan & Brockett, 2005) 3,527 387

Sentence 1: {sentence 1}

Sentence 2: {sentence 2}
Question: Are these two sentences
expressing the same meaning?
(Yes or No)

Answer: {prediction}

N/A

AG-News (Zhang et al., 2015) 120,000 7,599

Given the following
news article: {sentence}
Question: what category does
this article belong to?
Please choice:
A. {option A}

B. {option B}

C. {option C}

D. {option D}

Answer: {prediction}

N/A

ALMA-Human-Parallel (Xu et al., 2023) 121,000 1000

”cs”: ”Osmadvacetiletý šéfkuchař
nalezen mrtev v obchodě v
San Francisku”,
”en”: ”28-Year-Old Chef Found
Dead at San Francisco Mall”

N/A
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Table 12: Details of each dataset of fine-tuning black-box VLM task.
Dataset Train size Test size Prompt License

DomainNet-10 (Peng et al., 2019) 18,278 4,573 A photo of a [CLASS] . N/A

Flowers-102 (Nilsback & Zisserman, 2008) 1,020 6,149 A photo of a [CLASS] , a type of flower. N/A

CIFAR-10 (Krizhevsky et al., 2009) 50,000 10,000 A photo of a [CLASS] . N/A

EuroSAT (Helber et al., 2019) 13,500 8,100 A centered satellite photo of [CLASS] . MIT License

Stanford Cars (Krause et al., 2013) 8,144 8,041 A photo of a [CLASS] . N/A

Oxford TIII Pets (Parkhi et al., 2012) 3,680 3,669 A photo of [CLASS] , a type of pet. CC BY-SA 4.0

DTD (Cimpoi et al., 2014) 1,880 1,880 A photo of a [CLASS] texture. N/A

Country-211 (Radford et al., 2021) 31,650 21,100 A photo I took in [CLASS] . MIT License
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