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Abstract

Complex real-world time series data are inherently
multi-faceted, e.g., temporal data can be described
by seasonality and trend. Popular clustering meth-
ods typically aggregate information from all facets,
treating them collectively rather than individually.
This aggregation may diminish the interpretability
of clusters by obscuring the specific contributions
of individual facets to the clustering outcome. This
limitation can be addressed by multi-facet clus-
tering that builds a separate clustering model for
each facet simultaneously. In this paper, we ex-
plore Bayesian multi-facet clustering modelling
for temporal data using nonparametric priors to
select an appropriate number of clusters automati-
cally and using variational inference to efficiently
explore the parameter space. We apply this frame-
work to nonlinear growth models and vector au-
toregressive models and observe their performance
through simulation studies. We apply these models
to real-world time series data from the English Lon-
gitudinal Study of Ageing (ELSA), highlighting its
utility in identifying meaningful and interpretable
clusters. These findings underscore the potential of
the framework for advancing the analysis of multi-
faceted longitudinal data in diverse fields. Code is
available at GitHub.

1 INTRODUCTION

Clustering, a key task in unsupervised machine learning, par-
titions unlabelled datasets into subgroups based on similarity
measures [Murphy, 2012]. Classical algorithms such as k-
means [MacQueen, 1967], hierarchical clustering [Hastie
et al., 2009], Gaussian mixture models [Fraley and Raftery,
2002] and DBSCAN [Ester et al., 1996] are widely applied
to uncover hidden data structures across various fields [Xu

and Wunsch, 2005]. In the context of longitudinal data, clus-
tering is crucial for exploring shared dynamics over time,
with applications in speech processing, medical diagnosis
and social sciences [Wilpon and Rabiner, 1985, Warren
Liao, 2005, Bulteel et al., 2016, Marshall et al., 2024].

Existing clustering methods typically identify a single par-
tition of the data by accumulating contributions from all
facets (we refer to this as single-facet clustering). However,
the rise of high-dimensional data and complex data struc-
tures in many clustering applications may reveal multiple
interesting clustering structures when focusing on different
characteristics or facets of the data. For instance, in images
of objects, two interesting facets might be the shape and
the color of the objects. Similarly, in temporal data, two
interesting facets might be the seasonality and the trend of
the data. Falck et al. [2021] argued that focusing on a single
facet, rather than considering multiple facets, is an arbitrary
and incomplete approach to clustering high-dimensional
datasets. In practice, heterogeneous samples are often more
effectively clustered based on a subset of characteristics,
with other characteristics being uninformative or redundant
[Kundu and Lukemire, 2024].

Standard clustering using combined information from all
facets for complex data structures, such as time series, high-
lights the limitation in interpretability. For instance, Mar-
shall et al. [2024] employed a mixture of nonlinear growth
models to cluster individual income trajectories into several
groups. Here the average income value and the variation
of income over time both contribute to the clustering, and
it is not clear which facet is driving the inferred clustering
outcome more. Instead, it might be more effective to cluster
each facet separately to find clusters with respect to both
average income and variation of income simultaneously,
and an individual can be assigned to both a specific average
income cluster and a variation over time cluster. Similarly,
the mixture of vector autoregressive models proposed by
Bulteel et al. [2016] can be potentially more interpretable if
the multivariate time series are clustered separately based
on their average values and their temporal dynamics.
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Figure 1: left) single-facet versus multi-facet clustering. right) nonparametric Bayesian multi-facet mixture model

Multi-facet clustering offers significant potential to address
these challenges by constructing separate partitions for each
facet. This approach not only ensures that items within
specific clusters exhibit homogeneity but also facilitates
the exploration of facets and their corresponding clusters,
each representing distinct characteristics of the data [Falck
et al., 2021]. Furthermore, this method requires a number
of clusters that scale linearly with the number of facets,
rather than exponentially. As a result, it reduces the total
number of clusters required to represent high-dimensional
data while explicitly capturing the unique characteristics
driving the clustering process. For instance, consider the
example illustrated in Figure 1 (left). Unlike single-facet
clustering which identifies five clusters by considering both
characteristics in aggregate, multi-facet clustering explic-
itly partitions the data across multiple facets. Specifically, it
identifies K1 = 3 clusters for Facet 1 and K2 = 2 clusters
for Facet 2, effectively summarizing six potential clusters
into a more interpretable structure. It is important to empha-
size that the multi-facet clustering is conceptually distinct
from multi-view/aspect clustering approaches [Chao et al.,
2021, Nayak and Luong, 2023]. Multi-view clustering aims
to derive a single clustering solution that integrates informa-
tion from multiple inputs (views) of the same sample cohort.
In contrast, multi-facet clustering seeks to uncover multiple
clustering solutions, each described by distinct characteris-
tics/facets of a single input cohort.

Related Work The concept of multi-facet clustering
aligns with the notion of learning multiple clusterings as
highlighted by Gordon [1999]. Various methods have since
been developed to address this issue by adapting conven-
tional clustering approaches. For example, Friedman and
Meulman [2004] proposed a distance-based clustering al-
gorithm that automatically detects subgroups of objects
clustering on different, possibly overlapping subsets of at-
tribute variables. Galimberti and Soffritti [2007] introduced
a two-step procedure with the first step identifying indepen-
dent subsets of variables and the second step applying a
model-based approach to identify cluster structures based
on these subsets. A Bayesian method by Niu et al. [2012]
introduced a probabilistic nonparametric Bayesian model
to learn overlapping feature facets and clusters within each

facet in a joint framework. Zong et al. [2024] proposed a
similar model-based multi-facet clustering approach using
a mixture of Gaussian mixture models, particularly suited
for high-dimensional nonclusterable genes. These methods
leverage feature selection techniques to identify relevant sub-
sets of features as facets for clustering. Additionally, Falck
et al. [2021] presented a deep learning approach extending
the variational autoencoder (VAE), a feature-based method,
to develop a multi-facet clustering algorithm. This model
identifies facets by learning latent variables for each facet
and simultaneously learns multiple clusterings in an end-to-
end framework. Notably, all these models are tailored for
static feature data and are not suitable for temporal data.
A recent study by Kundu and Lukemire [2024] introduced
a product Dirichlet process mixture model that employs
Dirichlet process (DP) mixture priors on model parameters.
Their approach primarily focused on applications to vec-
tor autoregressive models, relying on Markov chain Monte
Carlo (MCMC) methods.

Contributions While nonparametric Bayesian approaches
for multi-facet clustering using parameters of the model as
facets have been explored in prior research [Kundu and
Lukemire, 2024], they often rely on computationally inten-
sive techniques such as MCMC sampling, which might limit
their scalability and practical applicability for large datasets.
(A) This study extends existing methods by incorporating
a Variational Bayesian (VB) framework, enabling efficient
and scalable inference while separately modelling key char-
acteristics and identifying their corresponding clusters. (B)
We implement the method for the nonlinear growth model
(for the first time) to handle complex temporal data. (C)
We apply the framework to novel real-world data from the
English Longitudinal Study of Ageing (ELSA), showcasing
its effectiveness in capturing meaningful and interpretable
clusters of income trajectories. These contributions enhance
the practical applicability of Bayesian multi-facet clustering
in large-scale longitudinal data analysis.



2 MULTI-FACET MIXTURE MODEL

A standard mixture model with K components is described
as
∑K

k=1 πkp(y |θk) where πk is the probability of the k-th
mixture component and θk is the parameter of the respec-
tive component. The multi-facet mixture model (MMM), is
described as
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where f = 1, . . . , F are F facets of the mixture component
and we assume independence among these facets apriori.
Here each facet has its respective mixture components de-
scribed by the probabilities π(f) and parameters Θ(f). In
MMM, for each sample yn, the cluster assignments for dif-
ferent facets are generated independently, and the sample is
generated using respective parameters simultaneously i.e.,

z(f)n ∼ Cat(π(f)) ∀ f = 1, . . . , F
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Each facet θ(f) is typically an exclusive partition of the
entire parameter space, i.e., θ(1) ∪ . . . ∪ θ(F ) = θ allowing
the model to disentangle and cluster different aspects of the
data; and the choice of partition, i.e., facet is guided by the
user to provide flexibility and interpretability.

We use the Dirichlet process [Ferguson, 1973] as a nonpara-
metric prior for the parameters θ(f) of each facet, i.e.,

G(f) ∼ DP(G(f)
0 , α(f))

θ(f)
n ∼ G(f) ∀ n = 1, . . . , N

G(f) is a random probability measure made up of discrete
values (atoms) for θ(f). The Dirichlet process prior has two
hyperparameters: the base distribution G

(f)
0 is the mean

distribution of the Dirichlet process, commonly chosen to
be a conjugate prior; and the concentration parameter α(f),
which controls how many distinct clusters are likely to form
[Antoniak, 1974]. We use the stick-breaking construction
[Sethuraman, 1994], i.e.,
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Here π(f) follows the Griffiths-Engen-McCloskey (GEM)
distribution. λ(f)

kf
denotes the parameters of base distribu-

tion in general. Given the influence of the concentration
parameter on the growth of components within the data, we
place conjugate Gamma priors on α(f), as suggested by
Blei and Jordan [2006].

α(f) ∼ Gamma(s
(f)
1 , s

(f)
2 )

Thus, the parameters for nonparametric MMM are Θ ={
θ
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, v
(f)
kf

, α(f), . . .
}

alongside auxiliary variables Z =

{z(f)n , . . .}. The plate diagram is shown in Figure 1 (right).

Mean Field Variational Inference We apply variational
inference using the mean-field method [Blei and Jordan,
2006] to approximate the posterior distribution of the vari-
ables of interest. This approach leverages a coordinate
ascent algorithm to optimize the evidence lower bound
(ELBO). In comparison to the Gibbs sampler, variational
inference demonstrates faster convergence, with its run-
time largely unaffected by dimensionality Blei and Jor-
dan [2006]. To ensure computational efficiency within the
mean-field framework, we adopt fully factorized variational
distributions, which assume no dependencies between un-
observed variables. In addition, we consider a truncated
stick-breaking representation [Blei and Jordan, 2006] to
approximate the distribution of the infinite-dimensional ran-
dom measure G(f). This approach involves setting a fixed
truncation level ℓ and defining q(v

(f)
ℓ = 1) = 1 for any facet

parameter, ensuring that the mixture probabilities π(f)
k (v(f))

are zero for k > ℓ. We use variational distribution in the
same family as the respective prior (see Equation C.7). The
update rules for α(f) and v(f) do not depend on the choice
of distribution p while z

(f)
n and θ(f) do (see Equation C.8).

Multi-facet Nonlinear Growth Model The nonlinear
growth model captures complex growth dynamics [Suk et al.,
2018], and spline functions [Ahlberg et al., 1967] have been
a well-established method for modelling such nonlinearity.
We assume that for each individual n, the trajectory yobs

n

is observed at locations tobs
n ∈ [0, T ]T

obs
n where T obs

n is the
number of observed locations for an individual. Given the
individual cluster assignments z(a)n , z(β)

n and z
(τ)
n for each

facet and corresponding cluster parameters, the likelihood
of the n-th time series at time tobs

n is described as

yobs
n | z(a)n = ka, z

(β)
n = kβ, z

(τ)
n = kτ ∼

NT obs
n
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+ βkβ
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where B(tobs
n ) ∈ RL×T obs

n is the basis matrix generated by
evaluating spline basis functions at locations tobs

n . We treat
the intercept a, the coefficient row vector β = (β1, . . . , βL)
and noise precision τ as three facets. We employ B-spline
basis functions of order p = 2 with M internal knots, and
exclude one of the basis functions to explicitly include an
intercept term a (see Supplement D), thus, L = M + p− 1.
We use the following priors over the parameters, and choose
variational distributions in the same family,

a ∼ N (µ(a), τ (a))

β ∼ NL(µ
(β), τ (β)I)

τ ∼ Gamma(λ
(τ)
1 , λ

(τ)
2 ).



Figure 2 (left) shows the plate diagram of the multi-
facet mixture of nonlinear growth models (NLG). Supple-
ment B.1 provides additional model specifications and Sup-
plement C.1 derives the update rules.

Multi-facet Vector Autoregressive Model The Vector
Autoregressive (VAR) model [Lütkepohl, 2007] captures the
linear dynamical relationships among multiple time series.
In VAR model involving D variables over T time points,
each variable is modelled as a linear transformation of its
P preceding values. Here we consider P = 1 since we are
interested in short time series. Given the individual cluster
assignments z

(a)
n , z(B)

n and z
(τ)
n for each facet and corre-

sponding cluster parameters, the distribution of the n-th
time series at time t is:

ynt |yn(t−1), z
(a)
n = ka, z

(B)
n = kB, z

(τ)
n = kτ ∼

ND(aka
+BkB

(yn(t−1) − aka
),diag(τ kτ

)). (2)

We assume the outcome vector at the first time point
yn0 ∼ ND(aka

,diag(τ kτ
)). We view the intercept vec-

tor a ∈ RD, the coefficient matrix B ∈ RD×D and the
noise precision vector τ ∈ RD

+ as three facets. We use Yule-
Walker representation [Ghosh et al., 2019, Lütkepohl, 2007]
to assign the intercept a to the trajectory after the evolution
equation, allowing the trajectories to be centered around a.
This can be extended to accommodate varying time lengths
Tn across individuals.

We use the following priors over the parameters, and choose
variational distribution in the same family,

a ∼ ND(µ(a), τ (a)I)

B ∼ MND,D(M(B),diag(τ (B)), I)

τd ∼ Gamma(λ
(τ)
1 , λ

(τ)
2 ) for d = 1, . . . , D

The right figure in Figure 2 shows the plate diagram of the
nonparametric Bayesian multi-facet vector autoregressive
model (VAR). Supplement B.2 provides additional model
specification, and Supplement C.2 derives the update rules.

Implementation Details Bayesian mixture models often
face challenges due to the high multimodality of poste-
rior distributions [Mena and Walker, 2015, Stephens, 1996,
Carreira-Perpiñán and Williams, 2003]. Therefore, we per-
form multiple optimization runs with diverse initializations
in parallel and select the run with the highest ELBO as de-
fined in Equation C.6. In addition, we incorporate cluster
ordering and cluster pruning techniques during the learning
process to enhance the algorithm’s performance, following
the methods demonstrated by Kurihara et al. [2007] and
Lim and Wang [2018]. Cluster ordering involves rearrang-
ing clusters in descending order based on their estimated
probabilities at each iteration. Cluster pruning discards clus-
ters whose estimated probabilities fall below a specified
threshold, dynamically reducing the number of active clus-
ters during the learning process.

We observe that large clusters are often subdivided into
smaller, similar clusters (see Supplement A.1). We adjust
the hyperparameters of α(f)’s prior to have a mean smaller
than 1, with a small variance to encourage the automatic
merging of such clusters. We found that combining cluster
pruning with a smaller prior mean for α(f) helps mitigate the
cluster splitting when sufficient iterations for convergence
are allowed (see Table A.3). Intuitively, while a smaller
prior mean for α(f) can reduce the probability of forming
redundant clusters, it typically requires many iterations to
reach convergence. Cluster pruning accelerates this process
by dynamically shrinking the truncation level ℓ during each
iteration to approximate the optimal number of clusters.

3 SIMULATION STUDIES

NLG We use two datasets of different sizes: (NLG-S) a
small dataset with N = 2, 400 and (NLG-L) a large dataset
with N = 15, 000. Furthermore, we use two versions of the
same dataset, namely, complete (C) (i.e., no missing val-
ues) and incomplete (I). For both cases, the number of time
points is set to T = 10, while for the incomplete dataset,
50% of the values are randomly removed. The ground truth
number of facet clusters in the simulated large datasets is
Ka = 5, Kβ = 5 and Kσ = 5. Table A.1 reports the re-
sulting average relative L2 errors and adjusted Rand indices
(ARIs) for the simulated datasets. Visual representations of
the estimations are provided in Supplement A.1.

We observed that the estimations for the intercept and coef-
ficient facets are accurate, as indicated by the low relative
L2 errors across all datasets, with values consistently near
0 for the intercept and ranging between 0.006 and 0.011
for the coefficient facet. For the noise parameter, while the
estimation is precise (relative L2 error between 0.006 and
0.017) in the complete or small datasets (NLG-S-C, NLG-
S-I, NLG-L-C), it shows greater error (relL2 = 0.046 and
ARI < 0.5) in the large incomplete dataset (NLG-L-I).
In terms of ARI for the intercept and coefficient facets,
the model achieves near-perfect clustering results (ARI
> 0.9) under the complete or small datasets (NLG-S-C,
NLG-S-I, NLG-L-C) but demonstrates less accurate re-
sults (0.7 < ARI < 0.9) for the large incomplete dataset
(NLG-L-I). Both results are expected since the substantial
missingness might hinder the model’s ability to effectively
infer noise from the time series data points and degrade
clustering performance. We found that most mis-clustered
trajectories originate from clusters with large noise. This is
reasonable as individual trajectories within high-noise clus-
ters often deviate significantly from the mean, making them
more susceptible to being mis-clustered into other groups.

A comparison of computational efficiency across inference
methods is presented in Table A.5 in the Appendix. Our
Variational Bayes method achieves runtimes between ADVI
and MLE, offering a substantial speed-up over MCMC while
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Figure 2: Plate diagram of MMM with left) nonlinear growth model and right) multivariate autoregressive model.

maintaining competitive performance.

VAR We test the model on both small and large datasets
with varying time lengths, containing up to T = 10 time
points and D = 3 variables. The ground truth number of
facet clusters is Ka = 3, KB = 3 and Kσ = 3. The results
in Table A.2 and visual representations in Supplement A.1
demonstrate the model’s performance.

For the smaller dataset (N = 1, 000), the relative L2 errors
for the intercept, coefficient, and noise facets are 0.002,
0.017, and 0.028, respectively, with corresponding ARIs
of 0.915, 1.0, and 0.997, indicating near-perfect clustering
accuracy. In the larger dataset (N = 6, 000), estimation
accuracy for the intercept and noise facets improves further
(errors decrease to 0.001 and 0.012), while the error for the
coefficient matrix slightly increases to 0.09. Nevertheless,
ARIs remain high (0.843 for a, 0.982 for B, and 0.989
for σ), demonstrating accurate clustering and estimation
performance across varying-length multivariate time series.

4 APPLICATIONS

In this section, we apply the NLG and VAR models to two
distinct time series datasets derived from the English Longi-
tudinal Study of Ageing (ELSA) [Banks et al., 2023]. ELSA
is a nationally representative dataset of individuals aged
50 and older, residing in private households and originally
derived from the Health Survey for England in 2002. Com-
prehensive methodological details on ELSA can be found
in Pacchiotti et al. [2021].

ELSA Income Data The ELSA income data used in this
study is consistent with Marshall et al. [2024]. A final sam-
ple of 13, 002 respondents is selected by including only
individuals who participated in at least two waves of ELSA
and reported incomes ranging between £0 and £1000 per
week to reduce the influence of outliers. The income vari-
able used in this analysis is the equivalised total income
at the “benefit unit" level, which includes either a single
individual or a couple with any dependent children [Mar-
shall et al., 2024]. This equivalisation process adjusts the
reported income values so that they represent the income of
a single-person household, making it possible to compare
households fairly regardless of their size. Additionally, all
income data is adjusted for inflation from 2002 to 2019,
using 2018/19 as the base year. The analysis considers ages
between 50 to 90, observing up to nine time points across
nine waves for each individual spanning at most 18 years of
their life. Due to this longitudinal framework, the missing
data rate is significantly high at 86.8%.

The single-facet clustering analysis reported by Marshall
et al. [2024] identified ten distinct income trajectory clusters.
These clusters were later consolidated into four broader cat-
egories of later-life income trajectories based on stable and
similar income levels following the statutory retirement age
of 65. The resulting categories were labelled as “Luxury"
(retirement income at or above £500 per week), “Com-
fortable" (£300 to £500 per week in retirement), “Always
Poor" (generally below £300 per week in retirement) and
“Boom to Bust" (income rising to £600 per week by age 70,
then declining to around £200 after age 80). A critical differ-
entiating factor among the income trajectory clusters within
these broader groups was the degree of income volatility



Figure 3: a) Seven intercept clusters named “Poor", “Poor High", “Comfortable Low", “Comfortable", “Comfortable High",
“Luxury Low" and “Luxury" that broadly fall into the categories of “Poor", “Comfortable" and “Luxury", at the retirement
age of 67. b) Five shape clusters, “Stable" income, “Pre-retirement Drop" in income, “Pre-retirement Spike Low" in income,
“Pre-retirement Spike High" in income and “Retirement Spike" in income. c) Four noise clusters. Relative risk ratios (RRRs)
for d) intercept e) shape and f) noise clusters.

experienced between the ages of 50 and 65. Three distinct
volatility patterns were identified: a pre-retirement income
drop, a spike in pre-retirement income, and stable income
trajectories.

We applied our NLG model with an intercept shift aligned to
the retirement age of 67 (proof in Supplement E) to the same
dataset to learn multi-facet clustering results. The shift was
applied to gain better interpretability in the context of retire-
ment age as done by Marshall et al. [2024], and also since
the missing rate was lower around this age Supplement A.2).
The dataset spans T = 41 time steps corresponding to ages
50 through 90. We used linear B-splines (p = 2) with 3
equidistant internal knots positioned at ages 60, 70 and 80,
following the approach in Marshall et al. [2024]. Given the
income range of £0 to £1000, the prior mean of the inter-
cept is appropriately set at 500 with a standard deviation of

300, to reflect the central tendency and variability within
this range. Moreover, we set truncation level ℓ = 20 with a
pruning probability threshold of 0.05 (see Supplement A.2),
and specify the prior for α(f) as Gamma(300, 5000). To
ensure a robust exploration of the optimization landscape,
we conducted 50 parallel runs of our Variational Bayesian
framework.

The estimated clusters in each facet are visually presented
in Figure 3. The model identified seven intercept clusters at
193.9, 263.1, 313.69, 356.01, 415.45, 502.32 and 650.52.
We refer to these clusters as “Poor", “Poor High", “Com-
fortable Low", “Comfortable", “Comfortable High", “Lux-
ury Low" and “Luxury", aligning with the findings of Mar-
shall et al. [2024]. Moreover, five distinct income trajectory
shapes were identified: “Stable income" (Cluster 1), “Pre-
retirement Drop in income" (Cluster 2), “Pre-retirement



Figure 4: Contingency table of cluster assignments between multi-facet (column) and single-facet (row) clustering presented
as percentage over whole population.

Spike Low in income" (Cluster 3), “Pre-retirement Spike
High in income" (Cluster 4), and “Retirement Spike in in-
come" (Cluster 5). These findings are largely consistent with
those of Marshall et al. [2024]. The four noise clusters re-
veal significant variability in income trajectories. The noise
variable captures the volatility of income around an average
trend, and it was not captured previously, thus, adding an
additional dimension to the analysis of income trajectory.

Following Marshall et al. [2024], we explore the drivers of
these distinct patterns using multinomial regression models
with social class, gender, and precarity in housing, pensions,
relationships, care, and retirement as predictors. We observe
that lower education decreases the likelihood of belonging
to “Luxury” cluster compared to “Poor” cluster (RRR < 0.5,
p < 0.001) while having occupational pension increases
the likelihood of belonging to “Luxury” cluster compared
to “Poor” cluster (RRR = 3.597, p < 0.001). Compared to
“Stable” cluster, lower education decreases the likelihood of
belonging to “Pre-retirement Spike” clusters (RRR < 0.7,
p < 0.02). Compared to “Stable” cluster, being widowed
increases the likelihood of belonging to “Pre-retirement
Drop” cluster (RRR = 1.505, p < 0.001) while having
occupational pension decreases the likelihood of belonging
to “Pre-retirement Drop” cluster (RRR = 0.872, p < 0.01).
Compared to “Lowest Noise” cluster, lower education de-
creases the likelihood of belonging to other higher noise
clusters, e.g., “Highest Noise” (RRR < 0.5, p < 0.001),
while an opposite effect is observed for having an occupa-
tional pension.

We compare the cluster assignments from our multi-facet
model with those from the single-facet model explored by
Marshall et al. [2024], which identified ten clusters, and

summarize this in Figure 4. We observe general consis-
tency between the two clustering approaches when viewed
through a multi-faceted lens. In the intercept facet, a signifi-
cant proportion of individuals assigned to “Poor” and “Poor
High” clusters in the single-facet model have also been as-
signed to “Poor” and “Poor High” clusters in the multi-facet
model, although some “Poor High” individuals in the former
have been assigned to “Comfortable Low” in the latter. A
similar situation is also observed in the “Luxury” clusters
in the single-facet model that have been aligned with “Lux-
ury” cluster in the multi-facet model except “Luxury-Pre-
retirement Drop” cluster that has been aligned with “Com-
fortable High” and “Luxury Low” clusters. Similarly, a sig-
nificant proportion of individuals assigned to “Luxury-Pre-
retirement Drop” and “Comfortable-Pre-retirement Drop”
clusters in single-facet model have also been assigned to
“Pre-retirement Drop” cluster in the multi-facet clustering
model. A similar situation is observed for “Pre-retirement
Spike” clusters in the single-facet model that have been
aligned to “Pre-retirement Spike Low” and “Pre-retirement
Spike High” clusters in the multi-facet model. In the con-
text of the noise facet, a significant proportion of individu-
als from most clusters in the single-facet clustering except
“Poor”, “Poor High”, “Comfortable-Stable Income”, and
“Luxury-Medium Stable Income” have been assigned to the
“Highest Noise” cluster, while the rest of the clusters align
with “Moderate Noise” and “Second Lowest Noise” clusters
with “Poor” and “Poor High” also aligning with the “Lowest
Noise” cluster in the multi-facet model.



Figure 5: a) Eight intercept clusters. b) Three coefficient matrix clusters. c) Three noise clusters. Relative risk ratios (RRRs)
for d) intercept e) coefficients and f) noise clusters.

ELSA Multivariate Data The ELSA multivariate dataset
analysed includes 6640 individuals with varying time
lengths. For each individual, a minimum of 4 time points
is observed across nine survey waves. We examine the tra-
jectories of three variables for each individual: “frailty",
“wellbeing" and “social isolation". Frailty is quantified using
a frailty index [Marshall et al., 2015], ranging from 0 to
56. Wellbeing is measured using CASP-19 [Howel, 2012],
with a scale ranging from 0 to 57, and social isolation is
assessed using an existing scale of 0 to 6 [Davies et al.,
2021]. To ensure consistency, all scales are standardized to
range between 0 and 1. Additionally, missing entries in each
time series are imputed using mean imputation for each
individual.

We applied our first-order VAR model to this dataset, which
consists of up to Tn ∈ [4, 9] time steps and D = 3 variables.

Since the values for each variable were standardized to fall
between 0 and 1, the prior mean of the intercepts was set to
0.5, with a prior standard deviation of 0.1. The truncation
level was set to ℓ = 20 with a pruning threshold of 0.05, and
the prior for α(f) was specified as Gamma(300, 5000). To
ensure robust optimization, we performed 50 parallel runs
using our VB framework.

The estimated clusters in each facet are visually displayed
in Figure 5. We found eight intercept clusters representing
varying levels of frailty, wellbeing and social isolation. The
coefficients cluster 2 and 3 largely align with the intuitive
notion that wellbeing has a negative impact on frailty. How-
ever, cluster 1 and 2 demonstrate a more counterintuitive
relationship where the opposite is observed, i.e., wellbe-
ing positively impacting frailty and vice versa. Cluster 3
shows a strong negative influence of frailty on wellbeing.



The noise facet reveals significant variability in social iso-
lation trajectories in cluster 1 and 3 compared to cluster 2,
while cluster 2 and 3 are clusters least and most driven by
noise respectively.

Similar to our analysis in the previous section, we explore
the drivers of these patterns using covariates. Due to the
smaller size of the data and the large number of clusters, we
mostly observe broad confidence intervals from the multino-
mial regression. However, some interesting patterns appear
nonetheless. Compared to intercept cluster 1, being divorced
or widowed increases (RRR > 1.5, p < 0.001) the likeli-
hood of belonging to cluster 6 (higher frailty and lower
wellbeing than cluster 1) and cluster 8 (higher social iso-
lation than cluster 1). An opposite effect is observed for
intercept clusters 3, 4 (lower social isolation than cluster
1) and cluster 7 (lower wellbeing and social isolation than
cluster 1) (RRR < 0.3, p < 0.001). Compared to coeffi-
cient cluster 3 (intuitive direction of wellbeing negatively
affecting frailty), receiving care decreases the likelihood
of belonging to clusters 1 and 2 (counterintuitive direc-
tion of wellbeing positively affecting frailty, RRR < 0.5,
p < 0.001). Compared to noise cluster 1, receiving care
increases the likelihood of belonging to cluster 3 (higher
noise variance in wellbeing and frailty compared to cluster
1, RRR = 5.294, p < 0.001). Compared to noise cluster
1, being widowed decreases the likelihood of belonging to
cluster 2 (lower noise variance in social isolation compared
to cluster 1, RRR = 0.823, p < 0.02).

5 DISCUSSION

Traditional time series clustering methods, like those used
by Marshall et al. [2024] and Bulteel et al. [2016], typi-
cally produce a single clustering solution using all facets
simultaneously and require extensive post-analysis to in-
terpret the clusters. In contrast, nonparametric Bayesian
multi-facet clustering model disentangles multiple facets
within a dataset, each described by distinct characteristics.
This enhances interpretability by providing clearer insight
into why clusters form and what defines them. Additionally,
tying facets directly to model parameters offers an intuitive
way to explain clustering outcomes.

In this paper, we present an extension to existing multi-facet
mixture models. First, we incorporate a variational Bayesian
framework, which offers enhanced computational efficiency
and is particularly well-suited for large-scale datasets, in
contrast to traditional MCMC sampling methods. Second,
we incorporate Dirichlet process priors to simultaneously
learn the number of facet clusters, removing the need to
predefine this value. Third, we apply multi-facet clustering
in the context of nonlinear growth models. Fourth, we cap-
ture an additional dimension, i.e., the noise characteristics
as a facet for both nonlinear growth model and multivariate
regression model. Fifth, we demonstrate the versatility of

the proposed method through two detailed time series model
applications tested on real datasets.

This multi-facet clustering framework can be further gen-
eralised to a broader class of time series models by adopt-
ing alternative likelihood functions. For example, a Hidden
Markov Model (HMM) can be used for categorical response
data, where the facets may correspond to the columns of
the transition matrix, capturing distinct state dynamics. This
flexibility allows the multi-facet approach to be adapted to
diverse temporal modelling contexts, enabling interpretable
clustering based on model-specific structural elements.

While the method and analysis have notable strengths, some
limitations remain. From a conceptual perspective, the in-
dependence of facets apriori is a strong assumption that
considers any combinations of parameters from the facets
to be feasible. However, in practice, this might not happen,
thus, creating a model mismatch as shown in the introduc-
tion Figure 1. This limitation can be addressed by allowing
facets to be dependent, but this can increase the number of
cluster probabilities being estimated, potentially impacting
computational efficiency and model identifiability. Another
aspect of the multi-facet clustering is the choice of facets.
For instance, in the VAR model, the coefficient matrix facet
can be further decomposed into row-wise facets to cap-
ture variable-specific interaction patterns (as discussed in
[Kundu and Lukemire, 2024]). This alternative facet specifi-
cation may lead to different clustering outcomes. Therefore,
the definition and granularity of facets are inherently sub-
jective and should be guided by the research question and
the interpretability of the underlying parameter components.
From an implementation perspective, a tuning of the prun-
ing threshold may be necessary to address the splitting of
similar clusters. This process can be improved and validated
more extensively on simulated data.

Multi-facet clustering offers a unique and exciting direc-
tion to clustering complex temporal data in an interpretable
manner. This study takes a step in this direction by imple-
menting this method on several temporal models, and apply-
ing this approach to complex real-world applications. The
framework offers valuable insights into complex real-world
phenomena and provides a flexible, interpretable, and com-
putationally efficient approach for analysing multi-faceted
real datasets.
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A ADDITIONAL RESULTS

A.1 SIMULATION

In this section, we show additional results for simulations. Specifically, we first examine learning outcomes under various
truncation levels for both the NLG and VAR models without cluster pruning, as shown in Figure A.1. The findings suggest
that learning outcomes are generally stable when the truncation level exceeds the true number of clusters. However, a notable
issue arises where some large clusters may split into multiple smaller, similar clusters. This phenomenon is observed in the
visual representations of estimations for both models. Figure A.3 and Figure A.4 provide visual representations of NLG
estimations on incomplete datasets across different truncation levels, while Figure A.5 and Figure A.6 depict estimations for
VAR under varying truncation levels. The ARIs fluctuate due to cluster splitting issues, which can slightly degrade the ARI
values. We then investigate the relationship between ELBO and truncation levels in Figure A.2. The figure shows that the
highest ELBO is achieved at the correct truncation level, which aligns with the notion of cluster pruning during the learning
process.

We demonstrate the effects of cluster pruning and tuning the hyperparameters of α(f)’s prior in simulation for the VAR
model, as shown in Table A.3. To ensure a fair comparison, we use the same random seed for all runs to eliminate the
influence of initialization, along with a fixed maximum of 500 iterations and a truncation level of 20. Our results show that
combining cluster pruning with hyperparameter tuning of the α(f) prior not only facilitates convergence to the optimal
number of clusters but also accelerates convergence, requiring fewer iterations. Moreover, we explore the impact of tuning
the pruning threshold based on ELBO, as shown in Table A.4, using the same prior settings, maximum iteration and
truncation level.

Table A.1: The Average Relative L2 Errors and ARIs of Facets for NLG Simulation.

Dataset relL2 a relL2 β relL2 σ ARI a ARI β ARI σ

N = 2, 400;NA% = 0 0.000 0.006 0.007 0.999 1.0 0.999
N = 2, 400;NA% = 20 0.000 0.010 0.006 1.0 0.996 0.995
N = 15, 000;NA% = 0 0.000 0.009 0.017 0.984 0.930 0.734
N = 15, 000;NA% = 50 0.000 0.011 0.046 0.886 0.73 0.426

Table A.2: The Average Relative L2 Errors and ARIs of Facets for VAR Simulation.

Dataset relL2 a relL2 B relL2 σ ARI a ARI B ARI σ

N = 1, 000;NA% = 0 0.002 0.017 0.028 0.915 1.0 0.997
N = 6, 000;NA% = 0 0.001 0.09 0.012 0.843 0.982 0.989
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(a) NLG complete simulated data (b) NLG incomplete simulated data (c) VAR simulated data

Figure A.1: The relative L2 errors and ARIs vs. different truncation levels for simulations.

(a) NLG model (ground truth at 5) (b) VAR model (ground truth at 3)

Figure A.2: The ELBO vs. different truncation levels for simulations. Both models achieve their highest ELBO when the
truncation level matches the ground truth number of clusters.

Table A.3: Demonstration of Effects of Cluster Pruning and Hyperparameters Tuning of α(f) Prior by VAR Simulation.

Cluster pruning α(f) prior tuning Iterations used #Cluster a #Cluster B #Cluster σ

No No 500 4 12 3
No Yes 500 3 8 3
Yes No 500 3 4 3
Yes Yes 470 3 3 3

True #Clusters 3 3 3

Table A.4: Demonstration of Tuning Cluster Pruning Threshold by NLG Simulation.

Pruning threshold ELBO #Cluster a #Cluster β #Cluster σ

No pruning -189642.87 6 10 6
0.01 -186681.43 5 7 7
0.02 -185241.61 5 6 6
0.04 -184177.22 5 5 5
0.06 -183491.80 5 5 5
0.07 -183135.41 5 5 5
0.08 -190081.36 5 5 5

True #Clusters 5 5 5



Table A.5: Average runtime of the BMF-NLG model using different inference methods implemented in RSTAN.

Size N HMC ADVI MLE
250 1h 3min 30s
300 4h 10min 80s

1200 15h 1h 7min
2400 60h 2h 20min
15000 >10days >2days 20h

(a) a (b) β

(c) σ (d) π for facets

Figure A.3: Parameter estimations of the NLG model on the large incomplete dataset at truncation level 10. The true number
of clusters for all three facets is 5.



(a) a (b) β

(c) σ (d) π for facets

Figure A.4: Parameter estimations of the NLG model on the large incomplete dataset at truncation level 50.

(a) a

(b) B

(c) σ (d) π for facets

Figure A.5: Parameter estimations of the VAR model on the simulated dataset when truncation level is 10. The true number
of clusters for all three facets is 3.



(a) a

(b) B

(c) σ (d) π for facets

Figure A.6: Parameter estimations of the VAR model on the simulated dataset when truncation level is 50. For the coefficient
facet in (b), Cluster 1 and Cluster 7 are the same, Cluster 2, Cluster 4, Cluster 8 and Cluster 10 are the same while Cluster 3,
Cluster 5, Cluster 6 and Cluster 9 are the same.



A.2 APPLICATIONS

In this section, we present additional results for the application. Figure A.7 shows the missing rate in the ELBO income
dataset at different ages. We see the missing rate at the retirement age 67 is relatively lower. As a result, we changed the
intercept facet from age 50 to retirement age 67. Figure A.8 displays the impact of different cluster pruning thresholds on
real datasets. Due to the high missing rate and high noise in the real datasets, we choose the pruning threshold based on the
number of clusters and the smallest cluster probability we expect (0.05 for both datasets).

Figure A.7: The missing rate of ELSA data for the NLG model at each age time point.

(a) ELSA income data (b) ELSA multivariate data

Figure A.8: Different pruning thresholds vs. number of clusters for real datasets. We compute the proportion of the number
of clusters learned from multiple runs.



B ADDITIONAL EXAMPLE MODEL DETAILS

B.1 NLG

The mathematical expression of the nonlinear growth model is

f (p)
n (t) = an +

L∑
i=1

βniBi,p(t)

where the spline function can be built from a linear combination of a collection of B-splines {Bi,p(t)}Li=1 of degree p− 1
with coefficient βi. Note that if we set M = 0 and p = 2, meaning no internal knots and use linear B-splines, it simply
forms the linear growth model.

Assume an additive Gaussian noise for each trajectory at various time points ϵnt ∼ N (0, τn) and we let τ = 1
σ2 known as

precision. Given the individual cluster assignments z(a)n , z(β)
n and z

(τ)
n for each facet and corresponding cluster parameters,

we have the observable data distributed as

yn | z(a)n = ka, z
(β)
n = kβ, z

(τ)
n = kτ ∼ NT (aka

+ βkβ
B(t), τkτ

I) (B.3)

where B(t) ∈ RL×T is the basis spline matrix of order p and τkτ
I is the precision matrix with scalar precision parameter.

The cluster numbers ka, kβ, kτ can go to infinity.

We specify the base distributions for facet parameters as conjugate priors. That is,

G
(a)
0 ∼ N (µ(a), τ (a))

G
(β)
0 ∼ NL(µ

(β), τ (β)I)

G
(τ)
0 ∼ Gamma(λ

(τ)
1 , λ

(τ)
2 )

(B.4)

where τ (a) and τ (β)I are precisions. Therefore, the corresponding variational distributions should be in the same distribution
family as priors.

For incomplete data, we have p(yn | zn,a,β, τ ) = p(yobs
n | zn,a,β, τ )p(ymiss

n | zn,a,β, τ ). Denote tobs
n observed time

points for each n where
∣∣tobs

n

∣∣ = T obs
n then yobs

n will depend on tobs
n . So, the likelihood B.3 becomes distribution 1. It is

obvious that with the marginal distribution 1 of observed data, we can simply replace all yn, B(t) and T with yobs
n , B(tobs

n )
and T obs

n in the update rules.

B.2 VAR

We define the first-order vector autoregressive model for an individual time series n as:

ynt = an +Bn(yn(t−1) − an) + ϵnt

where ynt and yn(t−1) ∈ RD are D dimensional vector of time series values at time points t and t− 1 and an denotes the
intercept term. Bn is a D×D matrix containing the regression coefficients where Bn,ij refers to the coefficient of yn(t−1),j

in the linear function for ynt,i. We assume ϵnt ∼ ND(0,diag(τn)) is the time-invariant noise term with diagonal precision
matrix parametrised by τn ∈ RD

+ .

The distribution of individual time series is already stated in the main text and the joint likelihood of the entire time series is

p(yn = [yn0, . . . ,yn(T−1)] | zn,a,B, τ ) = p(yn0 | zn,a, τ )
T−1∏
t=1

p(ynt |yn(t−1), zn,a,B, τ )

where the individual time series matrix yn ∈ RD×T . This forms a Matrix normal distribution [Dawid, 1981]:

yn | z(a)n = ka, z
(B)
n = kB, z

(τ)
n = kτ ∼ MND,T

(
aka

1⊺ +
[
0,BkB

([yn0, . . . ,yn(T−2)]− aka
1⊺)
]
,diag(τ kτ

), IT
)
.



The extension to varying length time series is straightforward by considering different time series lengths Tn for each
individual.

We specify the base distributions for facet parameters as conjugate priors. That is,

G
(a)
0 ∼ ND(µ(a), τ (a)I)

G
(B)
0 ∼ MND,D(M(B),diag(τ (B)), I)

G
(τ)
0 ∼ Gamma(λ

(τ)
1 , λ

(τ)
2 ) for τd, d = 1, . . . , D

(B.5)

C ADDITIONAL INFORMATION ON VARIATIONAL INFERENCE

Variational inference focuses on minimizing the Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951] between a
variational distribution, denoted as q(Θ), and the true posterior distribution p(Θ |Y). Specifically, let qν(Θ) be a family of
distributions parameterized by variational parameters ν. The objective is to minimize the KL divergence between qν(Θ)
and p(Θ |Y), given by:

DKL(qν(Θ) ∥ p(Θ |Y)) = Eq[log qν(Θ)]− Eq[log p(Θ,Y)] + log p(Y).

Since this term is constant with respect to the variational parameters, it is equivalent to maximizing a lower bound on the log
model evidence log p(Y), referred to as the evidence lower bound (ELBO). The generic ELBO for MMM is:

ELBO = Eq[log p(Θ,Y)]− Eq[log q(Θ)]

=

F∑
f=1

∞∑
kf=1

Eq[log p(θ
(f)
kf

)] +

F∑
f=1

Eq[log p(v
(f) |α(f))] +

N∑
n=1

F∑
f=1

Eq[log p(z
(f)
n |v(f))]

+

N∑
n=1

Eq[log p(yn | zn, {θ(f)
kf

}Ff=1)]− Eq[log q(Θ)].

(C.6)

The cluster assignments for a sample across all facets are collectively encoded as zn = (z
(1)
n , . . . , z

(F )
n ). Under the stick-

breaking construction, facet parameters are sampled as θ(f)
kf

∼ G
(f)
0 , with stick lengths v(f)kf

∼ Beta(1, α(f)) determining

probabilities π(f)
kf

(v(f)) = v
(f)
kf

∏kf−1
i=1 (1− v

(f)
i ). We also place Gamma prior to α(f): α(f) ∼ Gamma(s

(f)
1 , s

(f)
2 ). Thus,

the generic variational distributions for MMM are:

θ
(f)
k ∼ p(θ

(f)
k |λ(f)

k

∗
)

v
(f)
k ∼ Beta(α

(f)
k1

∗
, α

(f)
k2

∗
)

z(f)n ∼ Cat(π(f)
n

∗
)

α(f) ∼ Gamma(s
(f)
1

∗
, s

(f)
2

∗
).

(C.7)

It can be shown that the generic update rules for variational parameters can be accomplished by computing the following
equations ( Supplement C.1):

λ
(f)
k

∗
= Eq[g(Θ−θ

(f)
k

,Y)]

α
(f)
k1

∗
= 1 +

N∑
n=1

π
(f)
nk

∗
; α

(f)
k2

∗
=

s
(f)
1

∗

s
(f)
2

∗ +

N∑
n=1

ℓ∑
i=k+1

π
(f)
ni

∗

π
(f)
nk

∗
∝ exp

(
Eq[log v

(f)
k ] +

k−1∑
i=1

Eq[log(1− v
(f)
i )] + S

(f)
nk

)

s
(f)
1

∗
= s

(f)
1 + ℓ− 1; s

(f)
2

∗
= s

(f)
2 −

ℓ−1∑
k=1

Eq[log(1− v
(f)
k )]

(C.8)



where g(Θ−θ
(f)
k

,Y) are the parameters of the distribution for θ(f)
k when conditioning on the remaining latent variables and

the observations i.e. p(θ(f)
k |Θ−θ

(f)
k

,Y). The update for v(f)k is independent of model specification while S
(f)
nk depends

on the likelihood and different facets. Iterating these update rules optimizes ELBO in Equation C.6 with respect to the
variational parameters defined in Equation C.7. The algorithm converges when the change in ELBO falls below a predefined
threshold.

C.1 DERIVATION OF UPDATE RULES FOR VARIATIONAL PARAMETERS IN NLG

We take the NLG model for example to give the full derivation steps. Likelihood function of yn | zn,a,β, τ :

yn | z(a)n = ka, z
(β)
n = kβ, z

(τ)
n = kτ ∼ NT (aka

+ βkβ
B(t), τkτ

I) ∈ R1×T

where B(t) ∈ RL×T is the basis spline matrix of order p and τkτ
I is the precision matrix with scalar precision parameter.

Conjugate priors and base distributions on latent variables Θ where we consider assigning priors to the concentration
parameter in the beta distribution:

aka ∼ N (µ(a), τ (a)) for ka = 1, . . . ,∞ and scalar precision parameter τ (a)

βkβ
∼ NL(µ

(β), τ (β)I) for kβ = 1, . . . ,∞ and scalar precision parameter τ (β)

τkτ ∼ Gamma(λ
(τ)
1 , λ

(τ)
2 ) for kτ = 1, . . . ,∞

z(a)n ∼ Cat(π(a)(v(a)))

z(β)
n ∼ Cat(π(β)(v(β)))

z(τ)n ∼ Cat(π(τ)(v(τ)))

v
(a)
ka

∼ Beta(1, α(a)) for ka = 1, . . . ,∞

v
(β)
kβ

∼ Beta(1, α(β)) for kβ = 1, . . . ,∞

v
(τ)
kτ

∼ Beta(1, α(τ)) for kτ = 1, . . . ,∞

α(a) ∼ Gamma(s
(a)
1 , s

(a)
2 )

α(β) ∼ Gamma(s
(β)
1 , s

(β)
2 )

α(τ) ∼ Gamma(s
(τ)
1 , s

(τ)
2 )

Assume the variational distribution (i.e. approximate posterior distribution) with truncation level ℓ by considering truncated
stick-breaking representations:

q(ak) ∼ N (µ
(a)
k

∗
, τ

(a)
k

∗
)

q(βk) ∼ NL(µ
(β)
k

∗
,Λk

∗)

q(τk) ∼ Gamma(λ
(τ)
k1

∗
, λ

(τ)
k2

∗
)

q(z(f)n ) ∼ Cat(π(f)
n

∗
) for facets a,β, τ

q(v
(f)
k ) ∼ Beta(α

(f)
k

∗
) for facets a,β, τ

q(α(f)) ∼ Gamma(s(f)
∗
) for facets a,β, τ

Therefore, the equation for the joint factorized variational distribution is as follows:

q(Θ) =

ℓ∏
k=1

{q(ak |µ(a)
k

∗
, τ

(a)
k

∗
)q(βk |µ

(β)
k

∗
,Λk

∗)q(τk |λ(τ)
k

∗
)}

×
ℓ−1∏
k=1

{q(v(a)k |α(a)
k

∗
)q(v

(β)
k |α(β)

k

∗
)q(v

(τ)
k |α(τ)

k

∗
)}



×
N∏

n=1

{q(z(a)n |π(a)
n

∗
)q(z(β)

n |π(β)
n

∗
)q(z(τ)n |π(τ)

n

∗
)}

× q(α(a) | s(a)
∗
)q(α(β) | s(β)∗)q(α(τ) | s(τ)

∗
)

We then derive the true conditional posterior distributions for each parameter and the corresponding update rules for
variational parameters. First, the joint probability of Θ and Y is as follows:

p(Θ,Y) =

N∏
n=1

{
p(yn | zn,a,β, τ )p(z(a)n |π(a)(v(a)))p(z(β)

n |π(β)(v(β)))p(z(τ)n |π(τ)(v(τ)))
}

×
∞∏
k=1

{p(v(a)k | 1, α(a))p(v
(β)
k | 1, α(β))p(v

(τ)
k | 1, α(τ))}

×
∞∏
k=1

{p(ak |µ(a), τ (a))p(βk |µ(β), τ (β)I)p(τk |λ(τ)
1 , λ

(τ)
2 )}

× p(α(a) | s(a)1 , s
(a)
2 )p(α(β) | s(β)

1 , s
(β)
2 )p(α(τ) | s(τ)1 , s

(τ)
2 )

The ELBO is expressed as:

ELBONLG = Eq[log p(a)] + Eq[log p(β)] + Eq[log p(τ )]

+ Eq[log p(v
(a) |α(a))] + Eq[log p(v

(β) |α(β))] + Eq[log p(v
(τ) |α(τ))]

+

N∑
n=1

(Eq[log p(z
(a)
n |v(a))] + Eq[log p(z

(β)
n |v(β))] + Eq[log p(z

(τ)
n |v(τ))])

+ Eq[log p(α
(a) | s(a))] + Eq[log p(α

(β) | s(β))] + Eq[log p(α
(τ) | s(τ))]

+

N∑
n=1

Eq[log p(yn | zn,a,β, τ )]− Eq[log q(Θ)].

(C.9)

The terms in the third row using indicator random variables zn in Equation C.9 can be rewritten as:

Eq[log p(zn |v)] = Eq

[
log

( ∞∏
k=1

(1− vk)
1[zn>k]vk

1[zn=k]

)]

=

∞∑
k=1

q(zn > k)Eq[log(1− vk)] + q(zn = k)Eq[log vk]

=

ℓ∑
k=1

q(zn > k)Eq[log(1− vk)] + q(zn = k)Eq[log vk].

Recall that Eq[log(1− vk)] = 0 and q(zn > ℓ) = 0 and we know:

q(zn = k) = π∗
nk

q(zn > k) =

ℓ∑
i=k+1

π∗
ni

Eq[log vk] = Ψ(α∗
k1)−Ψ(α∗

k1 + α∗
k2)

Eq[log(1− vk)] = Ψ(α∗
k2)−Ψ(α∗

k1 + α∗
k2)

where the digamma function, denoted by Ψ, arises from the derivative of the log normalization factor in the beta distribution.
Note that this generic derivation does not rely on a particular model.



C.1.1 Parameters that Do Not Depend on Particular Model

For α(f) of the Beta distribution:

p(α(f) |Θ−α(f) ,Y) ∝ p(α(f) | s(a)1 , s
(a)
2 )

∞∏
k=1

p(v
(f)
k | 1, α(f))

∝ α(f)s
(a)
1 −1

exp{−s
(a)
2 α(f)}

∞∏
k=1

α(f)(1− v
(f)
k )α

(f)−1

∝ α(f)s
(f)
1 −1

α(f)max(k)
exp{−s

(f)
2 α(f)}

∞∏
k=1

exp{(α(f) − 1) log(1− v
(f)
k )}

∝ α(f)s
(f)
1 +max(k)−1

exp{−s
(f)
2 α(f)} exp

{
(α(f) − 1)

∞∑
k=1

log(1− v
(f)
k )

}

∝ α(f)s
(f)
1 +max(k)−1

exp

{
−

(
s
(f)
2 −

∞∑
k=1

log(1− v
(f)
k )

)
α(f)

}

Thus, s(f)1

∗
= s

(f)
1 + ℓ− 1 and s

(f)
2

∗
= s

(f)
2 −

∑ℓ−1
k=1 Eq[log(1− v

(f)
k )].

The true conditional distribution for v
(f)
k is:

p(v
(f)
k |Θ−v

(f)
k

,Y) ∝ p(v
(f)
k | 1, α(f))

N∏
n=1

p(z(f)n |π(f)(v(f)))

∝ exp

{
(α(f) − 1) log(1− v

(f)
k ) +

N∑
n=1

log

( ∞∏
k=1

(1− v
(f)
k )1[z

(f)
n >k]v

(f)
k

1[z(f)
n =k]

)}

∝ exp

{
(α(f) − 1) log(1− v

(f)
k ) +

N∑
n=1

{1[z(f)n > k] log(1− v
(f)
k ) + 1[z(f)n = k] log v

(f)
k }

}

∝ exp

{
N∑

n=1

1[z(f)n = k] log v
(f)
k + (α(f) +

N∑
n=1

1[z(f)n > k]− 1) log(1− v
(f)
k )

}

Thus, α(f)
k1

∗
= 1 +

∑N
n=1 π

(f)
nk

∗
and α

(f)
k2

∗
=

s
(f)
1

∗

s
(f)
2

∗ +
∑N

n=1

∑ℓ
i=k+1 π

(f)
ni

∗
.

C.1.2 Facets Parameters Specific for NLG

For intercept ak:

p(ak |Θ−ak
,Y) ∝ p(ak |µ(a), τ (a))

N∏
n=1

p(yn | zn,a,β, τ )1[z
(a)
n =k]

∝ exp

(
τ (a)(ak − µ(a))2

−2

)

×
N∏

n=1

{
exp

(
τ
z
(τ)
n

(a
z
(a)
n

−m
z
(β)
n

)(a
z
(a)
n

−m
z
(β)
n

)⊺

−2

)}1[z(a)
n =k]

where m
z
(β)
n

= yn − β
z
(β)
n

B ∈ R1×T

∝ exp

τ (a)(ak − µ(a))2 +
∑N

n=1{1[z
(a)
n = k]τ

z
(τ)
n

(Ta2
z
(a)
n

− 2a
z
(a)
n

∑
m

z
(β)
n

+
∥∥∥mz

(β)
n

∥∥∥2)}
−2





∝ exp

 (τ (a) + T
∑N

n=1{1[z
(a)
n = k]τ

z
(τ)
n

})a2k − 2(τ (a)µ(a) +
∑N

n=1{1[z
(a)
n = k]τ

z
(τ)
n

∑
m

z
(β)
n

})ak
−2



q(ak) ∝ exp{Eq(Θ−ak
)[log p(ak |Θ−ak

,Y)]}

∝ exp

τ (a) + TEq

[∑N
n=1{1[z

(a)
n = k]τ

z
(τ)
n

}
]
)a2k − 2(τ (a)µ(a) + Eq

[∑N
n=1{1[z

(a)
n = k]τ

z
(τ)
n

∑
m

z
(β)
n

}
]
)ak

−2


where we have Eq[τz(τ)

n
] =

∑ℓ
j=1 q(z

(τ)
n = j)Eq[τj ] =

∑ℓ
j=1 π

(τ)
nj

∗ λ
(τ)
j1

∗

λ
(τ)
j2

∗ and Eq[βz
(β)
n

] =
∑ℓ

j=1 π
(β)
nj

∗
µ

(β)
j

∗
. Thus,

τ
(a)
k

∗
= τ (a) + T

N∑
n=1

π
(a)
nk

∗ ℓ∑
j=1

π
(τ)
nj

∗λ
(τ)
j1

∗

λ
(τ)
j2

∗


and

µ
(a)
k

∗
=

τ (a)µ(a) +
∑N

n=1

{
π
(a)
nk

∗
(∑ℓ

j=1 π
(τ)
nj

∗ λ
(τ)
j1

∗

λ
(τ)
j2

∗

)(∑
T yn −

∑
T

[(∑ℓ
j=1 π

(β)
nj

∗
µ

(β)
j

∗)
B
])}

τ
(a)
k

∗

For coefficient row vector βk:

p(βk |Θ−βk
,Y) ∝ p(βk |µ(β), τ (β)I)

N∏
n=1

p(yn | zn,a,β, τ )1[z
(β)
n =k]

∝ exp

(
τ (β)(βk − µ(β))(βk − µ(β))⊺

−2

)

×
N∏

n=1

{
exp

(
τ
z
(τ)
n

(βkB + a
z
(a)
n

− yn)(βkB + a
z
(a)
n

− yn)
⊺

−2

)}1[z(β)
n =k]

∝ exp

τ (β)(βkβ
⊺
k − 2βkµ

(β)⊺) +
∑N

n=1{1[z
(β)
n = k]τ

z
(τ)
n

(βkB −m
z
(a)
n

)(βkB −m
z
(a)
n

)⊺}
−2


where m

z
(a)
n

= yn − a
z
(a)
n

∈ R1×T

∝ exp

(
1

−2

[
βk(τ

(β)I+

N∑
n=1

{1[z(β)
n = k]τ

z
(τ)
n

BB⊺})β⊺
k

− 2βk(τ
(β)µ(β)⊺ +

N∑
n=1

{1[z(β)
n = k]τ

z
(τ)
n

)Bm⊺

z
(a)
n

])

Thus,

Λ∗
k = τ (β)I+

N∑
n=1

π
(β)
nk

∗

 ℓ∑
j=1

π
(τ)
nj

∗λ
(τ)
j1

∗

λ
(τ)
j2

∗

BB⊺

 ∈ RL×L

and

µ
(β)
k

∗
=

τ (β)µ(β) +

N∑
n=1

π
(β)
nk

∗

 ℓ∑
j=1

π
(τ)
nj

∗λ
(τ)
j1

∗

λ
(τ)
j2

∗

yn −

 ℓ∑
j=1

π
(a)
nj

∗
µ
(a)
j

∗

B⊺


 (Λk

∗)
−1 ∈ R1×L

where Eq[az(a)
n

] =
∑ℓ

j=1 π
(a)
nj

∗
µ
(a)
j

∗
.



For precision scalar τk:

p(τk |Θ−τk ,Y) ∝ p(τk |λ(τ)
1 , λ

(τ)
2 )

N∏
n=1

p(yn | zn,a,β, τ )1[z
(τ)
n =k]

∝ τ
λ
(τ)
1 −1

k exp{−λ
(τ)
2 τk}

× τ
T
2

∑N
n=1 1[z(τ)

n =k]

k

N∏
n=1

{
exp

(
τ
z
(τ)
n

(yn − µ
z
(a)
n ,z

(β)
n

)(yn − µ
z
(a)
n ,z

(β)
n

)⊺

−2

)}1[z(τ)
n =k]

where µ
z
(a)
n ,z

(β)
n

= a
z
(a)
n

+ β
z
(β)
n

B ∈ R1×T

∝ τ
λ
(τ)
1 +T

2

∑N
n=1 1[z(τ)

n =k]−1

k

× exp

−τk

λ
(τ)
2 +

∑N
n=1{1[z

(τ)
n = k](yn − µ

z
(a)
n ,z

(β)
n

)(yn − µ
z
(a)
n ,z

(β)
n

)⊺}
2




Thus,

λ
(τ)
k1

∗
= λ

(τ)
1 +

T

2

N∑
n=1

π
(τ)
nk

∗

and

λ
(τ)
k2

∗
= λ

(τ)
2 +

1

2

N∑
n=1

{
π
(τ)
nk

∗
Eq

[∥∥∥yn − β
z
(β)
n

B − a
z
(a)
n

∥∥∥2]}

C.1.3 Parameters for Cluster Assignments

For z
(f)
n of any facet:

p(z(f)n |Θ−z
(f)
n

,Y) ∝ p(z(f)n = k |π(f)(v(f)))p(yn | zn, {θ(f)
kf

}Ff=1)

Hence,

π
(f)
nk

∗
∝ exp

(
Eq[log v

(f)
k ] +

k−1∑
i=1

Eq[log(1− v
(f)
i )] + S

(f)
nk

)

where S
(f)
nk depends on the likelihood and different facets and

Eq[log v
(f)
k ] = Ψ(α

(f)
k1

∗
)−Ψ(α

(f)
k1

∗
+ α

(f)
k2

∗
)

Eq[log(1− v
(f)
k )] = Ψ(α

(f)
k2

∗
)−Ψ(α

(f)
k1

∗
+ α

(f)
k2

∗
)

with the digamma function denoted by Ψ.

So z
(a)
n of intercept:

p(z(a)n = k |Θ−z
(a)
n

,Y) ∝ p(z(a)n = k |π(a)(v(a)))p(yn | zn,a,β, τ )

∝ v
(a)
k

k−1∏
i=1

(1− v
(a)
i ) exp

(
τ
z
(τ)
n

(yn − ak − β
z
(β)
n

B)(yn − ak − β
z
(β)
n

B)⊺

−2

)

∝ exp

(
log v

(a)
k +

k−1∑
i=1

log(1− v
(a)
i ) +

−1

2
τ
z
(τ)
n

(yn − ak − β
z
(β)
n

B)(yn − ak − β
z
(β)
n

B)⊺
)

Thus,

π
(a)
nk

∗
∝ exp

(
Eq[log v

(a)
k ] +

k−1∑
i=1

Eq[log(1− v
(a)
i )] + S

(a)
nk

)



where

S
(a)
nk =

−1

2

 ℓ∑
j=1

π
(τ)
nj

∗λ
(τ)
j1

∗

λ
(τ)
j2

∗

∥∥∥∥∥∥yn − µ
(a)
k

∗
−

 ℓ∑
j=1

π
(β)
nj

∗
µ

(β)
j

∗

B

∥∥∥∥∥∥
2

We can obtain a similar result for π
(β)
nk

∗
∝ exp

(
Eq[log v

(β)
k ] +

∑k−1
i=1 Eq[log(1− v

(β)
i )] + S

(β)
nk

)
where

S
(β)
nk =

−1

2

 ℓ∑
j=1

π
(τ)
nj

∗λ
(τ)
j1

∗

λ
(τ)
j2

∗

∥∥∥∥∥∥yn −

 ℓ∑
j=1

π
(a)
nj

∗
µ
(a)
j

∗

− µ
(β)
k

∗
B

∥∥∥∥∥∥
2

For z
(τ)
n of noise:

p(z(τ)n = k |Θ−z
(τ)
n

,Y) ∝ p(z(τ)n = k |π(τ)(v(τ)))p(yn | zn,a,β, τ )

∝ v
(τ)
k

k−1∏
i=1

(1− v
(τ)
i )τ

T
2

k exp

(
τk(yn − a

z
(a)
n

− β
z
(β)
n

B)(yn − a
z
(a)
n

− β
z
(β)
n

B)⊺

−2

)

∝ exp

(
log v

(τ)
k +

k−1∑
i=1

log(1− v
(τ)
i ) +

T

2
log τk

+
−1

2
τk(yn − a

z
(a)
n

− β
z
(β)
n

B)(yn − a
z
(a)
n

− β
z
(β)
n

B)⊺
)

Thus,

π(τ)∗
nk ∝ exp

(
Eq[log v

(τ)
k ] +

k−1∑
i=1

Eq[log(1− v
(τ)
i )] + S

(τ)
nk

)
where

S
(τ)
nk =

T

2
log

λ
(τ)
k1

∗

λ
(τ)
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C.1.4 ELBO Computation

For ELBO in Equation C.9:
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⊺
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⊺
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√
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√
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√
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√
2π +

L

2
log τ (β) − 1

2
τ (β)(tr((Λk

∗)
−1
) +
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C.2 DERIVATION OF UPDATE RULES FOR VARIATIONAL PARAMETERS IN VAR

C.2.1 Facets Parameters Specific for VAR

For intercept vector ak:

p(ak |Θ−ak
,Y) ∝ p(ak |µ(a), τ (a)I)

N∏
n=1

p(yn | zn,a,B, τ )1[z
(a)
n =k]

∝ exp

(
τ (a)(ak − µ(a))⊺(ak − µ(a))

−2

) N∏
n=1
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(τ)
n
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N∏
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∑N

n=1{1[z
(a)
n = k](yn0 − ak)

⊺diag(τ
z
(τ)
n

)(yn0 − ak)}
−2


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For coefficient matrix Bk:

p(vec(Bk) |Θ−Bk
,Y) ∝ p(vec(Bk) | vec(M(B)), τ (B)I)

N∏
n=1

p(yn | zn,a,B, τ )1[z
(B)
n =k]
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(
τ (B)vec(Bk −M(B))⊺vec(Bk −M(B))
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For precision vector τ k:
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Thus, τ k follows independent Gamma distribution with parameters for each τkd to be:
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We have the following results for the expectations in terms of variational parameters:
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C.2.2 Parameters for Cluster Assignments

For z
(a)
n of intercept:
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C.2.3 ELBO Computation
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D PROOF FOR B-SPLINES

Given a set of N B-splines {Bi,p(t)}N−1
i=0 of degree p−1 with coefficients {βi}N−1

i=0 , denote B0,p(t) as a B-spline controlling
the intercept such that B0,p(t = 0) ̸= 0 while Bi,p(t = 0) = 0 for all i ̸= 0. Then the linear combination of the collection
including B0,p(t) is equivalent to the linear combination of B-splines without B0,p(t) but plus additional explicit intercept.

Proof. We know
∑N−1

i=0 Bi,p(t) = 1 by definition. With B0,p(t), the linear combination is

N−1∑
i=0

βiBi,p(t) = β0B0,p(t) +

N−1∑
i=1

βiBi,p(t)−
N−1∑
i=0

β0Bi,p(t) + β0

= β0B0,p(t) +

N−1∑
i=1

βiBi,p(t)− β0B0,p(t)−
N−1∑
i=1

β0Bi,p(t) + β0



=

N−1∑
i=1

(βi − β0)Bi,p(t) + β0

=

N−1∑
i=1

β
(new)
i Bi,p(t) + β0 ( let β(new)

i = βi − β0)

From the last equation, we see that the first term is the linear combination of B-splines without B0,p(t) and the second term
can be seen as an additional intercept term.

E PROOF FOR B-SPLINES INTERCEPT SHIFT

Given a set of N B-splines {Bi,p(t)}Ni=1 of degree p− 1 with coefficients {βi}Ni=1, excluding the intercept B0,p(t), denote
ttar as a targeted time point where we want a new intercept β(new)

0 to represent its value. Then the B-splines function with
this new intercept is equivalent to shifting downward all B-splines by Bi,p(ttar).

Proof. By Supplement D we know the function of B-splines can be expressed as f(t) = β0 +
∑N

i=1 βiBi,p(t). When at
time ttar, let β(new)

0 = f(ttar) = β0 +
∑N

i=1 βiBi,p(ttar), then

f(t) = β0 +

N∑
i=1

βiBi,p(t) + β
(new)
0 − β

(new)
0

= β
(new)
0 +

(
β0 +

N∑
i=1

βiBi,p(t)− β0 −
N∑
i=1

βiBi,p(ttar)

)

= β
(new)
0 +

N∑
i=1

βi (Bi,p(t)−Bi,p(ttar))
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