
Published as a conference paper at ICLR 2023

DEEP GENERATIVE SYMBOLIC REGRESSION

Samuel Holt
University of Cambridge
sih31@cam.ac.uk

Zhaozhi Qian
University of Cambridge
zq224@maths.cam.ac.uk

Mihaela van der Schaar
University of Cambridge
The Alan Turing Institute
mv472@cam.ac.uk

ABSTRACT

Symbolic regression (SR) aims to discover concise closed-form mathematical
equations from data, a task fundamental to scientific discovery. However, the
problem is highly challenging because closed-form equations lie in a complex
combinatorial search space. Existing methods, ranging from heuristic search to
reinforcement learning, fail to scale with the number of input variables. We make
the observation that closed-form equations often have structural characteristics
and invariances (e.g., the commutative law) that could be further exploited to
build more effective symbolic regression solutions. Motivated by this observation,
our key contribution is to leverage pre-trained deep generative models to capture
the intrinsic regularities of equations, thereby providing a solid foundation for
subsequent optimization steps. We show that our novel formalism unifies several
prominent approaches of symbolic regression and offers a new perspective to justify
and improve on the previous ad hoc designs, such as the usage of cross-entropy loss
during pre-training. Specifically, we propose an instantiation of our framework,
Deep Generative Symbolic Regression (DGSR). In our experiments, we show that
DGSR achieves a higher recovery rate of true equations in the setting of a larger
number of input variables, and it is more computationally efficient at inference
time than state-of-the-art RL symbolic regression solutions.

1 INTRODUCTION

Symbolic regression (SR) aims to find a concise equation f that best fits a given dataset D by
searching the space of mathematical equations. The identified equations have concise closed-form
expressions. Thus, they are interpretable to human experts and amenable to further mathematical
analysis (Augusto & Barbosa, 2000).

Fundamentally, two limitations prevent the wider ML community from adopting SR as a standard tool
for supervised learning. That is, SR is only applicable to problems with few variables (e.g., three) and
it is very computationally intensive. This is because the space of equations grows exponentially with
the equation length and has both discrete (×,+, sin) and continuous (2.5) components. Although
researchers have attempted to solve SR by heuristic search (Augusto & Barbosa, 2000; Schmidt &
Lipson, 2009; Stinstra et al., 2008; Udrescu & Tegmark, 2020), reinforcement learning (Petersen
et al., 2020; Tang et al., 2020), and deep learning with pre-training (Biggio et al., 2021; Kamienny
et al., 2022), achieving both high scalability to the number of input variables and computational
efficiency is still an open problem.

We believe that learning a good representation of the equation is the key to solve these challenges.
Equations are complex objects with many unique invariance structures that could guide the search.
Simple equivalence rules (such as commutativity) can rapidly build up with multiple variables or
terms, giving rise to complex structures that have many equation invariances.

Importantly, these equation equivalence properties have not been adequately reflected in the represen-
tations used by existing SR methods. First, existing heuristic search methods represent equations
as expression trees (Jin et al., 2019), which can only capture commutativity (x1x2 = x2x1) via
swapping the leaves of a binary operator (×,+). However, trees cannot capture many other properties
such as distributivity (x1x2 + x1x3 = x1(x2 + x3)). Second, existing pre-trained encoder-decoder
methods represent equations as sequences of tokens, i.e., x1 + x2

.
= (“x1”, “ + ”, “x2”), just as

1

mailto:sih31@cam.ac.uk
mailto:zq224@maths.cam.ac.uk
mailto:mv472@cam.ac.uk

Published as a conference paper at ICLR 2023

sentences of words in natural language (Valipour et al., 2021). The sequence representation cannot
encode any invariance structure, e.g., x1 + x2 and x2 + x1 will be deemed as two different sequences.
Finally, existing RL methods for symbolic regression do not learn representations of equations. For
each dataset, these methods learn a specific policy network to generate equations that fit the data well,
hence they need to re-train the policy from scratch each time a new dataset D is observed, which is
computationally intensive.

On the quest to apply symbolic regression to a larger number of input variables, we investigate a deep
conditional generative framework that attempts to fulfill the following desired properties:
(P1) Learn equation invariances: the equation representations learnt should encode both the equa-
tion equivalence invariances, as well as the invariances of their associated datasets.
(P2) Efficient inference: performing gradient refinement of the generative model should be compu-
tationally efficient at inference time.
(P3) Generalize to unseen variables: can generalize to unseen input variables of a higher dimension
from those seen during pre-training.

To fulfill P1-P3, we propose the Deep Generative Symbolic Regression (DGSR) framework. Rather
than represent equations as trees or sequences, DGSR learns the representations of equations with
a deep generative model, which have excelled at modelling complex structures such as images and
molecular graphs. Specifically, DGSR leverages pre-trained conditional generative models that
correctly encode the equation invariances. The equation representations are learned using a deep
generative model that is composed of invariant neural networks and trained using an end-to-end loss
function inspired by Bayesian inference. Crucially, this end-to-end loss enables both pre-training
and gradient refinement of the pre-trained model at inference time, allowing the model to be more
computationally efficient (P2) and generalize to unseen input variables (P3).

Contributions. Our contributions are two-fold: 1⃝ In Section 3, we outline the DGSR framework,
that can perform symbolic regression on a larger number of input variables, whilst achieving less
inference time computational cost compared to RL techniques (P2). This is achieved by learning
better representations of equations that are aware of the various equation invariance structures (P1).
2⃝ In section 5.1, we benchmark DGSR against the existing symbolic regression approaches on

standard benchmark problem sets, and on more challenging problem sets that have a larger number
of input variables. Specifically, we demonstrate that DGSR has a higher recovery rate of the true
underlying equation in the setting of a larger number of input variables, whilst using less inference
compute compared to RL techniques, and DGSR achieves significant and state-of-the-art true equation
recovery rate on the SRBench ground-truth datasets compared to the SRBench baselines. We also
gain insight and understanding of how DGSR works in Section 5.2, of how it can discover the
underlying true equation—even when pre-trained on datasets where the number of input variables
is less than the number of input variables seen at inference time (P3). As well as be able to capture
these equation equivalences (P1) and correctly encode the dataset D to start from a good equation
distribution leading to efficient inference (P2).

2 PROBLEM FORMALISM

The standard task of a symbolic regressor method is to return a closed-form equation f that best fits
a given dataset D = {(Xi, yi)}ni=1, i.e., yi ≈ f(Xi),∀i ∈ [1 : n], for all samples i. Where yi ∈ R,
Xi ∈ Rd and d is the number of input variables, i.e., X = [x1, . . . ,xd].

Closed-form equations. The equations that we seek to discover are closed-form, i.e., it can be
expressed as a finite sequence of operators (×,+,−, . . .), input variables (x1, x2, . . .) and numeric
constants (3.141, 2.71, . . .) (Borwein et al., 2013). We define f to mean the functional form of an
equation, where it can have numeric constant placeholders β’s to replace numeric constants, e.g.,
f(x) = β0x+sin(x+ β1). To discover the full equation, we need to infer the functional form and then
estimate the unknown constants β’s, if any are present (Petersen et al., 2020). Equations can also be
represented as a sequence of discrete tokens in prefix notation f̄ = [f̄1, . . . , f̄|f̄ |] (Petersen et al., 2020)
where each token is chosen from a library of possible tokens, e.g., [+,−,÷,×, x1, exp, log, sin, cos].
The tokens f̄ can then be instantiated into an equation f and evaluated on an input X. In existing
works, the numeric constant placeholder tokens are learnt through a further secondary non-linear
optimizer step using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Fletcher, 2013;
Biggio et al., 2021). In lieu of extensive notation, we define when evaluating f to also infer any
placeholder tokens using BFGS.

2

Published as a conference paper at ICLR 2023

<latexit sha1_base64="xGe6Ew/KmsdoRfIJanZR8j3Nr6E=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCLly2YB/QDiWTZtrQTGZI7ghlKPgTblwo4tavceffmGm70NYDgcM5N9xzT5BIYdB1v53C2vrG5lZxu7Szu7d/UD48apk41Yw3WSxj3Qmo4VIo3kSBkncSzWkUSN4Oxre5337k2ohYPeAk4X5Eh0qEglG0UrcXURwxKrO7ab9ccavuDGSVeAtSgQXq/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs9mkafkzCoDEsbaPoVkpv7+kdHImEkU2Mk8oln2cvE/r5tieONnQiUpcsXmi8JUEoxJfj8ZCM0ZyokllGlhsxI2opoytC2VbAne8smrpHVR9a6ql43LSq3xNK+jCCdwCufgwTXU4B7q0AQGMTzDK7w56Lw4787HfLTgLCo8hj9wPn8Aok6R8g==</latexit>D

<latexit sha1_base64="2ugt8hjQtLMCORwiDFmI12jlHDg=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kRMuAjWUC5gOSI+xt5pI1e3vH7p4QjoC9jYUitv4kO/+Nm49CEx8MPN6bYWZekAiujet+O7mNza3tnfxuYW//4PCoeHzS0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUCPvFklt25yDrxFuSEixR7xe/eoOYpRFKwwTVuuu5ifEzqgxnAqeFXqoxoWxMh9i1VNIItZ/ND52SC6sMSBgrW9KQufp7IqOR1pMosJ0RNSO96s3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbAo2BG/15XXSuip71XKlUSnVGk+LOPJwBudwCR5cQw3uoA5NYIDwDK/w5jw4L86787FozTnLCE/hD5zPH/hijYI=</latexit>

f
<latexit sha1_base64="fgSiDxDkfmaTaLQOH32rwiBWeZs=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRahbsqMlOqyoAuXLdgHtEPJpJk2NJMZkkyhjAU/xI0LRdz6J+78GzNtF9p64MLhnHvJyfFjzpR2nG8rt7G5tb2T3y3s7R8cHtnHJy0VJZLQJol4JDs+VpQzQZuaaU47saQ49Dlt++PbzG9PqFQsEg96GlMvxEPBAkawNlLftuNS8NgLsR4RzNO72WXfLjplZw60TtwlKcIS9b791RtEJAmp0IRjpbquE2svxVIzwums0EsUjTEZ4yHtGipwSJWXzpPP0IVRBiiIpBmh0Vz9fZHiUKlp6JvNLKNa9TLxP6+b6ODGS5mIE00FWTwUJBzpCGU1oAGTlGg+NQQTyUxWREZYYqJNWQVTgrv65XXSuiq71XKlUSnWGk+LOvJwBudQAheuoQb3UIcmEJjAM7zCm5VaL9a79bFYzVnLCk/hD6zPH2aGk/g=</latexit>

p(f |D)

Figure 1: The
data generating
process.

A generative view of SR. We prvoide a probabilistic interpretation of the data gener-
ating process in Figure 1, where we treat the true equation f as a (latent) random vari-
able following a prior distribution p(f). Therefore a dataset can be interpreted as an
evaluation of f on sampled points X ∼ X , i.e., D = {(Xi, f(Xi))}ni=1, f ∼ p(f).
Crucially, SR can be seen as performing probabilistic inference on the posterior
distribution p(f |D). Therefore at inference time, it is natural to formulate SR into
a maximum a posteriori (MAP) 1 estimation problem, i.e., f∗ = argmaxf p(f |D).
Thus, SR can be solved by: (1) estimating the posterior p(f |D) conditioned on
the observations D—with pre-trained deep conditional generative models, pθ(f |D)
with model parameters θ, (2) further refining this posterior at inference time and (3)
finding the maximum a posteriori (MAP) estimate via a discrete search method.

3 DEEP GENERATIVE SR FRAMEWORK

We now outline the Deep Generative SR (DGSR) framework. The key idea is to use both equation
and dataset-invariant aware neural networks combined with an end-to-end loss inspired by Bayesian
inference. As we shall see in the following, this allows us to learn the equation and dataset invariances
(P1), pre-train on a pre-training set and gradient refine on the observed dataset D at inference
time—leading to both a more efficient inference procedure (P2) and generalize to unseen input
variables (P3) at inference time. Principally, the framework consists of two steps: (1) a Pre-training
step, Section 3.1, where an equation and dataset-invariant aware encoder-decoder model learns the
posterior distribution pθ(f |D) with parameters θ by pre-training, and (2) an Inference step, Section
3.2, that uses an optimization method to gradient refine this posterior and a discrete search method to
find an approximate of the maximum of this posterior. For each step, in the following we justify each
component in turn, providing the desired properties it must satisfy and provide a suitable instantiation
for each component in the overall framework.

3.1 PRE-TRAINING STEP

Learning invariances in the dataset. We seek to learn the invariances of datasets (P1). Intuitively,
a dataset that is defined by a latent (unobserved) equation f should have a representation that is
invariant to the number of samples n in the dataset D. Principally, we specify that to achieve this
the architecture of the encoder-decoder of the conditional generative model, pθ(f |D), should satisfy
the following two properties: (1) have an encoding function h that is permutation invariant over the
encoded input-output pairs {(Xi, yi)}ni=1 from g, and can handle a different number of samples n,
i.e., V = h({g(Xi, yi)}ni=1) (Lee et al., 2019). Where g : X d → Zd is an encoding function from
the individual input variables in [xi1, . . . , xid] = Xi of the points in X . (2) Have a decoder that
is autoregressive, that decodes the latent vector V to give an output probability of an equation f ,
which allows sampling of equations. Suitable encoder-decoder models (e.g., Transformers (Biggio
et al., 2021), RNNs (Sutskever et al., 2014), etc.) can be used that satisfy these two properties. The
conditional generative model has parameters θ = {ζ, ϕ}, where the encoder has parameters ζ and the
decoder parameters ϕ, detailed in Figure 2.

Specifically, we instantiate DGSR with a set transformer (Lee et al., 2019) encoder that satisfies (1)
and a specific transformer decoder that satisfies (2). This specific transformer decoder leverages the
hierarchical tree state representation during decoding (Petersen et al., 2020). Where the encoder that
has encoded a dataset D into a latent vector V ∈ Rw is fed into a transformer decoder (Vaswani et al.,
2017). Here, the decoder generates each token of the equation f̄ autoregressively, that is, it samples
from p(f̄i|f̄1:(1−i);θ;D). During sampling of each token, the existing generated tokens f̄1:(1−i) are
processed into their hierarchical tree state representation (Petersen et al., 2020) and are encoded
with an embedding into an additional latent vector that is concatenated to the encoder latent vector,
forming a total latent vector of U ∈ Rw+ds to be used in decoding, where ds is the additional state
dimension. We detail this in Appendix B, and show other architectures can be used in Appendix U.

We pre-train on a pre-training set consisting of m datasets {D(j)}mj=1, where D(j) is defined by sam-
pling f (j) ∼ p(f) from a given prior p(f) (see Appendix J on how to specify p(f)). Then, to construct
each dataset we evaluate f (j) on n(j) 2 random points in X , i.e., D(j) = {(f (j)(X

(j)
i),X

(j)
i)}n(j)

i=1 .

1We define all acronyms in a glossary in Appendix A.
2For generality we note that DGSR can handle datasets of different sample sizes.

3

Published as a conference paper at ICLR 2023

<latexit sha1_base64="9pW4kAk3kocK17QbryIY+kHUJ+w=">AAACAHicbVBNS8NAEN34WetX1IMHL8Ei1EtJpKjHoh48VrAf0ISy2W7apZtN2J0IJebiX/HiQRGv/gxv/hs3bQ7a+mDg8d4MM/P8mDMFtv1tLC2vrK6tlzbKm1vbO7vm3n5bRYkktEUiHsmujxXlTNAWMOC0G0uKQ5/Tjj++zv3OA5WKReIeJjH1QjwULGAEg5b65mHcd2FEAVeDRzfEMCKYpzfZad+s2DV7CmuROAWpoALNvvnlDiKShFQA4VipnmPH4KVYAiOcZmU3UTTGZIyHtKepwCFVXjp9ILNOtDKwgkjqEmBN1d8TKQ6VmoS+7sxvVPNeLv7n9RIILr2UiTgBKshsUZBwCyIrT8MaMEkJ8IkmmEimb7XICEtMQGdW1iE48y8vkvZZzTmv1e/qlcZVEUcJHaFjVEUOukANdIuaqIUIytAzekVvxpPxYrwbH7PWJaOYOUB/YHz+ALq+loA=</latexit>

p✓(f |D)
<latexit sha1_base64="SQfhqnId9+RqDUVorO0wZzjYLMY=">AAACDXicbVC7TsMwFHV4lvIKMLJYFCSmKkEVMFawMKGC6ENqSuW4TmvVcSL7BqmK8gMs/AoLAwixsrPxNzhtB2g5kqXjc+7Vvff4seAaHOfbWlhcWl5ZLawV1zc2t7btnd2GjhJFWZ1GIlItn2gmuGR14CBYK1aMhL5gTX94mfvNB6Y0j+QdjGLWCUlf8oBTAkbq2odeSGDgB2kr87icfPz0NrtPex7wkGl8nRW7dskpO2PgeeJOSQlNUevaX14voknIJFBBtG67TgydlCjgVLCs6CWaxYQOSZ+1DZXEDOqk42syfGSUHg4iZZ4EPFZ/d6Qk1HoU+qYyX1fPern4n9dOIDjvpFzGCTBJJ4OCRGCIcB4N7nHFKIiRIYQqbnbFdEAUoWACzENwZ0+eJ42TsntartxUStWLaRwFtI8O0DFy0RmqoitUQ3VE0SN6Rq/ozXqyXqx362NSumBNe/bQH1ifPxbLnDE=</latexit>

X 2 Rd⇥N

<latexit sha1_base64="HoZNmyOnkePh5bQXRbk5KbkJReA=">AAACsnicbZHLTsMwEEWd8A6vAks2FhWIBSpJVAFLBBuWIFFANCVynGmx6jiR7SCqKB/Ilh1/g9OG8igjWTq6cz0ez0QZZ0q77odlz80vLC4trzira+sbm42t7TuV5pJCh6Y8lQ8RUcCZgI5mmsNDJoEkEYf7aHhZ5e9fQCqWils9yqCXkIFgfUaJNlLYeMNBBAMmiighWrLX0sEYv4aFd+SV+GBCfkUBjVOtvqS4xEFQW/2p1Z+1+t/W4GUsV4ZvimvrlzStKqZVxWxVUVV1cAAinjYeNppuyx0HngWvhiaq4zpsvAdxSvMEhKacKNX13Ez3CiI1oxxKJ8gVZIQOyQC6BgVJQPWK8chLvG+UGPdTaY7QeKz+vFGQRKlREhmn6e9Z/c1V4n+5bq77Z72CiSzXIOjkoX7OsU5xtT8cMwlU85EBQiUzvWL6TCSh2mzZMUPw/n55Fu78lnfSat+0m+cX9TiW0S7aQ4fIQ6foHF2ha9RB1Dq2OtaTFdpt+9EmNp1Ybau+s4N+hc0/AUoUyU8=</latexit>2
6664

x1,1 x1,2 · · · x1,d

x2,1 x2,2 · · · x2,d

...
...

. . .
...

xn,1 xn,2 · · · xn,d

3
7775

<latexit sha1_base64="INIOmserzpVKnYG4DFfa2vU8UEY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mk+HErePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWag775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC+q3mW11qxV6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AcyujOs=</latexit>g
<latexit sha1_base64="INIOmserzpVKnYG4DFfa2vU8UEY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mk+HErePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWag775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC+q3mW11qxV6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AcyujOs=</latexit>g

<latexit sha1_base64="INIOmserzpVKnYG4DFfa2vU8UEY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mk+HErePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWag775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC+q3mW11qxV6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AcyujOs=</latexit>g

<latexit sha1_base64="bsdzg3s/rBpj24NNXrE0Ccyeq9E=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiRSfOwKblxWsQ9oYphMJ+3QySTMTColZOXGX3HjQhG3foM7/8ZJm4W2Hhg4c8693HuPHzMqlWV9G6Wl5ZXVtfJ6ZWNza3vH3N1ryygRmLRwxCLR9ZEkjHLSUlQx0o0FQaHPSMcfXeV+Z0yEpBG/U5OYuCEacBpQjJSWPPPQCZEa+kE6zjzqUD77+ultdp8+ZJ5ZtWrWFHCR2AWpggJNz/xy+hFOQsIVZkjKnm3Fyk2RUBQzklWcRJIY4REakJ6mHIVEuun0jAwea6UPg0joxxWcqr87UhRKOQl9XZlvKee9XPzP6yUquHBTyuNEEY5ng4KEQRXBPBPYp4JgxSaaICyo3hXiIRIIK51cRYdgz5+8SNqnNfusVr+pVxuXRRxlcACOwAmwwTlogGvQBC2AwSN4Bq/gzXgyXox342NWWjKKnn3wB8bnD7KlmeU=</latexit>

vi 2 Rw

<latexit sha1_base64="aZo0y2UekkdBL3Nx4ZKfdsA4xWU=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWak+NgV3LisYB/QGUomzbShmcyQZApl6G+4caGIW3/GnX9jpp2Fth4IHM65l3tygkRwbRznG5U2Nre2d8q7lb39g8Oj6vFJR8epoqxNYxGrXkA0E1yytuFGsF6iGIkCwbrB5D73u1OmNI/lk5klzI/ISPKQU2Ks5HkRMeMgzKbzgTuo1py6swBeJ25BalCgNah+ecOYphGThgqidd91EuNnRBlOBZtXvFSzhNAJGbG+pZJETPvZIvMcX1hliMNY2ScNXqi/NzISaT2LAjuZZ9SrXi7+5/VTE976GZdJapiky0NhKrCJcV4AHnLFqBEzSwhV3GbFdEwUocbWVLEluKtfXiedq7p7XW88NmrNu6KOMpzBOVyCCzfQhAdoQRsoJPAMr/CGUvSC3tHHcrSEip1T+AP0+QMni5G+</latexit>v1
<latexit sha1_base64="CNeq30gWBtJqWNzkFcFNr9negRc=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyU4mNXcOOygq2FzlAyaaYNzSRDkimUob/hxoUibv0Zd/6NmXYW2nogcDjnXu7JCRPOtHHdb6e0sbm1vVPereztHxweVY9PulqmitAOkVyqXog15UzQjmGG016iKI5DTp/CyV3uP02p0kyKRzNLaBDjkWARI9hYyfdjbMZhlE3ng8agWnPr7gJonXgFqUGB9qD65Q8lSWMqDOFY677nJibIsDKMcDqv+KmmCSYTPKJ9SwWOqQ6yReY5urDKEEVS2ScMWqi/NzIcaz2LQzuZZ9SrXi7+5/VTE90EGRNJaqggy0NRypGRKC8ADZmixPCZJZgoZrMiMsYKE2NrqtgSvNUvr5Nuo+5d1ZsPzVrrtqijDGdwDpfgwTW04B7a0AECCTzDK7w5qfPivDsfy9GSU+ycwh84nz8pD5G/</latexit>v2

<latexit sha1_base64="S0v2q/IBiprp/xFks79EJyJuMho=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWak+NgV3LisYB/QGUomzbShmcyQZApl6G+4caGIW3/GnX9jpp2Fth4IHM65l3tygkRwbRznG5U2Nre2d8q7lb39g8Oj6vFJR8epoqxNYxGrXkA0E1yytuFGsF6iGIkCwbrB5D73u1OmNI/lk5klzI/ISPKQU2Ks5HkRMeMgzKbzgRxUa07dWQCvE7cgNSjQGlS/vGFM04hJQwXRuu86ifEzogyngs0rXqpZQuiEjFjfUkkipv1skXmOL6wyxGGs7JMGL9TfGxmJtJ5FgZ3MM+pVLxf/8/qpCW/9jMskNUzS5aEwFdjEOC8AD7li1IiZJYQqbrNiOiaKUGNrqtgS3NUvr5POVd29rjceG7XmXVFHGc7gHC7BhRtowgO0oA0UEniGV3hDKXpB7+hjOVpCxc4p/AH6/AGD/5H7</latexit>vn

<latexit sha1_base64="fjAFwjQeVboS8PhARI4/iqYHO64=">AAACAnicbVDLSsNAFL3xWesr6krcBIvgqiRSfOwKblxWsQ9oYplMJ+3QySTMTJQSght/xY0LRdz6Fe78GydtFtp6YODMOfdy7z1+zKhUtv1tLCwuLa+sltbK6xubW9vmzm5LRonApIkjFomOjyRhlJOmooqRTiwICn1G2v7oMvfb90RIGvFbNY6JF6IBpwHFSGmpZ+67IVJDP0hbmUv59OOnN9ndQ8+s2FV7AmueOAWpQIFGz/xy+xFOQsIVZkjKrmPHykuRUBQzkpXdRJIY4REakK6mHIVEeunkhMw60krfCiKhH1fWRP3dkaJQynHo68p8Rznr5eJ/XjdRwbmXUh4ninA8HRQkzFKRledh9akgWLGxJggLqne18BAJhJVOraxDcGZPnietk6pzWq1d1yr1iyKOEhzAIRyDA2dQhytoQBMwPMIzvMKb8WS8GO/Gx7R0wSh69uAPjM8fGNKX3Q==</latexit>

V 2 Rw

<latexit sha1_base64="qy1gfGYtYKphXl8OdUzCT4ik70o=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxI8bEruHFZwT6wHUomvdOGZjJDkhHK0L9w40IRt/6NO//GtJ2Fth4IHM65l5x7gkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GtzO//YRK81g+mEmCfkSHkoecUWOlx15EzSgIs9a0X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nk88JWdWGZAwVvZJQ+bq742MRlpPosBOzhLqZW8m/ud1UxNe+xmXSWpQssVHYSqIicnsfDLgCpkRE0soU9xmJWxEFWXGllSyJXjLJ6+S1kXVu6zW7muV+k1eRxFO4BTOwYMrqMMdNKAJDCQ8wyu8Odp5cd6dj8Vowcl3juEPnM8fyciQ+g==</latexit>

V<latexit sha1_base64="l1N6d84ufQgO8eTHqVb7Al0Bm90=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mk+HErePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWao765Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC+q3mW11qxV6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8Ac4yjOw=</latexit>

h
<latexit sha1_base64="EyRzwYh7YfLjoWxtMHeT78ehxpk=">AAACInicbVDLSgMxFM3UV62vqks3wSK4kDIjxcdGCm5cVrAP6AxDJs20oZkHyR2hTOdb3Pgrblwo6krwY0ynXdjWAyEn59yb5B4vFlyBaX4bhZXVtfWN4mZpa3tnd6+8f9BSUSIpa9JIRLLjEcUED1kTOAjWiSUjgSdY2xveTvz2I5OKR+EDjGLmBKQfcp9TAlpyy9dd2yMytQcEUj/LXOsM270IlN7m9HSc01zU53HmuOWKWTVz4GVizUgFzdBwy5/6ZpoELAQqiFJdy4zBSYkETgXLSnaiWEzokPRZV9OQBEw5aT5ihk+00sN+JPUKAefq346UBEqNAk9XBgQGatGbiP953QT8KyflYZwAC+n0IT8RGCI8yQv3uGQUxEgTQiXXf8V0QCShoFMt6RCsxZGXSeu8al1Ua/e1Sv1mFkcRHaFjdIosdInq6A41UBNR9IRe0Bt6N56NV+PD+JqWFoxZzyGag/HzC7n3pa8=</latexit>

[
¯̂
f1, . . . ,

¯̂
f| ˆ̄f |]

<latexit sha1_base64="ePltHpkSCTReCZ+0pekRxAG/NMQ=">AAACFXicbVDLSgMxFM3UV62vUZdugkVooZQZKepKCiK4USraB7SlZNJMG5p5kNwRyzA/4cZfceNCEbeCO//G9CFo64GQk3PuJfceJxRcgWV9GamFxaXllfRqZm19Y3PL3N6pqSCSlFVpIALZcIhigvusChwEa4SSEc8RrO4MzkZ+/Y5JxQP/FoYha3uk53OXUwJa6piFFrB7iK8ub86TXKtPIHb17RHoO27cSPIF/PMYJvmOmbWK1hh4nthTkkVTVDrmZ6sb0MhjPlBBlGraVgjtmEjgVLAk04oUCwkdkB5rauoTj6l2PN4qwQda6WI3kPr4gMfq746YeEoNPUdXjkZUs95I/M9rRuCetGPuhxEwn04+ciOBIcCjiHCXS0ZBDDUhVHI9K6Z9IgkFHWRGh2DPrjxPaodF+6hYui5ly6fTONJoD+2jHLLRMSqjC1RBVUTRA3pCL+jVeDSejTfjfVKaMqY9u+gPjI9vZtee9g==</latexit>

NMSE(f̂(X),y)

P.G.. . .
InferencePre-training

Backpropagation
<latexit sha1_base64="3OYBTWZwR86z8UZA41zkskq6Tfs=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0WsICWR4mMhFHThsoJ9QBPKZDpph04ezEyEEPIJbvwVNy4UcevSnX/jJI2grQcGzpxzL/fe44SMCmkYX1ppYXFpeaW8Wllb39jc0rd3OiKIOCZtHLCA9xwkCKM+aUsqGemFnCDPYaTrTK4yv3tPuKCBfyfjkNgeGvnUpRhJJQ30Q8tDcowRS67TSyup5V/HTXrp8Q+N0yMrHehVo27kgPPELEgVFGgN9E9rGODII77EDAnRN41Q2gnikmJG0ooVCRIiPEEj0lfURx4RdpIflMIDpQyhG3D1fAlz9XdHgjwhYs9RldmSYtbLxP+8fiTdczuhfhhJ4uPpIDdiUAYwSwcOKSdYslgRhDlVu0I8RhxhqTKsqBDM2ZPnSeekbp7WG7eNavOiiKMM9sA+qAETnIEmuAEt0AYYPIAn8AJetUftWXvT3qelJa3o2QV/oH18A15BnWo=</latexit>D = {(X,y)}

Encoder

Decoder
<latexit sha1_base64="NnJOmVdzcEhlUDEMjqob/APz7kw=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVL0VvHisYD+gDWWz3TRLdzdhdyOU0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmBQln2rjut1Pa2Nza3invVvb2Dw6PqscnXR2nitAOiXms+gHWlDNJO4YZTvuJolgEnPaC6V3u956o0iyWj2aWUF/giWQhI9jk0jCJ2Khac+vuAmideAWpQYH2qPo1HMckFVQawrHWA89NjJ9hZRjhdF4ZppommEzxhA4slVhQ7WeLW+fowipjFMbKljRoof6eyLDQeiYC2ymwifSql4v/eYPUhDd+xmSSGirJclGYcmRilD+OxkxRYvjMEkwUs7ciEmGFibHxVGwI3urL66R7Vfea9cZDo9a6LeIowxmcwyV4cA0tuIc2dIBABM/wCm+OcF6cd+dj2VpyiplT+APn8wcTwY4/</latexit>

�

<latexit sha1_base64="hr9NX53eKfaFMiJzUYXBmjM5UCA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mk+HErePFYwbSFNpTNdtMu3WzC7kSopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1MpDLrut1NYW9/Y3Cpul3Z29/YPyodHTZNkmnGfJTLR7ZAaLoXiPgqUvJ1qTuNQ8lY4up35rUeujUjUA45THsR0oEQkGEUr+d0njrRXrrhVdw6ySrycVCBHo1f+6vYTlsVcIZPUmI7nphhMqEbBJJ+WupnhKWUjOuAdSxWNuQkm82On5MwqfRIl2pZCMld/T0xobMw4Dm1nTHFolr2Z+J/XyTC6DiZCpRlyxRaLokwSTMjsc9IXmjOUY0so08LeStiQasrQ5lOyIXjLL6+S5kXVu6zW7muV+k0eRxFO4BTOwYMrqMMdNMAHBgKe4RXeHOW8OO/Ox6K14OQzx/AHzucP6LeOvA==</latexit>

⇣

Figure 2: Block diagram of DGSR. DGSR is able to learn the invariances of equations and datasets
D (P1) by having both: (1) an encoding architecture that is permutation invariant across the number
of samples n in the observed dataset D = {(Xi, yi)}ni=1, and (2) a Bayesian inspired end-to-end
loss NMSE function, Eq. 1 from the encoded dataset D to the outputs from the predicted equations,
i.e., NMSE(f̂(X),y). The highlighted boundaries show the subset of pre-trained encoder-decoder
methods and RL methods.

Loss function. We seek to learn invariances of equations (P1). Intuitively this is achieved by using a
loss where different forms of the same equation have the same loss. To learn both the invariances of
equations and datasets, we require an end-to-end loss from the observed dataset D to the predicted
outputs from the equations generated, to train the conditional generator, pθ(f |D). To achieve this,
we maximize the likelihood p(D|f) distribution under a Monte Carlo scheme to incorporate the
prior p(f) (Harrison et al., 2018). A natural and common assumption of the observed datasets
is that they are sampled with Gaussian i.i.d. noise (Murphy, 2012). Therefore to maximize this
augmented likelihood distribution we minimize the normalized mean squared error (NMSE) loss over
a mini-batch of t datasets, where for each dataset D(j) we sample k 3 equations from the conditional
generator, pθ(f |D).

L(θ) = 1

t

t∑

j=1

1

k

k∑

c=1

1

σy(j)

1

n(j)

n(j)∑

i=1

(y
(j)
i − f̂ (c)(X

(j)
i))2, f̂ (j) ∼ pθ(f |D(j)) (1)

Where σy(j) is the standard deviation of the outputs y(j). We wish to minimize this end-to-end
NMSE loss, Equation 1; however, the process of turning an equation of tokens f̄ into an equation
f is a non-differentiable step. Therefore, we require an end-to-end non-differentiable optimization
algorithm. DGSR is agnostic to the exact choice of optimization algorithm used to optimize this
loss, and any relevant end-to-end non-differentiable optimization algorithm can be used. Suitable
methods are policy gradient approaches, which include policy gradients with genetic programming
(Petersen et al., 2020; Mundhenk et al., 2021). To use these, we reformulate the loss of Equation 1
for each equation into a reward function of R(θ) = 1/(1 + L(θ)), that is optimizable using policy
gradients (Petersen et al., 2020). Here both the encoder and decoder are trained during pre-training,
i.e., optimizing the parameters θ and is further illustrated in Figure 2 with a block diagram. We
formulate this reward function and optimize it with a vanilla policy gradient method (Williams, 1992),
with further pseudocode and details of DGSR pre-training in Appendix D.

3.2 INFERENCE STEP

We seek to have efficient inference (P2) and generalize to unseen input variables (P3). Intuitively
we achieve this by refining our pre-trained conditional generative model to the observed dataset D
at inference time. Thereby, allowing: (1) the model to start from a good initial distribution of the
approximate posterior, pθ(f |D) by encoding the observed dataset D which can be further gradient
refined in fewer steps (P2) and (2) through gradient refinement generalize to generate equations that
have unseen input variables compared to those seen at inference time (P3). Principally, at inference
time DGSR is able to provide a good initial distribution of the approximate posterior, pθ(f |D) by
encoding the observed dataset D. Then, it uses the same end-to-end NMSE loss in Eq. 1 and a
policy gradient optimization algorithm, that of neural guided priority queue training (NGPQT) of
Mundhenk et al. (2021), to be competitive to the existing state-of-the-art, detailed in Appendix C
and pseudocode in D. Using this optimization algorithm, the initial approximation is converged to a
distribution that has a high probability density where the true equation of interest f∗ lies. This allows

3Where t and k are hyperparameters.

4

Published as a conference paper at ICLR 2023

Table 1: Comparison of related works. Columns: Learn Eq. Invariances (P1)—can it learn equation
invariances? Eff. Inf. Refinement (P2)—can it perform gradient refinement computationally effi-
ciently at inference time (i.e., update the decoder weights)? Generalize unseen vars.? (P3)—can it
generalize to unseen input variables from that those seen during pre-training. References:[1](Petersen
et al., 2020),[2](Mundhenk et al., 2021),[3](Costa et al., 2020),[4](Biggio et al., 2021),[5](Valipour
et al., 2021),[6](d’Ascoli et al., 2022),[7](Kamienny et al., 2022).

Approach Methods Loss Model Pre-train Learn Eq. Eff. Inf. Generalize
pθ(f |D)? Invariances? (P1) Refinement (P2) unseen? (P3)

RL [1,2,3] NSME(f̂(Xi)), yi) pθ(f) ✗ ✗ ✗- Train from scratch -
Encoder [4,5,6,7] CE(f̂ , f∗) pθ(f |D) ✓ ✓ ✗- Cannot gradient refine ✗

DGSR This work Eq. 1, NSME(f̂(Xi)), yi) pθ(f |D) ✓ ✓ ✓- Can gradient refine ✓

sampled equations drawn from pθ(f |D) to have a high probability of generating the true equation f∗.
We achieve this by only refining the decoder weights ϕ (Figure 2) and keeping the encoder weights
fixed. Furthermore, we show empirically that other optimization algorithms can be used with an
ablation of these in Section 5.2 and Appendix E.

Finally, our goal is to find the single best fitting equation for the observed dataset D. We achieve this
by using a discrete search method to find the maximum a posteriori estimate of the refined posterior,
pθ(f |D). This is achieved by a simple Monte Carlo scheme that samples k equations and scores each
one based on its (NMSE) fit, then returns the equation with the best fit. Principally, there exist other
discrete search methods that can be used as well, e.g., Beam search (Steinbiss et al., 1994).

4 RELATED WORK

In the following we review the existing deep SR approaches, and summarize their main differences in
Table 1. We provide an extended discussion of additional related works, including heuristic-based
methods and methods that use a prior in Appendix F. We illustrate in Figure 2 that RL and pre-trained
encoder-decoder methods can be seen as ad hoc subsets of the DGSR framework.

RL methods. These works use a policy network, typically implemented with RNNs, to output a
sequence of tokens (actions) to form an equation. The output equation obtains a reward based on
some goodness-of-fit metric (e.g., RMSE). Since the tokens are discrete, the method uses policy
gradients to train the policy network. Most existing works focus on improving the pioneering policy
gradient approach for SR (Petersen et al., 2020; Costa et al., 2020; Landajuela et al., 2021), however
the policy network is randomly initialized and tends to output ill-informed equations at the beginning,
which slows down the procedure. Furthermore, the policy network needs to be re-trained each time a
new dataset D is available.

Hybrid RL and GP methods. These methods combine RL with genetic programming (GPs).
Mundhenk et al. (2021) use a policy network to seed the starting population of a GP algorithm,
instead of starting with a random population as in a standard GP. Other works use RL to adjust the
probabilities of genetic operations (Such et al., 2017; Chang et al., 2018; Chen et al., 2018; Mundhenk
et al., 2021; Chen et al., 2020). Similarly, these methods cannot improve with more learning from
other datasets and have to re-train their models from scratch, making inference slow at test time.

Pre-trained encoder-decoder methods. Unlike RL, these methods pre-train an encoder-decoder
neural network to model p(f |D) using a curated dataset (Biggio et al., 2021). Specifically, Valipour
et al. (2021) propose to use standard language models, e.g., GPT. At inference time, these methods
sample from pθ(f |D) using the pre-trained network, thereby achieving low complexity at inference—
that is efficient inference. These methods have two key limitations: (1) they use cross-entropy
(CE) loss for pre-training and (2) they cannot gradient refine their model, leading to sub-optimal
solutions. First (1), cross entropy, whilst useful for comparing categorical distributions, does not
account for equations that are equivalent mathematically. Although prior works, specifically Lample
& Charton (2019), observed the “surprising” and “very intriguing” result that sampling multiple
equations from their pre-trained encoder-decoder model yielded some equations that are equivalent
mathematically, when pre-trained using a CE loss. Furthermore, the pioneering work of d’Ascoli et al.
(2022) has shown this behavior as well. Whereas using our proposed end-to-end NMSE loss, Eq.
1—i.e., will have the same loss value for different equivalent equation forms that are mathematically
equivalent—therefore this loss is a natural and principled way to incorporate the equation equivalence
property, inherent to symbolic regression. Second (2), DGSR is to the best of our knowledge the first
SR method to be able to perform gradient refinement of a pre-trained encoder-decoder model using
our end-to-end NMSE loss, Eq. 1—to update the weights of the decoder at inference time. We note

5

Published as a conference paper at ICLR 2023

that there exists other non-gradient refinement approaches, that cannot update their decoder’s weights.
These consist of: (1) optimizing the constants in the generated equation form with a secondary
optimization step (commonly using the BFGS algorithm) (Petersen et al., 2020; Biggio et al., 2021),
and (2) using the MSE of the predicted equation(s) to guide a beam search sampler (d’Ascoli et al.,
2022; Kamienny et al., 2022). As a result, to generalize to equations with a greater number of input
variables pre-trained encoder-decoder methods require large pre-training datasets (e.g., millions of
datasets (Biggio et al., 2021)), and even larger generative models (e.g., ∼ 100 million parameters
(Kamienny et al., 2022)).

5 EXPERIMENTS AND EVALUATION

We evaluate DGSR on a set of common equations in natural sciences from the standard SR benchmark
problem sets and on a problem set with a large number of input variables (d = 12).

Benchmark algorithms. We compare against Neural Guided Genetic Programming (NGGP)
Mundhenk et al. (2021); as this is the current state-of-the-art for SR, superseding DSR (Petersen et al.,
2020). We also compare with genetic programming (GP) (Fortin et al., 2012) which has long been
an industry standard and compare with Neural Symbolic Regression that Scales (NESYMRES), an
pre-trained encoder-decoder method. We note that NESYMRES was only pre-trained on a large three
input variable dataset, and thus can only be used and is included on problem sets that have d ≤ 3.
Further details of model selection, hyperparameters and implementation details are in Appendix G 4.

Dataset generation. Each symbolic regression “problem set” is defined by the following: a set of ω
unique ground truth equations—where each equation f∗ has d input variables, a domainX over which
to sample 10d input variable points (unless otherwise specified) and a set of allowable tokens. For
each equation f∗ an inference time training and test set are sampled independently from the defined
problem set domain, each of 10d input-output samples, to form a datasetD = {Xi, f

∗(Xi)}10di=1. The
training dataset is used to optimize the loss at inference time and the test set is only used for evaluation
of the best equations found at the end of inference. Inference runs for 2 million equation evaluations,
unless the true equation is found early—stopping the procedure. To construct the pre-training set
{D(j)}mj=1, we use the concise equation generation method of Lample & Charton (2019). This uses
the library of tokens for a particular problem set and is detailed further in Appendix J, with details of
training and how to specify p(f).

Benchmark problem sets. We note that we achieve similar performance to the standard SR
benchmark problem sets in Appendix H and therefore seek to evaluate DGSR on more challenging
SR benchmarks with more variables (d ≥ 2), whilst benchmarking on realistic equations that experts
wish to discover. We use equations from the Feynman SR database (Udrescu & Tegmark, 2020), to
provide more challenging equations of a larger number of input variables. These are derived from
the Feynman Lectures on Physics (Feynman et al., 1965). We randomly selected a subset of ω = 7
equations with two input variables (Feynman d = 2), and a further, more challenging, subset of ω = 8
equations with five input variables (Feynman d = 5). Additionally, we sample an additional Feynman
dataset of ω = 32 equations with d = {3, 4, 6, 7, 8, 9} input variables (Additional Feynman). We
also benchmark on SRBench (La Cava et al., 2021), which includes a further ω = 133 equations, of
ω = 119 of the Feynman equations and ω = 14 ODE-Strogatz (Strogatz, 2018) equations. Finally,
we consider a more challenging problem set consisting of d = 12 variables of ω = 7 equations
synthetically generated (Synthetic d = 12). We detail all problem sets in Appendix I.

Evaluation. We evaluate against the standard symbolic regression metric of recovery rate (ARec%)—
the percentage of runs where the true equation f∗ was found, over a set number of κ random seed
runs (Petersen et al., 2020). This uses the strictest definition of symbolic equivalence, by a computer
algebraic system (Meurer et al., 2017). We also evaluate the average number of equation evaluations
γ until the true equation f∗ is found. We use this metric as a proxy for computational complexity
across the benchmark algorithms, as testing many generated equations is a bottleneck in SR (Biggio
et al., 2021; Petersen et al., 2020), discussed further in Appendix K. Unless noted further we follow
the experimental setup of Petersen et al. (2020) and use their complexity definition, also detailed in
Appendix K. We run all problems κ = 10 times using a different random seed for each run (unless
otherwise specified), and pre-train with 100K generated equations for each benchmark problem set.

4Additionally, the code is available at https://github.com/samholt/DeepGenerativeSymbolicRegression and
have a broader research group codebase at https://github.com/vanderschaarlab/DeepGenerativeSymbolicRegression

6

https://github.com/samholt/DeepGenerativeSymbolicRegression
https://github.com/vanderschaarlab/DeepGenerativeSymbolicRegression

Published as a conference paper at ICLR 2023

Table 2: Average recovery rate (ARec%) and the average number of equation evaluations γ across the
benchmark problem sets, with 95 % confidence intervals. Individual rates and equation evaluations
are detailed in Appendices L O P Q. Where: ω is the number of unique equations f∗ in a benchmark
problem set, κ is the number of random seed runs, and d is the number of input variables in the
problem set.

Problem set ω d κ DGSR NGGP NESYMRES GP

Average Rec. Feynman (d=2) 7 2 40 85.36 ± 0.69 85.71 ± 0.00 57.14 ± 0.00 50.00 ± 7.20
Rate (%) ARec% Feynman (d=5) 8 5 40 69.69 ± 3.38 63.44 ± 6.64 NA 15.00 ± 12.39

Additional Feynman 32 {3,4,6,7,8,9} 10 67.81 ± 4.60 67.81 ± 3.00 NA -
Synthetic (d=12) 7 12 20 37.86 ± 5.62 28.57 ± 0.00 NA 0 ± 0

Average Feynman (d=2) 7 2 40 66,404 112,798 256 4,033
Eq. Evals γ Feynman (d=5) 8 5 40 731,442 912,594 NA 198,455

Additional Feynman 32 {3,4,6,7,8,9} 10 318,042 328,499 NA -
Synthetic (d=12) 7 12 20 271,302 828,905 NA -

5.1 MAIN RESULTS

The average recovery rate (ARec%) and the average number of equation evaluations for the benchmark
problem sets are tabulated in Table 2. DGSR achieves a higher recovery rate with more input variables,
specifically in the problem sets of Feynman d = 5, Additional Feynman and Synthetic d = 12. We
note that NESYMRES achieves the lowest number of equation evaluations, however, suffers from a
significantly lower recovery rate.

Standard benchmark problem sets. DGSR is state-of-the-art on SRBench (La Cava et al., 2021)
for true equation recovery on the ground truth unique equations, with a significant increase of true
equation recovery of 63.25% compared to the previous benchmark method of 52.65% in SRBench,
Appendix S. DGSR also achieves a new significant state-of-the-art high recovery rate on the R
rationals (Krawiec & Pawlak, 2013) problem set with a 10% increase in recovery rate, Appendix H.
It also achieves the same performance as state-of-the-art (NGGP) in the standard benchmark problem
sets that have a small number of input variables, of the Nguyen (Uy et al., 2011) and Livermore
problem sets (Mundhenk et al., 2021) detailed in Appendix H.

5.2 INSIGHT AND UNDERSTANDING OF HOW DGSR WORKS

In this section we seek to gain further insight of how DGSR achieves a higher recovery rate with a
larger number of input variables, whilst having fewer equation evaluations compared to RL techniques.
In the following we seek to understand if DGSR is able to: capture these equation equivalences
(P1), at refinement perform inference computationally efficiently (P2) and generalize to unseen input
variables of a higher dimension from those seen during pre-training (P3).

Can DGSR capture the equation equivalences? (P1). To explore if DGSR is learning these
equation equivalences, we turn off early stopping and count the number of unique ground truth f∗

equivalent equations that are discovered, as shown in Figure 3 (a). Empirically we observe that
DGSR is able to correctly capture equation equivalences and exploits these to generate many unique
equivalent—yet true equations, with 10 of these tabulated in Table 3. We note that the RL method,

(a) (c)(b)

Figure 3: (a) Number of unique ground truth f∗ equivalent equations discovered for problem
Feynman-7 (A. L), (b) Percentage of valid equations generated from a sample of k for problem
Feynman-7 (A. L), (c) Average recovery rate of Feynman d = 2, Feynman d = 5 and Synthetic
d = 12 benchmark problem sets plotted against the number of input variables d.

7

Published as a conference paper at ICLR 2023

Table 3: DGSR equivalent f∗ generated equations at inference time, for problem Feynman-7.

True equation (f∗) Equivalent generated equations
3
2x1x2 x1(x2 +

x2x2

x2+x2
) x1(x2 +

x2
1
x2

(x2+x2)
)

3
2x1x2 x2(x1 + x2

x1

x2+x2
) x2(x1 +

x1x2

x2+x2
)

3
2x1x2 x1(x2

x2

x2+x2
+ x2) x2(x1

x1

x1+x1
+ x1)

3
2x1x2 x1(x2

x2

x2+x2
+ x2) x2(x1 + x2

x1

x2+x2
)

3
2x1x2 x1(x2

x1

x1+x1
+ x2) x2(x1

x2

x2+x2
+ x1)

3
2x1x2 x1(x2

x1

x1+x1
+ x2) x1(x1

x2

x1+x1
+ x2)

3
2x1x2 x2(x1 +

x1
1
x1

(x1+x1)
) x2(x1 + x2

x1

x2+x2
)

3
2x1x2 x2(x1

x1

x1+x1
+ x1) x2(x1 +

x1
1
x2

(x2+x2)
)

3
2x1x2 x2(x1

x2

x2+x2
+ x1) x1(x2

x2

x2+x2
+ x2)

3
2x1x2 x2(x1

x2

x2+x2
+ x1) x1(x2 + (x2 + x1

−x2

x1+x1
))

(a) (b) (c)

True Equation
Complexity

True Equation
Complexity

Figure 4: (a-b) Pareto front of test NMSE against equation complexity. Labelled: (a) Feynman-8, (b)
Feynman-13. Ground truth equation complexity is the red line. Equations discovered are listed in A.
N. (c) Negative log-likelihood of the ground truth true equation f∗ for problem Feynman-7 (A. L).

NGGP is also able to find the true equation. Furthermore, we highlight that all these equations are
equivalent achieving zero test NMSE and can be simplified into f∗, detailed further in Appendix M.

Moreover, DGSR is able to learn how to generate valid equations more readily. This is important as
an SR method needs an equation to be valid for it to be evaluated, that is, one where the generated
tokens f̄ can be instantiated into an equation f and evaluated (e.g., log

(
−2x2

1

)
is not valid). Figure 3

(b) shows that DGSR has learnt how to generate valid equations, that also have a high probability of
containing the true equation f∗. Whereas the RL method, NGGP generates mostly invalid equations.
We note that the pre-trained encoder-decoder method, NESYMRES generates almost perfectly valid
equations—however struggles to produce the true equation f∗ in most problems, as seen in Table 2.

We analyze some of the most challenging equations to recover, that all methods failed to find. We
observe that DGSR can still find good fitting equations that are concise, i.e., having a low test NMSE
with a low equation complexity. A few of these are shown with Pareto fronts in Figure 4 and in
Appendix N. We highlight that for a good SR method we wish to determine concise and best fitting
equations. Otherwise, it is undesirable to over-fit with an equation that has many terms, having a high
complexity—that fails to generalize well.

Additionally, we analyze the challenging real-world setting of low data samples with noise, in
Appendix L. Here we observe that DGSR is state-of-the-art with a significant average recovery rate
increase of at least 10% better than that of NGGP in this setting, and reason that DGSR is able to
exploit the encoded prior p(f).

Furthermore, we perform an ablation study to investigate how useful pre-training and an encoder is
for recovering the true equation, in Table 4. This demonstrates empirically for DGSR pre-training
increases the recovery rate of the true equation, and highlights that the decoder also benefits from
pre-training implicitly modelling p(f) without the encoder. We also ablate pre-training DGSR with a
cross-entropy loss on the output of the decoder instead and observe that an end-to-end NMSE loss
benefits the recovery rate. This supports our belief that with our invariant aware model and end-to-end
loss, DGSR is able to learn the equation and dataset invariances (P1) to have a higher recovery rate.

8

Published as a conference paper at ICLR 2023

Table 4: DGSR ablation study using average recovery rate (ARec%) on the Feynman d = 5 benchmark
problem set. Where d is the number of input variables.

Study Config Average recovery rate (%) ARec%

Pre-training Pre-trained ✓ Encoder ✓ 67.50
& Encoder Pre-trained ✓ Encoder ✗ 66.66

Pre-trained ✗ Encoder ✗ 60.41

Pre-training Loss NMSE 67.50
Cross Entropy 62.50

Pre-trained dataset (d = 5) = (dinference = 5) 67.50
Pre-trained dataset (d = 2) < (dinference = 5) 61.29

Can DGSR perform computationally efficient inference? (P2). We wish to understand if our
pre-trained conditional generative model, pθ(f |D) can encode the observed dataset D to start with a
good initial distribution that is further refined. We do this by evaluating the negative log-likelihood of
the true equation f∗ during inference, as plotted in Figure 4 (c). We observe that DGSR finds the
true equation f∗ in few equation evaluations, by correctly conditioning on the observed dataset D
to start with a distribution that has a high probability of sampling f∗, which is then further refined.
This also indicates that DGSR has learnt a better representation of the true equation f∗ (P1) where
equivalent equation forms are inherently represented compared to the pre-trained encoder-decoder
method, NESYMRES which can only represent one equation form. In contrast, NGGP starts with
a random initial equation distribution and eventually converges to a suitable distribution, however
this requires a greater number of equation evaluations. Here the pre-trained encoder-decoder method,
NESYMRES is unable to refine its equation distribution model. This leads it to have a constant
probability of sampling the true equation f∗, which in this problem is too low to be sampled and was
not discovered after the maximum of 2 million equations sampled. We note that in theory, one could
obtain the true equation f∗ via an uninformed random search, however this would take a prohibitively
large amount of equation samples and hence equation evaluations to be feasible.

Figure 5: Percentage of valid
equations generated from a
sample of k equations on the
Feynman-7 problem (A. L),
with a different optimizer, that
of Petersen et al. (2020).

Furthermore, DGSR is capable of being used with other optimizers,
and show this in Figure 5, where it uses the optimizer of Petersen
et al. (2020). This is an ablated version of the optimizer from NGGP;
that is a policy gradient method without the GP component. Empir-
ically we demonstrate that using this different optimizer, DGSR still
achieves a greater and significant computational inference efficiency
compared to RL methods using the same optimizer. Where DGSR
uses a total of γ = 29, 356 average equation evaluations compared to
the state-of-the-art RL method with γ = 151, 231 average equation
evaluations on the Feynman d = 2 problem set (Appendix R).

Can DGSR generalize to unseen input variables of a higher di-
mension? (P3). We observe in Table 4 that even when DGSR is
pre-trained with a smaller number of input variables than those seen
at inference time, it is still able to learn a useful equation represen-
tation (P1) that aids generalizing to the unseen input variables of a
higher dimension. Here, we verify this by pre-training on a dataset
with d = 2 and evaluating on the Feynman d = 5 problem set.

6 DISCUSSION AND FUTURE WORK

We hope this work provides a practical framework to advance deep symbolic regression methods,
which are immensely useful in the natural sciences. We note that DGSR has the following limitations
of: (1) may fail to discover highly complex equations, (2) optimizing the numeric constants can get
stuck in local optima and (3) it assumes all variables in f are observed. Each of these pose exciting
open challenges for future work, and are discussed in detail in Appendix V. Of these, we envisage
Deep Generative SR enabling future works of tackling even larger numbers of input variables and
assisting in the automation of the problem of scientific discovery. Doing so has the opportunity to
accelerate the scientific discovery of equations that determine the true underlying processes of nature
and the world.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS.

SH would like to acknowledge and thank AstraZeneca for funding. This work was additionally
supported by the Office of Naval Research (ONR) and the NSF (Grant number: 1722516). Moreover,
we would like to warmly thank all the anonymous reviewers, alongside research group members
of the van der Scaar lab, for their valuable input, comments and suggestions as the paper was
developed—where all these inputs ultimately improved the paper. Furthermore, SH would like to
thank G-research for a small grant.

Ethics Statement. We envisage DGSR as a tool to help human experts discover underlying equations
from processes, however emphasize that the equations discovered would need to be further verified by
a human expert or in an experimental setting. Furthermore, the data used in this work is synthetically
generated from given equation problem sets, and no human-derived data was used.

Reproducibility Statement. To ensure reproducibility, we outline in Section 5: (1) the benchmark
algorithms used and include their implementation details, including their hyperparameters and how
they were selected fully, in Appendix G. (2) How we generated the inference datasets for a single
equation f in a problem set of ω equations and provide full details of the pre-training dataset
generation and inference dataset generation in Appendix J. (3) Which benchmark problem sets we
used and provide full problem set details, including all equations in a problem set, token set used and
the domain to sample X points from in Appendix I. (4) The evaluation metrics used, how these are
computed over random seed runs and detail all of these further in Appendix K. Finally, the code is
available at https://github.com/samholt/DeepGenerativeSymbolicRegression.

REFERENCES

Daniel A Abolafia, Mohammad Norouzi, Jonathan Shen, Rui Zhao, and Quoc V Le. Neural program
synthesis with priority queue training. arXiv preprint arXiv:1801.03526, 2018.

Ahmed M Alaa and Mihaela van der Schaar. Demystifying black-box models with symbolic
metamodels. Advances in Neural Information Processing Systems, 32, 2019.

Douglas Adriano Augusto and Helio JC Barbosa. Symbolic regression via genetic programming. In
Proceedings. Vol. 1. Sixth Brazilian Symposium on Neural Networks, pp. 173–178. IEEE, 2000.

Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. Evolutionary computation 1: Basic
algorithms and operators. CRC press, 2018.

Julia Balla, Sihao Huang, Owen Dugan, Rumen Dangovski, and Marin Soljacic. Ai-assisted discovery
of quantitative and formal models in social science. arXiv preprint arXiv:2210.00563, 2022.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pp. 449–458. PMLR, 2017.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales. In International Conference on Machine Learning, pp.
936–945. PMLR, 2021.

Jonathan M Borwein, Richard E Crandall, et al. Closed forms: what they are and why we care.
Notices of the AMS, 60(1):50–65, 2013.

Simyung Chang, John Yang, Jaeseok Choi, and Nojun Kwak. Genetic-gated networks for deep
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Diqi Chen, Yizhou Wang, and Wen Gao. Combining a gradient-based method and an evolution
strategy for multi-objective reinforcement learning. Applied Intelligence, 50(10):3301–3317, 2020.

Yukang Chen, Gaofeng Meng, Qian Zhang, Shiming Xiang, Chang Huang, Lisen Mu, and Xinggang
Wang. Reinforced evolutionary neural architecture search. arXiv preprint arXiv:1808.00193, 2018.

Allan Costa, Rumen Dangovski, Owen Dugan, Samuel Kim, Pawan Goyal, Marin Soljačić, and Joseph
Jacobson. Fast neural models for symbolic regression at scale. arXiv preprint arXiv:2007.10784,
2020.

10

https://github.com/samholt/DeepGenerativeSymbolicRegression

Published as a conference paper at ICLR 2023

Jonathan Crabbe, Yao Zhang, William Zame, and Mihaela van der Schaar. Learning outside the
black-box: The pursuit of interpretable models. Advances in Neural Information Processing
Systems, 33:17838–17849, 2020.

Stéphane d’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and Francois Charton. Deep
symbolic regression for recurrence prediction. In International Conference on Machine Learning,
pp. 4520–4536. PMLR, 2022.

Richard P Feynman, Robert B Leighton, and Matthew Sands. The feynman lectures on physics; vol.
i. American Journal of Physics, 33(9):750–752, 1965.

Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner Gardner, Marc Parizeau,
and Christian Gagné. Deap: Evolutionary algorithms made easy. The Journal of Machine Learning
Research, 13(1):2171–2175, 2012.

James Harrison, Apoorva Sharma, and Marco Pavone. Meta-learning priors for efficient online
bayesian regression. In International Workshop on the Algorithmic Foundations of Robotics, pp.
318–337. Springer, 2018.

Ying Jin, Weilin Fu, Jian Kang, Jiadong Guo, and Jian Guo. Bayesian symbolic regression. arXiv
preprint arXiv:1910.08892, 2019.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton. End-to-
end symbolic regression with transformers. arXiv preprint arXiv:2204.10532, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

JRGP Koza. On the programming of computers by means of natural selection. Genetic programming,
1992.

Krzysztof Krawiec and Tomasz Pawlak. Approximating geometric crossover by semantic backpropa-
gation. In Proceedings of the 15th annual conference on Genetic and evolutionary computation,
pp. 941–948, 2013.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio Olivetti de Franca, Marco Virgolin,
Ying Jin, Michael Kommenda, and Jason H Moore. Contemporary symbolic regression methods
and their relative performance. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1), 2021.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In International
Conference on Learning Representations, 2019.

Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago, Ruben Glatt, Nathan
Mundhenk, Jacob F Pettit, and Daniel Faissol. Discovering symbolic policies with deep rein-
forcement learning. In International Conference on Machine Learning, pp. 5979–5989. PMLR,
2021.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
Conference on Machine Learning, pp. 3744–3753. PMLR, 2019.

Peter Y Lu, Joan Ariño, and Marin Soljačić. Discovering sparse interpretable dynamics from partial
observations. arXiv preprint arXiv:2107.10879, 2021.

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. Sympy: symbolic
computing in python. PeerJ Computer Science, 3:e103, 2017.

Terrell N. Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P. Santiago, Daniel faissol, and
Brenden K. Petersen. Symbolic regression via deep reinforcement learning enhanced genetic
programming seeding. In Advances in Neural Information Processing Systems, 2021.

11

Published as a conference paper at ICLR 2023

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Brenden K Petersen, Mikel Landajuela Larma, Terrell N Mundhenk, Claudio Prata Santiago,
Soo Kyung Kim, and Joanne Taery Kim. Deep symbolic regression: Recovering mathemat-
ical expressions from data via risk-seeking policy gradients. In International Conference on
Learning Representations, 2020.

Patrick AK Reinbold, Logan M Kageorge, Michael F Schatz, and Roman O Grigoriev. Robust
learning from noisy, incomplete, high-dimensional experimental data via physically constrained
symbolic regression. Nature communications, 12(1):1–8, 2021.

Joseph D Romano, Trang T Le, William La Cava, John T Gregg, Daniel J Goldberg, Praneel
Chakraborty, Natasha L Ray, Daniel Himmelstein, Weixuan Fu, and Jason H Moore. Pmlb v1. 0:
an open-source dataset collection for benchmarking machine learning methods. Bioinformatics, 38
(3):878–880, 2022.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81–85, 2009.

Volker Steinbiss, Bach-Hiep Tran, and Hermann Ney. Improvements in beam search. In Third
international conference on spoken language processing, 1994.

Erwin Stinstra, Gijs Rennen, and Geert Teeuwen. Metamodeling by symbolic regression and pareto
simulated annealing. Structural and Multidisciplinary Optimization, 35(4):315–326, 2008.

Steven H Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,
and engineering. CRC press, 2018.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O Stanley, and Jeff
Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming:
Learning to cut. In International Conference on Machine Learning, pp. 9367–9376. PMLR, 2020.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020.

Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, Robert I McKay, and Edgar Galván-
López. Semantically-based crossover in genetic programming: application to real-valued symbolic
regression. Genetic Programming and Evolvable Machines, 12(2):91–119, 2011.

Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. Symbolicgpt: A generative trans-
former model for symbolic regression. arXiv preprint arXiv:2106.14131, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

David R White, James McDermott, Mauro Castelli, Luca Manzoni, Brian W Goldman, Gabriel
Kronberger, Wojciech Jaśkowski, Una-May O’Reilly, and Sean Luke. Better gp benchmarks:
community survey results and proposals. Genetic Programming and Evolvable Machines, 14(1):
3–29, 2013.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

12

Published as a conference paper at ICLR 2023

CONTENTS OF SUPPLEMENTARY MATERIALS

IMPLEMENTATION DETAILS:

• Appendix A: Glossary of Terms
• Appendix B: DGSR Instantiation
• Appendix C: NGPQT Optimization Method
• Appendix D: DGSR Pseudocode and System Description
• Appendix E: Other Optimization Algorithms

RELATED WORK AND METHODOLOGY:

• Appendix F: Extended Related Work
• Appendix G: Benchmark Algorithms
• Appendix I: Benchmark Problem Details
• Appendix J: Dataset Generation and Training
• Appendix K: Evaluation Metrics

RESULTS:

• Appendix H: Standard Benchmark Problem Results
• Appendix L: Feynman d = 2 Results
• Appendix M: Feynman-7 Equivalent Equations
• Appendix N: Feynman d = 5 Pareto Front Equations
• Appendix O: Feynman d = 5 Results
• Appendix P: Additional Feynman Results
• Appendix Q: Synthetic d = 12 Results
• Appendix S: SRBench Results
• Appendix Y: Additional synthetic experiments

ABLATIONS:

• Appendix R: Using Different Optimizer Results
• Appendix U: Encoder Decoder Architecture Ablation
• Appendix W: Encoder Ablation
• Appendix X: Cross Entropy with no Refinement Ablation

LIMITATIONS AND OPEN CHALLENGES:

• Appendix T: Local Optima
• Appendix V: Limitations and Open Challenges

13

Published as a conference paper at ICLR 2023

<latexit sha1_base64="9pW4kAk3kocK17QbryIY+kHUJ+w=">AAACAHicbVBNS8NAEN34WetX1IMHL8Ei1EtJpKjHoh48VrAf0ISy2W7apZtN2J0IJebiX/HiQRGv/gxv/hs3bQ7a+mDg8d4MM/P8mDMFtv1tLC2vrK6tlzbKm1vbO7vm3n5bRYkktEUiHsmujxXlTNAWMOC0G0uKQ5/Tjj++zv3OA5WKReIeJjH1QjwULGAEg5b65mHcd2FEAVeDRzfEMCKYpzfZad+s2DV7CmuROAWpoALNvvnlDiKShFQA4VipnmPH4KVYAiOcZmU3UTTGZIyHtKepwCFVXjp9ILNOtDKwgkjqEmBN1d8TKQ6VmoS+7sxvVPNeLv7n9RIILr2UiTgBKshsUZBwCyIrT8MaMEkJ8IkmmEimb7XICEtMQGdW1iE48y8vkvZZzTmv1e/qlcZVEUcJHaFjVEUOukANdIuaqIUIytAzekVvxpPxYrwbH7PWJaOYOUB/YHz+ALq+loA=</latexit>

p✓(f |D)
<latexit sha1_base64="SQfhqnId9+RqDUVorO0wZzjYLMY=">AAACDXicbVC7TsMwFHV4lvIKMLJYFCSmKkEVMFawMKGC6ENqSuW4TmvVcSL7BqmK8gMs/AoLAwixsrPxNzhtB2g5kqXjc+7Vvff4seAaHOfbWlhcWl5ZLawV1zc2t7btnd2GjhJFWZ1GIlItn2gmuGR14CBYK1aMhL5gTX94mfvNB6Y0j+QdjGLWCUlf8oBTAkbq2odeSGDgB2kr87icfPz0NrtPex7wkGl8nRW7dskpO2PgeeJOSQlNUevaX14voknIJFBBtG67TgydlCjgVLCs6CWaxYQOSZ+1DZXEDOqk42syfGSUHg4iZZ4EPFZ/d6Qk1HoU+qYyX1fPern4n9dOIDjvpFzGCTBJJ4OCRGCIcB4N7nHFKIiRIYQqbnbFdEAUoWACzENwZ0+eJ42TsntartxUStWLaRwFtI8O0DFy0RmqoitUQ3VE0SN6Rq/ozXqyXqx362NSumBNe/bQH1ifPxbLnDE=</latexit>

X 2 Rd⇥N

<latexit sha1_base64="HoZNmyOnkePh5bQXRbk5KbkJReA=">AAACsnicbZHLTsMwEEWd8A6vAks2FhWIBSpJVAFLBBuWIFFANCVynGmx6jiR7SCqKB/Ilh1/g9OG8igjWTq6cz0ez0QZZ0q77odlz80vLC4trzira+sbm42t7TuV5pJCh6Y8lQ8RUcCZgI5mmsNDJoEkEYf7aHhZ5e9fQCqWils9yqCXkIFgfUaJNlLYeMNBBAMmiighWrLX0sEYv4aFd+SV+GBCfkUBjVOtvqS4xEFQW/2p1Z+1+t/W4GUsV4ZvimvrlzStKqZVxWxVUVV1cAAinjYeNppuyx0HngWvhiaq4zpsvAdxSvMEhKacKNX13Ez3CiI1oxxKJ8gVZIQOyQC6BgVJQPWK8chLvG+UGPdTaY7QeKz+vFGQRKlREhmn6e9Z/c1V4n+5bq77Z72CiSzXIOjkoX7OsU5xtT8cMwlU85EBQiUzvWL6TCSh2mzZMUPw/n55Fu78lnfSat+0m+cX9TiW0S7aQ4fIQ6foHF2ha9RB1Dq2OtaTFdpt+9EmNp1Ybau+s4N+hc0/AUoUyU8=</latexit>2
6664

x1,1 x1,2 · · · x1,d

x2,1 x2,2 · · · x2,d

...
...

. . .
...

xn,1 xn,2 · · · xn,d

3
7775

<latexit sha1_base64="INIOmserzpVKnYG4DFfa2vU8UEY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mk+HErePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWag775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC+q3mW11qxV6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AcyujOs=</latexit>g
<latexit sha1_base64="INIOmserzpVKnYG4DFfa2vU8UEY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mk+HErePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWag775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC+q3mW11qxV6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AcyujOs=</latexit>g

<latexit sha1_base64="INIOmserzpVKnYG4DFfa2vU8UEY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mk+HErePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWag775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC+q3mW11qxV6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AcyujOs=</latexit>g

<latexit sha1_base64="bsdzg3s/rBpj24NNXrE0Ccyeq9E=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiRSfOwKblxWsQ9oYphMJ+3QySTMTColZOXGX3HjQhG3foM7/8ZJm4W2Hhg4c8693HuPHzMqlWV9G6Wl5ZXVtfJ6ZWNza3vH3N1ryygRmLRwxCLR9ZEkjHLSUlQx0o0FQaHPSMcfXeV+Z0yEpBG/U5OYuCEacBpQjJSWPPPQCZEa+kE6zjzqUD77+ultdp8+ZJ5ZtWrWFHCR2AWpggJNz/xy+hFOQsIVZkjKnm3Fyk2RUBQzklWcRJIY4REakJ6mHIVEuun0jAwea6UPg0joxxWcqr87UhRKOQl9XZlvKee9XPzP6yUquHBTyuNEEY5ng4KEQRXBPBPYp4JgxSaaICyo3hXiIRIIK51cRYdgz5+8SNqnNfusVr+pVxuXRRxlcACOwAmwwTlogGvQBC2AwSN4Bq/gzXgyXox342NWWjKKnn3wB8bnD7KlmeU=</latexit>

vi 2 Rw

<latexit sha1_base64="aZo0y2UekkdBL3Nx4ZKfdsA4xWU=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWak+NgV3LisYB/QGUomzbShmcyQZApl6G+4caGIW3/GnX9jpp2Fth4IHM65l3tygkRwbRznG5U2Nre2d8q7lb39g8Oj6vFJR8epoqxNYxGrXkA0E1yytuFGsF6iGIkCwbrB5D73u1OmNI/lk5klzI/ISPKQU2Ks5HkRMeMgzKbzgTuo1py6swBeJ25BalCgNah+ecOYphGThgqidd91EuNnRBlOBZtXvFSzhNAJGbG+pZJETPvZIvMcX1hliMNY2ScNXqi/NzISaT2LAjuZZ9SrXi7+5/VTE976GZdJapiky0NhKrCJcV4AHnLFqBEzSwhV3GbFdEwUocbWVLEluKtfXiedq7p7XW88NmrNu6KOMpzBOVyCCzfQhAdoQRsoJPAMr/CGUvSC3tHHcrSEip1T+AP0+QMni5G+</latexit>v1
<latexit sha1_base64="CNeq30gWBtJqWNzkFcFNr9negRc=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyU4mNXcOOygq2FzlAyaaYNzSRDkimUob/hxoUibv0Zd/6NmXYW2nogcDjnXu7JCRPOtHHdb6e0sbm1vVPereztHxweVY9PulqmitAOkVyqXog15UzQjmGG016iKI5DTp/CyV3uP02p0kyKRzNLaBDjkWARI9hYyfdjbMZhlE3ng8agWnPr7gJonXgFqUGB9qD65Q8lSWMqDOFY677nJibIsDKMcDqv+KmmCSYTPKJ9SwWOqQ6yReY5urDKEEVS2ScMWqi/NzIcaz2LQzuZZ9SrXi7+5/VTE90EGRNJaqggy0NRypGRKC8ADZmixPCZJZgoZrMiMsYKE2NrqtgSvNUvr5Nuo+5d1ZsPzVrrtqijDGdwDpfgwTW04B7a0AECCTzDK7w5qfPivDsfy9GSU+ycwh84nz8pD5G/</latexit>v2

<latexit sha1_base64="S0v2q/IBiprp/xFks79EJyJuMho=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWak+NgV3LisYB/QGUomzbShmcyQZApl6G+4caGIW3/GnX9jpp2Fth4IHM65l3tygkRwbRznG5U2Nre2d8q7lb39g8Oj6vFJR8epoqxNYxGrXkA0E1yytuFGsF6iGIkCwbrB5D73u1OmNI/lk5klzI/ISPKQU2Ks5HkRMeMgzKbzgRxUa07dWQCvE7cgNSjQGlS/vGFM04hJQwXRuu86ifEzogyngs0rXqpZQuiEjFjfUkkipv1skXmOL6wyxGGs7JMGL9TfGxmJtJ5FgZ3MM+pVLxf/8/qpCW/9jMskNUzS5aEwFdjEOC8AD7li1IiZJYQqbrNiOiaKUGNrqtgS3NUvr5POVd29rjceG7XmXVFHGc7gHC7BhRtowgO0oA0UEniGV3hDKXpB7+hjOVpCxc4p/AH6/AGD/5H7</latexit>vn

<latexit sha1_base64="fjAFwjQeVboS8PhARI4/iqYHO64=">AAACAnicbVDLSsNAFL3xWesr6krcBIvgqiRSfOwKblxWsQ9oYplMJ+3QySTMTJQSght/xY0LRdz6Fe78GydtFtp6YODMOfdy7z1+zKhUtv1tLCwuLa+sltbK6xubW9vmzm5LRonApIkjFomOjyRhlJOmooqRTiwICn1G2v7oMvfb90RIGvFbNY6JF6IBpwHFSGmpZ+67IVJDP0hbmUv59OOnN9ndQ8+s2FV7AmueOAWpQIFGz/xy+xFOQsIVZkjKrmPHykuRUBQzkpXdRJIY4REakK6mHIVEeunkhMw60krfCiKhH1fWRP3dkaJQynHo68p8Rznr5eJ/XjdRwbmXUh4ninA8HRQkzFKRledh9akgWLGxJggLqne18BAJhJVOraxDcGZPnietk6pzWq1d1yr1iyKOEhzAIRyDA2dQhytoQBMwPMIzvMKb8WS8GO/Gx7R0wSh69uAPjM8fGNKX3Q==</latexit>

V 2 Rw

<latexit sha1_base64="qy1gfGYtYKphXl8OdUzCT4ik70o=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxI8bEruHFZwT6wHUomvdOGZjJDkhHK0L9w40IRt/6NO//GtJ2Fth4IHM65l5x7gkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GtzO//YRK81g+mEmCfkSHkoecUWOlx15EzSgIs9a0X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nk88JWdWGZAwVvZJQ+bq742MRlpPosBOzhLqZW8m/ud1UxNe+xmXSWpQssVHYSqIicnsfDLgCpkRE0soU9xmJWxEFWXGllSyJXjLJ6+S1kXVu6zW7muV+k1eRxFO4BTOwYMrqMMdNKAJDCQ8wyu8Odp5cd6dj8Vowcl3juEPnM8fyciQ+g==</latexit>

V<latexit sha1_base64="l1N6d84ufQgO8eTHqVb7Al0Bm90=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mk+HErePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWao765Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC+q3mW11qxV6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8Ac4yjOw=</latexit>

h
<latexit sha1_base64="EyRzwYh7YfLjoWxtMHeT78ehxpk=">AAACInicbVDLSgMxFM3UV62vqks3wSK4kDIjxcdGCm5cVrAP6AxDJs20oZkHyR2hTOdb3Pgrblwo6krwY0ynXdjWAyEn59yb5B4vFlyBaX4bhZXVtfWN4mZpa3tnd6+8f9BSUSIpa9JIRLLjEcUED1kTOAjWiSUjgSdY2xveTvz2I5OKR+EDjGLmBKQfcp9TAlpyy9dd2yMytQcEUj/LXOsM270IlN7m9HSc01zU53HmuOWKWTVz4GVizUgFzdBwy5/6ZpoELAQqiFJdy4zBSYkETgXLSnaiWEzokPRZV9OQBEw5aT5ihk+00sN+JPUKAefq346UBEqNAk9XBgQGatGbiP953QT8KyflYZwAC+n0IT8RGCI8yQv3uGQUxEgTQiXXf8V0QCShoFMt6RCsxZGXSeu8al1Ua/e1Sv1mFkcRHaFjdIosdInq6A41UBNR9IRe0Bt6N56NV+PD+JqWFoxZzyGag/HzC7n3pa8=</latexit>

[
¯̂
f1, . . . ,

¯̂
f| ˆ̄f |]

<latexit sha1_base64="ePltHpkSCTReCZ+0pekRxAG/NMQ=">AAACFXicbVDLSgMxFM3UV62vUZdugkVooZQZKepKCiK4USraB7SlZNJMG5p5kNwRyzA/4cZfceNCEbeCO//G9CFo64GQk3PuJfceJxRcgWV9GamFxaXllfRqZm19Y3PL3N6pqSCSlFVpIALZcIhigvusChwEa4SSEc8RrO4MzkZ+/Y5JxQP/FoYha3uk53OXUwJa6piFFrB7iK8ub86TXKtPIHb17RHoO27cSPIF/PMYJvmOmbWK1hh4nthTkkVTVDrmZ6sb0MhjPlBBlGraVgjtmEjgVLAk04oUCwkdkB5rauoTj6l2PN4qwQda6WI3kPr4gMfq746YeEoNPUdXjkZUs95I/M9rRuCetGPuhxEwn04+ciOBIcCjiHCXS0ZBDDUhVHI9K6Z9IgkFHWRGh2DPrjxPaodF+6hYui5ly6fTONJoD+2jHLLRMSqjC1RBVUTRA3pCL+jVeDSejTfjfVKaMqY9u+gPjI9vZtee9g==</latexit>

NMSE(f̂(X),y)

P.G.. . .
InferencePre-training

Backpropagation
<latexit sha1_base64="3OYBTWZwR86z8UZA41zkskq6Tfs=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0WsICWR4mMhFHThsoJ9QBPKZDpph04ezEyEEPIJbvwVNy4UcevSnX/jJI2grQcGzpxzL/fe44SMCmkYX1ppYXFpeaW8Wllb39jc0rd3OiKIOCZtHLCA9xwkCKM+aUsqGemFnCDPYaTrTK4yv3tPuKCBfyfjkNgeGvnUpRhJJQ30Q8tDcowRS67TSyup5V/HTXrp8Q+N0yMrHehVo27kgPPELEgVFGgN9E9rGODII77EDAnRN41Q2gnikmJG0ooVCRIiPEEj0lfURx4RdpIflMIDpQyhG3D1fAlz9XdHgjwhYs9RldmSYtbLxP+8fiTdczuhfhhJ4uPpIDdiUAYwSwcOKSdYslgRhDlVu0I8RhxhqTKsqBDM2ZPnSeekbp7WG7eNavOiiKMM9sA+qAETnIEmuAEt0AYYPIAn8AJetUftWXvT3qelJa3o2QV/oH18A15BnWo=</latexit>D = {(X,y)}

Encoder

Decoder
<latexit sha1_base64="NnJOmVdzcEhlUDEMjqob/APz7kw=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVL0VvHisYD+gDWWz3TRLdzdhdyOU0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmBQln2rjut1Pa2Nza3invVvb2Dw6PqscnXR2nitAOiXms+gHWlDNJO4YZTvuJolgEnPaC6V3u956o0iyWj2aWUF/giWQhI9jk0jCJ2Khac+vuAmideAWpQYH2qPo1HMckFVQawrHWA89NjJ9hZRjhdF4ZppommEzxhA4slVhQ7WeLW+fowipjFMbKljRoof6eyLDQeiYC2ymwifSql4v/eYPUhDd+xmSSGirJclGYcmRilD+OxkxRYvjMEkwUs7ciEmGFibHxVGwI3urL66R7Vfea9cZDo9a6LeIowxmcwyV4cA0tuIc2dIBABM/wCm+OcF6cd+dj2VpyiplT+APn8wcTwY4/</latexit>

�

<latexit sha1_base64="hr9NX53eKfaFMiJzUYXBmjM5UCA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mk+HErePFYwbSFNpTNdtMu3WzC7kSopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1MpDLrut1NYW9/Y3Cpul3Z29/YPyodHTZNkmnGfJTLR7ZAaLoXiPgqUvJ1qTuNQ8lY4up35rUeujUjUA45THsR0oEQkGEUr+d0njrRXrrhVdw6ySrycVCBHo1f+6vYTlsVcIZPUmI7nphhMqEbBJJ+WupnhKWUjOuAdSxWNuQkm82On5MwqfRIl2pZCMld/T0xobMw4Dm1nTHFolr2Z+J/XyTC6DiZCpRlyxRaLokwSTMjsc9IXmjOUY0so08LeStiQasrQ5lOyIXjLL6+S5kXVu6zW7muV+k0eRxFO4BTOwYMrqMMdNMAHBgKe4RXeHOW8OO/Ox6K14OQzx/AHzucP6LeOvA==</latexit>

⇣

Figure 6: Block diagram of DGSR. DGSR is able to learn the invariances of equations and datasets
D (P1) by having both: (1) An encoding architecture that is permutation invariant across the number
of samples n in the observed dataset D = {(Xi, yi)}ni=1, (2) An Bayesian inspired end-to-end loss
NMSE function, Eq. 1 from the encoded dataset D to the outputs from the predicted equations,
i.e., NMSE(f̂(X),y). The highlighted boundaries show the subset of pre-trained encoder-decoder
methods and RL methods.

A GLOSSARY OF TERMS

We provide a short glossary of key terms, in Table 5.

Table 5: Glossary of key terms.

Term Definition

SR Symbolic regression
GP Genetic programming
DGSR Deep generative symbolic regression
NGGP Neural guided genetic programming
NESYMRES Neural Symbolic Regression that Scales
DSR Deep symbolic regression
NMSE Normalized mean squared error
Conditional generative model pθ(f |D)

B DGSR INSTANTIATION

We outline our instantiation of DGSR with the following architecture, for the conditional generator
we split it into two parts that of an encoder and a decoder with total parameters θ = {ζ, ϕ}, where
the encoder has parameters ζ and the decoder parameters ϕ, detailed in Figure 6. See Appendix G for
implementation hyperparameters and further details.

Encoder. We use a set transformer (Lee et al., 2019) to encode a dataset D = {(Xi, yi)}ni=1 into
a latent vector V ∈ Rw, where w ∈ N. Defined with n as the number of samples, yi ∈ R and
Xi ∈ Rd is of d variable dimension. It is also possible to represent the input float values D into a
multi-hot bit representation according to the half-precision IEEE-754 standard, as is common in some
encoder symbolic regression methods (Biggio et al., 2021; Kamienny et al., 2022). We note that in
our experimental instantiation we did not represent the inputs in this way and instead, feed the float
values directly into the set transformer. Empirically we observed similar performance therefore chose
not to include this extra encoding, on our benchmark problem sets evaluated. However, we highlight
that the user should follow best practices, as if their problem has observations D that have drastically
different values, the multi-hot bit representation encoding could be useful (Biggio et al., 2021).

Decoder. The latent vector, V ∈ Rw is fed into the decoder. We instantiated this with a standard
transformer decoder (Vaswani et al., 2017). The decoder generates each token of the equation f̄
autoregressively, that is sampling from p(f̄i|f̄1:(1−i);θ;D). We process the existing generated tokens
f̄1:(1−i) into their hierarchical tree state representation (Petersen et al., 2020), which are provided as

14

Published as a conference paper at ICLR 2023

inputs to the transformer decoder, a representation of the parent and sibling nodes of the token being
sampled (Petersen et al., 2020). The hierarchical tree state representation is generated according to
Petersen et al. (2020) and is encoded with a fixed size embedding and fed into a standard transformer
encoder (Vaswani et al., 2017). This generates an additional latent vector which is concatenated to
the encoder latent vector, forming a total latent vector of U ∈ Rw+ds , where ds is the additional
state dimension. The decoder generates each token sequentially, outputting a categorical distribution
to sample from. From this, it is straightforward to apply token selection constraints based on the
previously generated tokens. We incorporate the token selection constraints of Mundhenk et al.
(2021); Petersen et al. (2020), which includes: limiting equations to a minimum and maximum length,
children of an operator should not all be constants, the child of a unary operator should not be the
inverse of that operator, descendants of trigonometric operators should not be other trigonometric
operators etc. During pre-training and inference, when we encode a dataset D into the latent vector V
and sample k equations from the decoder. This is achieved by tiling (repeating) the encoded dataset
latent vector k times and running the decoder over the respective latent vectors to form a batch size
of k equations.

Optimization Algorithm. We wish to minimize this end-to-end NMSE loss, Equation 1; however,
the process of turning an equation of tokens f̄ into an equation f is a non-differentiable step.
Therefore, we require an end-to-end non-differentiable optimization algorithm. DGSR is agnostic to
the exact choice of optimization algorithm used to optimize this loss, and any relevant end-to-end non-
differentiable optimization algorithm can be used. Suitable methods are policy gradients approaches,
which include policy gradients with genetic programming (Petersen et al., 2020; Mundhenk et al.,
2021). To use these, we reformulate the loss of Equation 1 for each equation into a reward function of
R(θ) = 1/(1+L(θ)), that is optimizable using policy gradients (Petersen et al., 2020). Here both the
encoder and decoder are trained during pre-training, i.e., optimizing the parameters θ and is further
illustrated in Figure 2 with a block diagram. To be competitive to the existing state-of-the-art we
formulate this reward function and optimize it with neural guided priority queue training (NGPQT)
of Mundhenk et al. (2021), detailed in Appendix C. Furthermore, we provide pseudocode for DGSR
in Appendix D and show empirically other optimization algorithms can be used with an ablation of
these in Section 5.2 and Appendix E.

C NGPQT OPTIMIZATION METHOD

The work of Mundhenk et al. (2021) introduces the hybrid neural-guided genetic programming
method to SR. This uses an RNN (LSTM) for the generator (i.e., decoder) (Petersen et al., 2020)
with a genetic programming component and achieves state-of-the-art results on a range of symbolic
regression benchmarks (Mundhenk et al., 2021). This optimization method is applicable to any neural
network autoregressive model that can output an equation. Equations sampled from the generator
are used to seed a starting population of a random restart genetic programming component that
gradually learns better starting populations of equations, by optimizing the parameters θ of the
generator. Specifically, this RL optimization method, formulates the generator as a reinforcement
learning policy. This is optimized over a mini-batch of t datasets, where for each dataset we sample
k equations from the conditional generator, pθ(f |D). Therefore, we sample a total of kt equations
F per mini-batch. We note that at inference time, we only have one dataset therefore t = 1. We
evaluate each equation f ∈ F under the reward function R(f) = 1/(1+L(f)) and perform gradient
descent on a RL policy gradient loss function (Mundhenk et al., 2021). Here we define L(f) as the
normalized mean squared error (NMSE) for a single equation, i.e.

L(f) = 1

σy

1

n

n∑

i=1

(yi − f(Xi))
2 (2)

Where σy is the standard deviation of the observed outputs y. We note that instead of optimizing
Equation 1 directly, we achieve the same goal of optimizing Equation 1 by optimizing the reward
function R(f) for each equation f ∈ F over a batch of kt equations, F .

Choice of RL policy gradient loss function. There exist multiple RL policy gradient loss functions
that are applicable (Mundhenk et al., 2021). The optimization method of Mundhenk et al. (2021)
propose to use priority queue training (PQT) (Abolafia et al., 2018). Detailed further, some of these
RL policy gradient loss functions are (Mundhenk et al., 2021):

15

Published as a conference paper at ICLR 2023

• Priority Queue Training (PQT). The generator is trained with a continually updated buffer of
the top-q best fitting equations, i.e., a maximum-reward priority queue (MRPQ) of maximum
size q (Abolafia et al., 2018). Training is performed over equations in the MRPQ using a
supervised learning objective: L(θ) = 1

q

∑
f∈F ∇θ log pθ(f |D).

• Vanilla policy gradient (VPG). Uses the REINFORCE algorithm (Williams, 1992). Train-
ing is performed over the equations in the batch F with the loss function: L(θ) =
1
k

∑
f∈F (R(f)− b)∇θ log pθ(f |D), where b is a baseline, defined with an exponentially-

weighted moving average (EWMA) of rewards.

• Risk-seeking policy gradient (RSPG). Uses a modified VPG to optimize for the best case
reward (Petersen et al., 2020) rather than the average reward: L(θ) = 1

ϵk

∑
f∈F (R(f) −

Rϵ)∇θ log pθ(f |D)1R(f)>Rϵ
, where ϵ is a hyperparameter that controls the degree of risk-

seeking and Rϵ is the empirical (1− ϵ) quantile of the rewards of F .

Furthermore, we follow Mundhenk et al. (2021) and also include a common additional term in the loss
function proportional to the entropy of the distribution at each position along the equation generated
(Mundhenk et al., 2021; Petersen et al., 2020). Specifically, these are the same equation complexity
regularization methods of Mundhenk et al. (2021), using the hierarchical entropy regularizer and the
soft length prior from Landajuela et al. (2021).

The hierarchical entropy regularizer encourages the decoder (decoding tokens sequentially) to perpet-
ually explore early tokens (without getting stuck committing to early tokens during training, dubbed
the “early commitment problem”) (Landajuela et al., 2021). Whereas the soft length prior discourages
the equation from being either too short or too long, which is superior to a hard length prior that
forces each equation to be generated between a pre-specified minimum and maximum length. Using
a soft length prior, the generator can learn the optimal equation length, which has been shown to
improve learning (Landajuela et al., 2021).

The groundbreaking work of Balla et al. (2022), further shows that unit regularization can be added
to improve the SR method, and provides a useful decomposition of the complexity regularization
into two components of the number of tokens (“activation functions”) and the number of numeric
constants—whereby it can be beneficial to tune these regularization terms separately. The full analysis
of all regularization terms is out of scope for this work, however we leave this as an exciting direction
for future work to explore.

For the genetic programming component, we follow the same setup as in Mundhenk et al. (2021).
This uses a standard genetic programming formulation DEAP (Fortin et al., 2012), introducing a
few improvements, these being: equal probability amongst the mutation types (e.g., uniform, node
replacement, insertion and shrink mutation), incorporating the equation constraints from Petersen
et al. (2020) (also discussed in Appendix B) and the initial equations population is seeded by that of
the generator equation samples.

Unless otherwise specified, we use the same neural guided PQT (NGPQT) optimization method
at inference time for DGSR—specifically this the PQT method, and we use the same optimization
implementation of Mundhenk et al. (2021) of filtering the equations first by the empirical (1 − ϵ)
quantile of the rewards of F , and then second filtering these for the top-q best fitting equations for
use in PQT. Furthermore, we pre-train with the optimization method of VPG.

D DGSR PSEUDOCODE AND SYSTEM DESCRIPTION

We outline the DGSR system with Figure 6. The conditional generative model, pθ(f |D) is comprised
of an encoder and a decoder, with total parameters θ. Specifically the parameters of the encoder ζ
and decoder ϕ are a subset of the total model parameters, i.e., θ = {ζ, ϕ}. During pre-training we
update the parameters for both the encoder and the decoder, that is θ, whilst at inference time we
only update the parameters of the decoder ϕ. We denote the best equation found during inference as
fa, not be confused with the true underlying equation f∗ for that problem. If DGSR identifies the
true equation then fa is equivalent to f∗, i.e., fa = f∗ (Mundhenk et al., 2021). The pre-training
pseudocode for DGSR is detailed in Algorithm 1 and the inference pseudocode in Algorithm 2. For
comprehensiveness we repeat the pre-training and inference training details here, however, note these

16

Published as a conference paper at ICLR 2023

details can also be found in Appendix J, with further details of the loss optimization methods in
Appendix C.

Pre-training. Using the specifications of p(f), we can generate an almost unbounded number of
equations. We pre-compile 100K equations and train the conditional generator on these using a
mini-batch of t datasets, following Biggio et al. (2021). The overall pre-training algorithm is detailed
in Algorithm 1. During pre-training we use the vanilla policy gradient (VPG) loss function to train all
the conditional generator parameters θ (i.e., the encoder and decoder parameters). This is optimized
over a mini-batch of t datasets, where for each dataset we sample k equations from the conditional
generator, pθ(f |D). Therefore, we sample a total of kt equations F per mini-batch. For each equation
f ∈ F we compute the normalized mean squared error (NMSE), i.e.

L(f) = 1

σy

1

n

n∑

i=1

(yi − f(Xi))
2, f ∼ pθ(f |D) (3)

Where σy is the standard deviation of the observed outputs y. We formulate each equations NMSE
loss as a reward function by the following R(f) = 1/(1 + L(f)). Training is performed over the
equations in the batch F with the vanilla policy gradient loss function of,

L(θ) = 1

k

∑

f∈F
(R(f)− b)∇θ log pθ(f |D) (4)

Where b is a baseline, defined with an exponentially-weighted moving average (EWMA) of rewards,
i.e., bt = αE[R(f)]+ (1−α)bt−1. Furthermore, we follow Mundhenk et al. (2021) and also include
a common additional term in the loss function proportional to the entropy of the distribution at each
position along the equation generated (Mundhenk et al., 2021; Petersen et al., 2020). Specifically,
these are the same equation complexity regularization methods of Mundhenk et al. (2021), using the
hierarchical entropy regularizer and the soft length prior from Landajuela et al. (2021).

Algorithm 1 Deep Generative Symbolic Regression Pre-training
Input mini-batch size of t datasets to use in training, batch size of k equations to sample per dataset,
number of epochs, prior of equations p(f), domain X , loss function L(θ) for training the generator,
including corresponding hyperparameters (e.g., EWMA coefficient for VPG, risk factor for RSPG,
priority queue size for PQT)
Output Pre-trained conditional generator pθ(f |D)

Initialize conditional generator with parameters θ, defining the posterior pθ(f |D)
for e in {1, . . . , epochs} do

L← 0
for j in {1, . . . , t} do

f∗ ∼ p(f)
X ∼ X
D ← {(f∗(X),X)}
Fgenerator ← {f (i) ∼ pθ(f |D)}ki=1 ▷ Sample k equations from the conditional generator
R ← {R(f,D)∀f ∈ Fgenerator} ▷ Compute rewards
L← L+ L(θ) ▷ Compute the generator loss (e.g., using VPG)

end for
θ ← θ +∇θL ▷ Train the generator over the batch of t datasets

end for

Inference training. We detail the inference training routine in Algorithm 2. A training set and a test
are sampled independently from the observed dataset D. The training dataset is used to optimize
the loss at inference time and the test set is only used for evaluation of the best equations found
at the end of inference, which unless the true equation f∗ is found runs for 2 million equation
evaluations on the training dataset. During inference we use the neural guided PQT (NGPQT)
optimization method, outlined in Appendix C, and only train the decoder in the conditional generative
model, i.e., only the decoders parameters ϕ are updated. To construct the loss function we sample
a batch of k equations from the conditional generative model pθ(f |D) and use these to seed a
genetic programming component (DEAP (Fortin et al., 2012)). The genetic programming component
evaluates the equations fitness by its individual reward by computing the equations NMSE and then

17

Published as a conference paper at ICLR 2023

the reward of that loss (i.e., using R(f) = 1/(1+L(f)) again). After a pre-defined number of genetic
programming rounds (defined by a hyperparameter), we join the initial generated equations from the
conditional generator to those of the best equations identified by the former genetic programming
component. We then use this set of equations to train the priority queue training (PQT) loss function,
and only update the parameters of the decoder. To construct the PQT loss, we continually update a
buffer of the top-q best fitting equations, i.e., a maximum-reward priority queue (MRPQ) of maximum
size q (Abolafia et al., 2018). Training is performed over equations in the MRPQ using a supervised
learning objective:

L(ϕ) = 1

q

∑

f∈F
∇ϕ log pϕ(f |D) (5)

Additionally, we also include a common additional term in the loss function proportional to the
entropy of the distribution at each position along the equation generated (Mundhenk et al., 2021;
Petersen et al., 2020). Specifically, these are the same equation complexity regularization methods
of Mundhenk et al. (2021), using the hierarchical entropy regularizer and the soft length prior from
Landajuela et al. (2021). Furthermore, we keep track of the best equation seen, by the highest reward,
denoted as fa.

Algorithm 2 Deep Generative Symbolic Regression Inference
Input batch size of k equations to sample, observed dataset D, loss function L(θ) for training the
generator, including corresponding hyperparameters (e.g., EWMA coefficient for VPG, risk factor
for RSPG, priority queue size for PQT), pre-trained conditional generator pθ(f |D)
Output Best fitting equation fa for observed dataset D

Load pre-trained conditional generator with parameters θ, defining the posterior pθ(f |D)
while total equation evaluations below budget do
Fgenerator ← {f (i) ∼ pθ(f |D)}ki=1 ▷ Sample k equations from the conditional generator
FGP ← GP(Fgenerator) ▷ Seed GP component, as defined in Appendix C
Ftrain ← Fgenerator ∪ FGP ▷ Join generated equations and best GP equations
R ← {R(f)∀f ∈ Ftrain} ▷ Compute rewards
θ ← ϕ+∇ϕL(ϕ) ▷ Train the generator (e.g., using PQT)
if maxR > R(fa) then fa ← fargmaxR ▷ Update the best equation seen

end while

Advantage over cross entropy loss. Specifically using an end-to-end-loss during pre-training
and inference is key, as the conditional generator is able to learn and exploit the unique equation
invariances and equivalent forms. For example two equivalent equations that have different forms
(e.g.,x1(x2 + sin(x3)) = x1x2 + x1 sin(x3)) will still have an identical NMSE loss (Equation 1).
Whereas existing pre-training methods that pre-train using a cross entropy loss LCE(f

∗, f̂), between
the known ground truth true equation f∗ and the predicted equation f̂ , have a non-identical loss,
failing to capture equational equivalence relations. Furthermore the existing pre-training methods
trained in this way require the ground truth equation f∗ to train their conditional generative model.
However this is unknown at inference time (as it is this that we wish to find), therefore they cannot
update their posterior at inference and are limited to only sample from it. We empirically illustrate this
in Figure 4 (c). Given this, the existing pre-trained encoder-decoder methods require an exponentially
larger model and pre-training dataset size when pre-training on a dataset of increasing covariate
dimension (Kamienny et al., 2022).

E OTHER OPTIMIZATION ALGORITHMS

DGSR supports other optimization algorithms that can optimize a non-differentiable loss function.
It is common to reformulate the NMSE loss per equation into a reward via R(f) = 1/(1 + L(f)),
which can then be optimized using policy gradients (Petersen et al., 2020). Suitable policy gradient
algorithms are outlined in Appendix C, which include vanilla policy gradients, risk-seeking policy
gradients and priority queue training. We note that it is possible to use DGSR with other RL
optimization methods such as distributional RL optimization Bellemare et al. (2017). See Appendix
R for other optimization results, without the genetic programming component.

18

Published as a conference paper at ICLR 2023

F EXTENDED RELATED WORK
Table 6: Comparison of related works. Columns: Learn Eq. Invariances (P1)—can it learn equation
invariances? Eff. Inf. Refinement (P2)—can it perform gradient refinement computationally effi-
ciently at inference time (i.e., update the decoder weights)? Generalize unseen vars. ? (P3)—can it
generalize to unseen input variables from that those seen during pre-training. References:[1](Petersen
et al., 2020),[2](Mundhenk et al., 2021),[3](Costa et al., 2020),[4](Jin et al., 2019),[5](Biggio et al.,
2021),[6](Valipour et al., 2021),[7](d’Ascoli et al., 2022),[8](Kamienny et al., 2022).

Approach Methods Loss Model Pre-train Learn Eq. Eff. Inf. Generalize
pθ(f |D) ? Invariances ? (P1) Refinement (P2) unseen ? (P3)

RL [1,2,3] NSME(f̂(Xi)), yi) pθ(f) ✗ ✗ ✗- Train from scratch -
Prior [4] RSME(f̂(Xi)), yi) pθ(f) ✗ ✗ ✗- Train from scratch -
Encoder [5,6,7,8] CE(f̂ , f∗) pθ(f |D) ✓ ✗ ✗- Cannot gradient refine ✗

DGSR This work Eq. 1, NSME(f̂(Xi)), yi) pθ(f |D) ✓ ✓ ✓- Can gradient refine ✓

In the following we review the existing deep SR approaches, and summarize their main differences in
Table 1. We provide an extended discussion of additional related works, including heuristic-based
methods in Appendix F. We illustrate in Figure 2 that RL and pre-trained encoder-decoder methods
can be seen as ad hoc subsets of the DGSR framework.

In the following, we provide an extended discussion of related works, including the additional related
work of heuristic-based methods.

RL methods. These works use a policy network, typically implemented with RNNs, to output a
sequence of tokens (actions) in order to form an equation. The output equation obtains a reward
based on some goodness-of-fit metric (e.g., RMSE). Since the tokens are discrete, the method uses
policy gradients to train the policy network. Most existing works focus on improving the pioneering
policy gradient approach for SR, that of Petersen et al. (2020) (Costa et al., 2020; Landajuela et al.,
2021). However, the policy network is randomly initialized (without pre-training) and tends to output
ill-informed equations at the beginning, which slows down the procedure. Furthermore, the policy
network needs to be re-trained each time a new dataset D is available.

Hybrid RL and GP methods. These methods combine RL with genetic programming (GPs).
Mundhenk et al. (2021) use a policy network to seed the starting population of a GP algorithm,
instead of starting with a random population as in a standard GP. Other works use RL to adjust the
probabilities of genetic operations (Such et al., 2017; Chang et al., 2018; Chen et al., 2018; Mundhenk
et al., 2021; Chen et al., 2020). Similarly, these methods cannot improve with more learning from
other datasets and have to re-train the model from scratch, making inference slow at test time.

Pre-trained encoder-decoder methods. Unlike RL, these methods pre-train an encoder-decoder
neural network to model p(f |D) using a curated dataset (Biggio et al., 2021). Specifically, Valipour
et al. (2021) propose to use standard language models, e.g., GPT. At inference time, these methods
sample from pθ(f |D) using the pre-trained network, thereby achieving low complexity at inference—
that is efficient inference. These methods have two key limitations: (1) they use cross-entropy
(CE) loss for pre-training and (2) they cannot gradient refine their model, leading to sub-optimal
solutions. First (1), cross entropy, whilst useful for comparing categorical distributions, does not
account for equations that are equivalent mathematically. Although prior works, specifically Lample
& Charton (2019), observed the “surprising” and “very intriguing” result that sampling multiple
equations from their pre-trained encoder-decoder model yielded some equations that are equivalent
mathematically, when pre-trained using a CE loss. Furthermore, the pioneering work of d’Ascoli
et al. (2022) has shown this behavior as well. Whereas using our proposed end-to-end NMSE loss,
Eq. 1—will have the same loss value for different equivalent equation forms that are mathematically
equivalent—therefore this loss is a natural and principled way to incorporate the equation equivalence
property, inherent to symbolic regression. Second (2), DGSR is to the best of our knowledge the first
SR method to be able to perform gradient refinement of a pre-trained encoder-decoder model using
our end-to-end NMSE loss, Eq. 1—to update the weights of the decoder at inference time. We note
that there exists other non-gradient refinement approaches, that cannot update their decoder’s weights.
These consist of: (1) optimizing the constants in the generated equation form with a secondary
optimization step (commonly using the BFGS algorithm) (Petersen et al., 2020; Biggio et al., 2021),
and (2) using the MSE of the predicted equation(s) to guide a beam search sampler (d’Ascoli et al.,
2022; Kamienny et al., 2022). As a result, to generalize to equations with a greater number of input
variables pre-trained encoder-decoder methods require large pre-training datasets (e.g., millions of

19

Published as a conference paper at ICLR 2023

datasets (Biggio et al., 2021)), and even larger generative models (e.g., ∼ 100 million parameters
(Kamienny et al., 2022)).

Using priors. The work of Jin et al. (2019) explicitly uses a simple pre-determined prior over the
equation token set and updates this using an MCMC algorithm. They propose encoding this simple
prior by hand, which has the drawbacks of, not being able to condition on the observations D (such
as the equation classes and domains of X ∈ X and y ∈ Y), not learnt automatically from datasets
and is too restrictive to capture the conditional dependence of tokens as they are generated.

Heuristic Based Methods. Many symbolic regression algorithms use search heuristics designed
for equations. Examples include genetic programming (GP) (Augusto & Barbosa, 2000; Schmidt
& Lipson, 2009), simulated annealing (Stinstra et al., 2008) and AI Feynman (Udrescu & Tegmark,
2020). Genetic programming symbolic regression (Augusto & Barbosa, 2000; Schmidt & Lipson,
2009; Bäck et al., 2018) starts with a population of random equations, and evolves them through
selecting the fittest for crossover and mutation to improve their fitness function. Although often
useful, genetic programs suffer from scaling poorly to larger dimensions and are highly sensitive to
hyperparameters. Alternatively, it is possible to use simulated annealing for symbolic regression,
however again this has difficulty to scale to larger dimensions. AI Feynman (Udrescu & Tegmark,
2020) tackles the problem by applying a set of sequential heuristics (e.g., solve via dimensional
analysis, translational symmetry, multiplicative separability, polynomial fit etc), and divides and
transforms the dataset into simpler pieces that are then processed separately in a recursive manner.
Their tool is a problem simplification tool for symbolic regression, and uses neural networks to
identify these simplifying properties, such as translational symmetry and multiplicative separability.
The respective sub-problems can be tackled by any symbolic regression algorithm, and Udrescu &
Tegmark (2020) use a simple inner search algorithm of either a polynomial fit or a brute-force search.
Furthermore, using brute-force search fails to scale to higher dimensions and is computationally
inefficient, as it unable to leverage any structure making the search more tractable. Additionally, there
exist other works to create an interpretable model from a black box model (Crabbe et al., 2020; Alaa
& van der Schaar, 2019).

G BENCHMARK ALGORITHMS

In this section we detail benchmark algorithms, consisting of the following: (1) types of benchmark
algorithms selected, (2) hyperparameters and implementation details and (3) a discussion on inclusion
criteria for benchmark model selection.

Benchmark Algorithm Selection. The benchmark symbolic regression algorithms we selected to
compare against are: Neural Guided Genetic Programming (NGGP) Mundhenk et al. (2021), as this is
the current state-of-the-art for symbolic regression, superseding DSR (Petersen et al., 2020). Genetic
programming (GP) (Fortin et al., 2012) which has long been an industry standard, and compare with
Neural Symbolic Regression that Scales (NESYMRES), an pre-trained encoder-decoder method.

Neural Guided Genetic Programming (NGGP). (Mundhenk et al., 2021). We use their code and
implementation provided, following their proposal to set the generator to be a single-layer LSTM
RNN with 32 hidden nodes. We further follow their hyperparameter settings (Mundhenk et al., 2021),
unless otherwise noted. This uses the same optimization method of NGPQT, as described further in
Appendix C.

Genetic programming (GP). (Fortin et al., 2012). We use the software package “DEAP” (Fortin
et al., 2012), following the same symbolic regression GP setup as Petersen et al. (2020), using
their stated hyperparameters. This uses an initial population of equations generated using the “full”
method (Koza, 1992) with a depth randomly selected between dmin and dmax. Following Petersen
et al. (2020) we do not include GP post-hoc constraints other than constraining the maximum length
of the equations generated to a specified maximum length of 30 unless otherwise defined and setting
the maximum number of possible constants to 3.

Neural Symbolic Regression that Scales (NESYMRES). (Biggio et al., 2021). We use their code
and implementation provided, following their proposal, and using their pre-trained model used in
their paper. To ensure fair comparison, we used the largest beam size that the authors proposed in the
range of possible beam sizes, that of a beam size of 256. As NESYMRES was only pre-trained on a
dataset with variables d ≤ 3, we only evaluated it on problem sets where d ≤ 3.

20

Published as a conference paper at ICLR 2023

Deep Generative Symbolic Regression (DGSR). This work. We define the architecture in Appendix
B. The encoder uses the set transformer from Lee et al. (2019). Using the notation from Lee et al.
(2019) the encoder is formed by 3 induced set attention blocks (ISABs) and one final component of
pooling by multi-head attention (PMA). This uses a hidden dimension of 32 units, one head, one
output feature and 64 inducing points. The decoder uses a standard transformer decoder (where
standard transformer models are from the core PyTorch library (Paszke et al., 2019)). The decoder
consists of 2 layers, with a hidden dimension of 32, one attention head and zero dropout. The
dimension of the input and output tokens is the size of the token library used in training plus two
(i.e., for a padding token and a start and stop token). The inputs are encoded using an embedding
of size 32 and have an additional positional encoding added to them, following standard practice
(Vaswani et al., 2017). We also mask the target output tokens to prevent information leakage during
the forward step, again following standard practice (Vaswani et al., 2017). The decoder generates
each token of the equation f̄ autoregressively, that is sampling from p(f̄i|f̄1:(1−i);θ;D) following the
same sampling procedure from Petersen et al. (2020). We process the existing generated tokens
f̄1:(1−i) into their hierarchical tree state representation, detailed in Petersen et al. (2020), providing as
inputs to the transformer decoder a representation of the parent and sibling nodes of the token being
sampled (Petersen et al., 2020). The hierarchical tree state representation is encoded with a fixed size
embedding of 16 units, with an additional positional encoding added to it (Vaswani et al., 2017), and
fed into a standard transformer encoder, of 3 layers, with a hidden dimension of 32, one attention head
and zero dropout. This generates an additional latent vector which is concatenated to the encoder (of
the observations D) latent vector, forming a total latent vector of U ∈ Rw+ds , where ds = 32, and
w = 32. We also use the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Fletcher, 2013)
for inferring numeric constants if any are present in the equations generated, following the setup of
Petersen et al. (2020). In total our conditional generative model has a total of 122,446 parameters,
which we note is approximately two orders of magnitude less than other pre-trained encoder-decoder
methods (NESYMRES with 26 million parameters, and E2E with 86 million parameters).

Notable exclusions. The benchmark symbolic regression algorithms selected are all suitable for
discovering equations of up to three variables, can accommodate numerical constants within the
equations and have made their code accessible to benchmark against. There exist other symbolic
regression algorithms that do not exhibit these features, therefore we do not include them to compare
against:

• AI Feynman (AIF): Udrescu & Tegmark (2020) developed a problem simplification tool for
symbolic regression, this divides and transforms the dataset into simpler pieces that are then
processed separately in a recursive manner (also discussed in Appendix F). The respective
sub-problems can be tackled by any symbolic regression algorithm, where Udrescu &
Tegmark (2020) use a simple inner search algorithm of either a polynomial fit or a brute-
force search. Although as others have noted (Petersen et al., 2020), more challenging
sub-problems which have numerical constants or are non-separable, still require a more
comprehensive underlying symbolic regression method to solve the sub-problem. Therefore,
AIF could be used as a pre-processing problem-simplification step and combined with any
symbolic regression method. However, we analyse in this work the underlying symbolic
regression search problem, e.g., after any problem simplification steps have been applied.
Furthermore, the simple inner search that AIF uses (polynomial fit or brute force search)
is computationally expensive, and scales poorly to increasing variable size. It can rely
on further information about the equation to be provided such as the units for each input
variable, which is unrealistic in most settings where the units are often unknown and the
output does not have a physical interpretation (e.g., A dataset with many non-physical
variables).

• End-to-end symbolic regression with transformers (E2E): Kamienny et al. (2022) introduced
an pre-trained encoder-decoder method that also provides an initial estimate of the constant
floats, which are further refined in a standard secondary optimization step (using BFGS).
Their transformer model contains a total of 86 million parameters, trained on a dataset of
millions of equations. It was not possible to compare against E2E, as the authors had not
released their code at the time of completing this work. Furthermore, it would be infeasible
to re-implement and train such a large transformer model without a pre-trained model,
therefore we exclude this as a symbolic regression benchmark in this work.

21

Published as a conference paper at ICLR 2023

H STANDARD BENCHMARK PROBLEM RESULTS

Additionally, we evaluated DGSR against the popular standard benchmark problem sets of Nguyen
(Uy et al., 2011), Nguyen with constants (Petersen et al., 2020), R rationals (Krawiec & Pawlak,
2013) and Livermore (Mundhenk et al., 2021).

Nguyen problem set. The average recovery rates on the Nguyen problem set (Uy et al., 2011) can
be seen in Table 7. The Nguyen symbolic regression benchmark suite Uy et al. (2011), consists of
12 commonly used benchmark problem equations and has been extensively benchmarked against in
symbolic regression prior works (White et al., 2013; Petersen et al., 2020; Mundhenk et al., 2021).
We observe that DGSR achieves similar performance to NGGP. Note that NGGP optimized its
hyperparameters for the Nguyen problem set, specifically for the Nguyen-7 problem (empirically
observing NGGP having a high sensitivity to hyperparameters). Whereas DGSR did not have its
many hyperparameters optimized (Appendix J), instead we only optimized one hyperparameter that
of the learning rate to the same Nguyen-7 problem, empirically finding a learning rate of 0.0001
to be best, this was used across this benchmark problem set and the variation including constants,
seen next (we performed the same hyperparameter tuning of the learning rate for NGGP, however
found the default already optimized). We benchmarked against NGGP directly as it is currently
state-of-the-art on the Nguyen problem set and defer the reader to other benchmark algorithms on the
Nguyen problem set in Mundhenk et al. (2021); Petersen et al. (2020).

Nguyen with constants problem set. The average recovery rates on the Nguyen with constants
problem set (Petersen et al., 2020) can be seen in Table 8. This benchmark problem set was introduced
by Petersen et al. (2020), being a variation of a subset of the Nguyen problem set with constants to
also optimize for. We observe that DGSR achieves the same average recovery rate to NGGP. We
benchmarked against NGGP directly as it is currently state-of-the-art on the Nguyen with constants
problem set, and defer the reader to other benchmark algorithms on the Nguyen with constants
problem set in Petersen et al. (2020).

R rationals problem set. The average recovery rates on the R rationals problem set (Krawiec &
Pawlak, 2013) can be seen in Table 9. We use the original problem set and the extended domain
problem set, as defined in Mundhenk et al. (2021), indicated with *. We observe DGSR has a higher
average recovery rate than state-of-the-art NGGP and even finding the original equation for the
problem R3, which was not previously possible with the existing state-of-the-art (that of NGGP).
Again, we benchmarked against NGGP directly as it is currently state-of-the-art on the R rationals
problem set and defer the reader to other benchmark algorithms on the R rationals problem set
in Mundhenk et al. (2021). Note that NGGP optimized its hyperparameters for the R rationals
problem set, specifically for R-3∗. Whereas DGSR did not have its many hyperparameters optimized
(Appendix J), instead we only optimized one hyperparameter that of the learning rate to the same

Table 7: Average recovery rate (ARec%) on the Nguyen problem set with 95 % confidence intervals.
Averaged over κ = 10 random seeds.

Benchmark Equation DGSR NGGP

Nguyen-1 x3
1 + x2

1 + x1 100 100
Nguyen-2 x4

1 + x3
1 + x2

1 + x1 100 100
Nguyen-3 x5

1 + x4
1 + x3

1 + x2
1 + x1 100 100

Nguyen-4 x6
1 + x5

1 + x4
1 + x3

1 + x2
1 + x1 100 100

Nguyen-5 sin
(
x2
1

)
cos(x1)− 1 100 100

Nguyen-6 sin(x1) + sin
(
x1 + x2

1

)
100 100

Nguyen-7 log(x1 + 1) + log
(
x2
1 + 1

)
60 100

Nguyen-8
√
x1 90 100

Nguyen-9 sin(x1) + sin
(
x2
2

)
100 100

Nguyen-10 2 sin(x1) cos(x2) 100 100
Nguyen-11 xx2

1 100 100
Nguyen-12 x4

1 − x3
1 +

1
2x

2
2 − x2 0 0

Average recovery rate (%) ARec% 87.50 ± 4.07 91.67 ± 0.00

22

Published as a conference paper at ICLR 2023

Table 8: Average recovery rate (ARec%) on the Nguyen with constants problem set with 95%
confidence intervals. Averaged over κ = 10 random seeds.

Benchmark Equation DGSR NGGP

Nguyen-1c 3.39x3
1 + 2.12x2

1 + 1.78x1 100 100
Nguyen-5c sin

(
x2
1

)
cos(x1)− 0.75 100 100

Nguyen-7c log(x1 + 1.4) + log
(
x2
1 + 1.3

)
100 100

Nguyen-8c
√
1.23x1 100 100

Nguyen-10c sin(1.5x1) cos(0.5x2) 100 100

Average recovery rate (%) ARec% 100 ± 0 100 ± 0

problem of R-3∗, empirically finding a learning rate of 0.0001 to be best, this was used across this
benchmark problem set. For fair comparison we performed the same learning rate hyperparameter
optimization for NGGP and found a learning rate of 0.0001 to be best, achieving higher recovery rate
results than originally reported (Mundhenk et al., 2021).

Table 9: Average recovery rate (ARec%) on the R rationals problem set with 95% confidence intervals.
Averaged over κ = 10 random seeds.

Benchmark Equation DGSR NGGP

R-1 (x1+1)3

x2
1−x1+1

0 0

R-2 x5
1−3x3

1+1

x2
1+1

0 0

R-3 x6
1+x5

1

x4
1+x3

1+x2
1+x1+1

20 0

R-1∗ (x1+1)3

x2
1−x1+1

100 100

R-2∗ x5
1−3x3

1+1

x2
1+1

90 60

R-3∗ x6
1+x5

1

x4
1+x3

1+x2
1+x1+1

100 100

Average recovery rate (%) ARec% 51.66 ± 7.23 43.33 ± 5.06

Livermore problem set. The average recovery rates on the Livermore problem set (Mundhenk
et al., 2021) can be seen in Table 10. DGSR achieves a similar performance to NGGP. Again, we
benchmarked against NGGP directly as it is currently state-of-the-art on the Livermore problem set
and defer the reader to other benchmark algorithms on the Livermore problem set in Mundhenk et al.
(2021).

I BENCHMARK PROBLEM DETAILS

Standard Symbolic Regression Benchmark problems. Details of the standard symbolic regression
benchmark problem sets that we compared against in Appendix H are tabulated in Table 32 and
Table 33. Specifically, most standard symbolic regression benchmarks use the following token library
LKoza = {+,−,÷,×, x1, exp, log, sin, cos} and have a defined variable domain X and sampling
specification for each problem (e.g., Table 32). We follow the same setup as Petersen et al. (2020).

Feynman problem sets. We use equations from the Feynman Symbolic Regression Database
(Udrescu & Tegmark, 2020), to provide more challenging equations of multiple variables. These are
derived from the Feynman Lectures on Physics (Feynman et al., 1965), and also specify the domain
X of the variables. We filtered these equations to those that had tokens that exist within the standard
library set of tokens, that of LKoza = {+,−,÷,×, x1, exp, log, sin, cos}, excluding the variable
tokens (e.g., {x1, x2, . . . }). We randomly selected a subset of these equations with two variables
(labelled Feynman d = 2), and a further, more challenging subset sampled with five variables
(labelled Feynman d = 5). Details of the Feynman benchmark problem sets are tabulated in Tables
34, 35. We note that the token library does not include the “const” token, however equations which

23

Published as a conference paper at ICLR 2023

Table 10: Average recovery rate (ARec%) on the R rationals problem set with 95 % confidence
intervals. Averaged over κ = 10 random seeds.

Benchmark Equation DGSR NGGP

Livermore-1 1/3 + x1 + sin
(
x2
1

)
60 100

Livermore-2 sin
(
x2
1

)
cos(x1)− 2 100 100

Livermore-3 sin
(
x3
1

)
cos

(
x2
1

)
− 1 100 100

Livermore-4 log(x1 + 1) + log
(
x2
1 + 1

)
+ log(x1) 100 100

Livermore-5 x4
1 − x3

1 + x2
1 − x2 50 20

Livermore-6 4x4
1 + 3x3

1 + 2x2
1 + x1 90 90

Livermore-7 sinh(x1) 0 0
Livermore-8 cosh(x1) 0 0
Livermore-9 x9

1 + x8
1 + x7

1 + x6
1 + x5

1 + x4
1 + x3

1 + x2
1 + x1 30 10

Livermore-10 6 sin(x1) cos(x2) 40 0
Livermore-11 x2

1x
2
1

x1+x2
100 100

Livermore-12 x5
1/x

3
2 100 100

Livermore-13 x
1/3
1 100 100

Livermore-14 x3
1 + x2

1 + x1 + sin(x1) + sin
(
x2
1

)
100 100

Livermore-15 x
1/5
1 100 100

Livermore-16 x
2/5
1 60 90

Livermore-17 4 sin(x1) cos(x2) 30 60
Livermore-18 sin

(
x2
1

)
cos(x2)− 5 100 60

Livermore-19 x5
1 + x4

1 + x2
1 + x1 100 100

Livermore-20 exp
(
−x2

1

)
100 100

Livermore-21 x8
1 + x7

1 + x6
1 + x5

1 + x4
1 + x3

1 + x2
1 + x1 100 100

Livermore-22 exp
(
−0.5x2

1

)
10 90

Average recovery rate (%) ARec% 71.36 ± 9.82 73.63 ± 7.26

do have numeric constants can still be recovered with the provided token library, e.g., Feynman-6 can
be recovered by x1(x2×x2)

x1(x2×x2)+x1(x2×x2)
.

Synthetic d = 12 problem set. We use the same equation generation framework discussed in
Appendix J to synthetically generate a problem set of equations with d = 12 variables. We use a
token library set of LSynth = {+,−,÷,×, x1, . . . , x12}. We note that the size of the library set LSynth
is 16, which is greater than the size of the standard library set LKoza of 9, this creates an exponentially
larger symbolic regression search space for the symbolic regression methods, making this benchmark
problem set more challenging. Details of the Synthetic d = 12 problem set are tabulated in Table 36.
When generating the equations for this problem set, we set the number of leaves of the equations to
be generated to lmax = 25, lmin = 10.

SRBench. See Appendix S for details of the SRBench (La Cava et al., 2021) dataset.

J DATASET GENERATION AND TRAINING

To construct the pre-training set {D(j)}mj=1, we use the pioneering equation generation method of
Lample & Charton (2019), which is further extended by Biggio et al. (2021) to generate equations
with constants. This equation generation framework allows us to generate equations that correspond
to an input library of tokens from a particular benchmark problem, f (j) ∼ p(f),∀j ∈ [1 : m],
where we sample m = 100K equations. For each equation f (j), we further obtain a dataset
D(j) = {(y(j)i ,X

(j)
i)}n(j)

i=1 by evaluating f (j) on n(j) random points in X , i.e., y(j)i = f (j)(X
(j)
i).

We define the variable domain X from the dataset specification from the problem set and use the
most common specification for X from that problem set (e.g., for Feynman d = 2 problem set we
use U(1, 5, 20), as defined in Table 34). This allows us to pre-train a deep conditional generative
model, pθ(f |D) to encode a particular prior p(f) for a specific library of tokens and X . For each

24

Published as a conference paper at ICLR 2023

problem set encountered that has a different library of tokens or X we generated a pre-training set
and pre-trained a conditional generative model for it.

How to specify p(f). The user can specify p(f) by first selecting the specific library of tokens
they wish to generate equations with, which includes the maximum number of possible variables
that could appear in the equations, e.g., d = 5 includes the tokens of {x1, . . . , x5}. The framework
of Lample & Charton (2019) generates equation trees, where each randomly generated equation
tree has a pre-specified number of maximum leaves lmax and a minimum number of leaves lmin,
we set to lmax = 5, lmin = 3 unless otherwise specified. Secondly, each non-leaf node is sampled
following a user specified unnormalized weighted distribution of each operator, and we use the one
shown in Table 11. Following Lample & Charton (2019); Biggio et al. (2021), each leaf node has
a 0.8 probability of being an input variable and 0.2 probability of being an integer. We constrain
equation trees that contain a variable of a higher dimension, to also contain the lower dimensional
variables, e.g., if x5 is present, then we require x1, . . . , x4 to also be present in the equation tree.
The tree is traversed in pre-order to produce an equation traversal in prefix notation, that is then
converted to infix notation and parsed with Sympy (Meurer et al., 2017) to generate a functional
equation, f (j). If we desire to generate equations with arbitrary numeric constants we can further
modify the equation to include numeric constant placeholders, which can be filled by sampling values
from a defined distribution (e.g., uniform distribution, U(−1, 1)) (Biggio et al., 2021). Furthermore,
we store equations as functions, to allow the input support variable points to be re-sampled during
pre-training. This partially pre-generated set allows for faster generation of pre-training data for the
mini-batches (Biggio et al., 2021). We further drop any generated dataset D that contain Nans, which
can arise from invalid operations (e.g., taking the logarithm of negative values).

Table 11: We use the following unnormalized weighted distribution when sampling non-leaf nodes in
the equation generation framework of Lample & Charton (2019).

Operator + × − ÷ pow2 pow3 pow4 pow5 log exp sin cos
Unormalized Prob 10 10 5 5 4 2 1 1 4 4 4 4

Pre-training. Using the specifications of p(f), we can generate an almost unbounded number of
equations. We pre-compile 100K equations and train the conditional generator on these using a
mini-batch of t datasets, following Biggio et al. (2021). The overall pre-training algorithm is detailed
in Algorithm 1, in Appendix D. Additionally we construct a validation set of 100 equations using the
same pre-training setup, with a different random seed and check and remove any of the validation
equations from the pre-training set. Furthermore, we check and remove any test problem set equations
from the pre-training and validation equation sets. During pre-training we use the vanilla policy
gradient (VPG) loss function to train the conditional generator parameters θ. This is detailed in
Appendices D, C, and we use the hyperparameters: batch size of k = 500 equations to sample,
mini-batch of t = 5 datasets, EWMA coefficient 5 α = 0.5, entropy weight λH = 0.003, minimum
equation length = 4, maximum equation length = 30, Adam optimizer (Kingma & Ba, 2014) with a
learning rate of 0.001 and an early stopping patience of a 100 iterations (of a mini-batch). Empirically
we observe that early stopping occurs approximately after a set of 10K datasets has been trained on.
Furthermore, we use vanilla policy gradients (PG) during pre-training as this optimizes the average
distribution of pθ(f |D) and was empirically found to perform the best, amongst other types of PG
methods possible (e.g., NGPQT or RSPG).

Inference. We detail the inference training routine in Algorithm 2. A training set and a test are
sampled independently from the defined problem equation domain, to form a dataset D. The training
dataset is used to optimize the loss at inference time and the test set is only used for evaluation of the
best equations found at the end of inference, which unless the true equation f∗ is found runs for 2
million equation evaluations on the training dataset. During inference we use the neural guided PQT
(NGPQT) optimization method, outlined in Appendix C. The hyperparameters for inference time
are: batch size of k = 500 equations to sample, entropy weight λH = 0.003, minimum equation
length = 4, maximum equation length = 30, PQT queue size = 10, sample selection size = 1, GP
generations per iteration = 25, GP cross over probability = 0.5, GP mutation probability = 0.5, GP
tournament size = 5, GP mutate tree maximum = 3 and Adam optimizer (Kingma & Ba, 2014) with

5where EWMA baseline is defined as bt = αE[R(f)] + (1− α)bt−1

25

Published as a conference paper at ICLR 2023

a learning rate of 0.001. We also used ϵ = 0.02 for the risk seeking quantile parameter. We note that
we use the same GP component hyperparameters as in NGGP (Mundhenk et al., 2021).

Hyperparameter selection. Unless stated otherwise we used the same hyperparameters from
Mundhenk et al. (2021). We did not carry out an extensive hyperparameter optimization routine, as
done by Petersen et al. (2020); Mundhenk et al. (2021) (due to limited compute available), rather
we tuned the learning rate only over a grid search of {0.1, 0.0025, 0.001, 0.0001}. Empirically the
learning rate of 0.001 performs best in pre-training and inference for DGSR tuned on the Feynman-
2 benchmark problem, and therefore is used throughout unless otherwise stated. To ensure fair
comparison we also tuned the learning rate of NGGP over the same grid search, empirically observing
0.0025 performs the best and is used throughout, unless otherwise stated.

A further description of the evaluation metrics and associated error bars are detailed in Appendix K.

Compute details. This work was performed using a Intel Core i9-12900K CPU @ 3.20GHz, 64GB
RAM with a Nvidia RTX3090 GPU 24GB. Pre-training the conditional generator took on average 5
hours.

K EVALUATION METRICS

In the following we discuss each evaluation metric in further detail.

Recovery rate. (ARec%)—the percentage of runs where the true equation f∗ was found, over a set
number of κ random seed runs (Petersen et al., 2020). This uses the strictest definition of symbolic
equivalence, by a computer algebraic system (Meurer et al., 2017). Specifically, this checks for
equivalence of both the functional form and any numeric constants if they are present. Additionally,
we quote the average 95% confidence intervals for a problem set, by computing the 95% interval for
each problem across the random seed runs and then averaging across the set of problems included in
a benchmark problem set. We note that recovery rate is a stricter symbolic regression metric as it
checks for exact equation equivalence. Other symbolic regression methods have proposed to use in
distribution accuracy, where the predicted outputs of the equation are within a percentage of the true
y values observed, and similarly for out of distribution accuracy (Biggio et al., 2021; Petersen et al.,
2020). Naturally, if we find the correct true equation f∗ for a given problem—then additional other
evaluation metrics that measure fit are satisfied to a perfect score, such as a: test MSE of 0.0, test
extrapolation MSE of 0.0, coefficient of determination R2-score of 1.0 and an accuracy to tolerance
τ of 100% for both in distribution and out of distribution.

Equation evaluations. We also evaluate the average number of equation evaluations γ until the
true equation f∗ was found. We use this metric as a proxy for computational complexity across the
benchmark algorithms, as testing many generated equations is a bottleneck in SR (Biggio et al., 2021;
Kamienny et al., 2022). For example, analysing the standard symbolic regression benchmark problem
Nguyen-7c, DGSR finds the true equation in γ = 20,187 equation evaluations, taking a total of 1
minute and 36.9 seconds; whereas NGGP finds the true equation in γ = 30,112 equation evaluations,
taking a total of 2 minutes and 20.5 seconds, both results averaged over κ = 10 random seeds.

Pareto front with complexity. We use the Pareto front and corresponding complexity definition as
detailed in Petersen et al. (2020). Included here for completeness, the Pareto front is computed using
the simple complexity measure of C(f) =

∑|f |
i c(fi). Where c is the complexity for a token, as

defined as: 1 for +,−,×, input variables and numeric constants; 2 for ÷; 3 for sin and cos; and 4 for
exp and log.

L FEYNMAN D=2 RESULTS

Feynman d = 2 recovery rates. Average recovery rates on the Feynman d = 2 problem set can be
seen in Table 12. The corresponding inference equation evaluations on the Feynman d = 2 problem
set can be seen in Table 13.

Noise ablation. We empirically observe DGSRs average recovery rate also decreases with increasing
noise in the observations D, which is to be expected compared to other symbolic regression methods
(Petersen et al., 2020). We show a comparison of DGSR against NGGP when increasing the noise

26

Published as a conference paper at ICLR 2023

Table 12: Average recovery rate (ARec%) on the Feynman d = 2 problem set with 95 % confidence
intervals. Averaged over κ = 40 random seeds.

Benchmark Equation DGSR NGGP NESYMRES GP

Feynman-1 x1x2 100 100 100 95
Feynman-2 x1

2(1+x2)
97.5 100 000 55

Feynman-3 x1x
2
2 100 100 100 100

Feynman-4 1 + x1x2

(1−(x1x2/3)
0 0 0 0

Feynman-5 x1

x2
100 100 100 95

Feynman-6 1
2x1x

2
2 100 100 100 0

Feynman-7 3
2x1x2 100 100 000 5

Average recovery rate (%) ARec% 85.36 ± 0.69 85.71 ± 0.00 57.14 ± 0.00 50.00 ± 7.20

level on the Feynman d = 2 problem set in Figure 6. Following the noise setup of Petersen et al.
(2020), we add independent Gaussian noise to the dependent output y, i.e., ỹi = yi + ϵi,∀i ∈ [1 : n],
where ϵi ∼ N (0, αyRMS), with yRMS =

√∑n
i=1 y

2
i . That is the standard deviation is proportional

to the root-mean-square of y. In Figure 6 we vary the proportionality constant α from 0 (noiseless)
to 0.1 and evaluated DGSR and NGGP across all the problems in the Feynman d = 2 benchmark
problem set. Figure 6 is plotted using a 10-fold larger training dataset, following Petersen et al.
(2020). On average DGSR can perform equally as well as NGGP with noisy data, if not better.

Figure 6: Noise ablation of average recovery rate on the Feynman d = 2 benchmark problem set
against increasing noise level. Averaged over 3 random seeds.

Data sub sample ablation with noise. We empirically performed a data sub sample ablation with a
small noise level of α = 0.001, varying the inference training data samples from n = 2 to n = 20,
with the results tabulated in Table 14 and plotted in Figure 7. Empirically this could suggest DGSR
can leverage the encoded prior information in settings of noise and low data samples, which could be
observed in real-world datasets.

Table 13: Inference equation evaluations on the Feynman d = 2 benchmark problem set with 95 %
confidence intervals. DNF = Did not Find (i.e., recover the true equation given a budget of 2 million
equation evaluations). Averaged over κ = 40 random seeds.

Benchmark Equation DGSR NGGP NESYMRES GP

Feynman-1 x1x2 10,002 ± 18 10,001 ± 17 256 ± 0 1,000 ± 0
Feynman-2 x1

2(1+x2)
197,062 ± 108,505 97,405 ± 28,807 DNF 10,467 ± 2,162

Feynman-3 x1x
2
2 10,010 ± 16 10,009 ± 16 256 ± 0 1,412 ± 455

Feynman-4 1 + x1x2

(1−(x1x2/3)
DNF DNF DNF DNF ±

Feynman-5 x1

x2
10,008 ± 20 11,765 ± 1,236 256 ± 0 1,000 ± 0

Feynman-6 1
2x1x

2
2 118,335 ± 37,221 420,726 ± 110,406 256 ± 0 DNF ±

Feynman-7 3
2x1x2 53,011 ± 13,197 126,884 ± 31,620 DNF 6,286 ± 0

Average equation evaluations γ 66,404 112,798 256 4,033

27

Published as a conference paper at ICLR 2023

Table 14: Dataset sub sample ablation with noise of α = 0.001. Average recovery rate (ARec%) on
the Feynman d = 2 problem set. Averaged over κ = 10 random seeds.

Dataset samples (n) DGSR NGGP

2 30.00 21.66
5 76.66 70.00

10 91.66 66.66
20 90.00 83.33

Figure 7: Dataset sub sample ablation with noise of α = 0.001, with average recovery rate (%) on
the Feynman d = 2 problem set against dataset of size n samples. Averaged over 10 random seeds.

M FEYNMAN-7 EQUIVALENT EQUATIONS

Exploiting equation equivalences. Figure 3 (a) shows DGSR is able to correctly capture equation
equivalences, and exploits these to generate many unique equivalent true equations. Although DGSR
is able to generate many equivalent equations that are equivalent to the true equation f∗, we tabulate
only the first 64 of these in Table 37. We note that all these equations are equivalent achieving zero
test NMSE and can be simplified into f∗. We modified the standard experiment setting, to avoid early
stopping once the true equation was found, and record only the true equations that have a unique
form yet equivalent equation to f∗. Note that the true equation is f∗ = 3

2x1x2 and using the defined
benchmark token library set, the first shortest equivalent equation to f∗ is x1(x2 +

x2x2

x2+x2
).

N FEYNMAN D=5 PARETO FRONT EQUATIONS

Finding accurate and simple equations. Shown in Figure 8, for the most challenging equations to
recover, DGSR can still find equations that are accurate and simple, i.e., having a low test NMSE
and low complexity. The equations analyzed in the Pareto fronts in Figure 8, were chosen as none of
the symbolic regression methods were able to find them. We note for a good symbolic regression
method we wish to determine concise, simple (low complexity) and best fitting equations, otherwise
it is undesirable to over-fit with an equation that has many terms having a high complexity, that fails
to generalize well.

Feynman-8 Pareto Front. We tabulate five of the many equations along the Pareto front in Figure 8
(a) for the Feynman-8 problem, with DGSR equations in Table 15, NGGP equations in Table 16 and
GP equations in Table 17. For completeness we duplicate some of Figure 4, here as Figure 8.

Feynman-13 Pareto Front. We tabulate five of the many equations along the Pareto front in Figure
8 (b) for the Feynman-13 problem, with DGSR equations in Table 18, NGGP equations in Table 19
and GP equations in Table 20.

28

Published as a conference paper at ICLR 2023

(a) (b) (c)

True Equation
Complexity

True Equation
Complexity

Figure 8: (a-b) Pareto front of test NMSE against equation complexity. Labelled: (a) Feynman-8, (b)
Feynman-13. Ground truth equation complexity is the red line. Equations discovered are listed in
Appendix N. (c) Average recovery rate of Feynman d = 2, Feynman d = 5 and synthetic d = 12
benchmark problems plotted against variable dimension d.

Table 15: DGSR equations from the Pareto plot in Figure 8 (a) for the Feynman-8 problem.

Complexity Test NMSE Equation

20 0.253 x1x2

x2+(2x4x5+x5)/x3

26 0.216 x1x3

x3+x5+(sin(x2)+
x2
4x5
x2

)/x2

33 0.212 x1x3

x3+x4+x5(x3/(x4+(x2+x4)/x2)+x4x5/x2)/x2

37 0.200 x1x2

x2+x5+log(x2)+x2
4x5(x4+x5)/(x2

3(x2+x3))

64 0.142 x1x3

2x3+(−x3+x5 exp(x5)/x2)/(−x3+x3(x2+x5+(3x2x3/x4−x5)/x2)/x4)+exp(−x2+x4)

Table 16: NGGP equations from the Pareto plot in Figure 8 (a) for the Feynman-8 problem.

Complexity Test NMSE Equation

20 0.337 x1x3

x3+x4+x5(x4+x5)/x2
2

29 0.244 x1x3

x3+x4+(sin(log(x3))+x4x2
5/x2)/x2

35 0.235 x1x3

x3+x4+(log(x1)+sin(log(x5))+x4x2
5/x2)/x2

54 0.212 x1x5

x5+(x3+x4+(x5+(−x2+sin(x4)/x2)/x5) exp(x4(x5+(−x2+x5/x2)/x2)/(x3+sin(x4))))/x3

66 0.201 x1

x4+cos(x4/x5)+x5(x4+cos(x3)+x5(cos(x4−exp(1/x3))+x2
4x5/(x2x3))/(x2x3))/(x2

2x3)

Table 17: GP equations from the Pareto plot in Figure 8 (a) for the Feynman-8 problem.

Complexity Test NMSE Equation

23 0.296 x1

(x3/(x4x5)+x5)/x3+x4x5/x2

33 0.295 x1

(x5+(x3+x5)/(x5(x5+x4x5/x3)))/x3+x4x5/x2

41 0.288 x1

(x5+(x3+x5)/(x5 log(exp(x4+x2
5/x2))))/x3+x4x5/x2

44 0.277 x1

(x5+x4x5/x3)/ log(exp(x2))+(x3/(x4(x2 log(x4)+x5))+x4)/x3

54 0.252 x1

(x3+1/x4)/x3+x5((x3x4/(x2+log(x3))+x4)/x3+x2
4/(x1x2

3))/x2

Table 18: DGSR equations from the Pareto plot in Figure 8 (b) for the Feynman-13 problem.

Complexity Test NMSE Equation

20 0.288 x2x3(x1 + x2(x3 + x5)/x5)/(x4x5)
22 0.185 x2

2x3(x1 + 2x3 − x4)/(x4x
2
5)

24 0.170 x2x
2
3(x1x2/x4 + x2)/(x4x

2
5)

29 0.128 x2
2x

2
3(x1 + x2 − log(x5))/(x

2
4x

2
5)

45 0.118 x2x3(x2x3/x5 − x4x5 sin(x1)/(x2x3))(x1 + x2 − log(x5))/(x
2
4x5)

29

Published as a conference paper at ICLR 2023

Table 19: NGGP equations from the Pareto plot in Figure 8 (b) for the Feynman-13 problem.

Complexity Test NMSE Equation

20 0.288 x2x3(x1 + x2x3/x5 + x2)/(x4x5)
22 0.281 (x2x3(x1 + x2x3/x5 + x2)− x5)/(x4x5)
23 0.194 x2

2x3(x1 + x2x3/x4)/(x4x
2
5)

31 0.172 x2
2x

2
3(x1 + x4)/(x

2
4x

2
5) + cos(x5)/x5

47 0.133 x2x
2
3(x1 + x1x4/x3 + x2

2)/(x
2
4x

2
5) + x2x3/x

3
5

Table 20: GP equations from the Pareto plot in Figure 8 (b) for the Feynman-13 problem.

Complexity Test NMSE Equation

24 0.465 x2(x2 + x3 + x3(x3 + sin(x4)) sin(x5)/x5 − x4)
25 0.429 (x2 + sin(x4))(x3 + x3(x3 + x5) sin(x5)/x

2
5)

28 0.427 (x2 + sin(x4))(x3 + x3(x3 + x3/x4) sin(x5)/x
2
5)

35 0.382 (x2 + sin(x4))(x3 + x3(x3 + (x2 + x3)/(x4 + sin(x2))) sin(x5)/x
2
5)

50 0.370 (x2 + sin(x4))(x3 + x3(x2/(exp(cos(exp(x4))) + x4/x3) + x3) sin(x5)/x
2
5)

O FEYNMAN D=5 RESULTS

Feynman d = 5 recovery rates. Average recovery rates on the Feynman d = 5 problem set can be
seen in Table 21. The corresponding inference equation evaluations on the Feynman d = 5 problem
set can be seen in Table 22.

Table 21: Average recovery rate (ARec%) on the Feynman d = 5 problem set with 95 % confidence
intervals. Averaged over κ = 40 random seeds.

Benchmark Equation DGSR NGGP GP

Feynman-8 x1

e
x4x5
x2x3 +e

−x4x5
x2x3

0 0 0

Feynman-9 x1x2x3 log
x5
x4 55 97.5 0

Feynman-10 x1(x3−x2)x4

x5
100 100 50

Feynman-11 x1x2

x5(x2
3−x2

4)
100 37.5 10

Feynman-12 x1x
2
2x3

3x4x5
97.5 52.5 0

Feynman-13 x1(e
x2x3
x4x5 − 1) 5 22.5 0

Feynman-14 x5x1x2(
1
x4
− 1

x3
) 100 97.5 10

Feynman-15 x1(x2 + x3x4 sinx5) 100 100 50

Average recovery rate (%) ARec% 69.69 ± 3.38 63.44 ± 6.64 15.00 ± 12.39

P ADDITIONAL FEYNMAN RESULTS

The average recovery rates on an additional AI Feynman problem set (Udrescu & Tegmark, 2020) of
32 equations can be seen in Table 23. DGSR achieves a similar performance to NGGP. To get this
problem set, we filtered all the Feynman equations that have equation tokens that are inside the Koza
token library (detailed in Appendix I). DGSR can run on any token sets, however, requires changing
the supported token set and pre-training a new conditional generative model when changing the token
set to be used (if not done so already).

Q SYNTHETIC D=12 RESULTS

The recovery rates for the synthetic d = 12 problem set are tabulated in Table 24. The specification
and generation details are in Appendix I. Empirically we investigated attempting to recover the

30

Published as a conference paper at ICLR 2023

Table 22: Inference equation evaluations on the Feynman d = 5 benchmark problem set with 95%
confidence intervals. DNF = Did not Find (i.e., recover the true equation given a budget of 2 million
equation evaluations).

Benchmark Equation DGSR NGGP GP

Feynman-8 x1

e
x4x5
x2x3 +e

−x4x5
x2x3

DNF DNF DNF

Feynman-9 x1x2x3 log
x5
x4 1,209,538 ± 257,408 503,158 ± 150,969 DNF

Feynman-10 x1(x3−x2)x4

x5
75,110 ± 15,645 98,331 ± 27,968 DNF

Feynman-11 x1x2

x5(x2
3−x2

4)
979,457 ± 131,399 1,707,890 ± 174,220 27,780 ± 0

Feynman-12 x1x
2
2x3

3x4x5
558,393 ± 135,956 1,517,072 ± 192,056 45,609 ± 17,663

Feynman-13 x1(e
x2x3
x4x5 − 1) 1,949,722 ± 94,348 1,821,054 ± 129,404 DNF

Feynman-14 x5x1x2(
1
x4
− 1

x3
) 299,833 ± 71,471 662,238 ± 139,361 19,751 ± 0

Feynman-15 x1(x2 + x3x4 sinx5) 48,047 ± 11,838 78,416 ± 23,951 30,386 ± 12,078

Average equation evaluations γ 731,442 912,594 198,455

equations with linear regression with polynomial features (testing both full, and sparse i.e., lasso-
linear regression), however found this was not possible, and predictions from a linear model had a
significantly higher test NMSE compared to DGSR and NGGP methods. We observe that DGSR can
find the true equation when searching through a challenging very large equation space. Note that
to generate equations of a suitable length we modified the maximum length of tokens that can be
generated to 256 for all methods, i.e., DGSR, NGGP and GP.

R USING DIFFERENT OPTIMIZER RESULTS

DGSR can be used with different PG optimizers. DGSR can be used with other policy gradient
optimization methods. We ablated the optimizer by switching off the GP component for both DGSR
and NGGP, which becomes similar to the optimizer in Petersen et al. (2020) using PQT. Empirically
we observe without the GP component the average recovery rate decreases, as others have shown for
this optimizer (Mundhenk et al., 2021). However, we still observe that DGSR has a higher average
recovery than that of NGGP, when both do not use the genetic programming component, whilst
having a significantly lower number of equation evaluations, in Table 25 and Table 26.

S SRBENCH RESULTS

On SRBench (La Cava et al., 2021), we have evaluated DGSR against the ODE-Strogatz (Strogatz,
2018) problem set (14 unique equations), and 119 of the Feynman (Udrescu & Tegmark, 2020)
unique equations, and 95 of the provided black-box regression datasets from PMLB (Romano et al.,
2022). While we would love to perform a more comprehensive evaluation on all unique equations
in SRBench with additional noise at this time, unfortunately we do not have the same resources of
multiple 10’s of GPUs. However, we believe that these combined results are strong enough to support
all the major claims in this paper.

SRBench ground truth unique equations. We observe in the zero noise case on SRBench ground
truth unique equations (ODE-Strogatz and Feynman), that DGSR achieves the highest symbolic
recovery (solution) rate against the baselines provided of 63.25%, which is significant compared to
the second best SRBench baseline of AI Feynman at 52.65%, shown in Figure 9, 10. Furthermore,
analyzing the metric of equation accuracy, defined by R2

test > 0.99 (i.e., the R2 metric on the
test samples is greater than 0.99), DGSR remains competitive placing 4th, with a mean equation
accuracy rate of 90.94%. Whereas the other three best methods are genetic programming methods,
MRGP, Operon and SBP-GP which have a mean accuracy rate of 96.13%, 93.92% and 93.65%
respectively. Furthermore, DGSR on the same unique equations, as shown in the Figure 11, has the
lowest simplified equation complexity for the highest comparative accuracy (complexity — DGSR:
15.42, MRGP: 157.62, Operon: 41.18, SBP-GP: 128.55) and lowest inference time in seconds for
the highest comparative accuracy (inference time — DGSR: 706.94s, MRGP: 13,665.00s, Operon:
1,874.91s, SBP-GP: 27,713.85s). We highlight that it is possible to fit a more accurate equation which

31

Published as a conference paper at ICLR 2023

Table 23: Average recovery rate (ARec%) on the additional Feynman problem set with 95 % confidence
intervals. Averaged over κ = 10 random seeds. Here d is the variable dimension.

Benchmark d Equation DGSR NGGP

Feynman-A-1 9 x3x1x2

(x5−x4)2+(x7−x6)2+(x9−x8)2
0 0

Feynman-A-2 8 x1x2

x3x4
+ x1x5

x6x2
7x3x4

x8 100 30

Feynman-A-3 6 x1e
−x2x5x3

x6x4 70 90
Feynman-A-4 6 x1x4 + x2x5 + x3x6 100 100
Feynman-A-5 6 x1(1 +

x5x6 cos(x4)
x2∗x3) 100 100

Feynman-A-6 6 x1(1 + x3)x2 100 100
Feynman-A-7 4 x1x4x2

x3
100 100

Feynman-A-8 4 x1x2x3

x4
100 100

Feynman-A-9 4 1
x1−1x2

x4

x3
20 100

Feynman-A-10 4 x1x2x3

2x4
90 100

Feynman-A-11 4 x1x2x4

x3
100 100

Feynman-A-12 4 x1(cos(x2x3) + x4 cos(x2x3)
2
) 0 0

Feynman-A-13 4 −x1x2
x3

x4 100 100
Feynman-A-14 4 x1x3+x2x4

x1+x2
100 60

Feynman-A-15 4 1
2x1(x

2
2 + x2

3 + x2
4) 0 0

Feynman-A-16 3 −x1x2 cos(x3) 100 100
Feynman-A-17 3 x3+x2

1+
x3x2
x12

30 0

Feynman-A-18 3 x1x2x3 100 100
Feynman-A-19 3 x1x2x

2
3 100 100

Feynman-A-20 3 x1x2
x3

2 100 100
Feynman-A-21 3 1

x1−1x2x3 70 90
Feynman-A-22 3 x3

1− x2
x1

100 100

Feynman-A-23 3 x1x3x2 100 100

Feynman-A-24 3
x1 sin(x3

x2
2)

2

sin(x2/2)
2 0 0

Feynman-A-25 3 x1(1 + x2 cos(x3)) 100 100
Feynman-A-26 3 1

1
x1

+
x3
x2

100 100

Feynman-A-27 3 2x1(1− cos(x2x3)) 100 90
Feynman-A-28 3 x1

x2(1+x3)
100 100

Feynman-A-29 7 (x1x2x3x4x5

4x6 sin(x7/2)
2)2 0 0

Feynman-A-30 4 x1

1+x1/(x2x2
3)(1−cos(x4))

0 0

Feynman-A-31 4 x1(1−x2
2)

1+x2 cos(x3−x4)
0 0

Feynman-A-32 4 x1
sin(x2/2)sin(x4x3/2)

(x2/2 sin(x3/2))

2
0 0

Average recovery rate (%) ARec% 67.81 ± 4.60 67.81 ± 3.00

Average equation evaluations γ 318,042 328,499

has a greater complexity (i.e., more terms), however for a good symbolic regression method we seek
the simplest equation that explains the dataset accurately (therefore being a trade-off in accuracy and
complexity).

SRBench blackbox datasets. On the SRBench black box datasets, in the zero noise case, we observe
DGSR is competitive to the state-of-the-art, producing equations for blackbox-datasets that have a
low median test RMSE, ranking fourth out of the SRBench implemented methods (median test RMSE
— DGSR: 0.44, Operon: 0.36, SBP-GP: 0.42, FEAT: 0.43), shown in Figure 12. These equations also

32

Published as a conference paper at ICLR 2023

Table 24: Average recovery rate (ARec%) on the synthetic d = 12 problem set with 95 % confidence
intervals. Averaged over κ = 20 random seeds. Here - indicates that the method was not able to find
any true equations, therefore average number of equation evaluations until the true equation f∗ is
discovered cannot be estimated.

Benchmark Equation DGSR NGGP GP

Synthetic-1 x12 + x9(x10 + x11) + x1 + x2 + x3 + x4 + x5 + x6 + x7x8 20 0 0
Synthetic-2 x10 + x11 + x12 + x3(x1 + x2) + x4x5 + x6 + x7 + x8 + x9 100 100 0
Synthetic-3 x10 + x9(x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8) + x11 + x12 0 0 0
Synthetic-4 x8(x6 + x7)− (x10 + x11x12 + x9)x1 + x2 + x3 + x4 + x5 0 0 0
Synthetic-5 x10 + x11 + x12 + x9(x1 + x2)− x3 + x4 + x5 + x6 + x7 + x8 45 0 0
Synthetic-6 x1(x10 − x11)− x12 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 100 100 0
Synthetic-7 x1x2 − x11(−x10 + x6 + x7) + x8 − x9 + x12 + x3 + x4 + x5 0 0 0

Average recovery rate (%) ARec% 37.86 ± 5.62 28.57 ± 0.00 0 ± 0

Average equation evaluations γ 271,302 828,905 -

Table 25: Ablated optimizer where both DGSR and NGGP have their genetic programming com-
ponent switched off, being similar to the one in Petersen et al. (2020). Top: Inference equation
evaluations on the Feynman d = 2 benchmark problem set with standard deviations. DNF = Did
not Find (i.e., recover the true equation given a budget of 2 million equation evaluations). Bottom:
Average recovery rate (ARec%) on the Feynman d = 2 benchmark problem set, with 95% confidence
intervals, with rates in Table 26. Both averaged over κ = 15 random seeds.

Benchmark Equation DGSR NGGP

Feynman-1 x1x2 4,062 ± 4,786 22,688 ± 25,943
Feynman-2 x1

2(1+x2)
26,733 ± 21,792 356,867 ± 125,319

Feynman-3 x1x
2
2 5,281 ± 4,426 42,719 ± 23,950

Feynman-4 1 + x1x2

(1−(x1x2/3)
DNF DNF

Feynman-5 x1

x2
1,938 ± 1,802 28,906 ± 15,513

Feynman-6 1
2x1x

2
2 30,773 ± 27,702 210,538 ± 99,439

Feynman-7 3
2x1x2 107,350 ± 104,483 245,667 ± 33,006

Average equation evaluations γ 29,356 151,231

Average recovery rate (%) ARec% 74.28 ± 8.75 70.47 ± 7.58

Table 26: Ablated optimizer where both DGSR and NGGP have their genetic programming compo-
nent switched off, being similar to the one in Petersen et al. (2020). Average recovery rate (ARec%)
on the Feynman d = 2 problem set with 95% confidence intervals. Averaged over κ = 15 random
seeds.

Benchmark Equation DGSR NGGP

Feynman-1 x1x2 100.00 100.00
Feynman-2 x1

2(1+x2)
93.33 93.33

Feynman-3 x1x
2
2 100.00 100.00

Feynman-4 1 + x1x2

(1−(x1x2/3)
0.00 0.00

Feynman-5 x1

x2
100.00 100.00

Feynman-6 1
2x1x

2
2 66.66 80.00

Feynman-7 3
2x1x2 60.00 20.00

Average recovery rate (%) ARec% 74.28 ± 8.75 70.47 ± 7.58

have a competitive test R2 metric, with DGSR having a test median R2 of 0.84 (ranking 6th out of
the benchmark methods).

33

Published as a conference paper at ICLR 2023

0 10 20 30 40 50 60 70
Solution Rate (%)

DGSR
AIFeynman
GP-GOMEA

AFP_FE
ITEA
AFP
DSR

Operon
gplearn
SBP-GP
EPLEX

BSR
FEAT
FFX

MRGP

Figure 9: Symbolic recovery rate, labelled here as Symbolic solution rate (%) on the SRBench ground
truth unique equations, and the SRBench provided methods. Points indicate the mean the test set
performance on all ground truth problems, and bars show the 95% confidence interval.

0 20 40 60 80
Symbolic Solution Rate (%)

DGSR
AIFeynman
GP-GOMEA

AFP_FE
ITEA
AFP
DSR

Operon
gplearn
SBP-GP
EPLEX

BSR
FEAT
FFX

MRGP

 Feynman

0 20 40 60 80
Symbolic Solution Rate (%)

 Strogatz

Figure 10: Symbolic recovery rate, split for each problem set type, labelled here as Symbolic solution
rate (%) on the SRBench ground truth unique equations, and the SRBench provided methods. Points
indicate the mean the test set performance on all ground truth problems, and bars show the 95%
confidence interval.

T LOCAL OPTIMA

We discuss two sources of understood local optima in the symbolic regression literature, that of (1)
the skeleton equation local optima (Mundhenk et al., 2021) and (2) the numerical constants local
optima (Kamienny et al., 2022).

(1). DGSR specifically is assisted to avoid getting stuck in skeleton equation local optima, as it is
optimized at inference with a combined policy gradient-based and genetic programming training
optimization algorithm, that of neural guided priority queue training (NGPQT) of Mundhenk et al.
(2021), detailed in Appendix C. Mundhenk et al. (2021) hypothesizes the improved performance
over gradient-based training methods is due to the genetic programming component providing “fresh”
new samples that help the optimization method escape local optima. We also observe the increase in

34

Published as a conference paper at ICLR 2023

20 40 60 80 100

MRGP
Operon
SBP-GP

DGSR
GP-GOMEA
AIFeynman

EPLEX
AFP_FE

FEAT
AFP

gplearn
FFX

ITEA
DSR
BSR

Accuracy Solution Rate (%)

102

Simplified Complexity

102 103 104

Training Time (s)

Figure 11: Equation accuracy, plotted here as the accuracy solution rate (R2
test > 0.99), against

equation complexity and inference training time on the SRBench ground truth unique equations, and
the SRBench provided methods. Points indicate the mean the test set performance on all ground truth
problems, and bars show the 95% confidence interval.

0.5 1.0 1.5 2.0

*Operon
*SBP-GP

*FEAT
*DGSR

XGB
*GP-GOMEA

*EPLEX
AdaBoost

RandomForest
*AFP_FE

*AFP
LGBM
*DSR
*ITEA

*MRGP
*FFX

*gplearn
KernelRidge

Linear
MLP

*BSR
*AIFeynman

Rmse Test

−0.25 0.00 0.25 0.50 0.75 1.00

R2 Test

100 102 104

Training Time (s)

Figure 12: RMSE test error against R2
test and training time on the SRBench blackbox datasets, and

the SRBench provided methods. Points indicate the mean of the median test set performance on all
problems, and bars show the 95% confidence interval. Methods marked with an asterisk are symbolic
regression methods.

symbolic recovery rate using NGPQT optimization compared to pure policy gradient methods, as
detailed in the optimization ablation study in Appendix E and results in Appendix R, i.e., (Feynman
d = 2 problem set, average recovery rate — DGSR: 85.71% compared to ablated DGSR with no
genetic programming component : 74.28%).

(2). Like many existing works, the current DGSR suffers from the local optima of the numerical
constants. DGSR uses the same setup of the numerical optimizer as Petersen et al. (2020), i.e.,
it first guesses an initial guess of 1.0 for each constant, and then further refines them with the
optimizer of Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS). However, the recent seminal
work of Kamienny et al. (2022) propose a solution to mitigate this issue, and their approach could be

35

Published as a conference paper at ICLR 2023

incorporated in future versions of DGSR. Specifically, we envisage future work using the generator
to predict an initial guess of the numerical constants (rather than initializing them as constants),
however note this is out of scope for this current work, therefore leave this as a future work we plan
to implement and build on top of.

U ENCODER DECODER ARCHITECTURE ABLATION

DGSR can use other encoder-decoder architectures, specifically it is desirable to satisfy the invariant
and equivariant properties outlined in section 3.1. We perform an ablation, training DGSR with a set
transformer encoder and a LSTM RNN decoder, instead of the proposed transformer decoder. The
results are tabulated in Table 27. We compared this ablated version of DGSR on the Feynman d = 2
problem set.

Table 27: DGSR decoder architecture ablation, we change the decoder architecture from a transformer
in DGSR to that of a LSTM RNN. Average recovery rate (ARec%) on the Feynman d = 2 problem set
with 95% confidence intervals with average inference equation evaluations. Averaged over κ = 20
random seeds.

Transformer decoder (DGSR) LSTM RNN decoder

Average recovery rate (%) ARec% 85.71 ± 0.00 85.71 ± 0.00
Average equation evaluations γ 23,969 106,130

V LIMITATIONS AND OPEN CHALLENGES

In the following we discuss the limitations with open challenges.

Complex equations. DGSR may fail to discover highly complex equations. The difficulty in
discovering the true equation f∗ could arise from three factors: (1) a large number of variables are
required, (2) the equation f∗ involves many operators making the equation length long, or (3) the
equation f∗ exhibits a highly nested structure. We note that these settings are inherently difficult,
even for human experts, however, pose an exciting open challenge for future works.

Unobserved variables. DGSR assumes all variables in the true equation f∗ are observed. Therefore,
it would fail to discover a true equation f∗ with unobserved variables present, however this setting
is challenging and or even impossible without the use of additional assumptions (Reinbold et al.,
2021; Lu et al., 2021). Furthermore, DGSR could still find a concise approximate equation using the
observed variables.

Local optima. We detail both sources of local optima in the symbolic regression literature in detail in
Appendix T, with respect to DGSR and future work associated to solve these. At a high level DGSR
is able to overcome the local optima of the functional equation local optima by leveraging the genetic
programming component, as other methods have shown (Mundhenk et al., 2021). Moreover, DGSR
will suffer from the same constant token optimization optima as other methods, although there exists
future work to address these, detailed in Appendix T.

W ENCODER ABLATION

We performed an additional encoder ablation, by replacing the set transformer in the encoder-decoder
architecture with a plain transformer. We emphasize that we do not recommend using a plain
transformer as the encoder for symbolic regression as it is not permutation invariant across the input
samples n in the dataset D (Section 3.1). The ablation results can be seen in the Table 28, with
evaluation metrics evaluated across all the problems in the Feynman d=5 problem set.

X CROSS ENTROPY WITH NO REFINEMENT ABLATION

We also performed a further additional ablation of pre-training our encoder-decoder architecture with
a cross entropy loss without refinement at inference time—only sampling from the decoder—thereby

36

Published as a conference paper at ICLR 2023

Table 28: DGSR encoder architecture ablation, we change the encoder architecture from a set
transformer in DGSR to that of a plain transformer for the encoder. Average recovery rate (ARec%)
on the Feynman d = 5 problem with average inference equation evaluations.

Set Transformer encoder (DGSR) Plain Transformer encoder

Average recovery rate (%) ARec% 67.50 67.18
Average equation evaluations γ 23,969 348,666

not updating the decoders weights at inference time. This can be seen in Table 29, with evaluation
metrics evaluated across all the problems in the Feynman d=5 problem set.

Table 29: DGSR training ablation, we pre-train using only a cross entropy loss and then do not
perform refinement at inference time—thereby only sampling from the decoder in this ablation.
Average recovery rate (ARec%) on the Feynman d = 5 problem with average inference equation
evaluations.

DGSR Pre-train with CE and no refinement at inference

Average recovery rate (%) ARec% 67.50 47.5
Average equation evaluations γ 23,969 486,140

Y ADDITIONAL SYNTHETIC EXPERIMENTS

To provide further empirical results of DGSR, we synthetically generated ω equations using the
concise and seminal equation generation framework of Lample & Charton (2019)—which is the same
procedure used to generate the pre-training dataset equations. We tabulate these additional synthetic
results for dimensions d = {2, 5} in Table 30. To be consistent with prior work of Kamienny et al.
(2022), that use this same experimental setup, we followed their experimental setup—which only
evaluates each synthetic equation for one random seed. Here, we provide additional evaluation
metrics that are computed out of distribution—that is we sample new points X ∼ X to form an out of
distribution test set {f∗(X),X}. Specifically we further include the following metrics of: coefficient
of determination R2-score (La Cava et al., 2021), Test NMSE and accuracy to tolerance τ (Biggio
et al., 2021; Kamienny et al., 2022). Where coefficient of determination R2-score is defined as:

R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳ)2

ȳ =
1

n

n∑

i=1

yi (6)

Similarly the accuracy to tolerance τ is defined as (Kamienny et al., 2022):

Accτ = 1

(
max
1≤i≤n

∣∣∣∣
ŷi − yi
yi

∣∣∣∣ ≤ τ

)
(7)

where 1 is the indicator function.

We also provide a similar additional synthetic equation ablation of pre-training DGSR with a smaller
number of input variables d = 2 than those seen at inference time d = 5—thereby further providing
empirical evidence for the property of generalizing to unseen input variables (P3). This is detailed in
Table 31.

37

Published as a conference paper at ICLR 2023

Table 30: Additional synthetic experiments. Where: ω is the number of unique equations f∗ in a
benchmark problem set, coefficient of determination R2-score, Accτ is the accuracy to tolerance,
where τ = 0.05, MSE is the test mean squared error and d is the number of input variables in the
problem set. Here follow a different symbolic regression experimental setup, that of Kamienny et al.
(2022) and synthetically a problem set of ω unique equations using the concise equation generator of
Lample & Charton (2019) and only run each experiment for one random seed over a large number of
unique equations f∗—as is recommended by Kamienny et al. (2022).

Problem set ω d DGSR (Ours) NGGP (RL)

Average Rec. Extended Synthetic (d=2) 5,000 2 84.98 83.73
Rate (%) ARec% Extended Synthetic (d=5) 5,000 5 84.18 83.19

Average Extended Synthetic (d=2) 5,000 2 448,430 460,585
Eq. Evals γ Extended Synthetic (d=5) 5,000 5 527,879 582,542

R2-score Extended Synthetic (d=2) 5,000 2 0.9782 0.9720
Extended Synthetic (d=5) 5,000 5 0.9864 0.9848

Test NMSE Extended Synthetic (d=2) 5,000 2 0.00151 0.00371
Extended Synthetic (d=5) 5,000 5 0.02096 0.02562

Acc0.05 Extended Synthetic (d=2) 5,000 2 84.14 81.34
Extended Synthetic (d=5) 5,000 5 80.00 78.81

Table 31: DGSR ablation study using average recovery rate (ARec%) on a generated synthetic dataset
d = 5 benchmark problem set. Where d is the number of input variables.

Config ω Average recovery rate (%) ARec%

Pre-trained dataset (d = 5) = (dinference = 5) 5,000 84.18
Pre-trained dataset (d = 2) < (dinference = 5) 3,000 78.93

38

Published as a conference paper at ICLR 2023

Table 32: Standard symbolic regression benchmark problem specifications. Input variables can
be x1, x2. U(a, b, c) corresponds to c random points uniformly sampled between a to b for each
input variable separately, where the training and test datasets use different random seeds. E(a, b, c)
corresponds to c points evenly spaced between a and b for each input variable; where training and
test datasets use the same points. Where LKoza = {+,−,÷,×, x1, exp, log, sin, cos}.

Name Equation Dataset Library

Nguyen-1 x3
1 + x2

1 + x1 U(−1, 1, 20) LKoza
Nguyen-2 x4

1 + x3
1 + x2

1 + x1 U(−1, 1, 20) LKoza
Nguyen-3 x5

1 + x4
1 + x3

1 + x2
1 + x1 U(−1, 1, 20) LKoza

Nguyen-4 x6
1 + x5

1 + x4
1 + x3

1 + x2
1 + x1 U(−1, 1, 20) LKoza

Nguyen-5 sin
(
x2
1

)
cos(x1)− 1 U(−1, 1, 20) LKoza

Nguyen-6 sin(x1) + sin
(
x1 + x2

1

)
U(−1, 1, 20) LKoza

Nguyen-7 log(x1 + 1) + log
(
x2
1 + 1

)
U(0, 2, 20) LKoza

Nguyen-8
√
x1 U(0, 4, 20) LKoza

Nguyen-9 sin(x1) + sin
(
x2
2

)
U(0, 1, 20) LKoza ∪ {x2}

Nguyen-10 2 sin(x1) cos(x2) U(0, 1, 20) LKoza ∪ {x2}
Nguyen-11 xx2

1 U(0, 1, 20) LKoza ∪ {x2}
Nguyen-12 x4

1 − x3
1 +

1
2x

2
2 − x2 U(0, 1, 20) LKoza ∪ {x2}

Nguyen-1c 3.39x3
1 + 2.12x2

1 + 1.78x1 U(−1, 1, 20) LKoza ∪ {const}
Nguyen-5c sin

(
x2
1

)
cos(x1)− 0.75 U(−1, 1, 20) LKoza ∪ {const}

Nguyen-7c log(x1 + 1.4) + log
(
x2
1 + 1.3

)
U(0, 2, 20) LKoza ∪ {const}

Nguyen-8c
√
1.23x1 U(0, 4, 20) LKoza ∪ {const}

Nguyen-10c sin(1.5x1) cos(0.5x2) U(0, 1, 20) LKoza ∪ {x2, const}

R-1 (x1+1)3

x2
1−x1+1

E(−1, 1, 20) LKoza

R-2 x5
1−3x3

1+1

x2
1+1

E(−1, 1, 20) LKoza

R-3 x6
1+x5

1

x4
1+x3

1+x2
1+x1+1

E(−1, 1, 20) LKoza

R-1∗ (x1+1)3

x2
1−x1+1

E(−10, 10, 20) LKoza

R-2∗ x5
1−3x3

1+1

x2
1+1

E(−10, 10, 20) LKoza

R-3∗ x6
1+x5

1

x4
1+x3

1+x2
1+x1+1

E(−10, 10, 20) LKoza

39

Published as a conference paper at ICLR 2023

Table 33: Additional standard symbolic regression benchmark problem specifications. Input variables
can be x1, x2. U(a, b, c) corresponds to c random points uniformly sampled between a to b for each
input variable separately, where the training and test datasets use different random seeds. Where
LKoza = {+,−,÷,×, x1, exp, log, sin, cos}.

Name Equation Dataset Library

Livermore-1 1/3 + x1 + sin
(
x2
1

)
U(−10, 10, 1000) LKoza

Livermore-2 sin
(
x2
1

)
cos(x1)− 2 U(−1, 1, 20) LKoza

Livermore-3 sin
(
x3
1

)
cos

(
x2
1

)
− 1 U(−1, 1, 20) LKoza

Livermore-4 log(x1 + 1) + log
(
x2
1 + 1

)
+ log(x1) U(0, 2, 20) LKoza

Livermore-5 x4
1 − x3

1 + x2
1 − x2 U(0, 1, 20) LKoza ∪ {x2}

Livermore-6 4x4
1 + 3x3

1 + 2x2
1 + x1 U(−1, 1, 20) LKoza

Livermore-7 sinh(x1) U(−1, 1, 20) LKoza
Livermore-8 cosh(x1) U(−1, 1, 20) LKoza
Livermore-9 x9

1 + x8
1 + x7

1 + x6
1 + x5

1 + x4
1 + x3

1 + x2
1 + x1 U(−1, 1, 20) LKoza

Livermore-10 6 sin(x1) cos(x2) U(0, 1, 20) LKoza ∪ {x2}
Livermore-11 x2

1x
2
1

x1+x2
U(−1, 1, 50) LKoza ∪ {x2}

Livermore-12 x5
1/x

3
2 U(−1, 1, 50) LKoza ∪ {x2}

Livermore-13 x
1/3
1 U(0, 4, 20) LKoza

Livermore-14 x3
1 + x2

1 + x1 + sin(x1) + sin
(
x2
1

)
U(−1, 1, 20) LKoza

Livermore-15 x
1/5
1 U(0, 4, 20) LKoza

Livermore-16 x
2/5
1 U(0, 4, 20) LKoza

Livermore-17 4 sin(x1) cos(x2) U(0, 1, 20) LKoza ∪ {x2}
Livermore-18 sin

(
x2
1

)
cos(x)− 5 U(−1, 1, 20) LKoza

Livermore-19 x5
1 + x4

1 + x2
1 + x1 U(−1, 1, 20) LKoza

Livermore-20 exp
(
−x2

1

)
U(−1, 1, 20) LKoza

Livermore-21 x8
1 + x7

1 + x6
1 + x5

1 + x4
1 + x3

1 + x2
1 + x1 U(−1, 1, 20) LKoza

Livermore-22 exp
(
−0.5x2

1

)
U(−1, 1, 20) LKoza

Table 34: Feynman benchmark problem specifications. Input variables can be x1, . . . , x2. U(a, b, c)
corresponds to c random points uniformly sampled between a to b for each input variable
separately, where the training and test datasets use different random seeds. Where LKoza =
{+,−,÷,×, x1, exp, log, sin, cos}.

Name Equation Dataset Library

Feynman-1 x1x2 U(1, 5, 20) LKoza ∪ {x2}
Feynman-2 x1

2(1+x2)
U(1, 5, 20) LKoza ∪ {x2}

Feynman-3 x1x
2
2 U(1, 5, 20) LKoza ∪ {x2}

Feynman-4 1 + x1x2

(1−(x1x2/3)
U(0, 1, 20) LKoza ∪ {x2}

Feynman-5 x1

x2
U(1, 5, 20) LKoza ∪ {x2}

Feynman-6 1
2x1x

2
2 U(1, 5, 20) LKoza ∪ {x2}

Feynman-7 3
2x1x2 U(1, 5, 20) LKoza ∪ {x2}

Feynman-8 x1

e
x4x5
x2x3 +e

−x4x5
x2x3

U(1, 3, 50) LKoza ∪ {x2, x3, x4, x5}
Feynman-9 x1x2x3 log

x5
x4 U(1, 5, 50) LKoza ∪ {x2, x3, x4, x5}

Feynman-10 x1(x3−x2)x4

x5
U(1, 5, 50) LKoza ∪ {x2, x3, x4, x5}

Feynman-11 x1x2

x5(x2
3−x2

4)
U(1, 3, 50) LKoza ∪ {x2, x3, x4, x5}

Feynman-12 x1x
2
2x3

3x4x5
U(1, 5, 50) LKoza ∪ {x2, x3, x4, x5}

Feynman-13 x1(e
x2x3
x4x5 − 1) U(1, 5, 50) LKoza ∪ {x2, x3, x4, x5}

Feynman-14 x5x1x2(
1
x4
− 1

x3
) U(1, 5, 50) LKoza ∪ {x2, x3, x4, x5}

Feynman-15 x1(x2 + x3x4 sinx5) U(1, 5, 50) LKoza ∪ {x2, x3, x4, x5}

40

Published as a conference paper at ICLR 2023

Table 35: Additional Feynman benchmark problem specifications. Input variables can be x1, . . . , x9.
U(a, b, c) corresponds to c random points uniformly sampled between a to b for each input
variable separately, where the training and test datasets use different random seeds. Where
LKoza = {+,−,÷,×, x1, exp, log, sin, cos}.

Name Equation Dataset Library

Feynman-A-1 x3x1x2

(x5−x4)2+(x7−x6)2+(x9−x8)2
U(1, 2, 90) LKoza ∪ {x2, . . . , x9}

Feynman-A-2 x1x2

x3x4
+ x1x5

x6x2
7x3x4

x8 U(1, 3, 80) LKoza ∪ {x2, . . . , x8}
Feynman-A-3 x1e

−x2x5x3
x6x4 U(1, 5, 60) LKoza ∪ {x2, . . . , x6}

Feynman-A-4 x1x4 + x2x5 + x3x6 U(1, 5, 60) LKoza ∪ {x2, . . . , x6}
Feynman-A-5 x1(1 +

x5x6 cos(x4)
x2∗x3) U(1, 3, 60) LKoza ∪ {x2, . . . , x6}

Feynman-A-6 x1(1 + x3)x2 U(1, 5, 60) LKoza ∪ {x2, . . . , x6}
Feynman-A-7 x1x4x2

x3
U(1, 5, 40) LKoza ∪ {x2, . . . , x4}

Feynman-A-8 x1x2x3

x4
U(1, 5, 40) LKoza ∪ {x2, . . . , x4}

Feynman-A-9 1
x1−1x2

x4

x3
U(2, 5, 40) LKoza ∪ {x2, . . . , x4}

Feynman-A-10 x1x2x3

2x4
U(1, 5, 40) LKoza ∪ {x2, . . . , x4}

Feynman-A-11 x1x2x4

x3
U(1, 5, 40) LKoza ∪ {x2, . . . , x4}

Feynman-A-12 x1(cos(x2x3) + x4 cos(x2x3)
2
) U(1, 3, 40) LKoza ∪ {x2, . . . , x4}

Feynman-A-13 −x1x2
x3

x4 U(1, 5, 40) LKoza ∪ {x2, . . . , x4}
Feynman-A-14 x1x3+x2x4

x1+x2
U(1, 5, 40) LKoza ∪ {x2, . . . , x4}

Feynman-A-15 1
2x1(x

2
2 + x2

3 + x2
4) U(1, 5, 40) LKoza ∪ {x2, . . . , x4}

Feynman-A-16 −x1x2 cos(x3) U(1, 5, 30) LKoza ∪ {x2, . . . , x3}
Feynman-A-17 x3+x2

1+
x3x2
x12

U(1, 5, 30) LKoza ∪ {x2, . . . , x3}
Feynman-A-18 x1x2x3 U(1, 5, 30) LKoza ∪ {x2, . . . , x3}
Feynman-A-19 x1x2x

2
3 U(1, 5, 30) LKoza ∪ {x2, . . . , x3}

Feynman-A-20 x1x2
x3

2 U(1, 5, 30) LKoza ∪ {x2, . . . , x3}
Feynman-A-21 1

x1−1x2x3 U(2, 5, 30) LKoza ∪ {x2, . . . , x3}
Feynman-A-22 x3

1− x2
x1

U(3, 10, 30) LKoza ∪ {x2, . . . , x3}
Feynman-A-23 x1x3x2 U(1, 5, 30) LKoza ∪ {x2, . . . , x3}
Feynman-A-24

x1 sin(x3
x2
2)

2

sin(x2/2)
2 U(1, 5, 30) LKoza ∪ {x2, . . . , x3}

Feynman-A-25 x1(1 + x2 cos(x3)) U(1, 5, 30) LKoza ∪ {x2, . . . , x3}
Feynman-A-26 1

1
x1

+
x3
x2

U(1, 5, 30) LKoza ∪ {x2, . . . , x3}
Feynman-A-27 2x1(1− cos(x2x3)) U(1, 5, 30) LKoza ∪ {x2, . . . , x3}
Feynman-A-28 x1

x2(1+x3)
U(1, 5, 30) LKoza ∪ {x2, . . . , x3}

Feynman-A-29 (x1x2x3x4x5

4x6 sin(x7/2)
2)2 U(1, 2, 70) LKoza ∪ {x2, . . . , x7}

Feynman-A-30 x1

1+x1/(x2x2
3)(1−cos(x4))

U(1, 3, 40) LKoza ∪ {x2, . . . , x4}
Feynman-A-31 x1(1−x2

2)
1+x2 cos(x3−x4)

U(1, 3, 40) LKoza ∪ {x2, . . . , x4}
Feynman-A-32 x1

sin(x2/2)sin(x4x3/2)
(x2/2 sin(x3/2))

2
U(4, 6, 40) LKoza ∪ {x2, . . . , x4}

Table 36: Synthetic d = 12 benchmark problem specifications. U(a, b, c) corresponds to c random
points uniformly sampled between a to b for each input variable separately, where the training and
test datasets use different random seeds. Where LSynth = {+,−,÷,×, x1, . . . , x12}.

Name Equation Dataset Library

Synthetic-1 x12 + x9(x10 + x11) + x1 + x2 + x3 + x4 + x5 + x6 + x7x8 U(−1, 1, 120) LSynth
Synthetic-2 x10 + x11 + x12 + x3(x1 + x2) + x4x5 + x6 + x7 + x8 + x9 U(−1, 1, 120) LSynth
Synthetic-3 x10 + x9(x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8) + x11 + x12 U(−1, 1, 120) LSynth
Synthetic-4 x8(x6 + x7)− (x10 + x11x12 + x9)x1 + x2 + x3 + x4 + x5 U(−1, 1, 120) LSynth
Synthetic-5 x10 + x11 + x12 + x9(x1 + x2)− x3 + x4 + x5 + x6 + x7 + x8 U(−1, 1, 120) LSynth
Synthetic-6 x1(x10 − x11)− x12 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 U(−1, 1, 120) LSynth
Synthetic-7 x1x2 − x11(−x10 + x6 + x7) + x8 − x9 + x12 + x3 + x4 + x5 U(−1, 1, 120) LSynth

41

Published as a conference paper at ICLR 2023

Table 37: DGSR equivalent f∗ generated equations at inference time, for problem Feynman-7.

True equation (f∗) Equivalent generated equations
3
2x1x2 x1(x2 +

x2x2

x2+x2
) x1(x2 +

x2
1
x2

x1
x2+x2

x1

)

3
2x1x2 x2(x1 + x2

x1

x2+x2
) x1(x2x2

x2
1

x2+x2

x2
+ x2)

3
2x1x2 x1(x2

x2

x2+x2
+ x2) x2(x1

x2

x2
+ x1

x2

x2+x2
)

3
2x1x2 x1(x2

x2

x2+x2
+ x2) x2(x1

x1
x2

x2+x2

x1
+ x1)

3
2x1x2 x1(x2

x1

x1+x1
+ x2) x2(x1

x1
1

1
x2

(x1+x1)

x2
+ x1)

3
2x1x2 x1(x2

x1

x1+x1
+ x2) x2(x1

x2
1

1
x1

x2

x1+x1
+ x1)

3
2x1x2 x2(x1 +

x1
1
x1

(x1+x1)
) x1(x2

x2

x2+(x2+(x2(−1)+x2))
+ x2)

3
2x1x2 x2(x1

x1

x1+x1
+ x1) x1(x2

x2

x2
x2
x2

+x2
+ x2)

3
2x1x2 x2(x1

x2

x2+x2
+ x1) x2(x1

x2

x2

x2

x2+x2
+ x1)

3
2x1x2 x2(x1

x2

x2+x2
+ x1) x2(x1

x2

x2+
x1x2
x1

+ x1)
3
2x1x2 x1(x2 +

x2
1
x2

(x2+x2)
) (x1 +

x1
1
x2

(x2+x2)
)(x2(−1) + (x2 + x2))

3
2x1x2 x2(x1 +

x1x2

x2+x2
) x2(x1 +

x1
1
x2

(x2
x1
x1

+x2)
)

3
2x1x2 x2(x1

x1

x1+x1
+ x1) x1(x2

x2

x2+(x2+(x1(−1)+x1))
+ x2)

3
2x1x2 x2(x1 + x2

x1

x2+x2
) x2(x1 +

x1
1

x2
x1
x2

(x1+x1)
)

3
2x1x2 x2(x1

x2

x2+x2
+ x1) x2(x1 +

x1
1
x2

(x2
x1
x1

+x2)
)

3
2x1x2 x1(x1

x2

x1+x1
+ x2) x2(x1 +

x2
x1

1
x2

(x2+x2)

x2
)

3
2x1x2 x2(x1 + x2

x1

x2+x2
) x2(x1 +

x2
x1

1
x1

(x1+x1)

x2
)

3
2x1x2 x2(x1 +

x1
1
x2

(x2+x2)
) x1(x2 +

x2
1
x2

x2
x2+x2

x2

)

3
2x1x2 x1(x2

x2

x2+x2
+ x2) x1(x2

x2

x2+x2
+ (x2 + (x2(−1) + x2)))

3
2x1x2 x1(x2 + (x2 + x1

x2

x1+x1
(−1))) x1(x2 +

x1x2

x2

x2

x1+x1
)

3
2x1x2 x2(x1 + (x1 + x1

x2

x2+x2
(−1))) x2(x1

x2

x2+
x2x2
x2

+ x1)
3
2x1x2 x1(x2 + (x2 + x2

x2

x2+x2
(−1))) x1(x2

x2

x2
x2+x2

x2

+ x2)

3
2x1x2 x2(x1 + (x1 +

x1
1
x2

(x2+x2)
(−1))) x2(x1

x1

x1
x1+x1

x1

+ x1)

3
2x1x2 x1(x1

x1
x2
x1

x1+x1
+ x2) x1(x1

x2

x1+
x1x2
x2

+ x2)

3
2x1x2 x1(x2 +

x2
1
x2

x1
x2+x2

x1

) x2(x1

1
x2

x2x2

x2+x2
+ x1)

3
2x1x2 x1(x2 +

x2
1
x1

x1
x2+x2

x2

) x2(x1

1
x2

x2

1
x1

(x1+x1)
+ x1)

3
2x1x2 x1

x2

x2
(x1

x2

x1+x1
+ x2) x1(x2

x2
1

1
x2

(x2+x2)

x2
+ x2)

3
2x1x2 x1(x2

x2

x2+(x2+(x1(−1)+x1))
+ x2) x2(x1

x2

x1
x2
x1

+x2
+ x1)

3
2x1x2 x2(x1

x2

x1
x2
x1

+x2
+ x1) x1(x2

x2

x2

x2

x2+x2
+ x2)

3
2x1x2 x2(x1 +

x1

x1+x1

x1x2

x2
) x1(x2

x2

x2+(x2(x1(−1)+x1)+x2)
+ x2)

3
2x1x2 x2((x1 +

x1
1
x2

(x2+x2)
) + (x1(−1) + x1)) x2(x1 +

x1
1
x2

(x2+(x2+
x2(−1)+x2

x2
))
)

3
2x1x2 x2(x1

x2

x2+(x2+(x2(−1)+x2))
+ x1) x1(x2

x2+x2

x2+(x2+(x2+x2))
+ x2)

3
2x1x2 x1

x2(x2
x2

x2+x2
+x2)

x2
x1(x2

x2

x2+(x1(x1(−1)+x1)+x2)
+ x2)

42

	Introduction
	Problem formalism
	Deep Generative SR framework
	Pre-training step
	Inference step

	Related Work
	Experiments and Evaluation
	Main Results
	Insight and understanding of how DGSR works

	Discussion and Future work
	Glossary of terms
	DGSR Instantiation
	NGPQT Optimization Method
	DGSR Pseudocode and System Description
	Other Optimization Algorithms
	Extended Related Work
	Benchmark Algorithms
	Standard Benchmark Problem Results
	Benchmark Problem Details
	Dataset Generation and Training
	Evaluation Metrics
	Feynman d=2 Results
	Feynman-7 Equivalent Equations
	Feynman d=5 Pareto Front Equations
	Feynman d=5 Results
	Additional Feynman Results
	Synthetic d=12 Results
	Using Different Optimizer Results
	SRBench Results
	Local Optima
	Encoder Decoder Architecture Ablation
	Limitations and Open Challenges
	Encoder Ablation
	Cross Entropy with no Refinement Ablation
	Additional synthetic experiments

