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Abstract

Extracting relational knowledge from large pre-trained language models by a cloze-
style sentence serving as a query has shown promising results. In particular, language
models can be queried similar to knowledge graphs. The performance of the relational
fact extraction task depends significantly on the query sentence, also known under the
term prompt. Tuning these prompts has shown to increase the precision on standard
language models by a maximum of around 12% points. However, usually large amounts of
data in the form of existing knowledge graph facts and large text corpora are needed to
train the required additional model. In this work, we propose using a completely different
approach: Instead of spending resources on training an additional model, we simply perform
an adaptive fine-tuning of the pre-trained language model on the standard fill-mask task
using a small training dataset of existing facts from a knowledge graph. We investigate the
differences between complex prompting techniques and adaptive fine-tuning in an extensive
evaluation. Remarkably, adaptive fine-tuning outperforms all baselines, even by using
significantly fewer training facts. Additionally, we analyze the transfer learning capabilities
of this adapted language model by training on a restricted set of relations to show that
even fewer training relations are needed to achieve high knowledge extraction quality.

1. Introduction

Recent research has shown that large pre-trained language models, such as BERT [Devlin
et al., 2019], being trained on large amounts of natural text, store large amounts of relational
knowledge. Several previous works have shown how this stored knowledge can serve as some-
thing comparable to a knowledge graph being able to answer simple factual queries [Petroni
et al., 2019, 2020], but also for more advanced applications like question answering [Raf-
fel et al., 2020]. In the seminal paper Language Models as Knowledge Graphs, Petroni et
al. have shown how arbitrary masked language models can be used to answer basic factual
queries in cloze-style fashion using the basic fill-mask capability of a language model [Petroni
et al., 2019]. Thus, querying the language model, for example, for the birthplace of Albert
Einstein would require completing the sentence Albert Einstein was born in [MASK] . The
partial sentence was born in can now be used to retrieve the birthplace of arbitrary persons
without any training data from the knowledge graph. This partial sentence is also known
under the term prompt.
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One major difficulty to achieve high precision for this knowledge extraction task is
finding good prompts. The original paper by Petroni et al. has chosen manually designed
prompts for each relation of a knowledge graph. Follow-up works have developed various
techniques for improving the knowledge extraction quality by improving the prompts. Often,
even small changes to the prompt may significantly change the result set and therefore the
quality of the knowledge extraction task. As an example, the prompt was born and raised
in achieves significantly better results for extracting facts of the birthplace relation, even
though its semantics is slightly different. One type of these techniques, called mining-
based, is proposing to mine new prompts from natural language text, i.e., from annotated
Wikipedia abstracts [Bouraoui et al., 2020, Jiang et al., 2020b]. More recent techniques
train explicit additional models on existing triples to optimize the prompt for achieving
optimal knowledge extraction results [Shin et al., 2020, Haviv et al., 2021]. In the best case,
such a technique improves the knowledge extraction quality of BERT from 31.1% up to
43.3%. However, existing techniques usually need a significant amount of training data in
the form of existing knowledge graph triples and a large amount of training time to optimize
prompts using complex additional models.

In this work, we show that, instead of this complex additional prompt tuning, a simple
adaptive fine-tuning of the pre-trained language model using few training triples from a
knowledge graph already does the trick. We introduce BERTriple: Its idea is to continue
the pre-trained language model’s training using masked sentences built from triples of a
knowledge graph, such as Albert Einstein birthplace [MASK], together with the correct
place of birth Ulm. BERTriple achieves superior results without any complex prompting
techniques with significantly fewer training triples and less computational time. Concretely,
our technique achieves a precision of 48.4% on the LAMA probe in contrast to only 43.3% of
existing techniques. Furthermore, we perform an extensive analysis on how much training
data is actually needed to still achieve high-quality results.

To further reduce the amount of training data that is needed, we also inspect the transfer
learning capabilities of the pre-trained language model for knowledge extraction. Instead
of training the model on every relation of a knowledge graph, some relations profit from
the training of semantically related relationships. We perform an evaluation of this transfer
learning relation by investigating which relations indeed can profit from the training of other
relations.

2. Related Work

Language Models as Knowledge Graphs In [Petroni et al., 2019], it was shown that
pre-trained language models can store large amounts of relational world knowledge similar to
large knowledge graphs as Wikidata [Vrandečić and Krötzsch, 2014]. The original paper has
proposed the LAMA probe to investigate the performance of language models on this task.
The LAMA probe on the one hand consists of triples from the Google relation extraction
corpus (Google RE), 41 relations from T-Rex, a Wikipedia text corpus annotated with
Wikidata triples, 16 relations from ConceptNet, and 305 questions from SQuAD.

Several works have further investigated the potential and the limitations of using lan-
guage models as knowledge bases. Poerner et al. show that BERT is far from showing
perfect results for knowledge extraction but often relies on very simple heuristics [Poerner
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et al., 2020]. They show that BERT often is heavily relying on the name of an entity to
guess a plausible result. As an example, a query asking for the nationality of a person with
an Italian-sounding name, is usually Italian as well. This heuristic may work in most cases
but shows that the language model lacks a correct memorization of facts. Since a large
proportion of queries can be solved by these simple heuristics in the LAMA probe, Poerner
et al. propose a filtered, more difficult version called LAMA-UHN which we also evaluate
our model on.

Kassner et al. show how well the knowledge extraction from BERT can be fooled
by mispriming or by using negated prompts [Kassner and Schütze, 2020]. The results
imply that the language model is not very robust to changes and false clues in the prompt.
Furthermore, dealing with negation is not possible. These results are interesting to our
work because they show that indeed small changes in the prompt can have a large influence
on the outcome of the results.

Contrary to Kassner et al. a recent work of Petroni et al. has shown that similar
priming effects may be used to improve the knowledge extraction quality from language
models [Petroni et al., 2020]. Small text snippets (context paragraphs) from Wikipedia
abstracts, containing information about the entity of interest, are retrieved automatically
and appended to the cloze-style query. This way the extraction quality is significantly
boosted.

Instead of relying on the knowledge that was captured in the pre-training phase, in [Heinz-
erling and Inui, 2021] the capabilities of a language model directly on Wikidata triples are
investigated. Thereby, the authors examine how the number of entities presented in the lan-
guage model can be increased, how many parameters are needed for storing large knowledge
graphs, and how robust these language models are to varying querying prompts. Particu-
larly, the third research question, investigating the robustness of prompts, is related to our
work.

Instead of using language models as a knowledge graph for fact extraction as proposed
by Petroni et al., Thorne et al. lift this idea on another level by proposing the idea of a
Neural Database [Thorne et al., 2020, 2021]. In contrast to previous papers, knowledge is
not retrieved from the pre-trained language model, but from textual facts (the database)
that are input to the language model together with a query prompt. Furthermore, the
language model is fine-tuned to answer different kinds of queries. These involve simple fact
extraction queries, over join queries to more complex aggregation queries.

Mining-based Prompt Tuning Since manually designing prompts, similar to Petroni
et al., is on the one hand a very cumbersome task and, on the other hand, often does not
give good results, automatic mining approaches have been proposed [Bouraoui et al., 2020,
Jiang et al., 2020b]. Both approaches show that, given a training corpus of triples and a
text corpus with annotated triples similar to T-Rex, can be used to automatically extract
better prompts, outperforming the manual approach. The idea of the approach is to mine
prompts for each relation from the training data by extracting sentences from the text
corpus that contain these relations. The sentences are then ranked by using the fill-mask
task on the training triples. Sentences that are well suited for predicting facts from the
training dataset correctly are ranked high. For the knowledge extraction task, multiple of
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these mined prompts for the same relation can be used together, so that their results can
be combined to provide a merged result list.

Overall, these approaches are very runtime intensive, require large amounts of training
triples, and an annotated text corpus, while only slightly improving the extraction quality.
The precision achieved in [Jiang et al., 2020b] is 34.1%.

Learning-based Prompt Tuning More recently, two learning-based approaches for im-
proving the prompts for the LAMA probe have been presented. The idea of these approaches
is to add an additional learning component that optimizes the prompt to achieve better re-
sults on the knowledge extraction task directly. BERTese is a module consisting of an
additional BERTbase model, which rewrites the existing prompts and passes its output to a
pre-trained BERT model [Haviv et al., 2021]. A training dataset of existing triples is used
to train the rewriter using the fact extraction task as an objective. Overall, BERTese shows
an improvement over manually created prompts and mining-based approaches, achieving
38% precision in the LAMA probe.

A related approach is AutoPrompt, a prompt-learning technique that cannot only be
used for the fact extraction task, but also for several other prompt-based tasks [Shin et al.,
2020]. A manually created prompt for fact extraction is extended by additional 5 or 7
trigger tokens. The choice of these tokens is optimized by a gradient-based search on
training triples. AutoPrompt can even outperform BERTese by several points of precision
on the LAMA probe, achieving 43% precision.

3. Adaptive Fine-Tuning of BERT

In recent times, two basic ideas on how to solve down-stream tasks with large pre-trained
language models (i.e., relation extraction, question answering, text classification, summa-
rization) are discussed intensively: prompt tuning and fine-tuning.

With the success of huge language models, the idea of simply using pre-trained language
models as they are, and tuning the prompt has become very popular. Particularly GPT-3
has shown impressive results, offering the possibility of solving various tasks in a zero or few-
shot fashion [Brown et al., 2020]. Thus, the model does not need to be adapted to a specific
task but can be used for multiple tasks as it is. Also, the idea of automatically tuning
the prompt, instead of fine-tuning the complete model, has shown promising results [Lester
et al., 2021].

For fact extraction from pre-trained language models, as discussed in this work, several
automatic prompt tuning techniques have been presented. Instead of solving the task of fact
extraction in a zero-shot fashion, the techniques usually require lots of data, for example,
to either extract and rank possible prompts [Bouraoui et al., 2020] or to train additional
models to rewrite the prompts [Haviv et al., 2021].

A different approach for improving the results of a language model on a downstream
task is fine-tuning. Models can be fine-tuned by training on an additional task-specific
dataset. However, recent research has shown that models solving tasks on text which are
substantially different from the pre-training data perform much worse since the model lacks
robustness [Hendrycks et al., 2020]. In such cases, adaptive fine-tuning for a specific domain
or task may be performed to overcome this problem [Howard and Ruder, 2018]. Adaptive
fine-tuning implies continuing the pre-training objective on a more specific domain (often
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out of the training data distribution). We believe that particularly the task of fact extraction
from a pre-trained language model is substantially different from the original pre-training
objective because the queries are restricted to short factual sentences, which only make up
a small part of the original training data. Here, domain adaption could therefore lead to
substantial improvements in extraction quality.

In this work, we perform an adaptive fine-tuning on BERT to only adjust the model to
the triple-data domain in order to improve its performance in cloze-style relational knowl-
edge extraction. We call the adapted version of BERT: BERTriple. In contrast to other
standard fine-tunings, like training a binary classifier for relation extraction, we reuse the
fill-mask task already used in the pre-training of BERT. In our adaptive fine-tuning, we use
facts as triples of the form (subject, relation, object) from an existing knowledge graph and
so-called prompts for every relation to query the language model. For example, considering
the triple (Albert Einstein, place of birth, Ulm) and the prompt [S] was born in [O],
where [S] and [O] are placeholders for the subject and the object of a triple. Thus, a train-
ing data point consists of the masked input, e.g. Albert Einstein was born in [MASK],
and the desired target, e.g. Albert Einstein was born in Ulm, by putting the object
token into the [MASK]-token.

Since Haviv et al. discover that small changes of the input like rewriting tom terriss

is a [MASK] by profession into tom terriss is the [MASK] by profession have a
crucial influence on the performance of BERT, we introduce so-called triple prompts. In
contrast to the natural language prompts, for triple prompts no prompt tuning is necessary
anymore because they are reduced to the simplest form to present a triple as input for lan-
guage models. They are built directly from the entities and relation labels by concatenation
and are of the form [S] <label of relation> [O]. For example, the triple prompt of
the birthplace relation could be [S] place of birth [O].

4. Experiments

Overall, we perform three major experiments to evaluate the idea of adaptive fine-tuning
with triples for fact extraction from the language model. Our datasets and our implementa-
tion are available on Github 1. (a) We compare our fine-tuning method to existing methods
for fact extraction on the LAMA and LAMA-UHN probe. These methods involve manually
created prompts, mining-based prompts, and learning-based prompts. (b) We investigate
how prone our training approach is to using only small amounts of training data. (c) To
further investigate the relations separately, we perform an evaluation of the transfer learning
capabilities.

4.1 Prompt Tuning vs. Adaptive Fine-Tuning

Experimental Setup In the first experiment, we evaluate our model compared to four
other methods by using the LAMA and LAMA-UHN probe. We use the evaluation metric
precision at one (P@1) introduced in [Petroni et al., 2019] by averaging over all queries
within a relation and then across all 41 relations. All P@1 values for each method in
Table 1 use BERTbase as the underlying language model. Additionally, in the appendix A,

1https://github.com/LeandraFichtel/BERTriple
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Table 1: P@1 [%] of four baselines and our model BERTriple evaluated with LAMA and
LAMA-UHN probe

Test Dataset BERT LPAQA BERTese AutoPrompt BERTriple

LAMA 31.1 34.1 38.3 43.3 48.4
LAMA-UHN 21.8 28.7 - - 39.1

we present the results for several other language models. The four baselines are: (a) BERT
- based on manually created prompts [Petroni et al., 2019] (b) LPAQA - based on mining-
based prompts minded from Wikipedia sentences [Jiang et al., 2020a] (c) BERTese - based
on learning-based prompts created by a rewriter [Haviv et al., 2021] (d) AutoPrompt -
based on learning-based prompts by constructing customized prompts for a specific task
automatically [Shin et al., 2020]

For comparability, we use the same training dataset (called original) created by Shin et
al. to train our model BERTriple. This dataset consists of at most 1000 Wikidata triples
extracted from the T-REx Wikipedia corpus for each of the 41 relations used in LAMA
and LAMA-UHN. If the T-REx dataset does not contain enough triples, the authors add
triples of Wikidata for this relation but there are still some relations that have less than
1000 triples. During fine-tuning, we use the triples to query for the object by using the
manually created prompts of Petroni et al. Further, Shin et al. make a 80/20 split into a
training and a development dataset. Because our method does not require the development
set, we make use of all 1000 triples per relation for training. We choose the hyperparameters
as recommended in [Devlin et al., 2019]: 3 epochs, Adam optimizer with learning rate of
5e− 5, batch size of 16, weight decay with strength of 0.01.

Results As shown in Table 1 using the LAMA probe, the mining-based method LPAQA
has the lowest performance with 34.1% precision. Learning-based methods as BERTese or
AutoPrompt are able to provide slight improvements up to a precision of 43.3%, but our
approach BERTriple still offers the best precision with 48.4%. Especially in comparison to
AutoPrompt, our model improves precision by 5% points while using the same number of
training triples. In comparison to the precision of the initial baseline BERT, BERTriple
achieves a major improvement of more than 50% (31.1% −→ 48.4%).

Evaluating with the more complex LAMA-UHN test dataset, the precision of BERTriple
decreases to 39.1% but it still exceeds the precision of BERT and LPAQA. BERTese and
AutoPrompt have not been evaluated with LAMA-UHN yet and consequently, no precision
values are available. Overall, the adaptive fine-tuning outperforms the baselines on both
the LAMA and LAMA-UHN probe significantly.

4.2 Different Training Datasets

Experimental Setup In the second experiment, we evaluate, how a smaller amount of
training triples during fine-tuning on the LAMA test dataset affects the precision (P@1).
Similar to the first experiment, we use the training dataset of Shin et al. as the maximum
sample size and then choose random samples. For example, the sample size 100 means
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that for each relation we randomly select 100 out of all original training triples. The
sample size 1 is included for validation purposes only to make sure that the fine-tuning
does not compromise the model. For robustness reasons, we run the fine-tuning three times
for every sample size and randomly reselect the triples each time. We plot the mean of the
three precision values.

In addition to the manually created prompts of Petroni et al., we create the triple
prompts of the form [S] <label of relation> [O] by using the relation labels already
stored in Wikidata. Thus, no extra effort has to be made to obtain these triple prompts
and they are easily extendable to new relations. In order to be able to analyze the triple
prompts with the LAMA probe, we adjust the evaluation so that the triple prompts are
used for the triples of both, the test dataset and the training dataset. For comparability,
we make sure that the randomly selected triples are the same for the manual and triple
prompts.
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Figure 1: P@1 [%] of our model BERTriple with respect to different sample sizes of training
dataset evaluated with LAMA probe

Runtime We run our experiments on a single RTX 2080 TI. The fine-tuning with all
triples for each relation takes about 45 minutes, whereas, with a sample size of 100, the
training time is only 5 minutes. All in all, our fine-tuning is not demanding with respect
to computation time. Exemplary for the other four baselines considered in Section 4.1, we
look at the mining-based approach LPAQA by [Jiang et al., 2020a]. Because of the setup
of ranking all possible extracted prompts, it is very runtime intensive. For ranking, it is
required that for each prompt a set of triples (in this case a maximum of 1000) has to be
predicted by BERT using the fill-mask task and this prompt and based on these predictions
a ranking score is calculated.

Results Figure 1 shows that from a sample size of 50, state-of-the-art results with a
precision of about 44% are achieved. Increasing the sample size, further improves the
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precision to about 48% while using all 1000 triples of the training dataset during fine-tuning
(see also Table 1). However, it is notable that a sample size of 100 is already sufficient to
exceed the precision of Shin et al. Consequently in contrast to the other methods (mining-
based and learning-based), adaptive fine-tuning needs significantly less training data to
achieve promising results.

The reason for this could be that with adaptive fine-tuning, the knowledge, which is
already stored in the weights of the pre-trained model, is used and the weights are only
adjusted to the new triple-data domain. As a consequence of the few training triples, our
adaptive fine-tuning is very fast and does not require labels since the fill-mask task is reused.
Below a sample size of 50, interesting artifacts are visible. While using 30 random triples
during fine-tuning increases the precision, using a sample size of 10 decreases the precision
to a level even below the baseline BERT (e.g. manual prompts: 31.1% −→ 23.95%). We
believe that 10 triples per relation have enough effect during the fine-tuning to change the
weights, but are not enough to represent the data well. Similar behavior is observed in the
memorization evaluation in [Heinzerling and Inui, 2021]. There is also a slight decrease in
memorization performance if only 5 or 10 triples are used to fine-tune the current prompt
variant. Additionally, as we expected, using only 1 triple during fine-tuning does not affect
the precision, meaning the precision still matches BERT.

Evaluating the two different prompting techniques (manual prompts and triple prompts),
we achieve the same precision values after fine-tuning independently from the prompts that
were used. This is remarkable due to the fact that using triple prompts, the baseline BERT
does not have a good performance at all (6.37%). This is a valuable result in contrast to
BERTese, since using the triple prompts the sentence structure and the choice of words do
not have a big impact on the fact extraction performance of BERTripel anymore.

4.3 Transfer Learning

Experimental Setup In the third experiment, for every relation, we execute an addi-
tional adaptive fine-tuning with the same setup as in Chapter 4.1, but for each fine-tuning
the corresponding relation is omitted, meaning there are no triples of this single relation
used during training. Thus, all other remaining 40 relations are fine-tuned with 1000 triples
each. We evaluate the 41 omitted models with the LAMA probe, to investigate the transfer
learning capabilities for each relation from the other relations. For this, we compare the
precision (P@1) of the baseline BERT, our model BERTriple and of the omitted models for
each relation.

Results The results for the experiment are depicted in Table 2. Considering the precision
of the omitted models, the relations can be clustered into three groups. The precision is
either (a) in the same range of the original BERT, (b) better than BERT and in the same
range of our method BERTriple (bold), (c) or notably lower than BERT.

The first group (a) includes, for example, the relations P27 (country of citizenship),
P138 (named after) and P937 (work location). P138 achieves a precision of 61.37% with
BERT and using the omitted model a precision of 66.98%, which is in the same range. For
these relations, no transfer learning occurs if they are omitted during fine-tuning and thus
they do not learn from the other relations. They simply revert to the precision they have
achieved for pre-trained BERT. Unsurprisingly, there is a little noise compounded onto the
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Table 2: P@1 [%] of BERT, BERTriple and BERTriple with omitted relations during train-
ing (omitted) to evaluate transfer learning capabilities by using LAMA probe

ID Label BERT BERTriple omitted

P17 country 31.29 37.74 14.52
P19 place of birth 21.08 18.86 19.81
P20 place of death 27.91 32.95 31.27
P27 country of citizenship 0.00 47.41 0.41
P30 continent 25.44 80.41 3.59
P31 instance of 36.66 69.31 44.36
P36 capital 62.11 57.98 53.99
P37 official language 54.55 63.15 55.69
P39 position held 7.96 43.83 11.43
P47 shares border with 13.70 16.96 15.43
P101 field of work 9.91 15.52 13.36
P103 native language 72.16 88.23 79.84
P106 occupation 0.63 33.40 1.98
P108 employer 6.79 10.18 7.83
P127 owned by 34.79 51.97 38.86
P131 located in the administrative territorial entity 23.27 35.30 25.65
P136 genre 0.75 64.34 7.63
P138 named after 61.37 75.70 66.98
P140 religion 0.63 76.53 4.65
P159 headquarters location 32.37 36.40 31.33
P176 manufacturer 85.51 89.93 84.07
P178 developer 62.94 69.88 66.67
P190 twinned administrative body 2.22 3.33 1.51
P264 record label 9.56 50.58 13.29
P276 location 41.54 47.39 30.58
P279 subclass of 30.71 67.32 48.24
P361 part of 23.61 48.61 36.70
P364 original language of film or TV show 44.51 53.04 44.39
P407 language of work or name 64.20 71.38 32.95
P413 position played on team / speciality 0.53 46.95 14.50
P449 original broadcaster 20.91 39.43 27.73
P463 member of 67.11 60.89 54.22
P495 country of origin 28.71 39.60 11.22
P527 has part 11.17 36.07 19.36
P530 diplomatic relation 2.81 3.51 3.61
P740 location of formation 8.87 16.13 4.17
P937 work location 29.77 44.34 25.68
P1001 applies to jurisdiction 70.47 86.59 79.46
P1303 instrument 7.59 26.55 1.37
P1376 capital of 73.82 51.50 63.95
P1412 languages spoken, written or signed 65.02 77.09 60.17

precision values of the omitted model. Some values are slightly greater or smaller than the
precision achieved at BERT. One reason is that the triples during training are shuffled in
each epoch. This noise has no significant effect on the average precision over all relations.

The relations, which belong to the second group (b), are marked in bold. For example,
the relation P361 (part of) achieves a precision of 36.70% although there were no training
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triples present during fine-tuning. Resulting, it outperforms the original precision of 23.61%
with BERT significantly. Thus, for those relations transfer learning can be observed. Some
relations (e.g. P20 (place of death) or P178 (developer)) have the same performance with
the omitted model and with BERTriple but for most of the bold relations, the performance
is slightly lower. This is caused by the fact that a relation is not only learning from its
triples alone but often from a selected subset of the relations. So for example in the case
of P279 (subclass of), the improvement in precision from BERT to the omitted model
(30.71% −→ 48.24%) is due to the inclusion of a certain subset of the 40 relations during
fine-tuning. But the final improvements to achieve the precision of 67.32% are caused by
the triples from the relation itself.

The last group (c) is comprised of only a few relations: P30 (continent), P1376 (capital
of) and P36 (capital). Evaluating the omitted model, the precision of P30 does not revert
to the value achieved with BERT (25.44%) but decreases to 3.59%. The same applies to
P36 and P1376 for which the precision with BERTriple falls from 62.11% to 53.98% or
respectively from 73.82% to 63.95%. This is an unexpected result since the two relations
are inverses of one another and thus they should actually show transfer learning.

Additionally for P36 and P1376, there are interesting artefacts visible: Training all
relations already decreases the precision compared to BERT (P36: 62.11% −→ 57.98%,
P1376: 73.82% −→ 51.50%). For P1376, the precision with BERTriple (51.50%) is even
lower than the precision with the omitted model (63.95%). In contrast, there are a couple
of relations (e.g. P27 (country of citizenship) or P413 (position played on team)) for which
the precision is significantly improved from near zero with BERT to a competitive precision
with BERTriple. One reason for these observations could be generalization issues since the
weights of the model are adapted during fine-tuning in order to generalize new data for all
relations.

4.4 Qualitative Evaluation

Experimental Setup For this experiment, we have manually performed an analysis of
the correct answers of the test queries and the predictions of BERT and BERTriple. We
focused particularly on relations with a large difference in precision between BERT and
BERTriple as demonstrated in Table 2.

Results It is noteworthy that all these relations have in common that the number of
distinct object entities is naturally quite small. As an example, the continent relation P30,
has only six different possible objects. The predictions of the original BERT model comprise
around 80 different answers, mostly consisting of continents, countries, and cities. The most
frequent predictions are indeed continents, but often not the correct continent entity. One
would expect that our fine-tuning would restrict the variance in these predictions to only
continents. However, the range of predicted object entities of BERTriple, similarly to the
original BERT, comprises around 80 different entities ranging from continents to cities. But
the overall prediction correctness of BERTriple is much higher since the fine-tuning seems to
enable the model to better understand the prompt itself. Similar behavior can be observed
for the other relations (e.g. P39, P140, P413) that significantly profit from the fine-tuning
as well.
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5. Discussion and Conclusion

In this paper, we have investigated the idea of adaptive fine-tuning a pre-trained language
model for cloze-style fact extraction as proposed by [Petroni et al., 2019]. Recent models
have shown that the traditional idea of additional prompt tuning can significantly improve
the fact extraction performance. Here, either mining-based or learning-based models have
been proposed but both techniques share the downside of requiring a lot of training data and
complex additional models which have to be trained. Our experiments show that a simple
adaptive fine-tuning can significantly improve upon the best state-of-the-art baselines on
the LAMA probe, even with fewer training data required and without the need for an
additional model. Consequently, the fine-tuning is very fast. Since short triple prompts
perform as well as manual ones after fine-tuning, using our method, the choice of words no
longer has an impact on the performance of the language model, in contrast to the main
idea of prompt tuning. We also show that the amount of training data can be reduced even
further, due to the interesting transfer learning capabilities of our BERTriple model. Several
relations benefit from the fine-tuning with triples of other relations, meaning that they can
completely be left out during fine-tuning without affecting their precision significantly.

Comparing prompt tuning techniques with the idea of fine-tuning, there is one main
difference. Whereas the main goal of prompt tuning is to use the prompts for many down-
stream tasks and not to save model checkpoints for each task [Lester et al., 2021], this is
no longer the goal of our method. Through the adaptive fine-tuning, our model BERTriple
is limited to the cloze-style fact extraction task. For a different task, a new adaptive fine-
tuning has to be executed. However, most of the models for prompt tuning are complex and
add a significant extra training effort while using these tuned prompts actually results in
a worse fact extraction performance in contrast to our adaptive fine-tuning. Consequently,
instead of reaching the goal to have a single solution for all tasks, fine-tuning a pre-trained
language model offers a more computational efficient solution to achieve superior fact ex-
traction performance. Additionally, our results may open up the possibility to generate
simple and well-performing solutions using adaptive fine-tuning for other downstream tasks
as well. Even though it requires a change of the original pre-trained language model, adap-
tive fine-tuning is a very promising method, particularly for cloze-style fact extraction.

Future Work While our work shows first promising results for the comparison of prompt
tuning and adaptive fine-tuning for relation extraction, we believe that further investiga-
tions are needed. Working with larger language models probably leads to different results.
Furthermore, current benchmark datasets for cloze-style fact extraction have several limita-
tions: A larger set of relations from Wikidata, which are not extracted from T-REx, should
be used, because the LAMA probe is limited only to facts from Wikipedia abstracts. Since
real-world knowledge graphs are inherently incomplete, the number of triples per relation is
highly skewed, which is not reflected in LAMA. But there are also some natural constraints.
For example, for the relation P19 (place of birth) 1,977,898 triples are stored, because every
person has exactly one place of birth, but for the relation P1303 (instrument) only 162,634
triples exist, because not everybody has to play an instrument. Therefore, it may be worth-
while to examine which subsets of relations concretely show transfer learning behavior in
order to better handle unbalanced data.
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Appendix A. Additional Models

Additionally, to the experiments with BERTbase, we also performe experiments with other
masked language models. Concretely, we use BERTlarge, DistilBERT, RoBERTa, and
BART. The experimental setup is similar to the one described in Section 4.1. The results
of these experiments are presented in Table 3.

Results For the original pre-trained models, very diverse results can be observed. While
DistilBERT only achieves a precision of 4.7% on LAMA and only 2.8% on LAMA-UHN,
BERTlarge performs slightly better than BERTbase.

After adaptive fine-tuning, the quality of all models is increased significantly, with 51.6%
for LAMA and 43.1% for LAMA-UHN being the best performance achieved by BERTlarge.
BERTriple, BART, and RoBERTa achieve about the same performance on LAMA and
LAMA-UHN, while DistilBERT has slightly lower precision.

An interesting observation is the fact that all models, even though they vary in size,
architecture, and pre-training corpus, achieve very similar performances after fine-tuning.

Table 3: P@1 [%] for LAMA and LAMA-UHN for several additional language models.

Model LAMA LAMA-UHN

BERTbase 31.1 21.8
BERTriple 48.4 39.1

BERTlarge 32.3 24.4
Fine-Tuned BERTlarge 51.6 43.1

DistilBERT 4.7 2.8
Fine-Tuned DistilBERT 45.6 35.8

RoBERTa 24.7 17.0
Fine-Tuned RoBERTa 48.6 39.6

BART 21.1 11.5
Fine-Tuned BART 48.5 39.4
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