
Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

Craftium: Bridging Flexibility and Efficiency for Rich
3D Single- and Multi-Agent Environments

Mikel Malagón1, Josu Ceberio 1, Jose A. Lozano1,2

{mikel.malagon,josu.ceberio,ja.lozano}@ehu.eus

1University of the Basque Country UPV/EHU
2Basque Center for Applied Mathematics (BCAM)

Abstract

Advances in large models, reinforcement learning, and open-endedness have acceler-
ated progress toward autonomous agents that can learn and interact in the real world.
To achieve this, flexible tools are needed to create rich, yet computationally efficient,
environments. While scalable 2D environments fail to address key real-world chal-
lenges like 3D navigation and spatial reasoning, more complex 3D environments are
computationally expensive and lack features like customizability and multi-agent sup-
port. This paper introduces Craftium, a highly customizable and easy-to-use platform
for building rich 3D single- and multi-agent environments. We showcase environments
of different complexity and nature: from single- and multi-agent tasks to vast worlds
with many creatures and biomes, and customizable procedural task generators. Bench-
marking shows that Craftium significantly reduces the computational cost of alterna-
tives of similar richness, achieving +2K steps per second more than Minecraft-based
frameworks. 1

1 Introduction

Progress in Reinforcement Learning (RL) (Sutton & Barto, 2018), embodied AI (Paolo et al., 2024),
and open-ended agents (Hughes et al., 2024) is inherently tied to the environments where agents are
trained, evaluated, and analyzed. Each new insight or advancement in the field is supported by an
environment that enables its emergence and study. A well-known example is the Arcade Learning
Environment (ALE) (Bellemare et al., 2013), which undoubtedly contributed to the advancement of
the RL field, marking many of its most important milestones. To name a few: the introduction of the
Deep Q-Networks (Mnih et al., 2013), the “infamously difficult Montezuma’s Revenge” (Bellemare
et al., 2016) that inspired many exploration strategies (Ostrovski et al., 2017; Burda et al., 2019;
Badia et al., 2020b), and the first time an agent outperformed humans in all Atari benchmarks (Badia
et al., 2020a).

However, as observed throughout the literature, research in these areas is bound to the challenges the
employed environments introduce. The researcher often faces a dilemma between computationally
efficient but simplistic environments or substantially slower but richer environments. For instance,
Continual Reinforcement Learning (CRL) (Abel et al., 2023), Unsupervised Environment Design
(UED) (Garcin et al., 2024), and Multi-Agent RL (MARL) (Ying et al., 2023), are greatly affected
by the efficiency of the employed environments as they require learning from many tasks or agents.
Thus, in these works, experiments are often limited to simple environments as a consequence of
the computational cost of employing more complex alternatives (Rigter et al., 2024; Malagon et al.,
2024; Rutherford et al., 2024). For example, Craftax relies on 2D grids (Matthews et al., 2024),

1 Code available at https://github.com/mikelma/craftium.

https://github.com/mikelma/craftium

Reinforcement Learning and Video Games Workshop 2025

while OMNI-EPIC (Faldor et al., 2025) employs 3D environments of substantially limited diversity
compared to alternatives like MineDojo (Fan et al., 2022) or Habitat 3.0 (Puig et al., 2024).

Conversely, works on rich and complex environments (Grbic et al., 2021; Earle et al., 2024; Prasanna
et al., 2024; Raad et al., 2024) rely on fully featured video games that have a high computational
cost and are closed-source. The best-known of such platforms is Minecraft, which has inspired
several single-agent environments and benchmarks over the years (Johnson et al., 2016; Guss et al.,
2019; Fan et al., 2022). However, Minecraft is a fully featured and complex 3D game, which makes
it substantially more inefficient than simpler alternatives (Wydmuch et al., 2019; Matthews et al.,
2024). Furthermore, its closed-source nature greatly limits its flexibility, hindering its application to
problems beyond “classic” RL, like CRL, MARL, and UED.

Another important issue that especially affects research in these areas is the lack of flexibility in
the environments. Commonly used environments offer no customization or limited possibilities,
often restricted to a set of predefined parameters, such as difficulty level or the number of ene-
mies. Among others, these environments include: ALE (Machado et al., 2018), MineRL (Guss
et al., 2019), ProcGen (Cobbe et al., 2020), MineDojo (Fan et al., 2022), Crafter (Hafner, 2022),
and Craftax (Matthews et al., 2024). The lack of flexibility hinders the ability to analyze specific
behavior of agents, obstructing algorithmic comparison beyond pure performance benchmarking,
which has been shown to be insufficient for RL (Jordan et al., 2024). Although flexible platforms
that allow the creation of new and diverse environments exist, these fall into 2D worlds (Bamford
et al., 2020; Chevalier-Boisvert et al., 2023; Matthews et al., 2024) or depend on complex Domain
Specific Languages (DSL) that make their implementation difficult, while still not being 3D, as is
the case with VizDoom (Wydmuch et al., 2019) and MiniHack (Samvelyan et al., 2021).

In this paper, we present Craftium, an easy-to-use platform for creating rich and efficient 3D envi-
ronments for autonomous agent research. Unlike most complex environment platforms, which are
based on video games (e.g., VizDoom is based on ZDoom and MiniHack on NetHack), Craftium is
based on a game engine: Luanti (Luanti Team, 2025b). The integration with our modified version
of the engine (see Appendix B) allows the easy creation of complex voxel environments2 using the
powerful and greatly documented Lua Modding API (Luanti Team, 2025a) instead of much less
popular DSLs, as employed in ZDoom or MiniHack. Lua (Ierusalimschy, 2006) is a Python-like,
easy-to-use and understand, mature, and efficient programming language used in many popular tools
and projects, e.g., Roblox, World of Warcraft, and Neovim. In Craftium, Lua is used to expose the
Luanti engine, allowing vast possibilities for developing custom environments. Moreover, Luanti is
open-source and has a vibrant community that has created many games and assets that can be used
in Craftium environments (Ward, 2025a), significantly reducing the development cost of complex
scenarios. For instance, all the environments shown in Section 3.5 have been implemented in less
than 160 lines of code (comments and whitespace included). These environments, later described
in Section 3.5, showcase the versatility of the presented framework, from RL and MARL tasks of
different nature, customizable procedural environment generators for CRL, UED, and meta-RL (Yu
et al., 2020; Rimon et al., 2024) to gigantic procedurally generated open worlds (64K×64K×64K
blocks) for research on embodied AI (Paolo et al., 2024) and open-ended agents (Wang et al., 2023).
Beyond being flexible, feature-rich, and developer-friendly, we show that Craftium environments
run 38× faster than alternatives based on the original Minecraft game, the only platforms that of-
fer similar complexity and richness. Craftium also supports running asynchronous environments
in parallel, achieving more than 12K steps per second in this setup. Furthermore, Craftium is the
first framework that allows the creation of vast 3D open worlds while supporting multi-agent set-
tings, opening the door to new research lines. Finally, Craftium implements the popular Gymnasium
(Towers et al., 2024) and PettingZoo (Terry et al., 2021) interfaces, the modern standard for RL and
MARL research respectively, making it compatible with many other libraries and projects (Raffin
et al., 2021; Huang et al., 2022b; Serrano-Muñoz et al., 2023).3 Finally, Craftium is fully open

2Voxel games use 3D blocks (voxels) to construct and represent the world, allowing players to modify the environment
by adding or removing blocks.

3These interfaces are general and can be used for learning paradigms beyond RL (e.g., evolutionary algorithms).

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

Figure 1: Overview of Craftium’s internal architecture. Components denoted with ×N are repeated
according to the number of agents (one or more).

source and includes extensive online documentation with many guides, usage examples, tutorials, a
detailed reference, and ready-to-use scripts.1

2 Background: Luanti

Craftium is based on our modified version of the Luanti game engine (refer to Appendix B for details
and the list of modifications). Luanti (Luanti Team, 2025b) is a well-known open-source voxel game
engine launched for the first time in 2011 that is currently being developed by a vibrant community.
Unlike most game engines, Luanti supports modding at its core through its Lua API, allowing fine-
grained and real-time access and modification of the internal state of the engine (examples can be
found in Section 3.2 and Appendix I). This enables extensive and programmatic customization of
its behavior, facilitating the creation, modification, and extension of existing games (environments)
using its powerful Modding API (Luanti Team, 2025a; Ward, 2025b). Additionally, Luanti is im-
plemented in C++, a widely adopted programming language known for its high efficiency. Finally,
Luanti is supported by an active community that has created hundreds of open, free-to-use games
and mods (Ward, 2025a) that are seamlessly loaded in Craftium. For example, community mods are
employed in all the environments from Section 3.5.

3 Craftium

Craftium follows the architecture illustrated in Figure 1. It consists of two main components: the
Luanti engine and the Python environment interface. This interface is the bridge between the envi-
ronment and the agents. Internally, it handles a communication channel per agent, which connects to
Luanti, sending and receiving data such as observations, actions, and rewards. On the other hand, the
Luanti server executes the logic of the environment, specified by a file characterizing the 3D world
and a script (i.e., mod) that defines its behavior. The Luanti server also synchronizes its clients (one
per agent), which handle rendering and communication tasks with the Python library. Finally, note
that the original version of Luanti does not support these features, but its open-source nature allowed
modifying its source code to support this architecture (see Appendix B).

In the following, Sections 3.1, 3.2, and 3.3 describe Craftium environments, the creation process,
and the interface to use them. Respectively, Section 3.4 compares the performance of Craftium with
other frameworks. Finally, Section 3.5 showcases the presented framework as a general-purpose
environment creation tool across a variety of use cases and fields concerning autonomous agents.

3.1 Observations, Actions, and Rewards

Observations. In Craftium, observations are images from the agent’s point of view. Observations
are highly customizable (e.g., size, number of channels, etc.) and can vary between environments.
Moreover, Craftium supports many popular techniques, such as frame skipping and frame stacking,
that are commonly used throughout the literature (Huang et al., 2022a).

Reinforcement Learning and Video Games Workshop 2025

1 name = craftium_mod
2 description = My env.
3 depends = default

Figure 2: Example configuration
file of a mod implementing a
Craftium environment.

1 core.register_on_dignode(function(ps, block)
2 if string.find(block["name"], "tree") then
3 set_reward_once(1.0, 0.0)
4 end
5 end)
6 core.register_on_dieplayer(function(obj, rn)
7 set_termination()
8 end)

Figure 3: Lua script (i.e., mod) implementing basic environ-
ment mechanics.

Actions. By default, actions are composed of a combination of 21 keyboard actions and a tuple
that defines the movement of the mouse, which is mainly used to control the camera. Keyboard-
related actions are binary variables with a value of 1 if the key is pressed, and 0 otherwise. The
movement of the mouse is defined by the tuple (∆x,∆y) ∈ [−1, 1]2, where ∆x < 0 moves the
mouse to the left in the horizontal axis and ∆x > 0 to the right, similarly, ∆y < 0 moves the mouse
downwards in the vertical axis and ∆y > 0 moves it upwards. Thus, if ∆x = ∆y = 0, the mouse
is not moved. See Appendix C.1 for a detailed description of all the possible actions supported in
Craftium.

The default action space is designed to be versatile, covering as many use cases as possible: from
tasks with complex action sequences (e.g., manual inventory control) to simple navigation environ-
ments with a couple of actions (e.g., forward and lateral movement). However, the default action
space is overly complex for most tasks: the number of possible keyboard action combinations in the
default space is 221. Therefore, Craftium allows reducing the action space to the minimal subset
required to solve the task at hand, substantially simplifying the learning process of the agent (see
Appendix C.2).

Rewards. In Craftium, reward functions are defined using Lua scripts (mods are discussed in the
next section). Craftium provides a comprehensive set of tools for this purpose, including an extended
version of Luanti’s Modding API. This functionality is implemented in a modified version of the
engine developed specifically for this work, which incorporates additional functions for setting and
retrieving reward values and episode termination flags. Some of these functions are shown in the
example mod from Section 3.2, while the additional API functions for defining RL environments
are detailed in Appendix D. The complete list of modifications to the original Luanti engine can be
found in Appendix B.

3.2 Creating Custom Environments

Creating a Craftium environment implies two steps: 1 generating a world: a database with all the
information about the virtual environment where the agent will be placed and will interact with; and
2 defining the behavior of the environment, such as the reward function and conditions for episode
termination. The following lines describe these steps in detail.

1 Luanti offers a vast range of possibilities for generating worlds. However, creating a world can
be as simple as a few clicks when using one of the many predefined map generators.4 If finer control
over the map generation process is needed, maps can be created using custom scripts. The procedural
environment generator presented in Section 3.5.4 is an example of a more complex custom map
generation process.

2 The next step is to define the behavior of the environment. This is done via mods: user-defined
scripts that modify and extend the game engine’s behavior, allowing for the creation of custom
environments, mechanics, and interactions within the 3D world. A mod has a minimum of two files:
a configuration file and a Lua script.

4Map generators are documented at: https://dev.luanti.org/mapgen.

https://dev.luanti.org/mapgen

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

The configuration file contains the mod’s metadata. It commonly includes the mod’s name, a de-
scription, and the list of dependencies (see Figure 2). The Lua script is where the environment’s
mechanics are implemented. Figure 3 illustrates an example script that defines the task of chop-
ping as many trees as possible (presented in Section 3.5.1). Line 1 registers a callback function
that is called every time the player (i.e., agent) digs a block. In line 2, this function checks if the
dug block is part of a tree; if the condition is met, line 3 sets the reward to 1 for that timestep
(set_reward_once and other RL related functions are described in Appendix D). Line 7 regis-
ters another callback function. In this case, the function is run every time the player dies and calls
another function that terminates the episode, in line 8.

Even basic mods, such as the presented example, can be used to generate a wide range of environ-
ments. Furthermore, advanced community-made extensions and games can be easily integrated into
Craftium, significantly expanding its potential. Section 3.5 highlights some of these possibilities.
Refer to Appendix J and to the online documentation1 for detailed instructions on creating Craftium
environments. Finally, note that the creation of Luanti mods is outside the scope of this paper, as
comprehensive resources are already available (Luanti Team, 2025a; Ward, 2025b).

3.3 Interface

1 import gymnasium as gym
2 import craftium
3

4 env = gym.make("Craftium/Room-v0")
5 obs, inf = env.reset()
6 for t in range(5000):
7 a = agent(obs)
8 obs, r, tm, tc, inf = env.step(a)
9 if tm or tc:

10 obs, inf = env.reset()
11 env.close()

Figure 4: Python code illustrating the interaction
loop between the agent and a Craftium environ-
ment using the Gymnasium interface.

Once created, Craftium environments are used
via the Gymnasium (Towers et al., 2024)
(single-agent) or PettingZoo (Terry et al.,
2021) (multi-agent) interfaces. Both inter-
faces are open-source and have become the
standard interface for RL and MARL envi-
ronments, providing a unified abstraction over
environments that enables interoperability be-
tween environments and methods. Just by im-
plementing these interfaces, Craftium is al-
ready compatible with many existing tools and
projects to train, test, develop, and analyze
many algorithms, including but not limited to
stable-baselines3 (Raffin et al., 2021),
Ray RLlib (Moritz et al., 2018), CleanRL
(Huang et al., 2022b), and skrl (Serrano-Muñoz et al., 2023).

Figure 4 illustrates an example using the Gymnasium (single-agent) interface. Note that, Petting-
Zoo employs a very similar interface described in Appendix E. Line 4 loads an example Craftium
environment by name (see Section 3.5). Line 6 initiates an episode, obtaining the first observation
and a Python dictionary with additional information (e.g., elapsed time). Lines 7-12 implement the
agent-environment interaction loop. In line 8, the agent selects an action based on the current obser-
vation. The line 9 executes the action specified by the agent, resulting in an observation, a reward,
a truncation flag, a termination flag, and a new information dictionary, respectively. The truncation
flag indicates if the maximum number of timesteps allowed by the environment is reached, while the
termination flag determines if the episode has reached a terminal state (e.g., the player dies). Both
flags are checked in line 11, and if one or both of them are true, the episode is restarted in line 12.
Finally, the last line closes the environment after the main loop ends.

3.4 Performance

As stated in the introduction, computationally efficient environments are key for re-
search on autonomous agents; as such, it has been a focal point of Craftium’s develop-
ment. Figure 5 compares the steps (i.e., interactions) per second obtained by Craftium
to VizDoom and MineDojo, well-known environment creation platforms from the litera-

Reinforcement Learning and Video Games Workshop 2025

ture. Results show the average of 5 runs in 3 different environments per framework,
on a machine with a single NVIDIA A5000 GPU and an Intel Xeon Silver 4309Y CPU.

MineDojo VizDoom Craftium
0

500

1000

1500

2000

2500

S
te
p
/s

Figure 5: Average steps per
second performance compar-
ison.

Craftium achieves very competitive results compared to VizDoom,
even though VizDoom is based on ZDoom, which is not 3D per
se, discussed in Appendix G. Comparing Craftium’s performance
to MineDojo’s, we observe that the presented framework achieves
+2670 steps per second more. Beyond the single-environment
setup, running Craftium environments in parallel notably increases
their throughput as shown in Appendix F, reaching over 12K steps
per second on the same hardware. By significantly reducing the
computational requirements, Craftium enables researchers to con-
duct large-scale experiments on complex scenarios within their de-
sired domain, supporting advancements in emerging (but especially
sensitive to computational cost) areas like CRL, lifelong learning,
UED, and open-ended agents. Further details on the benchmark and
extended analysis of the results are provided in Appendix F.

3.5 Illustrative Examples

Craftium is a platform that allows the development of fast and rich 3D environments for all research
subfields of autonomous agents, such as RL, MARL, embodied AI, meta-learning, continual RL, and
open-endedness. Due to the page limitation, this section highlights Craftium’s potential across a few
of its vast number of possible use cases: single and multi-agent RL tasks (Sections 3.5.1 and 3.5.2),
open-world environments for large multimodal model-based embodied agents (Section 3.5.3), and
environment generators for CRL (Section 3.5.4). The aim is to demonstrate the framework’s ca-
pabilities and provide accessible, well-documented foundations for building custom environments
tailored to specific research needs. Note that these examples are merely illustrative and are not to be
understood as benchmarks.

3.5.1 Example 1: Single-Agent RL

This section provides examples of using Craftium to create single-agent environments for RL. We
implement five tasks of diverse nature: simple environments for testing RL algorithms, sparse re-
ward and exploration scenarios, and a challenging survival task. For simplicity, all tasks share the
same 64× 64 pixel RGB image observation space. Moreover, the default action space described in
Section 3.1 is simplified to only use the necessary actions to solve each task (see Appendix C.2).
Figures and extended descriptions of the environments are provided in Appendix H.1.

To complement this example, Figure 6 demonstrates that environments of varying difficulty levels
can be designed within Craftium. The figure shows the results of the Proximal Policy Optimization
(PPO) algorithm (Schulman et al., 2017) in two of the presented tasks. Results in Figure 6a indicate
that the ChopTree task can be successfully solved, chopping over 6 trees per episode (+1 for every
chopped tree). In SpidersAttack, agents are rewarded +1 for every defeated spider, where an addi-
tional spider appears in every round (until 5 spiders). As can be seen in Figure 6b, the final episodic
return in this task is lower than 1.5, showing that the agents only reach the second of five rounds.
See Appendix H.1 for further details and experimental results in the rest of the tasks.

3.5.2 Example 2: Multi-Agent RL

This section showcases Craftium’s multi-agent capabilities by implementing a MARL environment:
a one vs one multi-agent combat environment. Like the tasks from the previous section, this envi-
ronment employs an RGB image observation space and a simplified discrete action space. Agents
are rewarded (+1) when punching other agents and penalized for damage (-0.1). To illustrate an
example, we train the agents using self-play (Crandall & Goodrich, 2005), a popular method for this
type of competitive scenario (Silver et al., 2017; 2018; Jiang et al., 2024). Results are presented in

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

Figure 6c, where the policy has been trained to play against itself using PPO. The increasing episodic
return curve in the figure shows how the policy learns to fulfill the task. Refer to Appendix H.2 for
additional figures and more details on the environment and the learning method.

E
p
is

o
d
ic

 r
e
tu

rn

Steps
0.0 0.2 0.4 0.6 0.8 1.0

×106

0

2

4

6

8

(a) ChopTree.

E
p
is

o
d
ic

 r
e
tu

rn

Steps
0.0 0.2 0.4 0.6 0.8 1.0

×106

0.25

0.50

0.75

1.00

1.25

(b) SpidersAttack.

E
p

is
o
d

ic
 r

e
tu

rn

Steps

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0
×106

(c) Multi-Agent Combat.

Figure 6: Episodic return curves obtained by PPO in the single-agent ChopTree and SpidersAttack
tasks, and the multi-agent MACombat environment. Results aggregate 5 different runs per task:
average is denoted with lines and the standard error with the contour.

3.5.3 Example 3: Open-World Environments

This section introduces an open-world environment as an example of a complex scenario for em-
bodied AI. The environment employs the open-source VoxeLibre project (Fleckenstein et al., 2025)
for Luanti, which provides a rich and vast environment with many complex interactions, differ-
ent biomes, animals, plants, or hostile creatures. This section also serves as an example of how
community-made games in Luanti can be integrated into Craftium.

Figure 8: Skills tree of the open-world environ-
ment in Section 3.5.3 (see Appendix H.3).

Leftmost and center images in Figure 7 il-
lustrate part of the vast and diverse virtual
world generated for this environment. Figure 8
presents the skills tree developed for this envi-
ronment, showing the hierarchical sequence of
skills that the agent can develop to reach more
complex goals. Every time the agent unlocks a
skill of the tool branch (e.g., collect two wood
blocks), it receives a reward and new tools (e.g.,
wood pickaxe and sword), while the objective switches to the next skill (e.g., collect two stone
blocks). Regarding the hunt and defend branches, the agent receives a reward according to the
difficulty of hunting the animal or defeating the monster (refer to Appendix H.3 for details).

To complement this example, the rightmost plot in Figure 7 compares the achievements of
PPO+LSTM and an agent based on the open-source large multimodal model LLaVa (Liu et al.,
2024a) version 1.6 by Liu et al. (2024b) (with no finetuning to this specific task). Results show
that the LLaVa-Agent unlocks the collect wood and stone stages, while PPO+LSTM only com-
pletes the first one. Both methods successfully hunt animals and fight some monsters. This example
demonstrates Craftium’s usage beyond RL, analyzing and evaluating the ability of large multimodal
model-based agents to leverage world knowledge to approach complex open-world tasks. Additional
information and details are provided in Appendix H.3.

Figure 7: The leftmost picture shows an overview of the map for the open-world environment ex-
ample. The rightmost plot shows the results of PPO+LSTM and LLava-Agent (zero-shot) in terms
of average and best cumulative reward values across 10 repetitions per method (see Appendix H.3).

Reinforcement Learning and Video Games Workshop 2025

(a)

0.00 0.25 0.50 0.75 1.00
Step 1e6

0.0

0.2

0.4

0.6

0.8

E
p

is
o
d
ic

 R
e
tu

rn

FS FT-L2

(b)
Figure 9: Images in (a) show examples of the procedurally generated environments from Sec-
tion 3.5.4. From left to right: the dungeon’s top view, and two observations from the agent’s per-
spective. The plot in (b) shows the episodic return curves of FS and FT-L2 in the fourth CRL task.

3.5.4 Example 4: Procedural Environment Generation for CRL

This section demonstrates Craftium’s versatility by implementing a procedural environment gener-
ator that automatically constructs a sequence of increasingly difficult tasks. While such a genera-
tor has broad applications, including meta-RL (Dennis et al., 2020), open-endedness (Wang et al.,
2023), and UED (Rigter et al., 2024), we focus on a use case in CRL (Abel et al., 2023). In CRL,
agents interact with a sequence of environments, each constrained by a timestep budget, and are
expected to leverage prior experience to solve new tasks efficiently. Existing approaches typically
rely on manually designed task sequences, which limits their scalability and diversity, and rely on
repetitive patterns to extend them (e.g., Wołczyk et al. (2021) and Tomilin et al. (2023)). In contrast,
our generator enables the automatic creation of diverse task sequences with controlled difficulty,
showing how Craftium could be used to overcome these limitations. Conditioned on some input
parameters, the generator procedurally constructs labyrinthic 3D dungeons populated with hostile
enemies. The agent has to navigate these dungeons, survive, and reach its objective, a diamond.
Rewards are assigned as +10 for collecting the diamond, +0.5 for defeating an enemy, and 0 other-
wise. In this example, we generate 10 environments of increasing difficulty. Figure 9a illustrates a
generated environment, while Appendix H.4 provides further details on the generator.

To complement this example, we train two agents: one from scratch on each task in the sequence
(FS) and another that continuously fine-tunes the previously learned model using L2 regularization
(FT-L2), a common baseline in CRL (Gaya et al., 2023; Wołczyk et al., 2024). As shown in Fig-
ure 9b and Appendix H.4 (complete results in the appendix), FT-L2 significantly outperforms the
from-scratch baseline in several environments, demonstrating forward knowledge transfer across the
generated tasks.

4 Conclusion

This work presents Craftium, an easy-to-use and flexible framework for creating rich and fast 3D en-
vironments. Craftium’s versatility is showcased in Section 3.5, which shows its application to train
and analyze single- and multi-agent RL algorithms, implement open-world environments for com-
plex embodied agent tasks, and procedurally generate environments for CRL. Unlike many alterna-
tives built on top of existing video games, Craftium is based on Luanti, a fully-featured open-source
game engine. This analogy is also translated to the presented framework, as it is not a benchmark but
a general-purpose tool for creating environments. By leveraging the extensive and well-documented
Luanti Modding API (Luanti Team, 2025a), Craftium enables nearly limitless possibilities for the
development of custom single- and multi-agent environments. Additionally, Luanti has a vibrant
community that has produced numerous games and extensions (Ward, 2025a), which can be easily
integrated into Craftium environments. Moreover, its efficient implementation significantly reduces
the computational cost of alternatives of comparable richness. As shown in Section 3.4, Craftium
achieves over 2K timesteps per second more than MineDojo, and performs competitively with Viz-
Doom, even though VizDoom is not fully 3D. Craftium also implements the widely-adopted Gym-
nasium (Towers et al., 2024) and Petting Zoo (Terry et al., 2021) interfaces, making it compatible
with numerous existing tools and projects, such as Huang et al. (2022b) and Raffin et al. (2021).
Finally, Craftium is open source and provides extensive documentation, including many practical
examples from which users can build environments for their particular research needs.

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

Acknowledgments

We are grateful to Jose A. Pascual for the technical support and to Jon Vadillo and Ainhize Bar-
rainkua for reading preliminary versions of the paper. We also thank the Luanti developers and
community for their ongoing efforts to maintain and continuously improve the engine and its ecosys-
tem.

Mikel Malagón acknowledges a predoctoral grant from the Spanish MICIU/AEI with code
PREP2022-000309, associated with the research project PID2022-137442NB-I00 funded by the
Spanish MICIU/AEI/10.13039/501100011033 and FEDER, EU. Josu Ceberio has been partially
supported by the Spanish MICIU/AEI/10.13039/PID2023-149195NB-I00.

This work is also funded through the BCAM Severo Ochoa accreditation CEX2021-001142-
S/MICIN/AEI/10.13039/501100011033; and the Research Groups 2022-2025 (IT1504-22), the
BERC 2022-2025 program, and Elkartek (KK-2024/00030) from the Basque Government.

References
David Abel, André Barreto, Benjamin Van Roy, Doina Precup, Hado P van Hasselt, and Satinder

Singh. A definition of continual reinforcement learning. In Proceedings of the 2023 Advances in
Neural Information Processing Systems (NeurIPS), 2023.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In Proceedings of the 2020 International Conference on Machine Learning (ICML), 2020a.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, et al. Never
give up: Learning directed exploration strategies. In Proceedings of the 2020 International Con-
ference on Learning Representations (ICLR), 2020b.

Chris Bamford, Shengyi Huang, and Simon Lucas. Griddly: A platform for ai research in games.
arXiv preprint arXiv:2011.06363, 2020.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, et al. Deepmind Lab. arXiv preprint
arXiv:1612.03801, 2016.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Proceedings of the 20216 Advances
in Neural Information Processing Systems (NeurIPS), 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning Envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, 2013.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In Proceedings of the 2019 International Conference on Learning Representations
(ICLR), 2019.

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
SpatialVLM: Endowing vision-language models with spatial reasoning capabilities. In Proceed-
ings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2024.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modu-
lar & customizable reinforcement learning environments for goal-oriented tasks. arXiv preprint
arXiv:2306.13831, 2023.

Reinforcement Learning and Video Games Workshop 2025

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural genera-
tion to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2020.

Jacob W Crandall and Michael A Goodrich. Learning to compete, compromise, and cooperate in
repeated general-sum games. In Proceedings of the 2005 International Conference on Machine
Learning (ICML), pp. 161–168, 2005.

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Kiana Ehsani, Jordi Salvador, Winson
Han, Eric Kolve, Aniruddha Kembhavi, and Roozbeh Mottaghi. ProcTHOR: Large-scale embod-
ied AI using procedural generation. Proceedings of the 2022 Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment de-
sign. In Proceedings of the 2020 Advances in Neural Information Processing Systems (NeurIPS),
2020.

Sam Earle, Filippos Kokkinos, Yuhe Nie, Julian Togelius, and Roberta Raileanu. Dreamcraft: Text-
guided generation of functional 3d environments in minecraft. In Proceedings of the 2024 Inter-
national Conference on the Foundations of Digital Games (FDG), 2024.

Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. OMNI-EPIC: Open-endedness via
models of human notions of interestingness with environments programmed in code. In Proceed-
ings of the 2025 International Conference on Learning Representations (ICLR), 2025.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. MineDojo: Building open-ended embodied
agents with internet-scale knowledge. Proceedings of the 2022 Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Lizzy Fleckenstein, Wuzzy, davedevils, and contributors. VoxeLibre, a voxel-based sandbox game
for luanti. https://git.minetest.land/VoxeLibre/VoxeLibre, 2025. Accessed:
2025-05-21.

Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Ju-
lian De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, Kuno Kim,
Elias Wang, Michael Lingelbach, Aidan Curtis, Kevin Tyler Feigelis, Daniel Bear, Dan Gutfre-
und, David Daniel Cox, Antonio Torralba, James J. DiCarlo, Joshua B. Tenenbaum, Josh Mc-
dermott, and Daniel LK Yamins. ThreeDWorld: A platform for interactive multi-modal physical
simulation. In Proceedings of the 2021 Advances in Neural Information Processing Systems
(NeurIPS) Datasets and Benchmarks Track, 2021.

Samuel Garcin, James Doran, Shangmin Guo, Christopher G Lucas, and Stefano V Albrecht.
DRED: Zero-shot transfer in reinforcement learning via data-regularised environment design. In
Proceedings of the 2024 International Conference on Machine Learning (ICML), 2024.

Jean-Baptiste Gaya, Thang Doan, Lucas Caccia, Laure Soulier, Ludovic Denoyer, and Roberta
Raileanu. Building a subspace of policies for scalable continual learning. In Proceedings of
the 2023 International Conference on Learning Representations (ICLR), 2023.

Djordje Grbic, Rasmus Berg Palm, Elias Najarro, Claire Glanois, and Sebastian Risi. Evocraft:
A new challenge for open-endedness. In Proceedings of the 2021 Applications of Evolution-
ary Computation: 24th International Conference, EvoApplications 2021, pp. 325–340. Springer,
2021.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone
Tao, Xinyue Wei, Yunchao Yao, Xiaodi Yuan, Pengwei Xie, Zhiao Huang, Rui Chen, and Hao
Su. ManiSkill2: A unified benchmark for generalizable manipulation skills. In Proceedings of
the 2023 International Conference on Learning Representations (ICLR), 2023.

https://git.minetest.land/VoxeLibre/VoxeLibre

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

William H Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela
Veloso, and Ruslan Salakhutdinov. MineRL: A large-scale dataset of Minecraft demonstrations.
In Proceedings of the 2019 International Joint Conference on Artificial Intelligence (IJCAI), 2019.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. In Proceedings of the 2022
International Conference on Learning Representations (ICLR), 2022.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and
Weixun Wang. The 37 implementation details of proximal policy optimization. In ICLR
Blog Track, 2022a. URL https://iclr-blog-track.github.io/2022/03/25/
ppo-implementation-details/.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. CleanRL: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022b.

Edward Hughes, Michael D Dennis, Jack Parker-Holder, Feryal Behbahani, Aditi Mavalankar, Yuge
Shi, Tom Schaul, and Tim Rocktäschel. Position: Open-endedness is essential for artificial super-
human intelligence. In Proceedings of the 2024 International Conference on Machine Learning
(ICML), 2024.

Roberto Ierusalimschy. Programming in Lua. Roberto Ierusalimschy, 2006.

Yuhua Jiang, Qihan Liu, Xiaoteng Ma, Chenghao Li, Yiqin Yang, Jun Yang, Bin Liang, and
Qianchuan Zhao. Learning diverse risk preferences in population-based self-play. In Proceedings
of the 2024 AAAI Conference on Artificial Intelligence, 2024.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The Malmo platform for artifi-
cial intelligence experimentation. In Proceedings of the 2016 International Joint Conference on
Artificial Intelligence (IJCAI), volume 16, pp. 4246–4247, 2016.

Scott M. Jordan, Adam White, Bruno Castro Da Silva, Martha White, and Philip S. Thomas. Po-
sition: Benchmarking is limited in reinforcement learning research. In Proceedings of the 2024
International Conference on Machine Learning (ICML), 2024.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. AI2-THOR: An interactive 3D environ-
ment for visual AI. arXiv preprint arXiv:1712.05474, 2017.

Heinrich Küttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The NetHack Learning Environment. Proceedings of the
2020 Advances in Neural Information Processing Systems, 2020.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruc-
tion tuning. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/.

Luanti Team. Luanti’s modding API reference. https://api.luanti.org/, 2025a. Ac-
cessed: 2025-05-21.

Luanti Team. Luanti’s main page. https://www.luanti.org/, 2025b. Accessed: 2025-05-
21.

Luanti Wiki. Luanti’s wiki FAQ page. https://dev.luanti.org/faq/
#is-luanti-a-clone-of-minecraft, 2025. Accessed: 2025-05-21.

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://api.luanti.org/
https://www.luanti.org/
https://dev.luanti.org/faq/#is-luanti-a-clone-of-minecraft
https://dev.luanti.org/faq/#is-luanti-a-clone-of-minecraft

Reinforcement Learning and Video Games Workshop 2025

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the Arcade Learning Environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Mikel Malagon, Josu Ceberio, and Jose A Lozano. Self-composing policies for scalable contin-
ual reinforcement learning. In Proceedings of the 2024 International Conference on Machine
Learning (ICML), 2024.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Thomas Jack-
son, Samuel Coward, and Jakob Nicolaus Foerster. Craftax: A lightning-fast benchmark for open-
ended reinforcement learning. In Proceedings of the 2024 International Conference on Machine
Learning (ICML), 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. In NIPS Deep Learn-
ing Workshop 2013, 2013.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed frame-
work for emerging AI applications. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI) of 2018, pp. 561–577, 2018.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In Proceedings of the 2017 International Conference on Machine Learning
(ICML), pp. 2721–2730. PMLR, 2017.

Giuseppe Paolo, Jonas Gonzalez-Billandon, and Balázs Kégl. Position: A call for embodied AI. In
Proceedings of the 2024 International Conference on Machine Learning (ICML), 2024.

Sai Prasanna, Karim Farid, Raghu Rajan, and André Biedenkapp. Dreaming of many worlds: Learn-
ing contextual world models aids zero-shot generalization. arXiv preprint arXiv:2403.10967,
2024.

Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan Part-
sey, Ruta Desai, Alexander Clegg, Michal Hlavac, So Yeon Min, Vladimír Vondruš, Theophile
Gervet, Vincent-Pierre Berges, John M Turner, Oleksandr Maksymets, Zsolt Kira, Mrinal Kalakr-
ishnan, Jitendra Malik, Devendra Singh Chaplot, Unnat Jain, Dhruv Batra, Akshara Rai, and
Roozbeh Mottaghi. Habitat 3.0: A co-habitat for humans, avatars, and robots. In Proceedings of
the 2024 International Conference on Learning Representations (ICLR), 2024.

Maria Abi Raad, Arun Ahuja, Catarina Barros, Frederic Besse, Andrew Bolt, Adrian Bolton,
Bethanie Brownfield, Gavin Buttimore, Max Cant, Sarah Chakera, et al. Scaling instructable
agents across many simulated worlds. arXiv preprint arXiv:2404.10179, 2024.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-Baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021.

Marc Rigter, Minqi Jiang, and Ingmar Posner. Reward-free curricula for training robust world mod-
els. In Proceedings of the 2024 International Conference on Learning Representations (ICLR),
2024.

Zohar Rimon, Tom Jurgenson, Orr Krupnik, Gilad Adler, and Aviv Tamar. MAMBA: an effective
world model approach for meta-reinforcement learning. In Proceedings of the 2024 International
Conference on Learning Representations (ICLR), 2024.

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Gardar Ing-
varsson, Timon Willi, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, Saptarashmi
Bandyopadhyay, Mikayel Samvelyan, Minqi Jiang, Robert Tjarko Lange, Shimon Whiteson,

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

Bruno Lacerda, Nick Hawes, Tim Rocktaschel, Chris Lu, and Jakob Nicolaus Foerster. Jax-
MARL: Multi-agent rl environments in JAX. In Proceedings of the 2024 NeurIPS Datasets and
Benchmarks Track, 2024.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro,
Fabio Petroni, Heinrich Küttler, Edward Grefenstette, and Tim Rocktäschel. MiniHack the planet:
A sandbox for open-ended reinforcement learning research. Proceedings of the 2021 NeurIPS
Datasets and Benchmarks Track, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Antonio Serrano-Muñoz, Dimitrios Chrysostomou, Simon Bøgh, and Nestor Arana-Arexolaleiba.
skrl: Modular and flexible library for reinforcement learning. Journal of Machine Learning Re-
search, 24(254):1–9, 2023.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of Go
without human knowledge. Nature, 550(7676):354–359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
2018.

J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan, Luis S
Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. PettingZoo: Gym
for multi-agent reinforcement learning. Proceedings of the 2021 Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Tristan Tomilin, Meng Fang, Yudi Zhang, and Mykola Pechenizkiy. Coom: a game benchmark
for continual reinforcement learning. Proceedings of the 2023 Advances in Neural Information
Processing Systems (NeurIPS), 2023.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv: Arxiv-2305.16291, 2023.

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Katerina Fragkiadaki, Zack-
ory Erickson, David Held, and Chuang Gan. RoboGen: Towards unleashing infinite data for
automated robot learning via generative simulation. In Proceedings of the 2024 International
Conference on Machine Learning (ICML), 2024.

Andrew Ward. ContentDB: a content database for Luanti mods, games, and more. https://
content.luanti.org/, 2025a. Accessed: 2025-05-21.

Andrew Ward. Luanti modding book. https://rubenwardy.com/minetest_modding_
book/en/index.html, 2025b. Accessed: 2025-05-21.

Maciej Wołczyk, Michał Zajac, Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Continual
world: A robotic benchmark for continual reinforcement learning. Proceedings of the 2021 Ad-
vances in Neural Information Processing Systems (NeurIPS), 34:28496–28510, 2021.

https://content.luanti.org/
https://content.luanti.org/
https://rubenwardy.com/minetest_modding_book/en/index.html
https://rubenwardy.com/minetest_modding_book/en/index.html

Reinforcement Learning and Video Games Workshop 2025

Maciej Wołczyk, Bartłomiej Cupiał, Mateusz Ostaszewski, Michał Bortkiewicz, Michał Zajkac,
Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Fine-tuning reinforcement learning models
is secretly a forgetting mitigation problem. In Proceedings of the 2024 International Conference
on Machine Learning (ICML), 2024.

Marek Wydmuch, Michał Kempka, and Wojciech Jaśkowski. ViZDoom Competitions: Playing
Doom from Pixels. IEEE Transactions on Games, 11(3):248–259, 2019.

Donghao Ying, Yunkai Zhang, Yuhao Ding, Alec Koppel, and Javad Lavaei. Scalable primal-dual
actor-critic method for safe multi-agent RL with general utilities. In Proceedings of the 2023
Advances in Neural Information Processing Systems (NeurIPS), 2023.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-World: A benchmark and evaluation for multi-task and meta reinforcement learn-
ing. In Proceedings of the 2020 Conference on Robot Learning (CoRL), 2020.

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

Supplementary Materials
The following content was not necessarily subject to peer review.

A Related Work

Table 1: Popular environment frameworks compared by: number of playable dimensions, proce-
dural generation capabilities, environment creation, whether environments can be programmatically
implemented (and not through predefined configuration options), Gymnasium support, multi-agent,
and open-world capabilities. We specify the language if a framework allows programmatic imple-
mentation of environments, and a red cross otherwise.

FRAMEWORK DIMS. PROC. GEN. ENV. CREAT. PROG. DEF. GYMNASIUM MARL OP. WORLD

ALE (Bellemare et al., 2013) 2D ✘ ✘ ✘ ✔ ✔ ✘
DM LAB (Beattie et al., 2016) 3D ✘ ✔ Lua ✘ ✘ ✘
AI2-THOR (Kolve et al., 2017) 3D ✔ ✔ ✘ ✘ ✔ ✘
VIZDOOM (Wydmuch et al., 2019) 2.5D ✘ ✔ ZScript ✔ ✔ ✘
MINERL (Guss et al., 2019) 3D ✔ ✘ ✘ ✘ ✘ ✔
NLE (Küttler et al., 2020) 2D ✔ ✘ ✘ ✘ ✘ ✔
PROCGEN Cobbe et al. (2020) 2D ✔ ✔ ✘ ✔ ✘ ✘
MINIHACK (Samvelyan et al., 2021) 2D ✔ ✔ des-file format ✘ ✘ ✘
MINEDOJO (Fan et al., 2022) 3D ✔ ✔ ✘ ✘ ✘ ✔
HABITAT 3.0 (Puig et al., 2024) 3D ✔ ✔ ✘ ✘ ✔ ✘
CRAFTAX (Matthews et al., 2024) 2D ✔ ✘ ✘ ✘ ✘ ✔

CRAFTIUM 3D ✔ ✔ Lua ✔ ✔ ✔

Table 1 includes a comparative overview of popular environment frameworks from the literature.5

The following lines provide a more extensive discussion of this analysis.

Most of the environments employed in the literature are adaptations of video games that were not
originally designed for research (Bellemare et al., 2013; Wydmuch et al., 2019; Guss et al., 2019;
Küttler et al., 2020). As a result, they offer limited customization, often restricted to predefined
parameters (e.g., number of enemies). Examples include ALE (Machado et al., 2018), MineRL
(Guss et al., 2019), and NLE (Küttler et al., 2020). The lack of flexibility hinders their use in var-
ious research scenarios, such as designing custom environments to study catastrophic forgetting or
analyzing specific behaviors of different learning systems. These limitations have long been rec-
ognized, and several frameworks have been proposed that allow the creation of completely new
environments. For example, VizDoom (Wydmuch et al., 2019) allows defining environments using
ZScript, and MiniHack (Samvelyan et al., 2021) employs the des-file format for the same
purpose. Both, ZScript and the des-file format are Domain Specific Langauges (DSL) tai-
lored to the games they originate from (ZDoom and NetHack, respectively). However, DSLs are
often purpose-specific and lack the flexibility and functionality of general-purpose programming
languages. For instance, the des-file format is not a programming language per se, just a
language to define NetHack levels. Additionally, DSLs often differ significantly from mainstream
programming languages, which limits their usability and adoption.

Some frameworks offer customization through the programming languages in which they are im-
plemented, avoiding the limitations of DSLs. For example, Griddly (Bamford et al., 2020) and
MiniGrid (Chevalier-Boisvert et al., 2023) offer Python APIs for creating grid-like 2D environ-
ments. While grid environments are fast to simulate, they lack the complexity and diversity of
more advanced environments like MineRL and VizDoom. Although more complex tasks could be
implemented in these frameworks, it would require significant development effort for researchers.
Regarding 3D environments, MiniWorld (Chevalier-Boisvert et al., 2023) offers a similar API to
MiniGrid but suffers from the same issues regarding the implementation of richer environments.

5Although the original ProcGen project is unmaintained, the table considers the community rewrite available at https:
//github.com/Farama-Foundation/Procgen2.

https://github.com/Farama-Foundation/Procgen2
https://github.com/Farama-Foundation/Procgen2

Reinforcement Learning and Video Games Workshop 2025

On the other hand, the field of embodied AI for robotics has emphasized the importance of visu-
ally complex scenarios (Gan et al., 2021), including popular frameworks such as AI2-THOR (Kolve
et al., 2017) and Habitat 3.0 (Puig et al., 2024). However, these works focus on accurate physical
modeling and photorealism while having limited diversity (mostly including indoor household sce-
narios) and a lack of open-world environments (Deitke et al., 2022; Gu et al., 2023; Wang et al.,
2024). For higher-level cognitive tasks that do not require accurate physics modeling or photoreal-
ism, the field has popularly adopted Minecraft—an extremely popular game with rich content and
diverse open worlds. Some examples are Malmo (Johnson et al., 2016) and MineRL (Guss et al.,
2019), which wrap Minecraft in a Python interface. However, they lack support for task customiza-
tion or the creation of new environments. More recently, MineDojo (Fan et al., 2022) has greatly
improved customization within Minecraft-based environments. Nevertheless, environment creation
is constrained by predefined parameters, making scenarios like those in Section 3.5 infeasible to
implement (see Appendix I for details) and lacking multi-agent support, which hinders its adoption
in this growing field.

B Modifications to Luanti

Although Luanti is an extremely flexible game engine with extensibility built into its core, we had
to modify its source code for this work. As Luanti is a large C++ project with thousands of files,
modifications have been thoughtfully introduced to minimize possible conflicts with future updates
of the engine. Most of the introduced code is limited to a dedicated craftium.h file and some
modifications to the client.cpp and game.cpp files. These are the main modifications that
have allowed running autonomous agents in Luanti:

• Implementation of a client that connects to the Python process with the agent’s implementation.
This is the communication channel from which Luanti sends RGB frames and other timestep data
to Python, and Python sends the next actions to be executed.

• Executing the agent’s actions as keyboard and mouse commands in Luanti. All actions are trans-
lated as virtual keyboard keypresses or mouse movements (for moving the camera and controlling
the inventory).

• Extensions to the Luanti API to incorporate vital functionalities for RL environments. Extensions
include new Lua functions that implement functions such as setting the episode termination flag
or sending reward values.

• Luanti has a client/server architecture, where the server runs the world’s logic and the client in-
terfaces with the player (e.g., game control and rendering). However, the asynchronous nature of
this architecture introduces issues when using slow agents (e.g., large multi-modal models). For
example, the server could update the world many times while the client waits for the agent to re-
turn an action. This causes many reproducibility issues and behaviors, such as monsters attacking
the player while the client waits for the agent’s response. For this purpose, Craftium introduces
optional synchronous client/server updates. This ensures that (when needed) the server waits for
the client to be updated before continuing with the next update.

• Related to the previous modification, even fast agents (e.g., smaller NNs) can introduce small
delays (i.e., lags) to Luanti, for example, when training the model in batches while running the
environment. Consequently, we have modified Luanti to avoid being affected by these delays and
ensure the environment’s and physics’s coherence.

• Resetting episodes in complex environments can be time-consuming, sometimes requiring clos-
ing and restarting the internal engine of the environment. In consequence, the training time in
environments with frequent episode resets (e.g., hard survival games like SpidersAttack) increases
substantially. To avoid these hard resets, we implement several functionalities in Craftium to soft
reset the environment, not requiring reinitializing the engine. Unlike hard resets, soft resets dele-
gate the reset to the environment itself, to the Lua mod in the case of Craftium (see Appendix D
for more details).

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

C Action Space Details

C.1 Default Action Space

The default action space of Craftium environments is composed of combinations of 21 keyboard
actions and mouse movements on the horizontal and vertical axes. Keyboard actions are binary
values, where 1 translates to a key press and 0 if not used. Available keyboard commands are listed
and described in Table 2. Note that these actions are a subset of the default keyboard controls that
Luanti offers6 and its selection is inspired by the action space of MineRL (Guss et al., 2019). Mouse
movements are defined by a tuple (horizontal and vertical movements) of real values in the [−1, 1]
interval (see Section 3.1).

Table 2: List of available keyboard actions in Craftium environments, their corresponding key in the
default Luanti controls, and their description.

ACTION KEY DESCRIPTION

Forward W Move the player forward.
Backward S Move the player backward.
Left A Move the player left.
Right D Move the player right.
Jump Space Jump and move up.
Aux 1 E Run faster.
Sneak Shift Sneak, move downwards.
Zoom Z Zoom in at the center of the camera.
Dig Left mouse button Punch if using a weapon or mine if using a tool.

Place Right mouse button
Use the pointed object if usable, otherwise
attempt to build at the pointed block.

Drop Q Drop the wielded item.
Inventory I Show/hide inventory.
Slot [1-9] 0-9 Select the item in the [0-9] position of the hotbar.

C.2 Action Wrappers

By default, Craftium environments have a large action space with discrete (binary) and continuous
values (see Section 3.1). However, many tasks do not require the complete default action space
and can be greatly simplified by considering only the relevant actions to solve the specific task
that the environment defines. Consequently, Craftium provides tools for customizing the action
space of environments by using Gymnasium Wrappers.7 Specifically, Craftium implements two
wrappers:BinaryActionWrapperand DiscreteActionWrapper.

BinaryActionWrapper allows selecting the subset of keyboard actions (see Table 2 for the
complete list) to use in the new action space. This wrapper also simplifies the continuous mouse
movement actions by discretizing them into four binary actions: move the mouse left, right, up,
and down. The magnitude of these movements can be chosen by the developer. For example, this
wrapper allows simplifying the default {0, 1}21 ∪ [0, 1]2 action space into a {0, 1}3 space where
binary values correspond to: move forward, move mouse right, and move mouse left.

DiscreteActionWrapper allows selecting the subset of keyboard actions and discretizes the
mouse movement similarly to the previous wrapper. However, in this case, actions are not binary
vectors but a single discrete value. Thus, actions can not be combined as in the case of the previ-

6Some controls like pausing the game or opening the chat have been excluded. For additional information, visit: https:
//dev.luanti.org/controls/.

7Refer to Gymnasium’s documentation for more information: https://gymnasium.farama.org/api/
wrappers/action_wrappers/.

https://dev.luanti.org/controls/
https://dev.luanti.org/controls/
https://gymnasium.farama.org/api/wrappers/action_wrappers/
https://gymnasium.farama.org/api/wrappers/action_wrappers/

Reinforcement Learning and Video Games Workshop 2025

ous wrapper. Following the previous example, instead of simplifying the default action space into
{0, 1}3 this wrapper defines the new space as {0, 1, 2}, where 0 corresponds to move forward, 1
moves the mouse to the right, and 2 moves it to the left.

D Extensions to the Luanti Modding API

Luanti counts with an extensive and powerful API (Luanti Team, 2025a) that can be used to modify
the behavior of the game engine and create mods or entire games (Ward, 2025a). However, Luanti
lacks the functionality to define RL environments by itself. Therefore, Craftium distributes a modi-
fied version of the game engine (see Appendix B) that includes additional functionalities in the API
to make it possible to implement RL environments from Luanti mods. Table 3 lists and describes
the new functions added to the API. Note that besides basic RL environment functionalities, these
additions to the API also include functions for soft resetting the environments (see Appendix B for
additional information).

Table 3: List of the new functions added to the Luanti API. The “—” character is used to indicate
that a function takes no arguments.

NAME PARAMETERS DESCRIPTION

set_reward float
Sets the reward value to the given value until another call to a
function that modifies the reward is made.

get_reward —
Returns the reward value of the current timestep, and nil if
not set.

set_reward_once float, float
Sets the reward to the first parameter only for the current
timestep, resetting it to the second parameter afterwards.

set_termination — Sets the termination flag to true for the current timestep.
get_termination — Returns a 1 if the termination flag is set to true, 0 otherwise.
reset_termination — Resets the episode termination falg.
get_soft_reset — Returns whether the environment should soft reset.

E Using Craftium through the PettingZoo (Multi-Agent) Interface

Figure 10 shows an example use case of the PettingZoo8 API in Craftium for multi-agent environ-
ments. Note that PettingZoo is greatly inspired by Gymnasium and shares many similarities and
design choices.9

Like the Gymnasium example from Figure 4, the first lines (1-5) instantiate a Craftium environment
by name. In this case, Craftium/MultiAgentCombat-v0 is loaded, corresponding to the multi-agent
environment example showcased in Section 3.5.2. Then, line 7 resets the environment to the ini-
tial state, initializing Luanti for the first time internally. Next, lines 9-16 define the main agent-
environment interaction loop. As defined in line 9, the loop cycles through the agents (two agents
for this specific environment). Line 10 obtains the observation, reward, termination/truncation flags,
and the information dictionary (similarly to the Gymnasium example). Next, lines 12-13 check if the
episode should terminate. If the episode continues, line 15 selects the action for the current agent,
and line 16 executes it, running a single environment step for the current agent. Finally, 18 closes
the environment, shutting down Luanti and removing any temporary files.

F Performance Benchmarks

Due to the page limit constraint of the paper, this section extends Section 3.4 in the main text,
including additional details and analyses for different setups.

8More information at: https://pettingzoo.farama.org/api/aec/.
9In fact, both projects are developed under the same Farama foundation, see https://farama.org/.

https://pettingzoo.farama.org/api/aec/
https://farama.org/

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

1 from craftium import pettingzoo_env
2

3 env = pettingzoo_env.env(
4 env_name="Craftium/MultiAgentCombat-v0"
5)
6

7 env.reset()
8

9 for agent_id in env.agent_iter():
10 observation, reward, termination, truncation, info = env.last()
11

12 if termination or truncation:
13 break
14

15 action = agents[agent_id](observation)
16 env.step(action)
17

18 env.close()

Figure 10: Python code illustrating an example multi-agent scenario using the PettingZoo interface
in Craftium.

Single-environment. To complement the results illustrated in Figure 5, Table 4 provides the ex-
act average and standard deviation values. The measurements aggregate the results of 5 differ-
ent runs of 1K steps in 3 environments per framework. Note that all environments considered
for this experiment were single-agent, as MineDojo does not support multi-agent scenarios10 and
VizDoom does not provide multi-agent environments (although technically supports this setting).11

The environments were: Speleo, Room, and Spiders Attack for Craftium (see Appendix H.1);
VizdoomHealthGathering-v0, VizdoomCorridor-v0, and VizdoomDefendCenter-v0 for VizDoom;
and harvest_milk, creative:255, and Harvest for MineDojo. In all cases, observations were RGB
images, without frameskip, and actions were selected uniformly at random. In the case of MineDojo
and Craftium environments observation size was set to 64×64 pixels, and to 320×240, as the latter
resolution is not available for VizDoom environments.

As can be observed in Table 4, Craftium achieves substantially higher steps per second than the
Minecraft alternative, MineDojo. The reasons for such a significant performance gap are many,
as both frameworks are complicated systems with many interacting components. One of the most
significant differences is the choice of implementation language: MineDojo is based on Minecraft,
which is implemented in Java 8, while Craftium relies on Luanti, implemented in C++ and known
to perform significantly higher than Java.12 Another relevant aspect is that Minecraft is a complete
game, which has grown in complexity over the years, directly affecting the environments imple-
mented on it. As it is a closed-source game, developers are not allowed to modify its source code
to remove irrelevant parts of the game for the environment at hand to improve computational effi-
ciency. Contrarily, Luanti is open source and exposes a highly flexible API to modify its behavior.
This allows building environments with only the relevant components for the task at hand. Along
the same line, the open-source nature of Luanti allowed its modification to tightly integrate it with
the proposed framework. For example, to incorporate a system to execute the actions sent from the
Python interface as keyboard and mouse commands. Conversely, Minecraft does not allow mod-
ifications to its source code, which requires MineRL and MineDojo13 to include many layers of

10Revelant discussion at (accessed May 2025): https://github.com/MineDojo/MineDojo/issues/15.
11For more details on the multi-agent capabilities of VizDoom (accessed May 2025): https://github.com/

Farama-Foundation/ViZDoom/issues/546.
12For example, see the performance comparison at https://benchmarksgame-team.pages.debian.net/

benchmarksgame/fastest/gpp-java.html.
13Note that MineDojo is based on MineRL. Refer to the work by Fan et al. (2022) for details.

https://github.com/MineDojo/MineDojo/issues/15
https://github.com/Farama-Foundation/ViZDoom/issues/546
https://github.com/Farama-Foundation/ViZDoom/issues/546
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/gpp-java.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/gpp-java.html

Reinforcement Learning and Video Games Workshop 2025

complexity to adapt the Minecraft game to the RL setting. Most notably, Minecraft is a game and is
not intended to run on a server without a monitor. Therefore, MineRL and MineDojo use an exter-
nal tool, Xvfb.14 to emulate a monitor without showing any screen output, which causes significant
performance drawbacks. This also implies that the X11 windowing system15 is installed, which is
not often the case in HPC clusters.

Table 4: Average and standard deviation values obtained in the environment framework performance
comparison conducted in Section 3.4.

FRAMEWORK STEP/S

CRAFTIUM 2746.69±230.41
VIZDOOM 2091.91±59.03
MINEDOJO 71.87±11.82

0 5 10 15 20 25 30
Number of Environments

2000

4000

6000

8000

10000

12000

S
te

p
/s

Craftium (Frameskip = 4)

Craftium (Frameskip = 8)

VizDoom

(a) Parallel asynchronous environments.

64x64 128x128 512x512
Observation Size

35

30

25

20

15

10

5

0

5

S
te

p
/s

 l
o
ss

 (
%

)

(b) Resolution’s impact on performance.

flat_world minetest_world
World Type

0

1000

2000

3000

4000

5000

6000

7000

S
te

p
/s

(c) Comparison of environments of different rich-
ness.

2 4 6 8 10 12 14
Number of Agents

5

4

3

2

1

0

1

2

3

S
te

p
/s

 l
o
ss

 (
%

)

(d) Number of agents and relative performance.

Figure 11: Additional performance benchmarks and comparisons. All figures above aggregate the
results from 5 repetitions per setup, running 1K time steps on each.

Parallel environments. Beyond single environment setups, Figure 11a compares Craftium and
VizDoom in vectorized (asynchronous) environments, popularly employed in many on-policy RL
methods (e.g., A2C or PPO). As can be observed, Craftium significantly benefits from paralleliza-
tion, achieving comparable performance to the simpler VizDoom, see Appendix G. In the best setting

14See https://en.wikipedia.org/wiki/Xvfb.
15See https://en.wikipedia.org/wiki/X_Window_System_core_protocol.

https://en.wikipedia.org/wiki/Xvfb
https://en.wikipedia.org/wiki/X_Window_System_core_protocol

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

for the employed hardware, Craftium surpasses the 12K steps per second using the same number of
environments as CPU cores (16 in this case), an unprecedented efficiency for such rich and complex
3D environments. In contrast, MineDojo lacks parallel environment support, and despite efforts,
we could not include this framework in Figure 11a.16 This issue makes MineDojo impractical for
many research scenarios, where learning from parallel environments can significantly enhance per-
formance and reduce costs.

Observation size. Although many RL tasks might require relatively small observation resolution,
as the 64 × 64 pixel resolution employed in Section 3.5, some applications might require larger
observation sizes, such as large multimodal model-based agents (see Section 3.5.3). Figure 11b
shows Craftium’s loss in performance for various observation sizes relative to the steps per second
achieved with the 64×64 pixel resolution. As can be seen, Craftium’s step per second loss for 128×
128 pixel observations is minimal: less than 5% compared to the baseline performance with 64×64
pixels. For larger resolutions, 512 × 512 pixels in this case, the performance drops considerably,
around 33%. However, in such cases, the performance bottleneck is likely in the model processing
the images (e.g., a VLM) rather than in Craftium itself.

Environment’s complexity. Another important aspect that impacts an environment’s performance
is its complexity or richness. Note that to ensure a fair analysis and comparison, performance bench-
marks in this paper consider environments of different nature and requirements, see the beginning
of Appendix F for details. To analyze how richness affects Craftium’s performance, Figure 11c
benchmarks environments using worlds (see Section 3.2) of different complexity. The figure shows
the results obtained using two world types: flat_world, a simple flat world without procedural
generation or biomes,17, and minetest_world, a substantially more complex world with pro-
cedural generation, biomes, underground dungeons, plants, etc.18 Results for flat_world were
collected using the Room and Spiders Attack environments (see Appendix H.1), while Chop Tree
and Speleo were used for minetest_world. Finally, four parallel environments were employed
for both cases. Observing Figure 11c, we see that the world’s complexity affects the Craftium’s per-
formance (around 30% in this case). However, Craftium’s versatility allows the developer to choose
within this richness-performance tradeoff, selecting the relevant parts for their specific needs, while
discarding unnecessary complexities: enabling procedural generation or not, including animals or
NPCs, additional biomes, etc.

Number of agents. Regarding Craftium’s multi-agent capabilities, in Figure 11d we analyze how
the number of agents operating in the same environment impacts performance. The figure analyzes
the loss in steps per second as the number of agents increases; for each agent, not in total,19 and
relative to the steps per second achieved with two agents. As can be seen, although the number of
agents might decrease the relative steps per second performance, the maximum average loss is lower
than 4%. Moreover, the figure shows no noticeable relationship between the two axes: adding more
agents has a negligible impact on the relative step per second reached. Finally, at the time of this
writing, Craftium supports a maximum number of agents equal to the number of CPU cores of the
machine (16 in the case of Figure 11d). This issue limits Craftium’s usage on massively multi-agent
environments, which we aim to address this issue in future updates.

Memory usage. Besides steps per second analyzed in the previous benchmarks, another impor-
tant efficiency measure is the memory usage of an environment. For instance, memory requirements
directly limit the number of parallel environments that can be employed (as studied in the para-
graph above on parallel environments). To fairly compare Craftium to VizDoom and MineDojo,
we analyzed the memory usage of these frameworks across different tasks, the same ones as in

16See https://github.com/MineDojo/MineDojo/issues/96 (accessed May 2025).
17See https://content.luanti.org/packages/srifqi/superflat/.
18More information at https://content.luanti.org/packages/Luanti/minetest_game/.
19The relative performance is computed as total steps per second (running the agents in serial, not in parallel) divided by

the number of agents.

https://github.com/MineDojo/MineDojo/issues/96
https://content.luanti.org/packages/srifqi/superflat/
https://content.luanti.org/packages/Luanti/minetest_game/

Reinforcement Learning and Video Games Workshop 2025

the single-environment paragraph at the beginning of this appendix. Results show that Craftium
(660MB) is notably lighter than MineDojo (1.7GB), the only framework with comparable environ-
ment richness. This result highlights Craftium’s capabilities to create lightweight environments that
avoid extra complexities in tasks that do not require them. Finally, VizDoom (84MB) is the light-
est due to its minimalist design. However, reduced memory usage comes at the cost of simplicity,
which limits its diversity (e.g., no 3D) and its application to a broad range of research fields (refer
to Appendix G for a detailed discussion on the topic).

G Limitations of 2.5D Environments

VizDoom is based on ZDoom, a modern and open-source implementation of the original Doom
game. The Doom game, released in 1993, employed innovative rendering techniques that made it
appear 3D while not having fully three-dimensional scenarios. These rendering techniques, referred
to as 2.5D20 perspective, make VizDoom environments computationally efficient while having some
visual features of 3D scenarios. However, 2.5D graphics limits VizDoom environments from an
autonomous agent research standpoint compared to fully 3D frameworks such as Craftium. Some
of the most notable limitations are the following:

• The agent’s viewpoint is restricted to a horizontal plane, preventing it from truly looking up or
down.

• Level height (floor and ceiling) is stored in a 2D matrix, making it impossible to create overlapping
structures like bridges, floors, or buildings.

• Enemies and objects are 2D sprites that change in size and angle based on the agent’s position.

These limitations make VizDoom environments significantly different from more realistic and di-
verse 3D scenarios as those in Craftium, failing to cover fundamental challenges for autonomous
agents that are of interest for current research, e.g., spatial 3D reasoning (Chen et al., 2024) and
complex agent-environment interactions (Wang et al., 2023).

Furthermore, 2.5D environments greatly limit the diversity of tasks and scenarios, which is partic-
ularly relevant for areas like continual reinforcement learning, unsupervised environment design,
and meta-learning, all of which are of growing interest to the research community (Hughes et al.,
2024). Craftium is especially relevant to these fields, as it enables diverse, 3D, vast open-world
environments that are computationally efficient and support multi-agent scenarios, opening the door
to exciting future research directions.

H Details on the Illustrative Examples

Due to the size limitations of the main paper, this section includes additional information on the
illustrative examples shown in Section 3.5.

H.1 Environments for Single-Agent RL

All tasks share the same observation space of 64 × 64 pixel RGB images. In all cases, the action
space has been simplified into a discrete space a ∈ {0, 1, 2, . . .} as described in Section 3.1 (see
Appendix C.1 for details). The simplified action space also introduces a nop action (do nothing) to
all tasks. The following lines describe the five tasks introduced in this section.

Chop tree. The agent is placed in a dense forest, equipped with a steel axe (see Figure 12a). Every
time the agent chops a tree, a positive reward of +1 is given; 0 otherwise. Therefore, the task is to
chop as many trees as possible until episode termination. Available actions are nop, move forward,
jump, dig (used to chop), and move the mouse left, right, up, and down. Episodes terminate when
2K timesteps are reached.

20See https://en.wikipedia.org/wiki/2.5D.

https://en.wikipedia.org/wiki/2.5D

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

(a) Chop tree. (b) Small room. (c) Room. (d) Speleo. (e) Spiders attack.

Figure 12: Visualizations of the example environments for single-agent RL in Section 3.5.1.

Room and small room. These tasks present the same objective in different scenarios. In both
cases, the agent is placed in one half of a closed room with a red block in the other half of the room.
The objective is to reach this block as fast as possible. The difference between both tasks is the
size of the room (see Figures 12c and 12b). The reward is constant; all timesteps have a reward
value of -1, and the episode terminates when the agent reaches the block. To avoid solving the
task by memorization, the initial position of the agent and the red block are randomized in every
new episode. Available actions are: move forward, move mouse left, and move mouse right. The
timestep budget is 1K in SmallRoom, and 2K for the variant with the larger room. Four actions are
available: nop, move forward, and move the mouse right and left.

Speleo. The agent is located in a closed cave illuminated with torches (see Figure 12d). The task
is to reach the bottom of the cave as fast as possible. For this purpose, the reward at each timestep
is the negative altitude (Y-axis position) of the agent. Therefore, the reward increases as the agent
goes deeper into the cave. Actions are nop, move forward, jump, and move the mouse left, right, up,
and down. Episodes terminate if the agent dies (falling from a great height) or if 3K timesteps are
reached.

Spiders attack. The agent is placed in a large cage together with hostile spiders (see Figure 12e),
it is equipped with a steel sword, and the objective is to survive. In the beginning, there is a single
spider in the cage, but every time all spiders are defeated, a new round starts with one more spider
than in the previous one (until 5 spiders). The reward of defeating a siper is +1. Actions are: nop,
move forward, move left, move right, jump, attack, and move mouse left, right, up, and down.
Finally, episodes terminate if the agent dies or the 4K timestep limit is reached.

Complementing the examples from Section 3.5.1, Figure 13 provides the episodic return curves of
PPO in all of the presented tasks. Results aggregate 5 runs per task, where PPO was trained for 1M
timesteps each. These experiments are mere examples to complement Section 3.5.1, and thus, no
hyperparameter tuning was performed to improve the obtained results. Moreover, the performance
in some of the tasks might be substantially improved if more training timesteps are considered.

Regarding the PPO algorithm, we employed the high-quality implementations from CleanRL Huang
et al. (2022b). Specifically, the PPO implementation for Atari environments was adapted to Craftium
environments, as both observation spaces consist of RGB images and action spaces are discrete (in
the case of the environments presented in Section 3.5.1). Moreover, this implementation already
considers many details shown to benefit PPO (Huang et al., 2022a). The hyperparameters and CNN
network architecture were set according to their default values in the original PPO implementation
from CleanRL.21

H.2 Multi-Agent Combat

This section describes the multi-agent environment example from Section 3.5.2 in detail. As can
be seen in Figure 14, the scenario consists of a completely flat world, where two agents are

21Source code of the original PPO implementation: https://github.com/vwxyzjn/cleanrl (commit
8cbca61).

https://github.com/vwxyzjn/cleanrl

Reinforcement Learning and Video Games Workshop 2025

0.0 0.2 0.4 0.6 0.8 1.0
×106

0

2

4

6

8

10

E
p

is
o
d

ic
 r

e
tu

rn

Chop tree Small room Room Spiders attackSpeleo

Steps
0.0 0.2 0.4 0.6 0.8 1.0

×106
0.0 0.2 0.4 0.6 0.8 1.0

×106

140

120

100

80

60

40

20

0.0 0.2 0.4 0.6 0.8 1.0
×106

0.25

0.50

0.75

1.00

1.25

1.50

0.0 0.2 0.4 0.6 0.8 1.0
×106

250

200

150

100

50

2500

2000

1500

1000

500

0

500

Figure 13: Episodic return curves obtained by PPO in all of the tasks from Section 3.5. Lines
aggregate the average values of 5 different seeds per task, while the contour denotes the standard
error of the results.

Figure 14: Screenshot of the illustrative multi-agent environment from Section 3.5.2.

placed in a closed jail. Both agents have no items or tools available, and cannot escape the jail.
Similarly to the classic single-agent RL task (see Section 3.5.1 and Appendix H.1), observations
are 64 × 64 RGB images, and the action space consists of a simplified discrete space using the
DiscreteActionWrapper from Appendix C.2. Specifically, the discrete action space consists
of the following actions: nop, forward, left, right, jump, attack, and move the mouse right or left.
An agent gets a positive reward (+1) when punching other agents and (-0.1) on damage (i.e., losing
one health point). Finally, episodes terminate if the number of health points (initialized to 20) of any
of the agents is zero, or the maximum number of timesteps (2K by default) is reached.

Regarding the self-play method employed in Section 3.5.2, we employ the same CNN architecture
and PPO algorithm implementation as in the single-agent environment examples from Appendix H.1
(refer to the last part of this appendix for details). In this case, as we employ self-play (Silver et al.,
2017), both agents share the same internal NN-based policy, which is updated every 128 steps.
Finally, the agents were trained for 1M timesteps using grayscale versions of the observations and
frame stacking of 4 frames, resulting in a 4× 64× 64 pixel observation space.

H.3 Open World

In Section 3.5.3 we introduce an open-world environment. In this environment, the agent has to
survive and gather resources in an open world based on the open-source VoxeLibre (Fleckenstein
et al., 2025) game for Luanti. The environment is designed to have three different tracks: tools,
hunt, and defend.

The first, the Tools track, consists of 4 different milestones: collect two wood blocks, three stone
blocks, three iron blocks, and finally, a diamond block. When the agent unlocks one of the stages
(i.e., tasks), it receives a reward and a new set of tools to employ to solve the next task. The reward
for completing each of the stages is 128, 256, 1024, and 2048, respectively. Moreover, when the
agent unlocks a new stage, it receives a sword and a pickaxe made of the material of the completed
stage. For example, if the agent unlocks the wood stage (collect two wood blocks), a wood sword
and pickaxe are automatically added to its inventory. To simplify solving the first stage of this track,
the initial inventory of the agent is composed of a stone axe and 256 torches. The stone axe allows

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

the agent to more easily chop trees to collect wood, while it also serves to defend from enemies (i.e.,
monsters) and hunt animals.

Conversely, the Hunt and Defend tracks are non-sequential. The agent is expected to develop skills
to handle increasingly complex scenarios rather than progressing linearly (although this could also
be the case). In these tracks, a reward is provided to the agent every time it punches an enemy
or an animal. In the case of enemies, the reward value is equal to the damage caused by the tool,
while in the case of the animals, this value is reduced to half. The motivation behind this particular
reward function is the following. If the agent defeats an enemy or hunts an animal, the episodic
return obtained by the agent is linear to the life of the enemy or animal. Moreover, the agent is also
encouraged to use the correct tool for these tasks. For example, using a sword to fight a monster will
provide more reward than using a torch or a pickaxe for the same task.

In Luanti, the time of day of the game is linked to the real clock time, where the day/night cycle
lasts for 20 minutes by default.22 In consequence, in this environment, the time of day is set ac-
cording to the global timestep to maintain consistency and avoid relying on real clock time while
training agents. If the latter is not considered, the time of day experienced by the agents could vary
depending on the time required by the agent to select an action, which greatly varies depending on
its implementation and architecture.

The following lines provide details on the methods used in the experiment from Section 3.5.3. Note
that in both cases, the action space of the agents was composed of 18 discrete actions, defined
using DiscreteActionWrapper from Appendix C.2. The actions are: nop, move forward,
backward, left, and right, jump, sneak, dig, place, slot 1, slot 2, slot 3, slot 4, slot 5, move the mouse
right, left, up, and down. Slot [1, . . . , 5] corresponds to the actions of selecting the tool or object in
that position of the inventory (i.e., often referred to as the hotbar).

PPO+LSTM. This method is based on the popular PPO algorithm while employing a convolu-
tional neural network to encode observations and an LSTM module providing memory capabilities
to the agent. As the experiments in Appendix H.1, this agent is based on CleanRL’s PPO implemen-
tations, in this case in PPO+LSTM for Atari games.23 Similarly, hyperparameters were kept fixed
(not optimized), as the purpose of this experiment is to serve as an example. Finally, the observation
space for this agent was set to 84×84 of greyscale images using 4 observations for frame stacking.

LLaVa-Agent. This agent is based on the open-source large multimodal model (LMM) LLaVa
by Liu et al. (2024a), specifically version 1.6 (Liu et al., 2024b). This agent is not intended as a
new proposal for LMM for embodied AI, but just as an example of how LMMs can be employed
within Craftium environments to solve general tasks by leveraging their world knowledge. For this
purpose, LLaVa has been directly employed with no fine-tuning for the open-world environment.
Specifically, at each timestep, LLaVa is provided with the current observation (512×512 pixel RGB
image) and a short prompt describing the current task. The prompt also includes a list of all available
actions, where LLaVa is asked to choose one. Actions are taken by parsing the response from the
model, where a random action is chosen if a parsing error occurs, although we observed that this
barely happens. The employed prompt has been selected from a set of prompts of different nature
listed in Table 6 based on the results from Figure 15, which led to the use of the prompt 1 (ID 1 in
Table 6).

Note the <objective> placeholder, this is replaced with the text corresponding to the current
objective: “is to chop a tree”, “is to collect stone”, “is to collect iron”, or “is to find diamond
blocks”. This text is automatically placed every time the agent unlocks a stage of the Tools branch
of the skills tree.

Details of Figure 7. The figure aggregates results from 10 different random seeds for each method,
PPO+LSTM, and LLaVa-Agent. In the case of LLaVa-Agent, each run was constrained by a 1-hour

22Additional information at https://wiki.luanti.org/Time_of_day.
23The original implementation can be found at: https://github.com/vwxyzjn/cleanrl/ (commit 8cbca61).

https://wiki.luanti.org/Time_of_day
https://github.com/vwxyzjn/cleanrl/

Reinforcement Learning and Video Games Workshop 2025

1 2 3 4
Prompt ID

0

50

100

150

200

250

Fi
n
a
l
E
p
is

o
d
ic

 R
e
tu

rn

Figure 15: Performance comparison of LLaVa-Agent employing different prompt cadidates from
Table 6. The plot aggregates the results from five 1-hour runs for each prompt.

ID Prompt

1

You are a reinforcement learning agent in the Minecraft game. You will be
presented with the current observation, and you have to select the next ac-
tion with the ultimate objective of fulfilling your goal. In this case, the goal
<objective>. You should fight monsters and hunt animals just as a sec-
ondary objective and survival. Available actions are: <actions>. From now
on, your responses must only contain the name of the action you will take, noth-
ing else.

2

You are a reinforcement learning agent in the Minecraft game. Your primary
objective is: <objective>. You must decide the best action based on the
current observation. Fighting monsters and hunting animals are secondary tasks
and should only be performed when necessary for survival or when they directly
contribute to your goal. The available actions are: <actions>. Your response
must be only the name of the action you will take, with no extra text.

3

You are an AI reinforcement learning agent in the Minecraft game. Your goal
is: <objective>. Each step, you receive an observation and must select an
action from the following list: <list-actions>. Your task is to prioritize
the main objective while ensuring survival. Choose the most effective action
based on the current observation. You must respond with only the name of the
action, nothing else.

4

You are an autonomous reinforcement learning agent in the Minecraft game.
Your mission is to complete the following objective: <objective>. Each
step, follow a structured decision-making process: (1) Analyze the current ob-
servation. (2) Determine whether to focus on the main objective or take nec-
essary survival actions. (3) Choose the best action from: <actions>. Your
response must be strictly one action name, with no explanations.

Table 6: Prompt candidates for the LLaVa-based agent in Section 3.5.3: (1) direct and imperative
tone, (2) emphasis on the primary task, (3) listing possible actions, and (4) structured decision-
making.

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

limit (≈ 7000 prompting iterations per run) and limited to 1M steps in the case of PPO+LSTM.
Consequently, the X-axis has been set to the training time percentage to accommodate both cases
and for the sake of visualization. Finally, the Y-axis shows the best and average cumulative reward
obtained for each method. The latter is made to properly visualize when a method unlocks one of
the milestones from the skills tree.

H.4 Procedural Environment Generation

The procedural environment generation example employs a random dungeon generator implemented
for this work. Although the generator can randomly create a vast number of different environments,
their reward function is the same. In these environments, the agent is randomly placed (equipped
with a sword) in a room and has to navigate a labyrinthic dungeon full of hostile enemies (monsters)
to reach the diamond. This process is divided into two steps: 1 randomly generate the dungeon’s
map, represented in ASCII (defined in Appendix H.4.1), and 2 build the 3D environment from the
map.

1 This first step is accomplished by the RandomMapGen Python class, which implements the
dungeon generation algorithm. Given some input parameters, RandomMapGen returns an ASCII
representation of the generated map. Internally, RandomMapGen first creates the rooms, places the
enemies, and locates the objective and the agent’s initial position (the agent and the objective are
never located in the same room). Then, an iterative algorithm based on repelling forces is used to
place the rooms so that none intersect. Secondly, it computes the minimum number of corridors
needed to create a map where all rooms are reachable. Finally, it rasterizes the map into its ASCII
representation using Bresenham’s line algorithm.24

The complete list of parameters that RandomMapGen accepts is the following:

• Number of rooms of the dungeon.

• Minimum and maximum sizes of the rooms. The final size is randomly selected from this range.

• A dispersion parameter in the [0, 1] range that controls the distance between the rooms.

• Minimum and maximum number of monsters per room. If the minimum is set equal to the maxi-
mum, the number of monsters per room is fixed.

• The probability of each monster type being located in one room. RandomMapGen considers up
to 4 types of different monsters. Monster types are denoted as: a, b, c, or d. The specific monster
that will be considered for each type is defined by the user in step 2 .

• A boolean flag indicating whether monsters can appear in the room selected for the agent’s initial
position.

• A boolean flag indicating whether to add a ceiling to the map. This option is used when using
monsters that can climb over or fly out of the map.

2 Once the ASCII map is created, a mod is used to generate the final 3D dungeon inside Luanti.
This mod iterates over the characters that compose the map and places the blocks and enemies
(referred to as mobs in Luanti and gaming terminology, not to be confused with mods) accordingly.
The configuration parameters of the mod are the following:

• The ASCII map generated in step 1 (or via another process).

• Names of the monsters for types a, b, c, or d. Available monsters are described in the documen-
tation of the mobs_monsters project.25

• The material used for the construction of the dungeons.26

• The name of the object to use as the objective (a diamond by default).27

24See https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm.
25Accesible at: https://codeberg.org/tenplus1/mobs_monster.
26List of some available materials: https://wiki.luanti.org/Games/Minetest_Game/Nodes.
27List of some available items: https://wiki.luanti.org/Games/Minetest_Game/Items.

https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
https://codeberg.org/tenplus1/mobs_monster
https://wiki.luanti.org/Games/Minetest_Game/Nodes
https://wiki.luanti.org/Games/Minetest_Game/Items

Reinforcement Learning and Video Games Workshop 2025

• The reward of reaching the objective (100 by default).

• The reward of defeating a single monster (1 by default).

H.4.1 The ASCII Map Format

The ASCII map format has been intentionally designed to be human-readable and to facilitate the
implementation of custom procedures to create them (or even be specified by hand). The format
consists of 9 possible characters, listed and described in Table 7. As can be seen in Figure 16a, maps
are divided into layers, divided by the “-” (dash) character. The first layer is commonly employed to
define the floor of the dungeons, while the second defines the walls and the positions of all characters
and the objective; the rest of the layers are used for determining the height of the walls.

Table 7: List of characters that comprise the ASCII map format and their meaning.

Character Meaning

(whitespace) Air block.
Construction block. Used for the floor and walls.
% Glass block. It can be used for the ceiling.
@ The initial position of the agent.
O Position of the objective.
a, b, c, d Location of a monster of type a, b, c, or d
- New layer.

##########
##########
##########
##########
##########

#####
#####
##########
##########
##########
##########
##########

-
##########
#
@
#
#

#
#
#####
#
O
b
##########

-
##########
#
#
#
#

#
#
#####
#
#
#
##########

(a) ASCII map representation. (b) Resulting 3D dungeon environment.

Figure 16: Example ASCII map format of a dungeon environment and the resulting 3D scenario
in the Craftium environment. Note the 3D characterizations of the spider (denoted with a in the
ASCII map) and the diamond (O in the ASCII map). The ceiling has been removed for the sake of
visualization.

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

H.5 Environment Sequence for Continual RL

In Section 3.5.4, the procedural environment generator is applied to CRL by defining a sequence
of related and increasingly difficult scenarios. Similarly to the examples from Section 3.5.1, the FS
(baseline) and FT-L2 methods are based on the PPO implementations from CleanRL. The difference
between the FS and FT-L2 is that the latter fine-tunes the model learned in the previous task and
uses L2 regularization during training, while the FS always learns a model from scratch. FT-L2 was
selected for this example as it has shown significant forward knowledge transfer capabilities in other
works (Gaya et al., 2023; Wołczyk et al., 2024; Malagon et al., 2024).

Regarding the observation and action spaces, they have been kept constant across the sequence. The
observation space is set to 64×64 pixel greyscale images, with 4 frames for frame stacking, and the
same quantity for frame skipping (Huang et al., 2022a). The action space consists of a set of 10
discrete actions: nop, move forward, left, right, jump, attack, move the mouse right, left, and down.
Finally, episodes terminate if the health of the agent is exhausted or 5K timesteps are reached.

For the sake of visualization, figure 18 provides a simplified 2D visualization of the environments.
Observing the figure, we see that the first two environments employ the same map (with the initial
position of the agent and the objective switched). This is intended, as the training time in each
environment is low (1M timesteps), thus, the first two environments offer CRL methods a way to
learn to reach their objective before more difficult tasks arrive. From the 2nd task onwards, the
environments contain two or more monsters, whereas tasks 3 and 4 have a single monster between
the agent and the objective (the diamond), and from the 5th task onwards have two or more.

E
p
is

o
d
ic

 R
e
tu

rn

2M
0

1

2

3

4

3M

0.2

0.4

0.6

4M
0.0

0.2

0.4

0.6

0.8

5M
0

1

2

3

6M

0.1

0.2

0.3

7M

0.20

0.25

0.30

0.35

0.40

0.45

8M

0.2

0.4

0.6

9M

0.2

0.3

0.4

0.5

0.6

10M

0.1

0.2

0.3

0.4

0.5

Step
FS FT-L2

Figure 17: Episodic return curves of the baseline (FS) and FT-L2 over the tasks from the CRL
sequence of Section 3.5.4. Note that the first environment is omitted as the FT-L2 is not applied in
this case (there is no previous model to fine-tune). See Appendix H.5 for details and Figure 18 for
simplified 2D visualizations of all the environments in the sequence.

As can be seen in Figure 17, FT-L2 substantially improves the results of the baseline in the 2nd and
4th, showing considerable forward knowledge transfer between some of the generated environments.
Although the final episodic return is lower, environments the 5th and 6th also show some forward
knowledge transfer in the first parts of the training.

I Environment Creation Flexibility of Craftium and Minecraft-Based
Frameworks

Note that the visual similarity between Craftium (and Luanti) and the popular Minecraft game arises
from their shared use of voxel-based graphics and sandbox-style28 environments. However, it is
important to clarify that Luanti, as a game engine, is not an implementation or clone of Minecraft,
and it serves fundamentally different goals compared to Minecraft, which is a standalone game, see
Luanti Wiki (2025).

Besides significant performance improvements, multi-agent support, and a fully open-source nature
compared to Minecraft-based alternatives, Craftium also provides an extremely flexible interface for
creating new environments via the Luanti Modding API. The flexibility and versatility of this API

28Sandbox games allow players extensive creative freedom to explore, build, and manipulate the game environment with
few constraints or predetermined goals.

Reinforcement Learning and Video Games Workshop 2025

Figure 18: Overview of the maps generated for the CRL environment sequence in Section 3.5.4.
Note that these are 2D representations of the environments (for proper visualization) and that the ac-
tual environments are 3D, as can be seen in Figure 9a and Figure 16b. The robot indicates the initial
position of the agent, while the yellow characters indicate sand monsters, and the black characters
denote spiders. Maps have been enumerated with their corresponding position in the CRL sequence.

are demonstrated by the rich and complex environments that can be created with it, see Figure 7,
thanks to the wide range of mods created by the community (see Ward (2025a) for examples).
This section focuses on showcasing some code examples that directly compare the flexibility of
Craftium’s API with the MineDojo API to create new environments. Note that we only compare
Craftium to MineDojo as it is, currently, the only Minecraft-based framework that allows the creation
of custom environments.

One major limitation of MineDojo’s API is that although it allows for spawning different Minecraft
entities (mobs and items) in a given location, the behavior, aspect, and other properties of the entities
are those of Minecraft (the default ones) and cannot be changed. Figure 19 shows how MineDojo
allows spawning entities. On the other hand, Craftium leverages the Luanti API, which allows access
to the internal state of the game engine, allowing it to change any aspect of it in real time. This is
illustrated with an example code in Figure 21 and Figure 22 that show how many properties and
behaviors of entities can be modified in Craftium.

Another crucial difference between Craftium’s and MineDojo’s APIs is the map generation capabil-
ities. MineDojo limits map generation to some predefined scenarios (only 5) and biomes. Figure 20
shows the map customization capabilities of MineDojo. On the other hand, Craftium’s API allows
the user to define any type of custom biome and combine them in any way.29 In Figure 23 we show-
case a simple example of defining a custom desert biome in Craftium’s API. Note that Craftium
users can employ any of the vast number of biomes already implemented by the community (some
of them illustrated in Figure 7).30

29More information and tutorials at Ward (2025b).
30Examples at https://content.luanti.org/packages/?tag=mapgen.

https://content.luanti.org/packages/?tag=mapgen

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

1 env.spawn_mobs("spider", [5, 0, 5])

Figure 19: MineDojo. Although MineDojo allows for spawning entities in some positions, lacks
the capability to modify the behavior of entities in any way.

1 env = minedojo.make("open-ended", specified_biome="desert")

Figure 20: MineDojo. MineDojo only allows defining worlds from a set of predefined biomes and
scenarios.

1 local mob_def = core.registered_entities["mobs_monster:zombie"]
2 mob_def.on_punch = function(self, hitter)
3 hitter:set_hp(hitter:get_hp() + 5)
4 end

Figure 21: Craftium. Example code demonstrating how the behavior of entities can be modified in
Craftium. In this case, the definition of zombies is changed to increase the health of the agent by 5
when successfully attacking a zombie.

1 mobs:register_mob("craftium:my_spider", {
2 docile_by_day = false,
3 group_attack = true,
4 type = "monster",
5 passive = false,
6 attack_type = "dogfight",
7 reach = 2,
8 damage = 3,
9 hp_min = 25,

10 hp_max = 25,
11 armor = 200,
12 walk_velocity = 3,
13 run_velocity = 6,
14 jump = false,
15 on_die = function(self, pos)
16 -- Set reward to 1.0 for a single timestep, then reset to 0.0
17 set_reward_once(1.0, 0.0)
18 -- Spawn more spiders
19 num_spiders = num_spiders + 1
20 for i=1,num_spiders do
21 spawn_monster({ x = 3.7 - i, y = 4.5, z = 0.0 })
22 end
23 end
24 })
25

26 local monster = mobs:add_mob(pos, {
27 name = "craftium:my_spider",
28 ignore_count = true,
29 })

Figure 22: Craftium. Example of a completely custom spider type. Note that we only show a few
options of those available: group attack capabilities, health, reach, attack type, armor, velocity, etc.
Moreover, a custom behavior is defined to set the reward and spawn more spiders when the spider
dies.

Reinforcement Learning and Video Games Workshop 2025

1 -- Register a custom biome (e.g., desert)
2 core.register_biome({
3 name = "custom_desert",
4 node_top = "default:sand",
5 depth_top = 1,
6 node_filler = "default:stone",
7 })
8

9 -- Generate a random landscape with different biomes
10 core.register_on_generated(function(minp, maxp, blockseed)
11 if math.random() > 0.5 then
12 core.set_biome_area(minp, maxp, "custom_desert")
13 end
14 end)

Figure 23: Craftium. Example showing how custom biomes can be created and used in Craftium.

Figure 24: Creating the world using Luanti’s graphical menu (left to right, top to bottom). 1 Click
the Content tab in the main menu. 2 Click Browse online content. 3 Select Minetest Game. 4
Click the green Install button and wait a few seconds. 5 Return to the main menu and click the
Minetest logo at the bottom. 6 Click New to create a world. 7 Enter a name (world in this tutorial)
and click Create.

J Creating Custom Environments

In the following, we outline the steps to create a custom open-world environment from scratch,
where the task is to find the deepest possible cave within a limited number of steps (i.e., episode).
Note that the following instructions assume that Craftium is already installed.

1 Creating the world. The first step is to create the environment’s world. Run the Luanti binary
(which should already be built and available in the Craftium installation directory) and follow the
instructions in Figure 24. Note that the first five steps are required only once; for future environ-
ments, follow only steps 5 and 6 from Figure 24. Close Luanti once the world is created (happens
almost instantly).

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

2 Creating the mod. Before coding the Craftium environment, set up a directory to store all
environment-related data. This directory should contain the game, world, and mod, which we will
name craftium_env. To create the environment’s directory, run the following CLI commands
from Craftium’s main directory:

1 mkdir -r my_env/mods/env_craftium
2 cp -r worlds games my_env
3 echo "load_mod_env_craftium = true" >> my_env/worlds/world/world.mt

Figure 25: CLI commands to create and set up the environment’s directory.

After running the commands above, we can create the mod.conf and init.lua files,
as described in Section 3.2. In this example, the task is to find the deepest cave possi-
ble within an episode. To set up the mod, first, create a file named mod.conf inside the
my_env/mods/env_craftium directory with the contents from Figure 26. Then, create
init.lua in the same directory using the contents from Figure 27. Although there are many
possibilities for the init.lua file, in this case, the agent is rewarded based on its negative Y-axis
position (depth).

1 name = env_craftium
2 description = Craftium environment
3 depends = default

Figure 26: Configuration file for the Craftium environment, specifying the mod name and its depen-
dencies (which, in this case, only includes the default mod).

1 core.register_globalstep(function()
2 -- Get the player's object
3 local player = core.get_connected_players()[1]
4

5 -- Check if the player is connected
6 if player == nil then
7 return
8 end
9 -- Get the player's Y position

10 local y = player:get_pos()[2]
11 -- Set the reward value for the current step
12 set_reward(-y)
13 end)
14

15 -- This function is run every time the player dies
16 core.register_on_dieplayer(function(obj, rn)
17 -- Set the termination flag to true
18 set_termination()
19 end)

Figure 27: Example Lua mod. The code defines two callback functions: the first (line 1) runs at
every timestep, setting the reward to the player’s negative Y-axis position (i.e., depth). The second
(line 16) triggers when the player dies (e.g., after a fatal fall) and sets the environment’s termination
flag to true (see Section 3.3).

3 Running the environment With the world and mod set up, the final step is to run the environ-
ment. Figure 29 shows a Python script that, when executed in the same directory as the environment
(Craftium’s main directory in this tutorial), loads the environment and performs random actions

Reinforcement Learning and Video Games Workshop 2025

while plotting the current observation at each timestep (see Figure 28). This example simply show-
cases the custom environment using a random agent. Note that more complex agents and learning
algorithms can be easily integrated by replacing 21 with a call to the desired method.

Figure 28: Example output from the script in Figure 29, showing an observation from the environ-
ment created in this section.

1 import matplotlib.pyplot as plt
2 import craftium
3 from craftium import CraftiumEnv
4

5 env = CraftiumEnv(
6 env_dir="my_env",
7 obs_width=512,
8 obs_height=512,
9)

10

11 observation, info = env.reset()
12

13 ep_ret = 0 # Episodic return
14 for step in range(100):
15 # Display the current observation
16 plt.cla()
17 plt.imshow(observation)
18 plt.pause(0.01)
19

20 # Sample a random action
21 action = env.action_space.sample()
22

23 observation, reward, terminated, truncated, _info = env.step(action)
24

25 ep_ret += reward
26 print(step, reward, terminated, truncated, ep_ret)
27

28 if terminated or truncated:
29 observation, info = env.reset()
30 ep_ret = 0
31

32 env.close()

Figure 29: Example Python script that loads and runs the custom environment with a randomly
acting agent.

