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Abstract
We show that deep neural networks can achieve
dimension-independent rates of convergence for
learning structured densities typical of image, au-
dio, video, and text data. For example, in images,
where each pixel becomes independent of the rest
of the image when conditioned on pixels at most
t steps away, a simple L2-minimizing neural net-
work can attain a rate of n−1/((t+1)2+4), where
t is independent of the ambient dimension d, i.e.
the total number of pixels. We further provide em-
pirical evidence that, in real-world applications, t
is often a small constant, thus effectively circum-
venting the curse of dimensionality. Moreover,
for sequential data (e.g., audio or text) exhibiting
a similar local dependence structure, our anal-
ysis shows a rate of n−1/(t+5), offering further
evidence of dimension independence in practical
scenarios.

1. Introduction
Deep learning has emerged as a remarkably effective ap-
proach to numerous statistical problems that were histori-
cally extremely challenging, especially in high-dimensional
settings. Deep generative models, for example, can approx-
imate densities with thousands or millions of dimensions
using merely a few million data points (Oussidi & Elhas-
souny, 2018; Ho et al., 2020; Cao et al., 2024). This stands
in stark contrast to standard density estimation theory, which
would demand astronomical sample sizes due to the curse
of dimensionality. At the same time, it is known that if a
density satisfies certain assumptions such as monotonicity,
convexity, sparsity, mixtures, or additivity, the curse of di-
mensionality can be mitigated. Perhaps the most widely
accepted explanation for deep learning’s ability to circum-
vent this curse is the manifold hypothesis (Bengio et al.,
2013; Brahma et al., 2016). This hypothesis posits that, de-
spite a distribution’s ambient space being high-dimensional,
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the mass of the density is heavily concentrated around a
lower-dimensional subset of that space, such as an embed-
ded manifold. As we will show later, for complex data types
of significant interest—images, video, sound, and text—this
assumption is intimately linked to spatio-temporal locality.
For instance, in data such as images, video, sound, and text,
spatio-temporal locality implies that nearby covariates—e.g.
pixel intensities at adjacent positions in an image—tend to
be strongly dependent, suggesting that the data is effectively
constrained to a lower-dimensional subspace.

This paper investigates the benefits of leveraging the con-
verse structure: The independence of spatio-temporally dis-
tant covariates. Covariates that are spatio-temporally distant
often exhibit near-independence, particularly after condi-
tioning on nearby covariates. Consider a sound recording:
two one-second segments separated by a minute might share
common elements, such as the same speaker. However,
given the intervening minute of audio, these segments be-
come effectively independent. The minute-long interval
contains sufficient information to render the separated seg-
ments mutually uninformative. This principle of conditional
independence extends to various data types, including im-
ages, where pixels far apart tend to be independent when
conditioned on the surrounding region.

For spatial data—focusing on images for concreteness—it
is well known that a pixel becomes independent of the rest
of the image when conditioned on all pixels within a certain
distance t, following an argument similar to the one made
for sound segments above. We show that, under this as-
sumption, density estimation using a neural network with a
simple L2-minimizing loss achieves a rate of approximately
n−1/((t+1)2+4). In contrast the standard rate in nonpara-
metric density estimation for the same class of densities is
n−1/(2+d), where d represents the total number of covari-
ates. This implies that the effective dimension is of order
t2 instead of d. For comparison, in images, t is typically
on the order of 3-8 (see Section 3), whereas d is the full
image dimensionality given by width times height, which
would be substantially larger than t in practice. For ex-
ample, consider simple benchmark datasets like MNIST
(28 × 28, d = 784) or CelebA (256 × 256, d = 65 536).
Similarly, for sequential data, a dimension-independent rate
of n−1/(t+5) is achieved.
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A key aspect of the results presented here is that t remains
largely independent of the overall size of the image or the
total duration of the temporal data. Returning to the sound
recording example, a one-second segment may become in-
dependent of the rest of the recording when conditioned on
the minute of audio preceding and following it. Crucially,
this conditional independence holds regardless of whether
the full recording spans three minutes or an hour.

2. Background and Related Work
In this section, we lay the foundation for our main results
by introducing key concepts and related work. We begin by
discussing traditional approaches to nonparametric density
estimation and their limitations, particularly the curse of
dimensionality. We then explore the manifold hypothesis, a
widely accepted explanation for the success of deep learn-
ing in high-dimensional settings, along with other structural
hypotheses used in nonparametric density estimation. Fol-
lowing this, we review the basics of Markov random fields
(MRFs) and their applications in modeling various types
of data, including images and sequential information. This
background will provide the necessary context for under-
standing the novelty of our approach, which leverages MRFs
to achieve dimension-independent convergence rates in den-
sity estimation. While our framework offers an alternative
perspective to the manifold hypothesis, it neither precludes
nor implies it; rather, the two assumptions address different
structural properties of high-dimensional data.

2.1. Nonparametric Density Estimation

Density estimation is the task of estimating a d-
dimensional target probability density p from observed data,
x1, . . . ,xn

iid∼ p. Of course, this is a classical problem
for which we do not intend to provide a comprehensive
overview, and instead refer readers to books such as (De-
vroye & Gyorfi, 1985; Devroye & Lugosi, 2001; Tsybakov,
2009) for additional background. For general densities p,
nonparametric density estimators like kernel density esti-
mators or histograms (Devroye & Gyorfi, 1985; Devroye &
Lugosi, 2001) converge to p for any density given sufficient
data, but notably suffer from the curse of dimensionality.
For instance, when p is Lipschitz continuous1, the L1 er-
ror
∫
|p(x)− p̂n(x)| dx = ∥p− p̂n∥1, converges at the rate

O(n−1/(2+d)). This nonparametric rate is known to be
optimal for Lipschitz continuous densities, and numerous
studies over the past decade have established that neural
networks and generative models can achieve this optimal
rate (Liang, 2017; Singh et al., 2018; Uppal et al., 2019;

1A function f : Rd → R is Lipschitz continuous if there exists
L ≥ 0 such that |f(x) − f(y)| ≤ L ∥x− y∥2 for all x, y. Our
results extend to more general families (e.g. Hölder), however, we
present our main results in the Lipschitz setting for simplicity.

Kuzborskij & Szepesvári, 2022; Oko et al., 2023; Zhang
et al., 2024; Kwon & Chae, 2024). This rate implies that the
sample complexity grows exponentially in the dimension
d, making the success of deep neural networks for esti-
mating densities with millions of dimensions all the more
remarkable. Various types of structure have been studied to
improve the rate of convergence. For example, Hall & Zhou
(2003); Hall et al. (2005); Vandermeulen & Ledent (2021);
Vandermeulen (2023); Chhor et al. (2024) show that one
can achieve dimension-independent rates of convergence
for nonparametric density estimation by assuming a mul-
tiview model—a type of low-rank structure. However, in
the context of deep learning, this phenomenon is most often
explained via the manifold hypothesis.

2.2. Manifold Hypothesis

The manifold hypothesis posits that many high-dimensional
real-world distributions concentrate around lower-
dimensional spaces, such as submanifolds of the ambient
space. The success of deep learning methods in handling
high-dimensional data, such as images, videos, and audio,
is frequently attributed to the manifold hypothesis.

For example, Pope et al. (2021) determined that the in-
trinsic dimension of the ImageNet dataset lies between 25
and 40 dimensions, significantly lower than its ambient
dimension. Further supporting this hypothesis, Carlsson
et al. (2008) discovered that the set of 3× 3 pixel patches
from natural images concentrates around a 2-dimensional
manifold. Theoretically, distributions concentrating around
lower-dimensional subsets of the ambient space have been
shown to yield improved estimation properties. For instance,
Weed & Bach (2019) demonstrated that while the empirical
distribution typically converges at rate n−1/d to the true
distribution in Wasserstein distance, when the data has a
lower d′-dimensional structure, it converges at the faster
rate of n−1/d′ . Similar results illustrating the manifold hy-
pothesis and its benefits abound in the literature (Pelletier,
2005; Ozakin & Gray, 2009; Jiang, 2017; Schmidt-Hieber,
2019; Nakada & Imaizumi, 2020; Berenfeld et al., 2022;
Chae et al., 2023; Jiao et al., 2023; Tang & Yang, 2024). An-
other line of related work uses Barron functions, which are
a class of functions inspired by neural networks, to achieve
dimension-free rates (Barron, 1993; Klusowski & Barron,
2018; Ma et al., 2022; Cole & Lu, 2024), in contrast to our
use of Lipschitz-type assumptions.

While the manifold hypothesis explains local dependen-
cies, it’s worth considering scenarios that deviate from this
model. For example, the manifold hypothesis cannot be sat-
isfied when covariates are independent. This is easily seen
between two independent covariates x ∼ px and y ∼ py,
whose joint density px,y(x, y) = px(x)py(y) fills a rectan-
gle in their product space. More generally, if a probability
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measure is supported on a manifold, there is a limit on how
many covariates can be mutually independent. We formalize
this with the following proposition.

Proposition 2.1. Let M ⊂ Rd be a regular submanifold
of dimension d′ < d. Let X = (X1, . . . , Xd) be a ran-
dom vector distributed according to a probability measure
µ supported on M , such that each marginal Xi has a non-
degenerate probability density function pi. Then, for any
subset of d′ + 1 coordinates I1, . . . , Id′+1, the random vari-
ables XI1 , . . . , XId′+1

cannot be mutually independent.

The proof of this proposition can be found in the appendices.
This result formalizes the intuition that in higher dimensions,
the manifold hypothesis limits the amount of independence
that is allowed. In this sense, the manifold hypothesis is
complementary to our MRF approach.

Finally, while the manifold hypothesis is arguably the most
widely accepted explanation for the learnability of high-
dimensional models, particularly within the deep learning
community, it is far from the only structural assumption con-
sidered in the broader nonparametric estimation literature.
Various alternative approaches have been explored such as
monotonicity (Groeneboom, 1984), convexity (Groeneboom
et al., 2001), log-concave (Samworth, 2018), sparsity (Liu
et al., 2007), mixtures (Genovese & Wasserman, 2000), and
additive models (Stone, 1985). Crucially, with the exception
of additivity and sparsity, these assumptions do not address
the curse of dimensionality. While sparsity is a special case
of the manifold hypothesis (e.g. the manifold is a linear
subspace or union of linear subspaces), realistic models of
image, audio, video, and text data do not satisfy additivity
assumptions. From this perspective, we propose a novel
approach to mitigating the curse of dimensionality that is
on the one hand much more general than additivity while at
the same complementing the manifold hypothesis.

2.3. Markov Random Fields

Our intuition about natural images suggests that pixels that
are distant from one another tend to become more inde-
pendent. This observation naturally leads to modeling the
space of images as ab MRF, where local dependencies are
captured while allowing for independence between distant
pixels (Li, 1994; 2009; Blake et al., 2011). Here, we briefly
review the requisite concepts from MRFs as they are used
in vision and imaging applications.

A Markov random field (MRF) consists of a random vec-
tor x = (x1, . . . , xd) and a graph G = (V,E), where the
graph’s vertices correspond to the entries of the random
vector, i.e., V = {x1, . . . , xd}. The graph encodes infor-
mation about the conditional independence of the vector’s
entries. For a set A = {a1, . . . , ad′} ⊂ {1, . . . , d}, let
xA =

(
xa1 , . . . , xad′

)
. Given three disjoint subsetsA,B,C

of {x1, . . . , xd}, the graph G indicates that the random vec-
tors xA and xB are conditionally independent given xC if
there is no path from A to B that doesn’t pass through C.

Consider a simple example with random variables x, y, and
z, where x = y + ϵx and z = y + ϵz, with ϵx, ϵz, and y
being jointly independent. In this scenario, the distribu-
tions of x and z are conditionally independent given y. The
corresponding MRF for this example is given by:

x y z

While an MRF conveys information about conditional in-
dependence, the absence of such information in the MRF
does not necessarily imply dependence in the actual data. In
other words, covariates can be conditionally independent in
reality even if this independence is not explicitly represented
in the MRF. Thus, the MRF provides a conservative model
of independence relationships, capturing known or assumed
conditional independencies without ruling out additional in-
dependencies that may exist in the data. Consequently, any
random vector associated with a complete graph—where all
vertices are adjacent to one another—is a valid MRF, since
it provides no information about the independence of the co-
variates. This is because every vertex is connected to every
other vertex, so removing any number of vertices will never
separate the graph into multiple components. Because it
conveys no information about the conditional independence
of the covariates, it even applies to a random vector where
all entries are independent.
Remark 2.2. After the initial posting of our paper, we were
made aware of the related work by Bos & Schmidt-Hieber
(2023) which proposes a supervised approach to density
estimation that also leverages the Markov assumption to
break the curse of dimensionality in density estimation.

2.4. MRFs in Applications

MRFs are widely used in applications; Figure 1 illustrates
three of the most common families of MRFs.

Paths (a.k.a. Markov chains) One of the most well-
known MRFs is the Markov chain. A Markov chain of
length d corresponds to the “path” graph Ld of d random
variables. The above example with x, y, z corresponds to the
graph L3 and the MRF corresponding to L4 shown in Figure
1. In a Markov chain, the indices are often interpreted as a
time parameter. A classic example is a gambling scenario: A
person’s money at time t+1 is conditionally independent of
their total value at time t− s (for s > 0), given their value
at time t. This property, known as the Markov property,
encapsulates the idea that the future state depends only on
the present state, not on past states. Markov chains have
a long history of use for modeling sequential information,
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(a) Path (L4) (b) Grid (L3×3) (c) Grid+Diagonals (L+
3×4)

Figure 1: Examples of common Markov random field
graphs.

including audio and text data.

Grids (a.k.a. lattices) Beyond sequential data, MRFs
have seen significant use in image processing. In this work,
we focus on grayscale images for simplicity, bearing in mind
that the results extend to RGB/color images as well. For im-
age processing, the classic MRF model consists of a random
variable that is a 2-dimensional grid X = [Xi,j ]i,j and a
graph G where all pixels adjacent in X are also adjacent in G.
Figure 1 contains one example from two different types of
grid graphs: one standard “grid” graph L3×3 and one “grid
with diagonals” graph L+

4×3, where the subscripts indicate
the number of rows and columns of vertices, respectively.
For the remainder of this work, our references to “grid”
graphs encompass both variants—those with and without
diagonal connections—unless explicitly stated otherwise.

Such models have seen wide use in image processing and
computer vision (see Li, 1994; 2009; Blake et al., 2011,
for an overview). Denoising stands as perhaps the most
common application of MRFs in image processing. This
approach assumes that each pixel is best predicted using
just its neighbours and ignoring the rest of the image. While
this model proves effective for mitigating phenomena like
additive white noise (Keener, 2010), it falls short as a com-
prehensive image model. Similarly, the path graph, often
used for sequential data, oversimplifies the complex depen-
dencies in realistic sequential data.

3. Improving The Path and Grid Markov
Random Field Models

While standard path and grid MRF models may suffice
for correcting extremely local or high-frequency noise in
sequential or spatial data, they fall far short of capturing
the true distribution of complex data types. Consider, for
example, audio data consisting of 21-second clips where
the middle second is missing and needs to be predicted.
According to the path MRF model, this missing second
would depend solely on the audio samples directly preceding
and following it. Consequently, under a Markov chain (i.e.
path MRF) model, the remaining 20 seconds of audio (less
two samples) would be deemed completely uninformative
for predicting the middle second, given these two adjacent
samples. In this section we propose a richer model for
capturing longer-range dependencies via power graphs.

(a) (b) (c) (d)

Figure 2: The leftmost image (a) is a 640× 427 pixel photo-
graph from the COCO 2014 dataset (Lin et al., 2014). Image
(b) shows an enlarged version of the 102× 102 pixel region
outlined in (a). Images (c) and (d) display the 12-pixel and
1-pixel width borders of that region, respectively. Modeling
this image with an MRF graph L640×427 or L+

640×427 would
imply that the distribution of the missing interior in (d) de-
pends exclusively on its 1-pixel wide border, with the rest
of the image in (a) being uninformative for predicting this
interior region. In contrast, predicting the interior using the
12-pixel border in (c) is more reasonable. This scenario cor-
responds to models like L6

640×427 or
(
L+
640×427

)6
, which

capture more extensive local dependencies. It’s important
to note that for the MRF model to hold, the interior doesn’t
need to be deterministically constructed from the surround-
ing pixels. Rather, the surrounding pixels need only provide
sufficient information about the interior (e.g., that it’s a cat’s
face) such that the rest of the image doesn’t contribute any
additional information for predicting the interior region.

3.1. Long-Range Dependencies

Simplistic models such as path and grid MRFs fail to capture
the richer, longer-range dependencies present in real-world
data. For example, in the audio example above, the content
of the missing second is likely influenced by a broader con-
text than just its immediate neighbours. For instance, the
rhythm or theme established in the preceding few seconds,
or the anticipation of what follows immediately after, could
be crucial for predicting the missing segment. This mod-
erately broader context is entirely discarded by the basic
path MRF. Similarly, for image data, the standard grid MRF
model suggests that a region of an image depends only on its
immediate bordering pixels. However, realistic images often
exhibit patterns and structures that span multiple pixels in
various directions. For example, the edge of an object or a
gradient in lighting might extend across several pixels, cre-
ating dependencies that the basic grid model fails to capture.
Figure 2 illustrates this concept concretely, demonstrating
the effects of different MRF models on image inpainting
tasks and highlighting the implications of varying levels
of contextual information. These limitations motivate the
need for more sophisticated MRF models where segments
or regions are more extensively connected, allowing for the
incorporation of relevant contextual information without
necessarily spanning the entire dataset.

To model sequential and spatial data more realistically, we
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Figure 3: Illustrations of a path graph and its powers. Top:
The path graph L5. Middle: The power graph L2

5. Bottom:
The power graph L3

5. In L5, only immediately contiguous
vertices are connected. In L2

5, every group of three contigu-
ous vertices forms a complete subgraph. In L3

5, every group
of four contiguous vertices forms a complete subgraph. This
progression demonstrates increasing connectivity among
nearby vertices in the graph.

(a) (b)

(c) (d)

Figure 4: Comparison of vertex neighborhoods in different
graph structures. (a) Neighborhood of a vertex in a standard
grid graph Ld×d. (b) Neighborhood of the same vertex in
the power graph L2

d×d. (c) Neighborhood of a vertex in a
grid graph with diagonals L+

d×d. (d) Neighborhood of the
same vertex in the power graph (L+

d×d)
2.

propose using the “power graph” of the path and grid mod-
els. For a graph G, the power graph Gt with t ∈ N is defined
as the graph where we add an edge between every pair of
vertices within t steps of each other in G, with G1 = G.
Figures 3 and 4 illustrate this concept using path graphs and
grid graphs, respectively. This construction causes contigu-
ous sections of sequences and patches of grids to become
fully connected, as demonstrated in Figure 3.

Applying this power graph concept to a grid graph assumes
that local patches of images are highly dependent, making
no assumptions about conditional independence within a
patch. It also implies that, in general, distant regions of an
image become independent as the distance between them
increases, and that these regions are independent when con-
ditioned on a sufficiently wide separating region of pixels.

Figure 5: Top row: Scatterplots comparing the grayscale
values of pixels in CIFAR-10. The left image shows (8,8)
vs (8,9) and the right shows (8,8) vs (9,12).
Bottom row: These show the same scatterplots, conditioned
on pixel (9,8) having a value approximately equal to 0.48
(the median value for this pixel across the dataset).
These plots demonstrate how pixel correlations decrease
with distance and how conditioning on a neighboring pixel
can significantly reduce correlations, supporting the use of
Markov Random Field models for image data. Similar plots
for the COCO dataset and for audio data from the Google
Speech Commands Dataset (Warden, 2018) can be found in
Appendix E.

3.2. Experimental Validation

While MRFs are extremely well-established in image pro-
cessing (Li, 2009; Blake et al., 2011), it is nonetheless in-
structive and informative to experimentally validate these
assumptions using natural images. We provide an exam-
ple using CIFAR-10 here, while similar experiments using
the COCO and Google Speech Commands datasets are pre-
sented in Appendix E. The top row of Figure 5 shows the
grayscale values of pixel (8,8) versus selected other pixels
for 100 randomly chosen images from the CIFAR-10 train-
ing dataset. The bottom row repeats this experiment, but
conditioned on the value of the adjacent pixel (9,8) being
near its median value.

These experiments reveal that, when conditioned on the ad-
jacent pixel, the dependence (as measured by correlation)
decreases significantly. Notably, pixels (8,8) and (9,12) ap-
pear almost completely independent when conditioned on
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pixel (9,8). This provides strong evidence for the validity
of the MRF model. The MRF model predicts that (8,8)
and (9,12) should be independent when conditioned on sur-
rounding pixels (the number of which depends on the graph
power of the MRF graph). Remarkably, we observe that
pixels appear independent when conditioned on just a single
adjacent pixel, suggesting that the grid MRF assumption
may be even more conservative than necessary.

3.3. Comparison to the Manifold Hypothesis

The power graph extension of path and grid MRFs presents
a fundamentally different perspective on modeling high-
dimensional data compared to the widely accepted manifold
hypothesis. While the manifold hypothesis posits that high-
dimensional data concentrates around lower-dimensional
structures, our MRF approach embraces the full dimen-
sionality of the data, focusing instead on the independence
structure between variables. This model aligns well with
the observed structure in various data types, capturing local
dependencies while allowing for long-range independen-
cies. For sequential data such as audio or text, it accounts
for strong dependencies between nearby elements while ac-
knowledging the decreasing influence of distant context. In
spatial data like images, it models high correlation between
neighbouring pixels and gradual decorrelation as distance
increases. Our experimental results provide compelling
evidence for the MRF model’s validity. The observed con-
ditional independence between distant pixels, given inter-
vening pixels, supports the fundamental assumptions of the
power graph model.

Moreover, in special cases, the manifold hypothesis can
be seen as closely linked to conditional independence in
MRFs. In images, for example, adjacent pixels xi and xj
typically have similar values, causing the dataset to con-
centrate towards the linear subspace xi = xj , which is a
submanifold. The top left image in Figure 5 also illustrates
this idea, where a strong concentration along the diagonal
is evident. Nonetheless, these assumptions need not align
in general; see Appendix F for illustrative examples of how
these assumptions can vary independently.

Evidently, the manifold hypothesis cannot replace the MRF
approach, and vice versa. Thus, it’s important to note that
our results are not meant to supersede the manifold hy-
pothesis, but rather to augment and complement it. The
manifold hypothesis explains sample efficiency from local
structure, while the MRF model provides additional model
efficiency from a global perspective. Together, they pro-
vide a more comprehensive framework for understanding
high-dimensional data.

Remarkably, in the following section, we will demonstrate
that under these MRF assumptions, there exist estimators
based on neural networks with standard loss functions (e.g.

squared loss) that can achieve dimension-independent rates
of convergence for density estimation. This result is par-
ticularly significant as it suggests a path to overcoming the
curse of dimensionality in high-dimensional density estima-
tion tasks. By focusing on independence structures rather
than dimension reduction, our approach offers a novel ex-
planation for the success of deep learning methods in pro-
cessing complex, high-dimensional data, complementing
and contrasting with the insights provided by the manifold
hypothesis.

4. MRF-Based Density Estimation with Neural
Networks

After introducing some theoretical prerequisites we present
our main result, showing that a structured density p can be
estimated at a rate that depends only on t. Our estimator is
based on a neural network trained to minimize an empirical
estimate of the L2 distance between the network’s output
and the target distribution p.

4.1. Structured Neural Density Estimation

Our estimator is based on the classical Hammersley-Clifford
Theorem (Hammersley & Clifford, 1971). Before presenting
the theorem we must review a few concepts. A graph G is
called complete if every vertex is adjacent to every other
vertex. For a graph G = (V,E) a clique is a complete
subgraph, i.e., G′ = (V ′, E′) with V ′ ⊂ V and E′ ⊂ E,
that is complete. A maximal clique of a graph is a set
of cliques which are not contained within another clique.
Observe that maximal cliques of the same graph can have
different numbers of vertices. See Figure 6 for examples of
maximal cliques. The collection of the maximal cliques of
a graph will be denoted C(G).

Figure 6: A graph with maximal cliques denoted by sur-
rounding rectangles.

Proposition 4.1 (Hammersley & Clifford, 1971). Let G =
(V,E) be a graph and p be a probability density function
satisfying the Markov property with respect to G. Let C(G)
be the set of maximal cliques in G. Then

p(x) =
∏

V ′∈C(G)

ψV ′(xV ′),

where xV ′ are the indices of x corresponding to V ′.
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For neural networks we investigate estimators of the form:

p̂(x) =
∏

V ′∈C(G)

ψ̂V ′(xV ′),

where ψ̂V ′ are ReLU networks with architectures dependent
only on G and the sample size n. The weights are con-
strained to [−1, 1], effectively implementing weight decay
via constrained optimization rather than norm penalization.

Our estimator minimizes the integrated squared error be-
tween p and our estimator p̂:∫

(p (x)− p̂ (x))
2
dx

=

∫
p(x)2dx− 2

∫
p(x)p̂(x)dx+

∫
p̂(x)2dx. (1)

In empirical minimization, the first term of equation 1 is
constant. The second term can be estimated using the law
of large numbers:∫

p(x)p̂(x)dx = Ex∼p [p̂(x)] ≈
1

n

n∑
i=1

p̂(xi),

where x1, . . . ,xn
i.i.d.∼ p, i.e., the training data. Let Ud be

the d-dimensional uniform distribution on the unit cube and
ϵ1, ϵ2, . . . , ϵn′

i.i.d.∼ Ud. Then:∫
p̂(x)2dx = Eϵ∼Ud

[
p̂(ϵ)2

]
≈ 1

n′

n′∑
i=1

p̂(ϵi)
2.

From these two estimates we see that estimating the L2

distance between an estimator and a target density (ignoring
the constant ∥p∥22 term) is tractable.

4.2. Main Result

We now present our theorem on the convergence rate
for L2-minimizing neural network-based density estimators:

Theorem 4.2. Let G = (V,E) be a finite graph and r be
the size of the largest clique in G. There exists a known
sequence of architectures F∗ such that for

p̂n = arg min
f∈F∗

(
∥f∥22 −

2

n

n∑
i=1

f(xi)

)
,

where x1, . . . ,xn
i.i.d.∼ p, we have

∥p− p̂n∥1 ∈ Õp

(
n−1/(4+r)

)
,

for any Lipschitz continuous, positive density p satisfying
the Markov property with respect to G.

The proof of the theorem, based on results from Schmidt-
Hieber (2017), details the architectures and specifies how
their parameters scale with the sample size. The minimax
rate for density estimation on d-dimensional densities is
O
(
n−1/(2+d)

)
, so the “effective dimension” of an estimat-

ing a density using the estimator from the theorem above is
r + 2. Consequently we see that the rate of convergence for
density estimation can be greatly improved for MRFs with
certain graphs G. In the next section, we explore the impli-
cations of this result for the estimation of spatio-temporal
data.
Remark 4.3. Our results are not specific to ReLU networks
and can be extended to any class of neural networks for
which appropriate approximation bounds are available. For
example, our results can be extended to various non-ReLU
networks by using the results of Ohn & Kim (2019).

4.3. Consequences of Main Result

Our results indicate that the effective dimension of density
estimation problems in spatio-temporal data, under MRF as-
sumptions, is determined by the size of the largest clique in
the underlying graph. This has significant implications for
modeling and learning in domains such as video, audio, and
sequential data, where dependencies are often constrained
within local neighbourhoods in space and time. In partic-
ular, we show that for such data, the effective dimension
can be far smaller than the ambient dimension, enabling
significantly improved convergence rates.

For definitions of the graphs Ld×d′ and L+
d×d′ , we refer the

reader to the examples in Figure 1. While these examples
should provide intuitive understanding, formal definitions
can be found in Appendix D.

Images We begin with the most compelling setting, corre-
sponding to images:
Lemma 4.4. Let Ld×d′ be a d×d′ grid graph with t < d, d′.
The size of the largest clique in Ltd×d′ is less than or equal
to t2+4t+3

2 .

Lemma 4.5. Let L+
d×d′ be the d × d′ grid graph with di-

agonals, and t < d, d′. The size of the largest clique in the
graph

(
L+
d×d′

)t
is (t+ 1)2.

Judging from the example in Figure 5, t = 2 already gives
a fairly reasonable model for images. Thus we have the
following dimension-independent rate:
Corollary 4.6 (Dimension-independent rates). The neural
density estimator in Theorem 4.2 achieves a rate of

∥p− p̂n∥1 ∈ Õp

(
n−1/11.5

)
for the grid graph L2

d×d′ , and

∥p− p̂n∥1 ∈ Õp

(
n−1/13

)
7
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for the grid with diagonals graph
(
L+
d×d′

)2
.

Even when t > 1, we have (t + 1)2 + 2 ≪ d. In practice
we expect t = O(1), so even with t > 1, the rates are still
dimension-independent.

Recall that if a density p is an MRF with respect to a
graph G = (V,E), it is also an MRF with respect to any
graph G′ = (V,E′) that contains all the edges from G, i.e.,
E ⊆ E′. Thus, the absence of edges in an MRF repre-
sents a stronger condition on p. In the graph Ltd×d′ , every
(t + 1) × (t + 1) block of vertices is fully connected. As
demonstrated in Figure 5, when conditioned on an adjacent
pixel, pixels tend to become independent with very little
distance between them. Figure 5 shows that pixels (8,8)
and (9,12) are seemingly independent conditioned on (9,8).
Modeling CIFAR-10 as an MRF graph L+

32×32 would im-
ply that (8,8) and (9,12) are independent conditioned on
every pixel surrounding (8,8), a much more stringent re-
quirement than conditioning on one adjacent pixel. Thus,
modeling CIFAR-10 as (L+

32×32)
2 appears to be a conser-

vative approach. Consequently, the effective dimension for
estimating CIFAR-10 is (2 + 1)2 + 2 = 11 rather than
32× 32 = 1024, an almost 100-fold improvement!

Sequences For sequential data, we have the following
lemma:

Lemma 4.7. Let Ld be a d-length path graph. The size of
the largest clique in Ltd is equal to min(t+ 1, d).

Again, we observe that the effective dimension for the neural
density estimator, t + 3, can be far less than the ambient
dimension for sequential data, such as audio.

The MRF approach can be extended to various data types,
yielding similar dimension reduction results. For instance,
color images can be modeled as a three-dimensional random
tensor X ∈ Rc×w×h with a graph G. In this model, the ver-
tices in X:,i,j∪X:,i′,j′ are fully connected for |i−i′| ≤ 1 and
|j − j′| ≤ 1, corresponding to a grid graph with diagonals
where all channels are connected. Video data can be repre-
sented by four-dimensional graphs corresponding to order-4
tensors in Rt×c×w×h, with a similar connectivity structure.
While text data is discrete in nature, once tokenized and
passed through d-dimensional word embeddings, it resem-
bles spatial data with dimensions Rd×t and can benefit from
independence structure.

In all these cases, the maximum clique size is determined
by how quickly independence is achieved spatio-temporally
or in the embedding space, rather than by the overall data
dimensionality. This approach yields effective dimensions
that are orders of magnitude smaller than the ambient di-
mension, leading to dimension-independent learning rates.

Crucially, this dimension independence is maintained across

varying data sizes. For instance, cropping an image would
leave the maximum clique size unchanged (provided the
cropping isn’t too extreme), while expanding an image
would create a larger graph but, assuming the underlying
pattern holds, the maximum clique size would remain con-
stant. This property results in a dimension-independent rate
of learning that remains consistent across different image
sizes. Thus, whether dealing with a 100× 100 pixel image
or a 1000× 1000 pixel image of similar content, the effec-
tive learning rate remains tied to the maximum clique size
rather than the total number of pixels, exemplifying true
dimension independence in the learning process.

These extensions demonstrate the versatility of the MRF
approach in modeling complex, high-dimensional data struc-
tures across various modalities, while significantly reducing
the effective dimensionality of the problem.

Hierarchical models Although not the primary focus of
this work, our results have potential applications to other
data types not typically associated with deep learning. For
instance, hierarchical data is often modeled as a rooted tree.
For tree-structured MRFs, the following is a well-known:

Lemma 4.8. Let G be a tree with at least two vertices. The
size of the largest clique in G is 2.

Estimating densities with a tree MRF has been studied previ-
ously: In Liu et al. (2011); Györfi et al. (2022) it was found
that one can estimate a density with an unknown tree MRF,
without the strong density assumption at a rate O(n−1/4).
Compared to Theorem 4.2, this is an improvement by a
factor of n2, but these estimators are not based on neural
networks, which is our focus.

5. Conclusion
Neural density estimation has been the subject of intense
study over the past few decades, dating at least back to
(Magdon-Ismail & Atiya, 1998). There has recently been
interest in designing structured neural density estimators
that exploit graphical structure (Germain et al., 2015; John-
son et al., 2016; Khemakhem et al., 2021; Wehenkel &
Louppe, 2021; Chen et al., 2024). In this work, we have pre-
sented a novel perspective on the success of neural networks
in density estimation problems. Our approach, based on
Markov random fields, offers an alternative explanation to
the widely accepted manifold hypothesis for how and why
deep learning can circumvent the curse of dimensionality,
and aligns with these recent developments on structured
density estimation.

We have demonstrated that structured densities that satisfy
the Markov property can achieve dimension-independent
convergence rates for neural density estimation on spatio-
temporal data. Our MRF-based approach complements,
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rather than replaces, the manifold hypothesis. We envision
a combination of local manifold-like structures and global
MRF-like independence properties at play in real-world
scenarios with spatio-temporal data, with the manifold hy-
pothesis explaining local features and our MRF approach
capturing broader independence structures.

This work opens avenues for future research, including in-
vestigating the interplay between local manifold structures
and global MRF properties, and developing practical algo-
rithms exploiting these structures within existing models for
neural networks.

Impact Statement
This work provides a theoretical explanation for how neural
networks can learn high-dimensional spatio-temporal data
with sample-efficient rates. We see no direct societal or
ethical risks specific to these results.
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A. Proof of Proposition 2.1
Our proof of Proposition 2.1 makes use of the notion of Hausdorff dimension, sometimes referred to as the Haus-
dorff–Besicovitch dimension, along with a few of its basic properties. The Hausdorff dimension provides a way to
assign a notion of dimension to sets in Euclidean space; for example, a d′-dimensional linear subspace of Rd has Hausdorff
dimension d′. Before defining the Hausdorff dimension, we first introduce the concept of Hausdorff measure. For a
measurable set A ⊂ Rd, let |A| denote its Lebesgue measure.

For any set A ⊂ Rd, its s-dimensional Hausdorff measure is defined as

Hs(A) = lim
δ→0

inf

{ ∞∑
i=1

|Ui|s : {Ui} is a δ-cover of A

}
.

The Hausdorff measure is, in some sense, the natural notion of measure for sets that may not have the same dimensionality
as the ambient space. For example, for all d there exists a constant cd > 0 (the volume of the d-dimensional unit ball) such
that for all measurable sets A ⊂ Rd, cdHd(A) = |A| (see equation (2.4) in Falconer (2003)). It also aligns with volume on
smooth lower-dimensional subsets, such as manifolds. A set A has finite, positive Hausdorff measure for at most one value
of s, which is defined to be its Hausdorff dimension. This notion can be extended to sets for which no such value of s exists.

For a set A ⊂ Rd, its Hausdorff dimension is defined as

dimH(A) = inf{s ≥ 0 : Hs(A) = 0} = sup{s ≥ 0 : Hs(A) = ∞}.

We will not explore Hausdorff dimension further, except to note the following three properties:

1. If A ⊆ B, then dimH(A) ≤ dimH(B) (Falconer, 2003, p. 32).

2. If f : Rd → Rd′ is Lipschitz continuous, then dimH(f(A)) ≤ dimH(A) (Falconer, 2003, Corollary 2.4).

3. If M is a differentiable m-dimensional regular submanifold of Rd, then dimH(M) = m (Falconer, 2003, p. 32).

Proof of Proposition 2.1. We proceed by contradiction. Assume that the proposition setting holds except there exists
a subset XI1 , . . . , XId′+1

that are mutually independent. Without loss of generality, we assume Ii = i for all i. Let
π : M → Rd′+1 be the projection onto the first d′ + 1 coordinates. Then the pushforward measure π#µ is given by⊗d′+1

i=1 pi, and hence supp(π#µ) has positive Lebesgue measure in Rd′+1. It follows that its Hausdorff dimension is
dimH(supp(π#µ)) = d′ + 1.

On the other hand, we know that supp(π#µ) ⊆ π(M) so

dimH(supp(π#µ)) ≤ dimH(π(M)). (2)

Since π is Lipschitz continuous we have that

dimH(π(M)) ≤ dimH(M). (3)

Finally, since M is a d′-dimensional regular submanifold of Rd, we have that

dimH(M) = d′. (4)

Combining equation 2, equation 3, and equation 4 it follows that

dimH(supp(π#µ)) ≤ d′,

which contradictions dimH(supp(π#µ)) = d′ + 1 from before.

12
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B. Main Result: Notations and Preliminaries
Before proving the main theorem we will first establish some notation and auxiliary results. For a pair of functions f, g :
X → R where X is an arbitrary domain, we define the f · g to be pointwise function multiplication so (f · g)(x) = f(x)g(x)
for all x ∈ X. For a tuple of functions f1, . . . , fm : X → R, the product symbol

∏m
i=1 fi is defined to be pointwise function

multiplication, i.e., f1(x) · f2(x) · · · · · fm(x) for all x ∈ X. Let N be the set of positive integers. For any d ∈ N, let
[d] = {1, 2, . . . , d}.

For a set V ⊂ [d] with V = {v1, . . . , v|V |} where vi < vj for all i < j, let ed,V : Rd → R|V |;x 7→ [xv1 , . . . , xv|V | ], i.e.,
ed,V accepts a d-dimensional vector and outputs the indices at V , in order. The function eV,d can be thought of as selecting
some indices from a vector. As a slight abuse of notation, the d subscript will be omitted.

For a graph G = (V,E), the set of maximal cliques in G will be denoted C(G), and is a set of subsets of V .

All of our results will assume the domain of the data is the unit cube [0, 1]d. A density p will be called positive if
p(x) > 0 for all x ∈ [0, 1]d. Since [0, 1]d is compact, a direct consequence of this is that there exists c > 0 such that
p(x) > c for all x.

B.1. Preliminary Results

Proposition B.1. Let p be a Lipschitz continuous probability density [0, 1]d,which is everywhere positive on [0, 1]d and
satisfies the Markov property with respect to a graph G = (V,E). Then, for all x ∈ [0, 1]d,

p(x) =
∏

V ′∈C(G)

ψV ′ (eV ′(x)) ,

where each ψV ′ is Lipschitz continuous, and there exist constants c, C such that 0 < c ≤ C and c ≤ ψV ′ ≤ C for all
V ′ ∈ C(G).

Before proving this proposition we first prove the following support lemma.

Lemma B.2. Let f, g : [0, 1]d → R be Lipschitz continuous with f ≥ δ and g ≥ δ for some δ > 0. Then f · g and 1/f are
both Lipschitz continuous and there exists δ′ > 0 such that f · g ≥ δ′ and 1/f ≥ δ′.

Proof of Lemma B.2. Let f be Lf -Lipschitz and g be Lg-Lipschitz. Because f and g are Lipschitz on a bounded set there
exists Cf > 0 and Cg > 0 such that f ≤ Cf and g ≤ Cg . Let x, y ∈ [0, 1]d be arbitrary.

We will begin by proving the product portion of the lemma:

|f(x)g(x)− f(y)g(y)| ≤ |f(x)g(x)− f(x)g(y)|+ |f(x)g(y)− f(y)g(y)|
≤ Cf |g(x)− g(y)|+ Cg |f(x)− f(y)|
≤ CfLg ∥x− y∥2 + CgLf ∥x− y∥2
≤ 2max (CfLg, CgLf ) ∥x− y∥2 .

The existence of a positive lower bound for f · g follows immediately from f · g ≥ δ2.

To prove the reciprocal portion of the lemma, observe that the function x 7→ 1/x is Lipschitz on the range of f . Since the
composition of Lipschitz functions is itself Lipschitz, it follows that 1/f is Lipschitz. Finally we have that 1/f ≥ 1/Cf > 0,
finishing the proof.

Proof of Proposition B.1. This proof utilizes results from Chang (2007), a work-in-progress book currently used primarily
as lecture notes. This work has a constructive proof of the Hammersley-Clifford Theorem. For S ⊂ [d], let γS : Rd →
Rd;x 7→ [xi1(i ∈ S)]i, i.e., indices outside of S are set to zero (the zero vector could actually be set to any arbitrary but fixed
vector, e.g., set a vector y ∈ Rd and [γS ]i ̸∈S = yi). From the Chang (2007) (3.15), the proof of the Hammersley-Clifford
Theorem, it is shown that:

p(x) =
∏

V ′∈C(G)

ψV ′(x),

13
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where,

ψV ′(x) =

∏
V ′′⊂V ′:|V ′\V ′′| mod 2=0 p (γV ′′ (x))∏
V ′′⊂V ′:|V ′\V ′′| mod 2=1 p (γV ′′ (x))

. (5)

For clarity we do an example of the index set of the product; so

V ′′ ⊂ V ′ : |V ′ \ V ′′| mod 2 = 0

denotes a product over all subsets of V ′ where the set V ′′ where V ′′ ∩ V ′C contains an even number of elements. From
equation 5 it is clear that ψV ′ only depends on the indices of x in V ′. The regularity conditions hold due to Lemma B.2.

Given any set S. For any subset S′ ⊆ S, let 1S′ be the indicator function from S to {0, 1}, i.e.

1S′(x) =

{
0 if x /∈ S′

1 if x ∈ S′ for all x ∈ S.

Given any d, b ∈ N, V = {v1, . . . , v|V |} ⊂ [d] and C ≥ 1. For any A ∈ [b]|V |, let Λd,b,A,V be the subset of [0, 1]d

Λd,b,A,V :=

{
x ∈ [0, 1]d | xvi ∈

[
Ai − 1

b
,
Ai
b

]
for all i ∈ [|V |]

}
. (6)

Let Qd,b,V,C be the set of functions from [0, 1]d → R

Qd,b,V,C :=

{
x 7→

∑
A∈[b]|V |

wA1Λd,b,A,V
(x) | wA ∈ [0, C]

}
. (7)

For a set L ⊂ Lβ
(
[0, 1]d

)
where 1 ≤ β < ∞ and ϵ > 0, a subset C ⊆ L is called an ϵ-cover of L in Lβ norm if, for any

f ∈ L, there exists a g ∈ C such that ∥f − g∥β ≤ ϵ. Also, we define N(L, ϵ) to be the cardinality of the smallest subset of
L that is a (closed) ϵ-cover of L in Lβ norm. Note that N(L, ϵ) depends on β. We will not specify it when it is clear in the
context.

C. Proof of Theorem 4.2

Theorem C.1. Let G = (V,E) be a finite graph and r is the size of the largest clique in G. There exists a neural network
architecture F∗, such that, for

p̂n = arg min
f∈F∗

∥f∥22 −
2

n

n∑
i=1

f(Xi)

where X1, . . . , Xn
i.i.d.∼ p, then

∥p− p̂n∥2 ∈ Õp

(
n−1/(4+r)

)
,

for any Lipschitz continuous, positive density p satisfying the Markov property with G.

This is stronger than L1 convergence since, through Hölder’s inequality, we get L1 convergence at the same rate.

Lemma C.2. Let (Ω,Σ, µ) be a measure space, and let f1, . . . , fm and g1, . . . , gm be measurable and absolutely integrable
functions on Ω. Further suppose there exists a constant C ≥ 0 such that, for all i ∈ [m],

∥fi∥∞ ≤ C and ∥gi∥∞ ≤ C.

Then the following inequality holds: ∥∥∥∥∥
m∏
i=1

fi −
m∏
i=1

gi

∥∥∥∥∥
∞

≤ Cm−1
m∑
i=1

∥fi − gi∥∞ .

14
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Proof of Lemma C.2. We will proceed by induction on m.
Case m = 1: Trivial.
Induction: Suppose the lemma holds for some value of m. From the inductive hypothesis we have that∥∥∥∥∥

m+1∏
i=1

fi −
m+1∏
i=1

gi

∥∥∥∥∥
∞

≤

∥∥∥∥∥
m∏
i=1

fi · fm+1 −
m∏
i=1

gi · fm+1

∥∥∥∥∥
∞

+

∥∥∥∥∥
m∏
i=1

gi · fm+1 −
m∏
i=1

gi · gm+1

∥∥∥∥∥
∞

≤

∥∥∥∥∥
m∏
i=1

fi −
m∏
i=1

gi

∥∥∥∥∥
∞

∥fm+1∥∞ +

∥∥∥∥∥
m∏
i=1

gi

∥∥∥∥∥
∞

∥fm+1 − gm+1∥∞

≤

∥∥∥∥∥
m∏
i=1

fi −
m∏
i=1

gi

∥∥∥∥∥
∞

C + Cm ∥fm+1 − gm+1∥∞

≤Cm−1
m∑
i=1

∥fi − gi∥∞ C + Cm ∥fm+1 − gm+1∥∞

≤Cm
m+1∑
i=1

∥fi − gi∥∞ .

Space of Neural Network Architectures Define a space of neural networks as follows. Let σ be the ReLU activation
function with will act element-wise on vectors. For any ℓ ∈ N, w = (w0, . . . , wℓ+1) with wi ∈ N, s ∈ N and F > 0, the
space F (ℓ, w, s, F ) is defined by the functions f : [0, 1]w0 → Rwℓ+1 which have the form:

f(x) =WℓσvℓWℓ−1σvℓ−1
· · ·W1σv1W0x,

where σvi(y) = σ(y − vi), Wi ∈ Rwi+1×wi , where every entry in Wi and vi have absolute value less than or equal to 1,
∥f∥∞ ≤ F , and sum of the total number of nonzero entries of Wi and vi is less than or equal to s. In this work the output
dimension of all neural networks will be 1, i.e. wℓ+1 will always be assumed to be 1. This is the same space of neural
network models employed by (Schmidt-Hieber, 2017).
Theorem C.3 (Theorem 5, Schmidt-Hieber, 2017). For any f ∈ Cβd ([0, 1]

d,K) and any integers m ≥ 1 and N ≥
max((β + 1)d, (K + 1)ed), there exists a ReLU network f̃ ∈ F(ℓ, w, s,∞) with depth

ℓ = 8 + (m+ 5)(1 + ⌈log2(max(d, β))⌉), (8)

widths

w = (d, 6(d+ ⌈β⌉)N, . . . , 6(d+ ⌈β⌉)N, 1), (9)

and sparsity

s ≤ 141(d+ β + 1)d+3N(m+ 6) (10)

such that ∥∥∥f̃ − f
∥∥∥
L∞([0,1]d)

≤ (2K + 1)(1 + d2 + β2)6dN2−m +K3βN−β/d. (11)

Lemma C.4 (Lemma 5, Remark 1, Schmidt-Hieber, 2017). For any ϵ > 0,

logN(F(ℓ, w, s,∞), ϵ, ∥·∥∞) ≤ (s+ 1) log(22ℓ+5ϵ−1(ℓ+ 1)w2
0w

2
ℓ+1s

2ℓ).

C.1. Main Estimator Proofs

Proof of Theorem C.1. Recall that, given a graph G, C(G) is the set of maximal cliques in G. For any V ′ ∈ C(G), let
FV ′ = F (ℓV ′ , wV ′ , s, C) where ℓV ′ , wV ′ , s, C will be determined later. Also, let

F∗ =

{ ∏
V ′∈C(G)

qV ′ ◦ eV ′

∣∣∣ qV ′ ∈ FV ′

}
. (12)
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We shall show that F∗ is the neural network architecture satisfying the desired guarantees in Theorem C.1.

For any set of n i.i.d. samples X1, . . . , Xn drawn from p, let

p∗n = arg min
f∈F∗

∥p− f∥22 and p̂n = arg min
f∈F∗

(
∥f∥22 −

2

n

n∑
i=1

f(Xi)

)
. (13)

Now, we would like to bound the term ∥p̂n − p∥22. We first express it as

∥p̂n − p∥22 =
(
∥p̂n − p∥22 − ∥p∗n − p∥22

)
+ ∥p∗n − p∥22.

For the term ∥p̂n − p∥22 − ∥p∗n − p∥22, we further express it as

∥p̂n − p∥22 − ∥p∗n − p∥22 = ∥p̂n − p∥22 −
(
∥p∥22 + ∥p̂n∥22 −

2

n

n∑
i=1

p̂n(Xi)

)
︸ ︷︷ ︸

:=A

+

(
∥p∥22 + ∥p̂n∥22 −

2

n

n∑
i=1

p̂n(Xi)

)
− ∥p∗n − p∥22︸ ︷︷ ︸

:=B

(14)

Before we bound A and B, we first provide a useful inequality. For any p′ ∈ F∗, we have

∥p′ − p∥22 −
(
∥p∥22 + ∥p′∥22 −

2

n

n∑
i=1

p′(Xi)

)

=
2

n

n∑
i=1

p′(Xi)− 2 ⟨p′, p⟩

≤ 2 max
f∈F∗

∣∣∣∣Ep(f)− 1

n

n∑
i=1

f(Xi)

∣∣∣∣ since ⟨p′, p⟩ = Ep(p′) and p′ ∈ F∗. (15)

For the term A, we immediately have

A = ∥p̂n − p∥22 −
(
∥p∥22 + ∥p̂n∥22 −

2

n

n∑
i=1

p̂n(Xi)

)

≤ 2 max
f∈F∗

∣∣∣∣Ep(f)− 1

n

n∑
i=1

f(Xi)

∣∣∣∣ since p̂n ∈ F∗.

For the term B, we have

B =

(
∥p∥22 + ∥p̂n∥22 −

2

n

n∑
i=1

p̂n(Xi)

)
− ∥p∗n − p∥22

≤
(
∥p∥22 + ∥p∗n∥22 −

2

n

n∑
i=1

p∗n(Xi)

)
− ∥p∗n − p∥22 by the optimality of p̂n

≤ 2 max
f∈F∗

∣∣∣∣Ep(f)− 1

n

n∑
i=1

f(Xi)

∣∣∣∣ since p̂n ∈ F∗.

By plugging them into equation 14, we have

∥p̂n − p∥22 ≤ 4 max
f∈F∗

∣∣∣∣Ep(f)− 1

n

n∑
i=1

f(Xi)

∣∣∣∣+ ∥p∗n − p∥22. (16)
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We first analyze the term ∥p∗n − p∥22 in equation 16. From Proposition B.1, we have that

p =
∏

V ′∈C(G)

ψV ′ ◦ eV ′

and there exists some Cψ > 0 so that ψV ′ ≤ Cψ for all V ′ and that, for some Lψ , all ψV ′ are Lψ-Lipschitz continuous. We
pick a sufficiently large C that is greater than Cψ . Also, by the definition of F∗ in equation 12, we can pick a qV ′ ∈ FV ′ for
each V ′ ∈ C(G) and form an f ∈ F∗ such that

f =
∏

V ′∈C(G)

qV ′ ◦ eV ′ .

We will specify each qV ′ later. Then, we have

∥f − p∥∞ =

∥∥∥∥ ∏
V ′∈C(G)

qV ′ ◦ eV ′ −
∏

V ′∈C(G)

ψV ′ ◦ eV ′

∥∥∥∥
∞

≤ C |C(G)|−1
∑

V ′∈C(G)

∥∥∥∥qV ′ ◦ eV ′ − ψV ′ ◦ eV ′

∥∥∥∥
∞

by Lemma C.2 (17)

Recall that FV ′ = F(ℓV ′ , wV ′ , s, C). For any sufficiently large m,N ∈ N which we will determine later, we pick

ℓV ′ = 8 + (m+ 5)(1 + ⌈log2 |V ′|⌉),
wV ′ = (|V ′|, 6(|V ′|+ 1)N, 6(|V ′|+ 1)N, . . . , 6(|V ′|+ 1)N, 1) ,

s = ⌊141(r + 2)r+3N(m+ 6)⌋

and recall that we have picked C to be a constant larger than Cψ before. It is easy to check that the hypotheses of Theorem
C.3 are satisfied with K = Lψ , β = 1 and d = |V ′| and hence, by Theorem C.3, if we pick

qV ′ = arg min
q′
V ′∈FV ′

∥∥∥∥q′V ′ ◦ eV ′ − ψV ′ ◦ eV ′

∥∥∥∥
∞

then we have ∥∥∥∥qV ′ ◦ eV ′ − ψV ′ ◦ eV ′

∥∥∥∥
∞

≤ (2Lψ + 1)(1 + |V ′|2 + 1)6|V
′|N2−m + Lψ3N

−1/|V ′|

= O(N2−m +N−1/r) (18)

By plugging equation 18 into equation 17, we have

∥f − p∥∞ ≤ C |C(G)|−1
∑

V ′∈C(G)

O(N2−m +N−1/r) = O(N2−m +N−1/r)

Recall that the domain is [0, 1]d and hence we have

∥f − p∥22 =

∫
[0,1]d

|f(x)− p(x)|2dx ≤ ∥f − p∥2∞ .

Now, by the optimality of p∗n in equation 13, we have

∥p∗n − p∥22 ≤ ∥f − p∥22 ≤ ∥f − p∥2∞ = O(N22−2m +N−2/r). (19)

Now, we take care of the term maxf∈F∗

∣∣∣∣Ep(f)− 1
n

∑n
i=1 f(Xi)

∣∣∣∣ in equation 16. To bound this term for all f ∈ F∗, we

first construct an ϵ-cover of F∗ in L∞. Then, we use the Hoeffding’s inequality to bound this term for each f in the ϵ-cover

17
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and use the union bound to control the total failure probability. To construct an ϵ-cover, we define the following notations.
For any V ′ ∈ C(G), let F̃V ′ be a minimal ϵ

C|C(G)|−1 -cover of FV ′ in L∞ where ϵ is a sufficiently small value and we will
determine it later. Also, let

F̃∗ =

 ∏
V ′∈C(G)

q̃V ′ ◦ eV ′ | q̃V ′ ∈ F̃V ′

 . (20)

We will show that F̃∗ is an ϵ-cover of F in L∞. For any f ∈ F , it can be expressed as

f =
∏

V ′∈C(G)

qV ′ ◦ eV ′ for some qV ′ ∈ QV ′

Since F̃V ′ is an ϵ
C|C(G)|−1 -cover of FV ′ in L∞ for all V ′ ∈ C(G), there exists a q̃V ′ ∈ F̃V ′ such that

∥qV ′ − q̃V ′∥∞ ≤ ϵ

C |C(G)|−1
.

By the definition of F̃ , we set f̃ ∈ F̃ to be

f̃ =
∏

V ′∈C(G)

q̃V ′ ◦ eV ′

By Lemma C.2, we check that∥∥∥f − f̃
∥∥∥
∞

=

∥∥∥∥ ∏
V ′∈C(G)

qV ′ −
∏

V ′∈C(G)

q̃V ′

∥∥∥∥
∞

= C |C(G)|−1 ·
∑

V ′∈C(G)

∥qV ′ − q̃V ′∥∞

≤ C |C(G)|−1 · ϵ

C |C(G)|−1

= ϵ.

Now, we return to the term maxf∈F

∣∣∣∣Ep(f)− 1
n

∑n
i=1 f(Xi)

∣∣∣∣. Since F̃∗ is an ϵ-cover of F∗ in L∞, for any f ∈ F∗, there

exists a f̃ ∈ F̃∗ such that ∥f − f̃∥∞ ≤ ϵ and we have∣∣∣∣Ep(f)− 1

n

n∑
i=1

f(Xi)

∣∣∣∣
≤
∣∣∣∣Ep(f)− Ep(f̃)

∣∣∣∣+ ∣∣∣∣Ep(f̃)− 1

n

n∑
i=1

f̃(Xi)

∣∣∣∣+ ∣∣∣∣ 1n
n∑
i=1

f̃(Xi)−
1

n

n∑
i=1

f(Xi)

∣∣∣∣
≤ 2ϵ+

∣∣∣∣Ep(f̃)− 1

n

n∑
i=1

f̃(Xi)

∣∣∣∣
which implies

max
f∈F∗

∣∣∣∣Ep(f)− 1

n

n∑
i=1

f(Xi)

∣∣∣∣ ≤ 2ϵ+ max
f̃∈F̃∗

∣∣∣∣Ep(f̃)− 1

n

n∑
i=1

f̃(Xi)

∣∣∣∣. (21)

By Hoeffding’s inequality and the union bound, for any t > 0, the probability of

max
f̃∈F̃∗

∣∣∣∣Ep(f̃)− 1

n

n∑
i=1

f̃(Xi)

∣∣∣∣ > t

is bounded by |F̃∗| · e−Ω(nt2).
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To bound the term |F̃∗|, by the definition of F̃∗ in equation 20, we first have

log |F̃∗| =
∑

V ′∈C(G)

log |F̃V ′ |.

For each term log |F̃V ′ |, by Lemma C.4, we have

log |F̃V ′ | ≤ (s+ 1) log(22LV ′+5ϵ−1(LV ′ + 1)|V ′|2s2LV ′ ).

We now bound the architecture parameters. Recall that

ℓV ′ = 8 + (m+ 5)(1 + ⌈log2 |V ′|⌉) for any V ′ ∈ C(G) and

s = ⌊141(r + 2)r+3N(m+ 6)⌋.

Namely, we have

ℓV ′ = O(m) and s = O(Nm) which implies log |F̃V ′ | ≤ O(Nm2 log
Nm

ϵ
).

That means we have

log |F̃∗| ≤
∑

V ′∈C(G)

O(Nm2 log
Nm

ϵ
) = O(Nm2 log

Nm

ϵ
).

By setting t = O(
√

Nm2

n log Nnm
ϵ ), we have

max
f̃∈F̃∗

∣∣∣∣Ep(f̃)− 1

n

n∑
i=1

f̃(Xi)

∣∣∣∣ < O(

√
Nm2

n
log

Nnm

ϵ
)

with at least probability 1− |F̃∗| · e−Ω(nt2) → 1 as n→ ∞. Plugging it into equation 21, we have

max
f∈F∗

∣∣∣∣Ep(f)− 1

n

n∑
i=1

f(Xi)

∣∣∣∣ ≤ 2ϵ+O(

√
Nm2

n
log

Nnm

ϵ
). (22)

Furthermore, by plugging equation 19 and equation 22 into equation 16, we have

∥p̂n − p∥22 ≤ 4max
f∈Q

∣∣∣∣Ep(f)− 1

n

n∑
i=1

f(Xi)

∣∣∣∣+ ∥p∗n − p∥22

< O(ϵ+

√
Nm2

n
log

Nnm

ϵ
+N22−2m +N−2/r).

By picking

ϵ = n−
2

r+4 , N = n
r

r+4 and m =
r + 1

r + 4
log n,

we have

∥p̂n − p∥22 ≤ Õ(n−
2

r+4 ).
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D. Graph Proofs
For any d, d′, t ∈ N, define Ld×d′ to be the graph whose vertex set is [d]× [d′] and edge set is

{((i, j), (i′, j′)) | i, i′ ∈ [d], j, j′ ∈ [d′], (i, j) ̸= (i′, j′), |i− j|+ |i′ − j′| ≤ 1}

and Ltd×d′ to be the graph whose vertex set is [d]× [d′] and edge set is

{((i, j), (i′, j′)) | i, i′ ∈ [d], j, j′ ∈ [d′], (i, j) ̸= (i′, j′), |i− j|+ |i′ − j′| ≤ t}.

For any d, d′, t ∈ N, define L+
d×d′ to be the graph whose vertex set is [d]× [d′] and edge set is

{((i, j), (i′, j′)) | i, i′ ∈ [d], j, j′ ∈ [d′], (i, j) ̸= (i′, j′),max{|i− j|, |i′ − j′|} ≤ 1}

and (L+
d×d′)

t to be the graph whose vertex set is [d]× [d′] and edge set is

{((i, j), (i′, j′)) | i, i′ ∈ [d], j, j′ ∈ [d′], (i, j) ̸= (i′, j′),max{|i− j|, |i′ − j′|} ≤ t}.

For any d, t ∈ N, define Ld to be the graph whose vertex set is [d] and edge set is {(i, j) | i ̸= j, |i− j| ≥ 1} and Ltd to be
the graph whose vertex set is [d] and edge set is {(i, j) | i ̸= j, |i− j| ≥ t}.

Proof of Lemma 4.4. For any clique C in (Ld×d′)
t, let (i0, j0) (resp. (i1, j1), (i′0, j

′
0) and (i′1, j

′
1)) be the vertex in C such

that i0 + j0 is maximal (resp. i1 + j1 is minimal, i′0 − j′0 is maximal and i′1 − j′1 is minimal). Namely, the vertex set of C is
a subset of

S := {(i, j)|i ∈ [d], j ∈ [d′], i1 + j1 ≤ i+ j ≤ i0 + j0, i
′
1 − j′1 ≤ i− j ≤ i′0 − j′0}.

By the definition of cliques and (Ld×d′)
t, we have

(i0 + j0)− (i1 + j1) ≤ |i0 − i1|+ |j0 − j1| ≤ t since there is an edge between (i0, j0) and (i1, j1)

(i′0 − j′0)− (i′1 − j′1) ≤ |i′0 − i′1|+ |j′0 − j′1| ≤ t since there is an edge between (i′0, j
′
0) and (i′1, j

′
1)

To bound the size of S, we observe that, for each of the at most t+ 1 possible values i1 + j1, i1 + j1 + 1, . . . , i0 + j0 equal
to i+ j, there are at most ⌈ t+1

2 ⌉ possible values among i′1 + j′1, i
′
1 + j′1 + 1, . . . , i′0 + j′0 equal to i− j by considering the

parity. Therefore, |S| is at most (t+ 1) · ⌈ t+1
2 ⌉.

Hence, the size of the largest clique in (Ld×d′)
t is at most (t+ 1) · ⌈ t+1

2 ⌉ ≤ t2+4t+3
2 .

Proof of Lemma 4.5. It is easy to check that the subgraph of (L+
d×d)

t induced by the vertex set [t+ 1]× [t+ 1] is a clique.
Hence, the size of the largest clique in (L+

d×d′)
t is at least (t+ 1)2.

For any clique C in (L+
d×d′)

t, let i0 (resp. i′0) be the smallest (resp. largest) first index of the vertices in C and j0 (resp. j′0)
be the smallest (resp. largest) second index of the vertices in C. Namely, the vertex set of C is a subset of

S := {(i, j)|i ∈ [d], j ∈ [d′], i0 ≤ i ≤ i′0, j0 ≤ j ≤ j′0}.

To bound the size of S, by the definition of cliques and (L+
d×d′)

t, we have

i′0 − i0 ≤ t and j′0 − j0 ≤ t

Therefore, |S| is at most (t+ 1)2.

Hence, the size of the largest clique in (L+
d×d′)

t is (t+ 1)2.
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Proof of Lemma 4.7. It is easy to check that the subgraph of Ltd induced by the vertex set [min{t+1, d}] is a clique. Hence,
the size of the largest clique in Ltd is at least min{t+ 1, d}.

For any clique C in Ltd, let i0 (resp. j0) be the smallest (resp. largest) index of the vertex in C. Namely, the vertex set of
C is be a subset of S := {i|i ∈ [d], i0 ≤ i ≤ j0}. By the definition of cliques and Ltd, we have |i − j| ≤ min{t, d − 1}.
Therefore, |S| is at most min{t+ 1, d}.

Hence, the size of the largest clique in Ltd is min{t+ 1, d}.

E. COCO and Google Speech Commands Scatter Plots
COCO

(a) (120, 160)v(120, 161) (b) (120, 160)v(120, 162) (c) (120, 160)v(120, 400) (d) (120, 160)v(320, 520)

(e) (120, 160)v(120, 161) cond. (f) (120, 160)v(120, 162) cond. (g) (120, 160)v(120, 400) cond. (h) (120, 160)v(320, 520) cond.

Figure 7: This figure presents scatter plots analogous to those in Figure 5 of the main text, but derived from the COCO
training set (Lin et al., 2014). The conditional scatter plots are based on pixel (121,160) being near its median value.

Due to memory constraints, we used a subset of the data:

1. 4000 random samples were initially selected.

2. From these, 100 images with pixel (121,160) nearest to the median were chosen for the conditional plots.

Note that increasing the sample size for conditioning resulted in lower observed correlation. This is because a larger sample
allows for a more precise conditioning, better approximating the true conditional distribution. The wider the range of
values for the conditioning pixel (121,160), the more the selected points resemble the unconditional distribution, potentially
introducing spurious correlation.
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Google Speech Commands

Here we consider the correlations and conditional correlations for covariates from audio data. We use the Google Speech
Commands Dataset (Warden, 2018), focusing on the “no” class. The corresponding plots are shown in Figure 8.

We note that the dataset contains more extreme outliers than the image datasets. For example, while 50% of all entries have
magnitude 80 or less, the maximum magnitude in the dataset is 32,767. This causes some of the scatterplots in Figure 8
to appear off-center. We use 500 randomly selected samples, which helps reduce visual artifacts from quantization when
plotting conditional correlations with fewer samples.

Unlike Figures 5 and 7, the x- and y-axes in each image here are not normalized to the same scale, and the x-values in
the conditional plots are often skewed. None of these issues affect the underlying correlation or conditional independence
properties we aim to illustrate. While we explored ways to account for these quirks in the visualizations, we ultimately
opted to present the raw plots for simplicity, as the effect on dependence structure is still clearly visible.

(a) 50 ms v 50.2 ms (b) 50 ms v 50.3 ms (c) 50 ms vs 51 ms (d) 50 ms v 60 ms

(e) 50 ms v 50.2 ms cond. (f) 50 ms v 50.3 ms cond. (g) 50 ms vs 51 ms cond. (h) 50 ms v 60 ms cond.

Figure 8: This figure presents scatter plots analogous to those in Figures 5 and 7, but derived from the “no” class of the
Google Speech Commands Dataset (Warden, 2018). The plots compare the sample value at 50 ms with the values at other
time points. The conditional graphs (bottom row) show the same comparisons, but conditioned on the value of the sample
immediately after 50 ms being near its median. Note that the sampling rate of this dataset is 16,000 Hz, so each sample
corresponds to approximately 0.1 ms.
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F. Decoupling the Manifold Hypothesis and the Markov Random Field Assumption
Here, we present four simple examples illustrating that the manifold hypothesis and the MRF assumption are, in a
fundamental sense, independent modeling concepts.

• MRF true, MH true: X ∼ unif[0, 1], Y ∼ unif[0, 0.01], X and Y independent

• MRF true, MH false: X,Y ∼ unif[0, 1], X and Y independent

• MRF false, MH true: X ∼ unif[0, 1], X = Y

• MRF false, MH false: X,Y ∼ N(0, 1), weakly correlated
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