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ABSTRACT

The information bottleneck principle provides an information-theoretic method
for learning a good representation as a trade-off between conciseness and predic-
tive ability, which can reduce information redundancy, eliminate irrelevant and
superfluous features, and thus enhance the in-domain generalizability. However,
in low-resource or out-of-domain scenarios where the assumption of i.i.d does not
necessarily hold true, superfluous (or redundant) relevant features may be supple-
mental to the mainline features of the model, and be beneficial in making pre-
diction for test dataset with distribution shift. Therefore, instead of squeezing the
input information by information bottleneck, we propose to keep as much relevant
information as possible in use for making predictions. A three-stage supervised
learning framework is designed and implemented to jointly learn the mainline
and supplemental features, relieving supplemental features from the suppression
of mainline features. Extensive experiments have shown that the learned repre-
sentations of our method have good in-domain and out-of-domain generalization
abilities, especially in low-resource cases.

1 INTRODUCTION

Deep neural network (DNN) has revolutionized a variety of fields (inclusive of but not limited
to computer vision, natural language processing and speech recognition) in supervised learning
tasks (Alam et al., 2020; Otter et al., 2020). Although usually overparameterized, DNN has shown
good generalization ability and performs well on test data. Dating back to the Occam’s Razor philo-
sophical principle, it has long been believed that a good model should be as simple as possible.
Some research works (Shwartz-Ziv & Tishby, 2017; Neyshabur, 2017) have been done to uncover
the implicit regularization phenomenon or mechanism in the training process of DNNs.

To reveal the dynamics of DNN training process, by visualizing information plane, it was ob-
served (Shwartz-Ziv & Tishby, 2017) that most of the DNN training efforts are spent on compressing
the input to concise representation. This observation has justified the application of the information
bottleneck principle (Tishby et al., 1999; Tishby & Zaslavsky, 2015) in the supervised learning set-
tings, seeking to capture and efficiently represent the relevant information in the input variable about
the label variable and building up a good presentation in terms of a fundamental trade-off between
conciseness and good predictive ability. By explicitly minimizing the mutual information between
the input data and its representation and simultaneously maximizing the mutual information between
the representation and the label, it has been shown the information bottleneck principle has led to
the robustness of fitted model (Alemi et al., 2017).

On the other hand, in the setting of unsupervised representation learning, there is no supervised
label to identify relevant or irrelevant information, and thus the InfoMax principle (Linsker, 1988)
is usually used to maximize the mutual information between the input and its representation (Oord
et al., 2018; Hjelm et al., 2019), with the expectation that all the (potentially) predictive information
is preserved for various downstream supervised tasks.

In contrast to the information bottleneck principle that ignores as many details of the input, our
work goes to another end, with the so-called Information Retention principle as our main thrust:
when making predictions (or decisions), it is preferable to keep as much relevant information as
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possible in use. In other words, the principle of information retention differs from the informa-
tion bottleneck: information retention explicitly preserves the relevant redundant information, but
information bottleneck implicitly suppresses the redundant relevant information. Bearing the idea
of information retention in mind, we design and implement a three-stage process for supervised
learning. It firstly learns mainline features via vanilla DNN model, then erases salient input features
(with respect to the mainline features) from the original inputs to produce modified inputs, and fi-
nally uses a conditional mutual information as regularization term forcing the supplemental features
to be complementary to the mainline features and alleviating feature suppression.

In addition, our approach is also different from the InfoMax principle. It is infeasible to directly
maximize the mutual information between the representation and the input in supervised learning,
because it will learn irrelevant information and produce irrelevant features without any restriction.

Our contribution is three folds:

• We propose the information retention principle that favors using as much relevant informa-
tion as possible in supervised learning.

• To alleviate the problem of feature suppression, we develop a three-stage process for infor-
mation retention via learning supplemental features.

• Experimental results indicate that the learned representation of our method has better in-
domain and out-of-domain generalization ability than several competitors.

To better motivate the idea of information retention, we also provide our thought from the perspec-
tive of causal diagram (Appendix D.1) and investigate a simple toy example (Appendix D.2).

2 METHOD

This section focuses on the details of the proposed method that is called “Information Retention by
Learning Supplemental Features” (or InfoR-LSF in short). The basic idea is to build up a more
abundant supervised representation for classification task. To facilitate discussion, this paper as-
sumes that a DNN-based classification model consists of two parts: the first is an encoder that maps
an input vector x ∈ RM to a representation vector z ∈ RD, and the second is a classification head
that maps the representation vector z to the final prediction ỹ. Finally, the L(ỹ,y) denote the super-
vised loss used to train the model, where y is the true label of x. In our method, the representation
vector z = [zM ; zS ] ∈ RD is divided into two groups: the mainline representation zM ∈ RD/2, and
the supplemental representation zS ∈ RD/2, which are learned in a three-stage process. The first
stage can be thought of as a ”burn-in” phase, initially building up the mainline representation from
the original train data. The second stage erases the salient input features from each original input
and produces a modified input, where the salient input features denote the features that are important
with respect to the mainline representation zM . The third stage aims to jointly learn mainline repre-
sentation zM and supplemental representation zS by forcing zS to forget the salient input features
that have already been captured by mainline representation and alleviate feature suppression, with
the help of the modified inputs from the second stage. In the following sections, we will specifically
discuss each stage below and also provide an algorithm table in Appendix C.

2.1 THE FIRST STAGE: INITIAL TRAINING OF MAINLINE FEATURES

At the first stage, the task is to train an initial encoder and obtain the mainline features zM by
maximizing the mutual information between zM and the label y and (optionally) simultaneously
minimizing the mutual information between zM and input x. Therefore, the first-stage objective is:

maximize I(zM ;y)− β · I(zM ;x) (1)

where β is the coefficient used to control information compression. Setting β = 0 will disable the
information bottleneck mechanism.

Figure 1 shows the architecture of the first stage for initially training of our method. The encoding
network consists of a backbone fθ(·) and a variational encoder gϕ(·) with few parameters. For
input x, we use an encoding network to obtain the distribution parameters µ and Σ, and generate
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Figure 1: The architecture of the first stage for initially training the mainline features.

the mainline representation zM through reparameterization trick (Kingma & Welling, 2013). It
should be highlighted that in the first stage, we only calculate the supervised loss with information
bottleneck restriction on the mainline representation.

2.2 THE SECOND STAGE: SALIENCY ERASING FROM INPUTS

The objective of the second stage is to find and erase salient input features with respect to mainline
features zM from input x and produce a modified input which will be used in the third stage for
auxiliary loss calculation. Formally, we denote xsf as the most salient features that zM has learned
in x, and utilize x′ = MASK(x) = x/xsf

to represent the modified input after removing xsf from
x, where MASK(·) refers to a feature erasure operation corresponding to the data type at hand.

Salient Input Feature Selection. Given an input data x, its mainline features can be obtained as
zM = gϕ(fθ(x)) via the well-trained mainline representation extractor gϕ(fθ(·)) of the first stage.
The task here is to find a feature subset xsf ⊂ x that the current model relies on most to make
prediction. To measure the importance of input features, we use the norm of the loss gradient with
respect to input features.

xsf = topK
x∈x

||∇xL(gϕ(fθ(x)),y)|| (2)

The underlying premise is that the larger the loss gradient, the higher the dependence level. Previous
studies also supports the rationality of gradient-based feature significance analysis. (Samek et al.,
2017; Sun et al., 2021)

Salient Input Feature Erasing. After selecting the salient input features xsf that the current main-
line representation zM most heavily depends on, the next step is to perform MASK(·) operation on
the raw input x. For image data, the masking operation works at the level of image patch and xsf

designates a certain proportion of image patches based on the Equation 2. We then fill these patches
with random values that conform to a Gaussian distribution N (µ, σ), where the µ and σ are calcu-
lated based on empirical distribution of pixels of the whole training set. Additionally, we ensure that
the padded pixel values are within the range of valid image through the clip operation.

As for text data, each raw input x is represented as a sequence of tokens, and thus the masking
operation is performed at token level. As we utilize pretrained language models with special tokens,
we erase text feature by replacing a certain proportion of tokens selected by gradient norm of token
embeddings with [MASK] token.

Additionally, it should be emphasized that the modification on x ought to be kept within a restricted
range, as we expect that the remaining part still contains relevant information about y. The model
could be negatively affected by excessive erasure since the obtained x′ may lose excessive supervi-
sory information.

2.3 THE THIRD STAGE: JOINT TRAINING OF MAINLINE AND SUPPLEMENTAL FEATURES

In the third stage, the task is to jointly train the whole model and simultaneously learn the main-
line features zM and the supplemental features zS . The mainline features zM still uses the same
supervised objective as the one used in the first stage (Equation 1), while the zS needs to suppress
learning salient features xsf of zM while learning supervised objective.

The intuitive idea here is to force the model to continuously acquire new potential features distinct
from the features already learnt by current representation zM , and expect these new features to be
helpful for classification. We refer to these features as supplementary features, and we think the key
characteristic of these features is that they are partially non-overlapping features with respect to xsf
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Figure 2: The architecture and information flow of the third stage for joint learning of mainline and
supplemental features.

and are easy to be suppressed or overlooked by the mainline features zM , possibly weaker or harder,
as long as they will contribute to the supervisory task.

To accomplish this, we leverage another supplementary representation zS to learn these supplemen-
tary features. However, it is not guaranteed that zS won’t extract the same salient feature xsf that
zM has already learnt if there are no constraints on zS . As a result, zS should be restricted not to
learn features that exists in x but not in x′. According to the chain rule of mutual information, the
information zS contains about x could be divided into two parts(the proof can be found at Appendix
B.1):

I(zS ;x) = I(zS ;x
′) + I(zS ;x|x′) (3)

The first term represents the information zS contains about x′, and the second term intuitively repre-
sents the information zS contains which is unique to x and is not predictable by observing x′. This
term is exactly what we tend to suppress as we only expect zS to learn information relevant to y
from x′. In this way, we can derive the learning objective of zS as follow:

maximize I(zS ;y)− β · I(zS ;x)− α · I(zS ;x|x′) (4)

where the the first two terms represent supervised loss with information bottleneck, which is consis-
tent with zM ’s learning objective. The third item is a regularization restriction on zS representation
aiming to force it to learn supplementary features.

Figure 2 illustrates the architecture and information flow of the third stage. We use two different
variational encoder gϕ and gψ to generate zM and zS , respectively. However, the backbone is
shared, and the variational encoder only has very few parameters, so our method only uses a small
number of additional parameters, which is different from model integration. Additionally, although
the joint training stage makes use of the modified inputs generated by the second stage, their use
in our method are essentially different from the other data-augmentation-based methods. It should
be noted that the supervision loss for zS is still calculated on the representation corresponding to
the original inputs x but not the modified inputs x′. The modified inputs x′ are used only for a
regularization term I(zS ;x|x′). Therefore, in contrast to data-augmentation-based methods, we
need not worry about the incorrect supervision signal (or wrong label) that are possibly introduced
to the modified inputs x′.

2.4 MODEL ARCHITECTURE AND LOSS FUNCTION

In this section, we specifically discuss how to achieve optimization goals proposed above in practice.
From the perspective of architecture, we design a network with two different variational encoder
head on a shared backbone. It should be noted that in inference stage, we will use both zM and zS
by averaging logits.

As for the optimizing objectives of each stage, firstly, for the Equation 1, the loss could be derived
as follow based on the variational estimate proposed by Alemi et al.:

LVIB(x, zM , θ, ϕ) = Ex[EzM∼pθ,ϕ(zM |x)[− log q(y|zM )] + β ·DKL[pθ,ϕ(zM |x)||rϕ(zM )]] (5)
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where rϕ(zM ) is prior distribution of zM . We use a parameterized Gaussian distribution N (µϕ,Σϕ)
to represent rϕ(zM ). As for I(zS ;x|x′) used in Equation 4, we restrict the term by minimizing its
upper bound (the proof can be found at Appendix B.2):

LIS = Ex,x′ [DKL[pθ,ψ(zS |x)||pθ,ψ(z′S |x′)]] (6)

In this way, the total loss of the third stage can be derived as

L = LVIB(x, zM , θ, ϕ) + LVIB(x, zS , θ, ψ) + α · LIS (7)

where α is a coefficient that controls the weight of information suppression. Besides, since the
distribution of both zM and zS follows a Gaussian distribution, there exists a closed form solution
for calculating KL-divergence in the above losses.

3 EXPERIMENTS

This section is devoted to a thorough empirical study of the proposed InfoR-LSF method1. We first
evaluate it in-domain generalization ability on classification and regression tasks (Section 3.1) and
then investigate the out-of-domain generalization of learned representation on sentiment analysis
task (Section 3.2). In addition, we also conduct experiments to analyze the effect of information
retention (Section 3.3) and study the hyperparameter sensitivity (Section 3.4). Finally, results of
ablation experiments are presented in Section 3.5.

Architectures. We choose ResNet-18 (He et al., 2016) as the backbone for image classification, the
pretrained BERTBASE (Devlin et al., 2018) as the backbone for text-related tasks, and MLP network
as the backbone for tabular regression. More dataset information and implementation details about
training hyper-parameters and optimizer are provided in the Appendix A.1 and Appendix A.2.

Baselines. We compare against several influential works: IFM (Robinson et al., 2021), a method
which avoids shortcut solutions by implicit feature modification; FGSM (Goodfellow et al., 2014),
a classic adversarial training method in computer vision; VIB (Alemi et al., 2017), a variational ap-
proximation to the information bottleneck by leveraging the reparameterization trick; VIBERT (Ma-
habadi et al., 2021), a method implementing the variational information bottleneck on the pretrained
BERT to suppress irrelevant features and enhance generalization ability when fine-tuning. In addi-
tion, the basic ResNet-18 (or BERTBASE) model serves as a baseline.

3.1 IN-DOMAIN GENERALIZATION ON SUPERVISED LEARNING TASK

Table 1: CIFAR10 classification task accuracy under different train data size.

Model Train Data Size
50 100 200 500 1000 2000 3000 50000

ResNet-18 17.2 22.6 31.1 40.4 48.9 63.3 74.2 95.1
IFM 17.1 22.4 31.5 42.1 51.8 65.8 75.1 94.6
FGSM 20.1 23.7 31.4 40.3 47.7 58.1 65.5 91.8
VIB 18.6 22.4 31.0 39.7 49.9 64.8 74.7 95.1
InfoR-LSF 20.3 24.5 32.1 42.1 52.8 67.3 76.2 95.2
∆ +3.1 +1.9 +1.0 +1.7 +3.9 +4.0 +2.0 +0.1

Image classification. We use two image classification datasets, CIFAR10 (Krizhevsky et al., 2009)
and CIFAR100(Krizhevsky et al., 2009). Different sizes of training data (subsampled from the
original training set), ranging from 50 to 50000, are used to evaluate the test accuracy in low-
resource settings. Each experiment is conducted three times, each time with a different random seed
for data sampling. The average test accuracy for CIFAR10 are shown in Table 1. The performance
on CIFAR100 is provided in Appendix A.3.

Text classification. We use two sentiment analysis datasets, namely IMDB (Maas et al., 2011) and
YELP (Zhang et al., 2015). The sizes of training data range from 50 to 1000, with training examples

1Code available at https://github.com/liyahe/InfoR-LSF
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Table 2: Text classification task accuracy under different train data size.

Train Data SizeDataset Model 50 100 200 500 1000
BERT 66.6 (2.2) 77.9 (2.3) 85.6 (0.5) 87.1 (0.6) 88.7 (0.3)
IFM 66.1 (2.2) 78.2 (2.4) 85.6 (0.7) 87.4 (0.7) 88.7 (0.4)
VIBERT 68.9 (2.5) 80.8 (1.7) 86.1 (0.6) 87.8 (0.7) 88.8 (0.4)
InfoR-LSF 75.5 (2.3) 83.0 (2.9) 86.9 (0.4) 88.3 (0.5) 89.4 (0.4)

IMDB

∆ +8.9 +5.1 +1.3 +1.2 +0.7
BERT 35.1 (1.8) 39.6 (2.1) 43.1 (1.7) 51.9 (0.9) 55.6 (0.7)
IFM 35.7 (2.5) 40.1 (1.8) 43.4 (1.0) 50.9 (1.0) 55.5 (0.7)
VIBERT 37.7 (1.2) 40.8 (2.3) 44.8 (2.2) 53.1 (2.2) 55.4 (0.6)
InfoR-LSF 39.6 (1.1) 41.4 (1.4) 44.9 (2.4) 53.6 (0.6) 55.9 (0.3)

YELP

∆ +4.5 +1.8 +1.8 +1.7 +0.3

randomly sampled with five seeds (13, 21, 42, 87 and 100). We report the average and standard
deviation of test accuracy in Table 2. Here, under low resource settings, we do not use the original
validation set, but instead sample a validation subset of the same size as the train data.

Table 3: STS-B test set Pearson correlation coefficient under different train data sizes.

Dataset Model Train Data Size
50 100 200 500 1000

STS-B

BERT 72.2 (3.2) 79.1 (1.9) 83.8 (0.8) 86.4 (1.0) 87.5 (0.2)
IFM 72.3 (3.1) 79.2 (1.9) 84.0 (0.9) 86.8 (0.7) 87.6 (0.2)
VIBERT 74.4 (2.8) 81.9 (1.8) 85.0 (0.4) 87.1 (0.3) 88.4 (0.3)
InfoR-LSF 75.0 (3.1) 82.4 (2.0) 85.4 (0.5) 87.5 (0.6) 88.7 (0.3)
∆ +2.8 +3.3 +1.6 +1.1 +1.2

Textual Similarity Score Regression. The task STS-B(Cer et al., 2017) is to regress textual simi-
larity score. The results of STS-B are shown in Table 3.

Table 4: Coefficient of determination(R2) of AEP
under different train data sizes.

Model Train Data Size
10% 20% 50% 100%

MLP 0.338 0.456 0.597 0.684
IFM 0.373 0.469 0.605 0.680
VIB 0.347 0.471 0.602 0.679
InfoR-LSF 0.376 0.483 0.618 0.691
∆ +0.038 +0.027 +0.021 +0.007

Traditional Tabular Regression. We further
conduct experiments on a tabular regression
task Appliance Energy Prediction (AEP) (Can-
danedo, 2017) from UCI Machine Learning
Repository (Asuncion & Newman, 2007). We
process the data as same as public preprocess-
ing 2 and then apply a 5-layer MLP for predic-
tion. We adjust the hyper-parameters to make
MLP reach the public SOTA performance, and
then verify the effect of InfoR-LSF on this ba-
sis. The results of energy prediction are shown
in Table 4.

Observation and Analysis. Firstly, from Ta-
ble 1 and Table 2, it is obvious that our InfoR-LSF method surpasses all competitors under all
settings of training data sizes, for both image and text classification tasks. Table 3 and Table 4 fur-
ther prove that InfoR-LSF also performs well on regression tasks. These observations indicate the
universality of information retention principle. We attribute this substantial performance gain to its
ability of learning diverse features, including not only the mainline features but also the supplemen-
tal features (note that the supplemental features may be redundant with respect to the mainline ones
from the perspective of training data). Secondly, VIB achieves little performance gain on CIFAR,
while VIBERT exhibits more performance gain on text-related tasks. We attribute this to the essen-
tial difference between images and texts: the tokens, as the basic units of texts, are meaningful, and

2https://www.kaggle.com/code/rrakzz/r2-68-accuracy-95
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only a few of them can indicate the label of a given text; however, the pixels, as the basic units of
images, are meaningless alone, over-simple features that comprise fewer pixels may not necessarily
imply better generalization ability. That also explains why VIB is more often applied to NLP tasks.
Last but not the least, InfoR-LSF exhibits much notable improvements in low resource conditions,
and its performance gain gradually declines as the number of training examples rises. It suggests
that the feature redundancy may diminish with the increased availability of labeled data resource,
and the train and test sets tend to be more equally-distributed as the data size grows.

3.2 OUT-OF-DOMAIN PERFORMANCE

Since InfoR-LSF is wedded to learn more versatile relevant features, it is naturally hypothesized that
the learned representation is beneficial to similar out-of-domain tasks. To verify this hypothesis, we
choose the sentiment classification task, and use the full-size YELP data (Zhang et al., 2015) as
the source domain to train models. By freezing the backbone and retraining a linear task-specific
classification head, we evaluate the linear readout of each model on a series of out-of-domain target
tasks, including IMDB (Maas et al., 2011), YELP-2 (Zhang et al., 2015), SST-2 (Socher et al., 2013),
SST-5 (Socher et al., 2013), MR (Pang & Lee, 2005), Amazon-2 (Zhang et al., 2015) and Amazon-
5 (Zhang et al., 2015). Each linear head is trained with 1000 labeled data from the target task. As
shown in Table 5, on all target tasks, InfoR-LSF consistently achieves the highest improvement. We
conjecture the reason to be our method’s ability of extracting more versatile features and thus the
learned representation is more likely to cover the useful features in target domains, leading to better
out-of-domain generalization.

Table 5: Test accuracy of models transferring to new target datasets. All models are trained on YELP
and evaluated linear readout on the target datasets. ∆ are the absolute differences with BERT.

Model Target Dataset
YELP YELP-2 IMDB SST-2 SST-5 MR Amazon-2 Amazon-5

BERT 65.81 94.95 88.24 86.54 44.88 80.70 81.59 54.53
VIBERT 66.00 95.87 88.05 83.90 44.75 81.20 81.81 56.05
InfoR-LSF 66.31 95.89 88.55 88.19 46.28 82.00 83.03 57.43
∆ +0.5 +0.94 +0.31 +1.65 +1.4 +1.3 +1.44 +2.9

3.3 EFFECT VERIFICATION OF INFORMATION RETENTION

The main motivation of our method is to extract as much information about y from x as possible.
Previous experiments have demonstrated its superiority in various downstream tasks, but is the im-
provement in effect due to the idea of information retention? To explore this question, we investigate
whether the model exploits more input features by observing the model’s attention distribution on
input images. If the learned representation at the final hidden layer utilizes more original input fea-
tures, the attention of the model should be distributed more evenly on more pixels. Otherwise, the
attention will be distributed intensively on fewer pixels. Therefore, we use the gradient norm of loss
as the model’s attention score for each pixel, which has been proven to be an effective method for
evaluating the contribution of features (Simonyan et al., 2013; Zeiler & Fergus, 2014). Specifically,
we first obtain the gradient ∇xL(z,y) for each pixel x ∈ x, normalize the absolute values of the
gradients over the entire image, and then examine the distribution of gradient amplitudes across the
entire test set. From the visualized results in Figure 3, it can be observed that our method has the
most dispersed attention distribution on the original input x under different training data sizes, and
its distribution peak is significantly lower than other methods. On the contrary, VIB has the highest
peak of gradient distribution, and thus attends intensively on the fewest pixels. The phenomenon
meets our expectations, as the VIB restricts the mutual information between the representation z
and input x through an explicit regularization term, so the utilization of information by the repre-
sentation z on x is insufficient. Surprisingly, The gradient distribution of FGSM, which is based on
adversarial training, is actually more concentrated than baseline, indicating that adversarial attacks
can improve the robustness of the model, but may not necessarily force the model to leverage more
original input information. In summary, compared to other baselines, our method exhibits a more
uniform and dispersed trend in pixel level attention distribution, demonstrating the mechanism of
information retention is in work effectively.
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(a) 200 train samples (b) 500 train samples (c) 1000 train samples

Figure 3: Gradient amplitude distribution over test set of different method on CIFAR10.

3.4 SENSITIVITY ANALYSIS OF α AND MASKING RATIO

To examine the effect of loss term LIS in Equation 7, We perform sensitivity analysis experiments
by varying coefficient α and masking ratio on the IMDB dataset under low resource setting (50 train
data). As shown in Figure 4a (or 4b), test and validation accuracy first increase and then decrease
by increasing α (or by increasing masking ratio), and they both achieve the best performance at
α = 1e−3 (or with the masking ratio of 0.05). It means that over-high values of α and making ratio
put excessive restriction on zS representation, and thus do harm to the performance.

Figure 4c shows the difference in the attention distribution of zS and zM on salient input features xsf .
We calculate the attention proportion by first calculating the gradient norm ||∇xsf

L(zM ,y)|| and
||∇xsf

L(zS ,y)||, and then normalizing them across the whole sentence. Obviously, the gap between
zM and zS gradually increases, indicating that the restrictions on regularization terms are tightening.
Additionally, we have noticed that an excessively large α will also constrain zM meanwhile because
zM and zS share the encoder parameter. This can also explain why excessive α is harmful.

(a) Accuracy vs α (b) Accuracy vs masking ratio (c) Attention proportion on salient
features xsf of zM and zS

Figure 4: Sensitivity analysis of α and masking ratio on IMDB dataset.

3.5 ABLATION STUDY

To explore the effect of the regularization restriction on zS and the IB restriction, we conduct abla-
tion experiments on three datasets. We remove the regularization restriction on zS by setting α = 0
and remove IB restriction by setting β = 0. The results are shown in Table 6. Firstly, regard-
less of whether there are IB restrictions, the performance does reduce on all considered datasets if
α = 0, demonstrating the solid gain of the regularization term of our method. Secondly, we find that
in some cases(especially on CIFAR10), only removing the IB restriction(β = 0) results in perfor-
mance improvement, indicating that the IB restriction can lead to negative effects in some cases. The
phenomenon is also consistent with our previous analysis in Section 3.1 that the gains brought by IB
on text are more significant than that on images. Furthermore, it should be noted that the ablation
results still differ from the base model due to the use of two variational encoders. When α = 0,
InfoR-LSF degenerates to a VIB model with two heads (the modified input x′ will not participate in
any loss calculation if α = 0). In this case, the results should be similar to VIB or VIBERT.
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Table 6: Average ablation results over 5 runs under different data size of base model, InfoR-LSF
and InfoR-LSF without regularization restrictions

Train Data SizeData Model 50 100 200 500 1000
BERT 66.6 (2.2) 77.9 (2.3) 85.6 (0.5) 87.1 (0.6) 88.7 (0.3)
InfoR-LSF 75.5 (2.3) 83.0 (2.9) 86.9 (0.4) 88.3 (0.5) 89.4 (0.4)
InfoR-LSF(α=0) 73.6 (3.1) 81.1 (3.9) 86.0 (0.9) 87.5 (0.4) 88.8 (0.2)
InfoR-LSF(β=0) 71.3 (2.8) 80.9 (2.4) 86.4 (0.5) 87.8 (0.4) 89.2 (0.2)

IMDB

InfoR-LSF(α=0,β=0) 68.4 (2.7) 78.5 (2.6) 85.9 (0.9) 87.5 (0.5) 88.6 (0.6)
BERT 35.1 (1.8) 39.6 (2.1) 43.1 (1.7) 51.9 (0.9) 55.6 (0.7)
InfoR-LSF 39.6 (1.1) 41.4 (1.4) 44.9 (2.4) 53.6 (0.6) 55.9(0.3)
InfoR-LSF(α=0) 37.8 (2.1) 41.0 (1.4) 43.6 (2.1) 53.3(0.7) 55.2 (0.9)
InfoR-LSF(β=0) 38.6 (2.5) 41.0 (3.6) 45.6 (1.9) 53.5 (0.8) 55.7 (0.5)

YELP

InfoR-LSF(α=0,β=0) 36.5 (1.7) 40.1 (2.5) 43.8 (2.3) 51.3 (0.7) 55.1 (0.3)

CIFAR10

ResNet 17.2(2.1) 22.6(1.1) 31.1(1.6) 40.4(1.6) 48.9(1.2)
InfoR-LSF 20.3(1.5) 24.5(0.2) 32.1(1.8) 42.1(0.8) 52.8(1.0)
InfoR-LSF(α=0) 19.2(0.8) 22.5(0.5) 30.4(1.8) 41.0(0.4) 51.1(0.9)
InfoR-LSF(β=0) 20.4(1.6) 23.8(0.9) 31.8(2.0) 42.7(0.8) 52.1(1.9)
InfoR-LSF(α=0,β=0) 18.7(2.2) 21.5(0.4) 30.6(1.6) 41.5(0.7) 50.4(1.5)

4 RELATED WORK

Information Bottleneck. The information bottleneck(IB) (Tishby et al., 1999) was first proposed
in traditional machine learning and then used to analyze and interpret the behavior of deep neural
networks (Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017). Later, Alemi et al. (2017) pre-
sented variational information bottleneck (VIB) to improve the learning of DNNs by optimizing a
variational bound of IB objective. (Federici et al., 2020) extended the IB method to learn robust rep-
resentations in unsupervised multi-view setting by minimizing superfluous information not shared
by the two views. Additionally, IB were introduced to NLP tasks such as dependency parsing (Li &
Eisner, 2019) and unsupervised sentence summarization (West et al., 2019). Mahabadi et al. (2021)
applied VIB in the finetuning of pretrained BERT (Devlin et al., 2018) , showing good low-resource
performance. Besides, IB also helped domain generalization(Ahuja et al., 2021; Du et al., 2020).

Information Maximization. The InfoMax principle (Linsker, 1988; Bell & Sejnowski, 1995) were
proposed to advocate maximizing mutual information between input and output. Hjelm et al. (2019)
applied InfoMax principle on unsupervised representations learning for deep neural networks and
Bachman et al. (2019) further developed self-supervised representation learning based on maximiz-
ing mutual information between features extracted from multiple views. Besides, the InfoMax prin-
ciple has also been leveraged in contrastive representation learning, such as contrastive predictive
coding (Oord et al., 2018; Henaff, 2020) and contrastive multi-view coding (Tian et al., 2020).

Although it has been observed that IB methods can learn parsimonious features with better general-
ization in resource-limited scenarios, they implicitly suppress other redundant relevant features. The
main motive of this work advocates the learned representations should incorporate these suppressed
relevant features, which makes it distinct from IB methods.

5 CONCLUSION

In this work, we introduce the principle of information retention, which aims to keep as much
relevant information as possible in use for making predictions. We further design a three-stage
supervised learning framework named InfoR-LSF for information retention by jointly learning the
mainline and supplemental features. In experiments, we compare InfoR-LSF against other methods,
and its strong performance in different fields under both low-resource and out-of-domain scenario
shows that InfoR-LSF can be practically applied to various type of tasks. Furthermore, analysis
experiments indicate that our framework indeed achieves information retention and extracts more
relevant features than other competitors.
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A EXPERIMENTAL SUPPLEMENT

A.1 DATASET STATISTICS

Table 7 shows statistic information of datasets used in our experiments.

Table 7: Datasets used in experiments.

Dataset #Lables Train Valid Test
Image Classification

CIFAR10 10 50K - 10K
CIFAR100 10 50K - 10K

Sentiment Classification
IMDB 2 20K 5K 25K
YELP 5 62.5K 7.8K 8.7K
YELP-2 2 560K - 38K
SST-2 2 6.9K 0.9K 1.8K
SST-5 5 8.5K 1.1K 2.2K
MR 2 8.7K - 2K
Amazon-2 2 3600K - 400k
Amazon-5 5 3000K - 650K

Semantic Textual Similarity
STS-B 1 5.8K 1.5K 1.4K

Regression
Appliance Energy Prediction 1 15.8K - 3.9K

A.2 IMPLEMENTATION DETAILS

For CIFAR10, refering to the open source implementation3, we train the model for 200 epochs
with batch size 256, initial learning rate 0.1 and weight decay 5e-4. We apply SGD optimizer
with momentum 0.9 and a step scheduler that decays the learning rate by 0.1 every 160 epochs.
For CIFAR100, we train the model for 240 epochs with batch size 64, initial learning rate 0.05
and weight decay 5e-4. We use SGD optimizer with momentum 0.9 and multi-step scheduler that
decays the learning rate by 0.1 at milestones 150, 180, 210. For text classification tasks, we fine-
tune all the models for 25 epochs with batch size 8 to allow them to converge. We use AdamW
optimizer (Kingma & Ba, 2014) with initial learning rate 2e-5 and warmup ratio 0.05 for all models
for fine-tuning. Besides, we use early stopping for in all text experiments based on the performance
of the validation set.

As for hyper-parameters of variational information bottleneck, we use bottleneck size as half of the
hidden layer representation dimension, i.e., 384 for BERT and 256 for ResNet-18. And the β of in-
formation bottleneck is set to 1e-5 for all experiments. We use sample size 5 for reparameterization.

As for the coefficient α of our method, we use 1e-3 for all the text experiments, 1e-2 of CIFAR10
and CIFAR100 and 0.1 for Appliance Energy Prediction. And for the modification of input features,
in all our experiments, the mask proportion is 5%, i.e., 5% of the patches in the image or 5% of the
tokens for the sentence. In addition, for both CIFAR10 and CIFAR100, the patch size used when
selecting salient features is 4× 4, i.e., each image is divided into 8× 8 image patches.

A.3 IMAGE CLASSIFICATION PERFORMANCE ON CIFAR100

On CIFAR100, we construct low resource subset of various sizes from original train set, with scales
ranging from 1000 to 50000. Results are provided in Table 8. Consistent with the conclusion on
CIFAR10, our method outperforms all baseline methods at all data sizes.

3https://github.com/kuangliu/pytorch-cifar
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Table 8: CIFAR100 classification task accuracy under different train data size.

Model Train Data Size
1000 2000 3000 5000 10000 20000 50000

ResNet-18 13.90 20.65 27.10 38.08 55.52 67.14 77.85
IFM 14.04 21.71 28.46 39.46 56.72 67.19 77.53
FGSM 14.19 20.56 26.21 34.80 48.46 59.60 71.66
VIB 13.94 21.17 27.85 39.46 56.30 67.30 77.54
InfoR-LSF 15.51 22.61 30.43 43.32 58.79 68.85 78.44
∆ +1.61 +1.96 +3.33 +5.24 +3.27 +1.71 +0.59

A.4 COMPUTATIONAL COMPLEXITY ANALYSIS

Theoretically, InfoR-LSF conducts forward propagation and backward propagation twice during the
training phase, and there is double data in the second time. As a result, the time consumption should
be approximately 2-3 times that of the base model. During the inference phase, InfoR-LSF doesn’t
require additional backward propagation.The increase in calculation amount only comes from the
additional variational encoder. Therefore, the time cost should be comparable to the base model.
We measure the running time of each method on CIFAR10 and IMDB. The results are shown in
Table 9, in which the base model is used as a benchmark. It can be observed that the training time
of InfoR-LSF is about 2.43 times that of the base model, and the inference time is about 1.03 times
that of the base model, which is consistent with the conclusion of the theoretical analysis.

Table 9: Computational complexity analysis of each method. ∆% are relative differences with base
model(ResNet-18 or BERT).

Dataset Model Train Time ∆% Inference Time ∆%

CIFAR10

baseline 425s - 1.98s -
IFM 430s 1.18% 2.02s 1.97%
FGSM 859s 102.12% 1.99s 0.66%
VIB 428s 0.71% 2.02s 2.02%
InfoR-LSF 1033s 143.06% 2.05s 3.28%

IMDB

baseline 101s - 100.56s -
IFM 105s 4.16% 101.54s 0.98%
VIBERT 108s 6.32% 101.89s 1.32%
InfoR-LSF 243s 139.75% 103.42s 2.84%

B PROOFS

Figure 5: The relationship between x, x′, zM , zS , and z′S .

In the framework of InfoR-LSF, we first train zM on original input x, and then mask the salient
feature of x according to zM to obtain x′. In the third stage, we jointly train both zM and zS , where
zS is restricted by a regularization term. The relationship between x, x′, zM , zS , and z′S is shown
as Figure 5. It can be derived that x′ and zS are conditionally independent for any given x.
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B.1 PROOF OF EQUATION 3

Hypothesis:

Given x, x′ and zS are conditionally independent: I(zS ;x′|x) = 0

Proof.
I(zS ;x) = I(zS ;xx

′)− I(zS ;x
′|x)

= I(zS ;xx
′)

= I(zS ;x
′) + I(zS ;x|x′)

(8)

B.2 PROOF OF EQUATION 6

Hypothesis:

Given x, x′ and zS are conditionally independent: p(zSx′|x) = p(zS |x)p(x′|x)
Proof.

I(zS ;x|x′) = Ex′∼p(x′)EzS ,x∼p(zS ,x|x′) log
p(zS ,x|x′)

p(zS |x′)p(x|x′)

= Ex,x′∼p(x,x′)EzS∼p(zS |xx′) log
p(zS ,x|x′)

p(zS |x′)p(x|x′)

= Ex,x′∼p(x,x′)EzS∼p(zS |xx′) log
p(zS |xx′)

p(zS |x′)

= Ex,x′∼p(x,x′)EzS∼p(zS |x) log
p(zS |x)
p(zS |x′)

= Ex,x′∼p(x,x′)EzS∼p(zS |x) log
p(zS |x)p(z′S |x′)

p(z′S |x′)p(zS |x′)

= Ex,x′∼p(x,x′)[DKL[p(zS |x)||p(z′S |x′)]−DKL[p(zS |x′)p(z′S |x′)]]

≤ Ex,x′∼p(x,x′)[DKL[p(zS |x)||p(z′S |x′)]]

(9)

C ALGORITHM TABLE OF INFOR-LSF

The framework of InfoR-LSF is shown in Algorithm 1.

Algorithm 1 InfoR-LSF
Input: Input data x ∈ RM and label y. A model M consisting with a backbone network fθ(·) and
two variational encoders gϕ(·) and gψ(·). Training epochs T . Feature suppression coefficient α and
VIB coefficient β.
Output: Final model M.

1: Train mainline feature zM = gϕ(fθ(x)) with VIB loss LVIB(x, zM , θ, ϕ) at the first epoch.
2: for t = 1, 2, ...., T − 1 do
3: Find salient input feature of mainline feature zM as xsf = topKx∈x ||∇xL(gϕ(fθ(x)),y)||
4: Erase salient feature xsf from x to obtain erased input x′.
5: Jointly train mainline feature zM = gϕ(fθ(x)) and supplemental feature zS = gψ(fθ(x)) by

L = LVIB(x, zM , θ, ϕ) + LVIB(x, zS , θ, ψ) + α · LIS

6: end for
7: return Final model M

D MOTIVATIONS FOR INFORMATION RETENTION PRINCIPLE

D.1 FROM THE PERSPECTIVE OF CAUSAL DIAGRAM
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Figure 6: The causal diagram that assumes that
there is a common cause h of the input x and its
real label y

To motivate the information retention principle,
let us investigate the causal diagram in Figure 6.
Since the common cause h are latent and unob-
served, correlation exists between the input x
and the label y. Traditional machine learning
or deep learning methods usually exploits the
correlation to make prediction are based on the
correlation, with ŷ = f(x) as the predicted la-
bel for the input data x. At the level of causal
mechanism, the task of inferring y from x con-
sists of two steps: to infer the posterior of latent
cause h of the observed input x,and then to pre-
dict y based on p(h|x). During this process, taking more input features of x into consideration is
expected to yield better estimation of h, although some components of h may have no effect on y.

D.2 A TOY EXAMPLE TO ILLUSTRATE THE IDEA OF INFORMATION RETENTION

Table 10: A simple motivating example

x1 x2 x3 x4 y
1 1 1 2 True
1 1 1 2 True
0 2 2 2 True
0 3 2 2 False
1 2 2 1 False
0 3 2 1 False

Table 10 shows a simple classification dataset, where
the input consists of four variables {x1, x2, x3, x4}
and the label y is a binary variable. We use this exam-
ple to illustrate the idea of information retention prin-
ciple.

The label y can be perfectly predicted by using the fea-
ture f1 = x1 + x2, because f1 = 2 implies y = True,
and f1 = 3 implies y = False. Therefore, the feature
f1 can be thought of as a good representation, which
is both concise and predictive.

Next, let us have a look at the other two simplest fea-
tures f2 = x3 and f3 = x4, which are also relevant to

the label and have medium predictive ability. However, since f1 has captured all the information
of the label y, taking f2 or f3 into consideration will not bring any lifting in predictive ability but
will lead to increased mutual information with the input. Thus, both f2 and f3 are suppressed and
discarded by the information bottleneck principle.

Finally, it comes to the test time and a new data [x1 = 1, x2 = 3, x3 = 1, x4 = 2] arrives, which
has the feature f1 = 4. The classification model based on f1 has not seen this feature value in the
training phase and cannot make a reliable prediction of label. However, feature f2 and feature f3
can deal with this situation, and both of them supports the prediction of y = True.

Therefore, it is beneficial and desirable to endow with the ability of relieve redundant relevant fea-
tures from the suppression of existing mainline features. Such redundant relevant features is supple-
mental to the mainline features.

Furthermore, given the model that heavily relies on f1 (called the mainline feature) and thus attends
to the input features x1 and x2, one possible solution to build up some new supplemental features by
requiring them to capture the least information that has already been captured by mainline features,
and simultaneously maximize their mutual information with the label.

E AN EXAMPLE FOR VISUALIZATION OF LEARNED FEATURES

Figure 7 shows an example from IMDB test set. We compute the gradient norms on input token
embedding sequences and normalize them over the whole sentence. The three lines respectively
represent the gradient distribution of BERT, zM head and zS head of InfoR-LSF. The depth of
the color represents the magnitude of the gradient. It can be observed that with the regularization
term LIS, zS partly erases salient features of zM (”movie a 1 .”) and learns new features(”made me
sick .”) which are also helpful for classification. In addition, from the perspective of out-of-domain
generalization, ”movie a 1 .” is a task-specific feature while ”made me sick” is a more general
feature, this can also explain the better out-of-domain performance of InfoR-LSF.
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Figure 7: Visualization of one example on IMDB test set. The depth of the color represents the
magnitude of the gradient.
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