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Abstract
Understanding how the brain learns may be in-
formed by studying biologically plausible learn-
ing rules. These rules, often approximating gra-
dient descent learning to respect biological con-
straints such as locality, must meet two critical cri-
teria to be considered an appropriate brain model:
(1) good neuroscience task performance and (2)
alignment with neural recordings. While exten-
sive research has assessed the first criterion, the
second remains underexamined. Employing meth-
ods such as Procrustes analysis on well-known
neuroscience datasets, this study demonstrates the
existence of a biologically plausible learning rule
— namely e-prop, which is based on gradient trun-
cation and has demonstrated versatility across a
wide range of tasks — that can achieve neural
data similarity comparable to Backpropagation
Through Time (BPTT) when matched for task
accuracy. Our findings also reveal that model ar-
chitecture and initial conditions can play a more
significant role in determining neural similarity
than the specific learning rule. Furthermore, we
observe that BPTT-trained models and their bi-
ologically plausible counterparts exhibit similar
dynamical properties at comparable accuracies.
These results underscore the substantial progress
made in developing biologically plausible learn-
ing rules, highlighting their potential to achieve
both competitive task performance and neural
data similarity.
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1. Introduction
Understanding how animals learn complex behaviors that
span multiple temporal scales is a fundamental question
in neuroscience. Effectively updating synaptic weights to
achieve such learning requires solving the temporal credit
assignment problem: determining how to assign the contri-
bution of past neural states to future outcomes. In pursuit
of answers, neuroscientists have increasingly adopted the
mathematical framework of training recurrent neural net-
works (RNNs) as a model for brain learning mechanisms, in-
spired by seminal works that laid the foundation for this ap-
proach (Zipser, 1991; Fetz, 1992; Moody et al., 1998; Mante
et al., 2013). This strategy has driven significant advance-
ments in developing biologically plausible (bio-plausible)
learning rules, which aim to model learning processes that
respect biological constraints (e.g., locality (Marschall et al.,
2019; Bredenberg et al., 2023)) while achieving good task
performance (Lillicrap et al., 2020; Richards et al., 2019).
Specifically, biological plausibility here refers to learning
rules where all signals required for weight updates are phys-
ically available at the synapse (Marschall et al., 2019). Be-
yond synaptic-level constraints, a learning rule appropriate
for the brain must also meet two key criteria: (1) it must
support good task performance, and (2) it must produce
brain-like activity. While extensive work has addressed the
first question, the second — whether bio-plausible learning
rules yield brain-like representations — remains underex-
amined.

Navigating the vast space of computational models — which
vary not only in learning rules but also in architecture and
tasks (Richards et al., 2019; Zador, 2019; Yang & Molano-
Mazón, 2021) — necessitates a systematic comparison of
model representations with empirical brain data. To address
this challenge, a variety of methods have been developed,
aiming to quantify the similarity between computational
models and neural data. Among these, popular method-
ologies include linear regression (Yamins et al., 2014),
Representational Similarity Analysis (RSA) (Kriegeskorte
et al., 2008), Centered Kernel Alignment (CKA) (Kornblith
et al., 2019), Singular Vector Canonical Correlation Analy-
sis (Raghu et al., 2017), Procrustes distance (Williams et al.,
2021; Ding et al., 2021; Duong et al., 2022), and Dynamical
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Similarity Analysis (DSA) (Ostrow et al., 2024). By com-
paring the geometry of state representations or the dynamics
of neural activity, these methods provide a critical frame-
work for evaluating the extent to which models approximate
neural systems.

Leveraging existing comparison methodologies, we com-
pute the similarity scores of RNN models trained with bio-
plausible learning rules to experimental data. Specifically,
we evaluate these similarity scores by comparing them to
those achieved by Backpropagation Through Time (BPTT)-
trained models, as BPTT-trained RNNs are the predominant
method for brain modeling and the benchmark that many
bio-plausible learning rules aim to approximate (Yang &
Wang, 2020; Richards et al., 2019; Lillicrap et al., 2020).
This comparison allows us to assess the efficacy of bio-
plausible approximations of gradient-descent learning in
capturing neural data similarity. Has the pursuit of bio-
logically plausible learning rules obeyed plausibility at
the level of synaptic implementation (e.g., locality) at the
expense of reproducing brain-like neural activity — or
can some such rules, under the right conditions, yield
representations as brain-like as those learned by BPTT?

Main contributions: Our findings reveal that the distance
between data and models trained with truncation-based
bio-plausible learning rules is comparable to the distance
achieved by models trained using BPTT. We specifically
focus on learning rules that approximate the gradient by
truncating bio-implausible terms, as these truncation-based
bio-plausible rules, such as e-prop, have demonstrated ef-
ficacy and versatility in learning non-trivial tasks (Bellec
et al., 2020; Eyono et al., 2022). Other bio-plausible training
strategies for RNNs either have limited versatility or success
on non-trivial tasks (see Related Works). Specifically, our
contributions include:

• We demonstrate there exists a biologically plausible
learning rule — e-prop, which is a local learning rule
based on gradient truncation and versatile across tasks
— that can achieve neural data similarity comparable to
BPTT at equal accuracies. We also examine ModProp
in Appendix Figure 7. This is achieved by bench-
marking well-known neuroscience datasets — Mante
2013 (Mante et al., 2013) and Sussillo 2015 (Sussillo
et al., 2015) — which are primate datasets chosen for
their higher task difficulty compared to datasets from
other species, using state-of-the-art similarity meth-
ods, particularly Procrustes distance (Figure 1 and Ap-
pendix Figure 7).

• Second, we show that factors such as architecture and
initial conditions — particularly initial weight settings
— can have a more pronounced impact on neural data
similarity than the specific choice of learning rule. This

highlights that variations in these factors can surpass
differences observed across learning rules (Figure 2).

• Third, to explain the comparable similarities between
BPTT and e-prop, we investigate their commonalities.
We show their increased similarity at a lower learn-
ing rate for BPTT (Figure 3). We also analyze their
resemblance in terms of their top demixed principal
components (Figure 4), post-training weight eigenspec-
trum, and dynamical properties, explored via Dynami-
cal Similarity Analysis (DSA) in Appendix Figure 8.

2. Related Works
Understanding the mechanisms through which the brain
learns, utilizing its myriad elements, remains a perennial
quest in neuroscience. Recent years have seen a resur-
gence of interest in proposing biologically plausible learn-
ing rules (Lillicrap et al., 2020; Scellier & Bengio, 2017;
Hinton, 2022; Laborieux & Zenke, 2022; Greedy et al.,
2022; Sacramento et al., 2018; Payeur et al., 2021; Roelf-
sema & Holtmaat, 2018; Aljadeff et al., 2019; Meulemans
et al., 2022; Murray, 2019; Bellec et al., 2020; Liu et al.,
2021; 2022b; Marschall et al., 2020; Ghosh et al., 2023;
Wang et al., 2024; Confavreux et al., 2024; Richards et al.,
2019; Kaleb et al., 2024), suggesting potential neural algo-
rithms that leverage known biological components. Many
of these rules are grounded in experimental observations
of synaptic plasticity, including STDP (Bi & Poo, 1998),
differential anti-Hebbian plasticity (Xie & Seung, 1999),
burst-induced plasticity (Remy & Spruston, 2007), and neu-
romodulated Hebbian rules shown to approximate backprop-
agation (Payeur et al., 2021; Aceituno et al., 2023).

Despite these advances, relatively little research has ex-
amined whether such rules — motivated by neuronal or
synaptic-level constraints — give rise to brain-like activity
at the circuit or network level. A separate line of work fo-
cuses on inferring learning rules directly from neural record-
ings (Nayebi et al., 2020; Ashwood et al., 2020; Lim et al.,
2015; Kepple et al., 2021; Portes et al., 2022), aiming to
reconstruct the learning mechanisms underlying synaptic
plasticity. In contrast, our work does not seek to identify
the brain’s actual learning rule — an especially difficult
task when only post-learning data is available — but in-
stead asks: can an existing biologically plausible rule pro-
duce neural activity aligned with empirical recordings? Our
framework evaluates the outcomes of learning, using flex-
ible post hoc comparisons that do not rely on observing
the learning process itself. While this approach does not
provide direct mechanistic insight, it fills a critical gap by
assessing whether existing bio-plausible rules can replicate
the dynamics observed in the brain. Recent work has simi-
larly begun comparing representations learned by different
types of algorithms—for example, Codol et al. (2024) ex-
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plore how brain-like neural dynamics for behavioral control
can emerge through reinforcement learning—providing a
complementary perspective to our approach.

Our research focuses on learning rules for recurrent neu-
ral networks, which are extensively used in brain model-
ing (Vyas et al., 2020; Perich et al., 2021; Schuessler et al.,
2020; Yang et al., 2019; Mante et al., 2013; Turner et al.,
2021; Valente et al., 2021; Langdon & Engel, 2022; Barak,
2017; Song et al., 2016; Maheswaranathan et al., 2019; Yang
& Molano-Mazón, 2021). This study specifically investi-
gates local learning rules that truncate gradients, as these
have shown promising results in task learning and offer ver-
satility across various network architectures. A systematic
review (Marschall et al., 2020) recognized random feed-
back local online (RFLO) as the only fully local (hence bio-
plausible) rule. Post-review developments include e-prop,
an adaptation of RFLO for non-vanilla (particularly spike-
based) RNNs (Bellec et al., 2020), and MDGL (Liu et al.,
2021) with its extension ModProp (Liu et al., 2022b), which
further refine the gradient approximation by considering
local modulatory signals (Smith et al., 2020). These rules
are notable for their effectiveness in bio-plausible temporal
credit assignment, matching the performance of the more
traditional BPTT in many settings (Eyono et al., 2022). Our
study will, therefore, concentrate on these specific learning
rules due to their demonstrated efficacy and bio-plausibility.
Further details of these rules are explained in Appendix A.2.

Alternative training strategies for RNNs exist, but they ei-
ther face bio-plausibility issues, lack versatility across set-
tings, or struggle to scale to complex tasks. For instance,
equilibrium propagation and related rules depend on the
equilibrium assumption (Scellier & Bengio, 2017; Meule-
mans et al., 2022); although there are architectures similar
to equilibrium propagation or deep feedback control that
do not make the equilibrium assumption (Gilra & Gerstner,
2017; Kaleb et al., 2024). Within truncation-based methods,
the SnAP-n algorithm introduced in (Menick et al., 2020)
allows customization by selecting the truncation level n.
While SnAp-1 aligns closely with e-prop/RFLO, SnAp-2
and higher n require storing a triple tensor, which poses
O(N3) storage demands not yet proven feasible for neu-
ral circuits. Therefore, SnAp-n (n ≥ 2) remains biologi-
cally implausible, while SnAp-1 effectively reduces to e-
prop/RFLO under certain conditions. Beyond truncation,
the KeRNL algorithm approximates long-term dependen-
cies using first-order low-pass filters and updates parameters
via node perturbation, yet this also challenges biological
plausibility by requiring frequent meta-parameter updates.
Other strategies like FORCE learning (Sussillo & Abbott,
2009) offer alternatives, but our scope assumes recurrent
weight adjustment and the non-reservoir version faces is-
sues with locality (Marschall et al., 2019; Bredenberg et al.,
2023). This study focuses on supervised learning, setting

aside the broader field of reinforcement learning for future
work, thus not covering certain learning rules like the one
in (Miconi, 2017).

Comparing high-dimensional neural responses across differ-
ent systems and contexts is crucial in neuroscience (Chung
& Abbott, 2021) for assessing model quality, determining
invariant neural states, and aligning brain-machine inter-
face recordings, among other tasks (Schrimpf et al., 2018;
Chaudhuri et al., 2019; Degenhart et al., 2020; Pagan et al.,
2025). Among the myriad of methods developed to quantify
representational dissimilarity (Yamins et al., 2014; Schrimpf
et al., 2018; Kriegeskorte et al., 2008; Raghu et al., 2017;
Shahbazi et al., 2021; Williams et al., 2021; Ding et al.,
2021; Duong et al., 2022; Khosla & Williams, 2023; Lin
& Kriegeskorte, 2023b; Pospisil et al., 2023; Nejatbakhsh
et al., 2024) — such as linear regression, Canonical Corre-
lation Analysis (CCA), Centered Kernel Alignment (CKA),
Representational Similarity Analysis (RSA), shape metrics,
and Riemannian distance — we focus on Procrustes distance
for its ability to provide a proper metric for comparing the
geometry of state representations, and because several weak-
nesses have been identified in other similarity measures that
are, for example, biased due to high dimensionality, or may
rely on low variance noise components of the data (Korn-
blith et al., 2019; Davari et al., 2022; Dujmović et al., 2023;
Elmoznino & Bonner, 2024; Cloos et al., 2024). Addition-
ally, we extend our investigation to include Dynamical Simi-
larity Analysis (DSA (Ostrow et al., 2024)) in the Appendix,
assessing system dynamics to complement our geometric
analyses. Overall, the value of these existing measures stems
from their ability to compare complex systems without fully
understanding them by capturing key structures. However,
this strength also poses a limitation: they focus on specific
structures, and it remains uncertain whether these structures
accurately capture the computational properties of interest.
Therefore, developing new measures remains a crucial and
intriguing endeavor (Sexton & Love, 2022; Sucholutsky
et al., 2023; Lin & Kriegeskorte, 2023a; Klabunde et al.,
2023; Bowers et al., 2023; Lampinen et al., 2024).

3. Preliminaries
3.1. RNN Training Setup

Our RNN architecture consists of Nin input units, N hidden
units, and Nout readout units. The update mechanism for
the hidden state at time t, ht ∈ RN , follows the equation:

ht+1 = βht + (1− β)(Whf(ht) +Wxxt), (1)

where β = 1 − dt
τm

∈ R is the leak factor determined
by the simulation time step dt and membrane time con-
stant τm; f(·) : RN → RN represents the activation func-
tion (We used retanh to mimic type-1 neuronal firing and
avoid negative firing rates but also explored ReLU activa-
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tion, as shown in Appendix Figure 7); Wh ∈ RN×N and
Wx ∈ RN×Nin are the recurrent and input weight matrices,
respectively; and xt ∈ RNin is the input at time t. The read-
out, ŷt ∈ RNout, is calculated as a linear combination of the
hidden state’s activation, f(ht), with the readout weights
w ∈ RNout×N .

To train this RNN for the specific tasks in the datasets,
we used synthetic input and target output detailed in Ap-
pendix A.2. Our objective is to minimize the scalar loss
L ∈ R. For loss minimization, we examine various learn-
ing rules, including BPTT (our benchmark) that computes
the exact gradient, ∇WL(Wh) ∈ RN×(Nin+N+Nout), as
well as bio-plausible learning rules that apply approximate
gradients, ∇̃WL(W ) ∈ RN×(Nin+N+Nout):

∆W = −η∇WL(W ), (2)

∆̂W = −η∇̃WL(W ), (3)

where W = [Wx Wh wT ] ∈ RN×(Nin+N+Nout) and
η ∈ R is the learning rate.

The learning rules investigated in this study are elaborated
upon in Appendix A.2. Our analysis centers on how training
RNNs with different algorithms influences their similar-
ity to neural data. Predominantly, we concentrate on the
truncation-based, bio-plausible rule known as e-prop (Bel-
lec et al., 2020), which simplifies the gradient by retaining
only those terms that align with a three-factor learning rule.
This includes a Hebbian eligibility trace modulated by a
top-down instructive factor, potentially attributable to neu-
romodulators (Magee & Grienberger, 2020; Gerstner et al.,
2018). It is noteworthy that e-prop is equivalent to the
RFLO learning rule introduced in (Murray, 2019) under
most conditions. Additionally, we explore ModProp (Liu
et al., 2022b), which incorporates cell-type-specific local
modulatory signals (Smith et al., 2020) to recover terms
omitted by e-prop. However, due to ModProp’s limitations
(constrained to the adherence of Dale’s law and employing
the ReLU activation function), our examination of this rule
is restricted to such specific contexts in Appendix Figure 7.

3.2. Similarity Measures

As mentioned in the Introduction, we utilize the metric
Procrustes distance (Williams et al., 2021) to quantify the
similarity between the hidden states of RNN models, de-
noted by H ∈ RB∗T×N , and the experimentally recorded
neural responses, represented as H̃ ∈ RB∗T×N ′

. Here, B
represents the number of trials or experimental conditions,
T denotes the number of time steps in each trial, and N
and N ′ correspond to the number of RNN hidden units and
recorded neurons, respectively. The metric Procrustes dis-
tance can be viewed as the residual distance after the two
neural representations are aligned with an optimal rotation,

and is quantified as

θ(H, H̃) = min
Q∈O

arccos

(
< Hϕ, H̃ϕQ >

∥Hϕ∥∥H̃ϕ∥

)
(4)

where O is the group of orthogonal linear transforma-
tions (Ding et al., 2021; Harvey et al., 2023).

4. Results
In our study, we analyze the similarity between task-trained
RNN models and two neural datasets: Sussillo 2015 (Sus-
sillo et al., 2015) and Mante 2013 (Mante et al., 2013). An
overview of our pipeline is provided in Figure 1A, with
detailed information about our RNN model setup, similar-
ity measure, and datasets in Appendix A. We examine the
similarity of RNN models, across different learning rules,
to neural data, leveraging Procrustes analysis. Figure 1B
shows that multiple learning rules, specifically BPTT and its
truncation-based biologically plausible alternative (e-prop),
achieve similar Procrustes distances from neural data across
two distinct tasks: Sussillo 2015 (Sussillo et al., 2015) and
Mante 2013 (Mante et al., 2013). Although the error bars
for BPTT and e-prop do not appear to overlap near perfect
accuracy in the Sussillo 2015 task, we demonstrate that
such differences are minimal compared to other potential
confounding factors in the brain, as shown in Figure 2 and
Appendix Figure 7. We further demonstrate the key trend
using additional similarity measures in Table 2.

Also, to see if the progress over time in developing more bi-
ologically plausible learning rules has led to improvements
in aligning models with neural activity, we also evaluated
older learning methods such as node perturbation and evolu-
tionary strategies. Results show that these methods resulted
in greater Procrustes distances compared to the aforemen-
tioned rules at equivalent accuracy levels, demonstrating
that not all learning rules are equally effective. This also
indicates the effectiveness of newer bio-plausible gradient-
approximating learning rules over some of the older methods
(Appendix Figure 9).

Additionally, Figure 2 delves into the impact of initial
weight settings on model-data distances, revealing that such
initial condition nuances exert a more pronounced influence
than the choice of learning rule itself. Initial weight gain is
a crucial attribute, as it significantly affects the dynamical
properties of RNNs, particularly the Lyapunov exponents
that govern the rates of expansion and contraction. It can
also interpolate between rich and lazy learning regimes, im-
parting distinct inductive biases (Braun et al., 2022; Flesch
et al., 2023; Chizat et al., 2019; Woodworth et al., 2020;
Schuessler et al., 2023; Bordelon & Pehlevan, 2022; Liu
et al., 2023; Paccolat et al., 2021). This finding further
underscores the significant role of model initialization in
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Figure 1. (A) Setup overview: analysis of two neural datasets. We computed similarity scores between RNN activity and electrode
recordings from (1) Mante et al. (2013) and (2) Sussillo et al. (2015). Schematics have been modified from those in the original papers.
RNNs are trained on these respective tasks using various learning rules, including BPTT and bio-plausible alternatives. Subsequently, we
evaluate the similarity between RNN activity post-training and the neural recordings to compare model-data similarity across different
learning rules. (B) The Procrustes distance vs. accuracy plots for the Sussillo 2015 (top) and Mante 2013 (bottom) tasks illustrate
that multiple learning rules achieve comparable data similarity. At each training iteration, both task accuracy and neural similarity are
computed, and the resulting pairs are plotted—showing the progression of models during training from low accuracy/high distance (upper
left) to high accuracy/low distance (bottom right). This procedure is applied uniformly across all learning rules. Here, magenta denotes
e-prop, blue denotes truncated BPTT (truncation length = 10), and black denotes BPTT. The mean is plotted with error bars denoting
standard deviations across four random seeds. The x-axis, normalized accuracy, is defined in Appendix A.3. (C) UMAP embedding of
trained model representations with Sussillo 2015 as an illustrative example; additional training snapshots are shown in Appendix Figure 6.
Additional similarity measures are given in Table 2.

shaping learning outcomes, with particular initial conditions
facilitating a closer approximation to neural data than others.

Figure 3 explores the impact of learning rates on model-data
distances across learning rules. In Figure 3A, Procrustes
distances remain consistent across learning rates for BPTT.

Given that e-prop can be decomposed into a lower learning
rate BPTT and an approximation error (Liu et al., 2022a),
which is further illustrated here by the similarity between
a lower learning rate BPTT and e-prop (Figure 3B), this
shared component of a lower learning rate BPTT could
partly explain their similar distances. Additionally, post-
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BBPTT E-prop

Blue: initial weight gain = 0.0; Black: initial weight gain = 0.5; Magenta: initial weight gain = 1.0; 
Green: initial weight gain = 1.5; Cyan: initial weight gain = 2.0

A

Figure 2. Impact of Initial Weight Magnitude on Model-Data Distances Exceeds Variation from Learning Rules. Model-data
distances versus normalized accuracy for various initial gain values (depicted by different colors) for (A) BPTT and (B) e-prop. Initial
weight gain refers to the multiplier applied to the default initializations for recurrent and readout weights. The results shown are for the
Sussillo 2015 task, with similar trends observed for the Mante 2013 task. The mean is plotted with error bars representing the standard
deviation. Table 1 further illustrates the significant influence of gain on distances.

Rule gain=0.0 gain=0.5 gain=1.0 gain=1.5 1.0 vs 0.0 1.0 vs 0.5

BPTT 0.461 ± 0.006 0.423 ± 0.005 0.398 ± 0.007 0.428 ± 0.010 p=2.07e-5 p=1.94e-3
e-prop 0.461 ± 0.007 0.437 ± 0.009 0.407 ± 0.008 0.432 ± 0.008 p=1.30e-4 p=5.71e-3
e-prop vs BPTT p=0.985 p=0.078 p=0.173 p=0.587 – –
Noise ceiling 0.565 ± 0.002 0.529 ± 0.005 0.467 ± 0.005 0.508 ± 0.017 – –

Table 1. Procrustes distance across gains and learning rules for Figure 2. Distances measured at normalized accuracy ≈ 0.8. Values are
mean ± std across seeds. Noise ceiling corresponds to untrained models. Non-overlapping error bars across gains suggest gain influences
neural distances; overlapping bars within columns suggest similarity across rules (for fixed gain). P-values (uncorrected t-tests due to only
a small number of comparisons) highlight significant gain-dependent differences but insignificant differences across rules.

A B

Black: lr=1e-3 
Blue: lr=3e-4 
Cyan: lr=1e-4  

Figure 3. (A) Procrustes distances remain consistent across various learning rates when employing the same rule (BPTT). Different color
shades represent different learning rates: 1e− 3, 3e− 4, and 1e− 4. These rates result in nearly indistinguishable Procrustes distances.
The analysis in this figure is done using the Sussillo 2015 task. (B) E-prop — has been viewed as BPTT with a reduced learning rate
plus some degree of gradient approximation error (Liu et al., 2022a) — aligns more closely with BPTT at a lower learning rate (1e− 4)
compared to the default setting (1e− 3). Here, the mean distance from BPTT to e-prop is plotted, with error bars denoting the standard
deviation.

training weight eigenspectrums and distances, analyzed via
Dynamical Similarity Analysis (DSA), further reinforce the
similarity between BPTT and e-prop (Appendix Figure 8).

This similarity is further explored in Figure 4, where top
demixed principal components show a qualitative match
between the neural data and the models. We also display the
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Data BPTT E-prop

Figure 4. Demixed principal component analysis (dPCA) shows a qualitative match between model and data when projected onto the
first time component and first condition component. The time component captures variance aligned with task time, while the condition
component captures variance attributable to input condition differences. Here, the Sussillo 2015 dataset is illustrated; similar trends are
observed for the Mante 2013 dataset. Each color represents a different reach condition.

CCA CKA

BPTT 0.272 ± 0.009 0.152 ± 0.015
e-prop 0.273 ± 0.009 0.154 ± 0.006
p-val p=0.953 p=0.817

Table 2. Additional similarity measures yield trends consistent
with those in Figure 1. We note that Sussillo 2015 is used here as
an example. All p-values (uncorrected, due to the small number
of comparisons) show no significant differences between trained
BPTT and e-prop models across metrics (at matched accuracies).

similarity among models in terms of their pairwise distances
and their embeddings across different sampled training snap-
shots in Appendix Figure 6.

Building on the observed similarities between BPTT and
e-prop, we derive Proposition 4.1, which demonstrates that
e-prop can converge to W ∗ (the solution obtained by BPTT)
in a highly simplified setting, highlighting the critical role
of initialization. Specifically, we present a 1D linear RNN
example where e-prop matches BPTT under certain initial-
izations but diverges under others. This toy case illustrates
the sensitivity of e-prop to initialization, a key factor also
observed in our empirical results. Extending such theoreti-
cal analysis to higher-dimensional RNNs would be valuable,
though likely on the order of (Schuessler et al., 2020), and is
left for future work. Our aim is not to offer a comprehensive
theoretical account of e-prop, but rather to motivate future
investigation by showing that convergence behavior in even

the simplest cases can depend strongly on initialization.

Proposition 4.1. (Informal) For a 1D linear RNN trained
using e-prop, the weight updates can converge to (or diverge
from) the solution W ∗ found via an arbitrary algorithm
(e.g., BPTT), depending on the initialization of the recurrent
weight W (0). (The formal statement and proof are provided
in Appendix B.)

It is noteworthy that if all models were equally far from
the data, it might also suggest random noise. However,
that is not the case, as our models are significantly closer
to the neural data after training (Figure 5 and Table 3).
These results are also consistent with the existing studies
that reported the correlation between task performance and
neural data similarity (Yamins et al., 2014). Additionally,
what does it mean for a model to be close to the data and how
do we interpret the range of alignment values? To interpret
those, we need a baseline based on data-to-data similarity,
which reflects how close the models are to the data relative
to other data points (subsamples within the dataset). Due to
limited subjects, we generated this baseline by splitting the
data by neurons within the same subject, matched across
timepoints and experimental conditions, though this may
create an overly stringent baseline due to potential neuron
dependence (details in Appendix A.3). We also explain why
we didn’t use trial-based subsampling in Appendix A.3. For
the Hatsopoulos 2007 dataset (Hatsopoulos et al., 2007), the
final trained models match the neural data as closely as other
neurons (Figure 5). For the Sussillo 2015 and Mante 2013
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Figure 5. Data-to-data distance (noise floor) vs model-to-data distance (BPTT and e-prop before and after training). Left: Hatsopolous
2007; middle: Sussillo 2015; right: Mante 2013. The data-splitting procedure for obtaining the baseline (i.e. noise floor) is detailed in
Appendix A.3. We also tabularize these values in Table 3. We note that these distances are computed with fewer neurons (about half) and
units than the previous plots, so the exact distance values here may differ.

Dataset Noise floor BPTT (trained) e-prop (trained) Untrained BPTT vs. floor

Hatsopoulos 2007 0.401 ± 0.024 0.395 ± 0.020 0.442 ± 0.030 0.538 ± 0.041 p=0.311
Sussillo 2015 0.373 ± 0.009 0.406 ± 0.012 0.411 ± 0.012 0.498 ± 0.015 p=5.02e-6
Mante 2013 0.704 ± 0.004 0.721 ± 0.008 0.727 ± 0.010 0.800 ± 0.008 p=1.29e-5

Table 3. Neural similarity scores from Figure 5. Trained models outperform their untrained initializations and the noise floor. P-values
(uncorrected t-tests) compare BPTT-trained models to the noise floor; similar trend was observed for e-prop trained model as well.
Significant differences from the noise floor are found for Sussillo 2015 and Mante 2013, but not for Hatsopoulos 2007.

datasets, trained models approach the noise floor compared
to untrained models; the remaining differences from the
baseline offer insights for improving learning algorithms
and architectures in future work.

5. Discussion
Investigating biologically plausible learning rules is impor-
tant to understanding how the brain learns. While many
such rules adhere to synaptic-level constraints (Richards
et al., 2019; Lillicrap et al., 2020), their ability to reproduce
brain-like neural activity remains unclear. Here, we assess
whether RNNs trained with approximate, gradient-based
bio-plausible rules — focusing on e-prop (and ModProp in
the Appendix) — can match the neural similarity of stan-
dard BPTT-trained models. Using Procrustes analysis, we
show that at matched task accuracy, e-prop-trained RNNs
exhibit neural similarity comparable to BPTT. Notably, ar-
chitectural choices and initialization have a larger influence
on model-data alignment than the choice of learning rule
(Figure 2, Appendix Figure 7). Further, BPTT exhibits in-
creased similarity to bio-plausible models at lower learning
rates (Figure 3) and shares post-training properties in weight
eigenspectrum and dynamics, as shown via DSA (Appendix
Figure 8). These findings demonstrate that bio-plausible
rules can, under certain conditions, achieve both strong
task performance and brain-like dynamics — motivating a
broader reevaluation of how architecture and initialization
shape neural similarity.

While BPTT exhibits questionable biological plausibility,
it has been widely used for brain modeling, especially in
seminal works (Mante et al., 2013; Sussillo et al., 2015;
Yamins et al., 2014; Yang & Wang, 2020). Comparing BPTT
to e-prop allows us to examine how biologically motivated
gradient truncation affects neural similarity, and whether
BPTT-based models, despite their widespread use, might
under- or overestimate representational alignment relative
to plausible alternatives. Importantly, it was not obvious
a priori whether e-prop would yield representations more
or less brain-like than BPTT. Our finding that e-prop can
match BPTT under certain conditions is therefore nontrivial
and highlights the promise of such rules. More broadly, our
framework is designed to eventually evaluate models that
surpass BPTT as a benchmark for neural similarity.

Limitations and future works. Extending our approach
to include a broader range of learning rules, architectures,
datasets, and comparison methods represents an important
direction for future research. A comprehensive evaluation
across these dimensions is beyond the scope of a single
paper, especially in a rapidly evolving field. Our pipeline is
flexible, allowing for expansion across these various facets
in future investigations. Moreover, while our study is lim-
ited in the learning rules and architectures examined, it
demonstrates the existence of scenarios where biologically
plausible learning rules can achieve neural data similari-
ties comparable to their deep learning counterparts. Our
focus on gradient truncation-based learning rules is due to
their effectiveness in task learning and versatility (see Re-
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lated Works). Despite focusing primarily on e-prop (and
ModProp in the Appendix), our findings suggest that it’s pos-
sible for biologically plausible learning approximations to
preserve synaptic-level constraints without substantially sac-
rificing neural data alignment. That said, existing findings
do not suggest that maintaining similarity at the synaptic
level necessarily translates to similarity at the neural activity
level, possibly due to differences in scale and the emergent
nature of neural dynamics. Additionally, while this work
emphasizes learning via synaptic credit assignment, alter-
native frameworks such as biologically plausible in-context
learning (Von Oswald et al., 2023) offer complementary
perspectives and merit deeper investigation.

Another limitation worth noting is that our pipeline is not de-
signed to identify the brain’s actual learning rule. This stems
from identifiability issues inherent in under-constrained sys-
tems: multiple learning rules may converge to similar ter-
minal activity patterns when only post-learning data are
available. Constraining the architecture using experimen-
tal data — or incorporating neural data during learning —
could help narrow the solution space, and we view this as a
promising direction for future work. That said, our goal is
not to recover the precise rule used by the brain, but rather to
test whether any existing biologically plausible rule (e.g., e-
prop) can yield neural dynamics comparable to those trained
with BPTT, the de facto benchmark for brain-like models.
Our findings suggest that such rules can indeed achieve
competitive neural similarity and task performance without
sacrificing biological plausibility.

Beyond learning rules, factors such as architecture and ini-
tialization — highlighted in Figure 2 and Appendix Figure 7
— are critical areas for future exploration. While our results
show that e-prop can match BPTT in neural similarity at
equal task accuracy, this does not imply the two are function-
ally indistinguishable. In fact, e-prop struggles on certain
tasks (Liu et al., 2021), motivating future efforts to gather
experimental data where bio-plausible rules diverge, en-
abling more targeted comparisons. This consideration partly
motivated our focus on primate datasets, which typically
involve more complex tasks than those used during rodent
experiments. Expanding the analysis to more open-source
primate datasets and other modalities is an important next
step. Relatedly, our study centers on temporal tasks with
rich dynamics, aligning with our goal of investigating bio-
logically plausible credit assignment over time. That said,
extending these analyses to non-temporal domains — such
as vision, where many recent bio-plausible rules are formu-
lated — is a valuable direction for future work.

As recent studies have noted, BPTT-trained models often
converge to a limited subset of solutions (Pagan et al., 2025),
and it remains unclear whether the brain uses BPTT at
all (Song et al., 2024); Zahorodnii et al. (2025) further

demonstrate that handcrafted solutions can produce more
brain-like dynamics than BPTT. These observations under-
score the limitations of BPTT as a benchmark and moti-
vate future research on alternative learning frameworks and
rule–architecture co-design. While in our study we inten-
tionally fixed the architecture, initialization, and task — fol-
lowing prior work (e.g., (Liu et al., 2022a)) — to isolate the
effect of the learning rule on neural similarity, many biologi-
cally plausible rules are designed with specific architectural
constraints in mind. A more systematic investigation of
learning rule and architecture interactions is an important
direction for future work.

Furthermore, we chose to focus on Procrustes distance for
its ability to provide a proper metric for comparing the ge-
ometry of state representations, and its stringency in only
allowing for rotations and a global stretching to align neural
trajectories (although we also explored additional measures
in Table 2 and Appendix Figure 8B). Beyond its geometric
grounding, recent work (Cloos et al., 2024) found that opti-
mizing Procrustes may better preserve task-relevant features
than other metrics, suggesting it can capture more meaning-
ful neural structure. They also showed that Procrustes is
stricter than CKA: high Procrustes was observed to imply
high CKA, but not vice versa (see also Harvey et al. (2024)).
We were also motivated to emphasize Procrustes distance
because several weaknesses have been identified in other
similarity measures that are, for example, biased due to high
dimensionality, or may rely on low variance noise compo-
nents of the data (Kornblith et al., 2019; Davari et al., 2022;
Dujmović et al., 2023; Elmoznino & Bonner, 2024; Cloos
et al., 2024). That said, like all scalar measures, it focuses
on specific structures, and it remains uncertain whether
these structures accurately capture the computational prop-
erties of interest. Relatedly, certain deep learning architec-
tures, under sufficient conditions, may lead many models to
exhibit similar internal representations (Huh et al., 2024).
Therefore, developing new measures remains a crucial and
intriguing endeavor (Sexton & Love, 2022; Sucholutsky
et al., 2023; Lin & Kriegeskorte, 2023a; Klabunde et al.,
2023; Bowers et al., 2023; Lampinen et al., 2024). Alto-
gether, this vibrant area invites further work on learning
rule–architecture interactions, task design, and evaluation
methods.
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A. Methods
A.1. Further Details on the Neural Datasets and Synthetic Data for RNN Training

The Mante 2013 dataset was downloaded from https://www.ini.uzh.ch/en/research/groups/mante/
data.html. We trained RNNs using a synthetic task setup from Neurogym (Molano-Mazon et al., 2022), which included
a 350 ms fixation period, a 750 ms stimulus presentation period, a 300 ms delay period, and a 300 ms decision period.
The activity of the trained RNNs during the stimulus period was then compared to the downloaded neural dataset using
the aforementioned similarity measures. A grid search on the fixation and decision interval durations revealed only minor
differences in distances and a consistent trend across learning rules.

The Sussillo 2015 dataset consisted of electrode recordings from primary motor (M1) and dorsal premotor cortex (PMd)
taken while a monkey performed a maze-reaching task consisting of 27 differerent reaching conditions (Sussillo et al., 2015).
To assess the similarity between the neural activity and RNNs we compared activity from -1450 ms to 400 ms relative
to movement onset. The inputs and outputs to train the models were described in Sussillo et al. 2015, but in brief, for
each reach condition there were 16 inputs and 7 target outputs. The 7 outputs were the electromyographic (EMG) signals
recorded from 7 muscles as the monkey performed a reaching movement. 15 inputs specified the upcoming reach condition,
and were derived from preparatory period neural activity. The remaining input was a hold-cue that took a value of +1 before
movemement onset and then a value of 0 to initiate the movement, whereupon the model generated the 7 EMG signals.

A.2. Further Details on the Learning Rule

This subsection aims to clarify the approximation mechanisms employed by each bio-plausible learning rule. For com-
prehensive descriptions, we recommend consulting the detailed references provided. We begin by expressing the gradient
via real-time recurrent learning (RTRL) factorization (an equivalent but causal alternative to the BPTT factorization of the
gradient):

dL

dWh,ij
=

∑
l,t

∂L

∂hl,t

dhl,t

dWh,ij
, (5)

We follow the total versus partial derivative notation (d vs. ∂) as in (Bellec et al., 2020). The primary challenge with RTRL
in terms of biological plausibility and computational efficiency lies in the term dhl,t

dWh,ij
from the gradient decomposition

(Eq. 5). This term tracks all recursive dependencies of hl,t on the weight Wh,ij due to recurrent connections, calculated
recursively as:

dhl,t

dWh,ij
=

∂hj,t

∂Wh,ij
+
∑
m

∂hl,t

∂hm,t−1

dhm,t−1

dWh,ij

=
∂hl,t

∂Wh,ij
+

∂hl,t

∂hl,t−1

dhl,t−1

dWh,ij
+
∑

m̸=l Wh,lmf ′(hm,t−1)
dhm,t−1

dWh,ij︸ ︷︷ ︸
involving all weights Wh,lm

. (6)

Consequently, dhl,t

dWh,ij
presents a significant challenge for biological plausibility as it includes nonlocal terms, necessitating

knowledge of all other network weights for updating each Wh,ij . For a learning rule to be biologically plausible, all
information required to update a synaptic weight must be physically accessible to that synapse. However, it remains
unclear how neural circuits could make such extensive information readily available to every synapse.

Approaches like e-prop (Bellec et al., 2020) and equivalently, RFLO (Murray, 2019), address this by truncating the
problematic nonlocal terms in Eq. 6, ensuring that updates to Wh,ij follow a three-factor framework — the updates rely
solely on local pre- and post-synaptic activity and a third top-down instructive signal (e.g. from neuromodulators):

∂̂hl,t

∂Wh,ij
=

 ∂hi,t

∂Wh,ij
+

∂hi,t

∂hi,t−1

∂̂hi,t−1

∂Wh,ij
, l = i

0, l ̸= i
(7)

which yields a much simpler factor than the comprehensive tensor depicted in Eq. 6. This truncation can be achieved in
PyTorch using h.detach(), preventing gradient propagation through the recurrent weights.
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Putting this together, e-prop can be written in terms of known biological processes including — eligibility trace e and
top-down instructive signals I — as (Bellec et al., 2020):

∆Wh,ij |e−prop =
∑
t

Ii,teij,t, (8)

where Ii,t =
∂L

∂hi,t
is the top-down instructive signal (e.g. from neuromodulator dopamine, neuronal firing, etc. (Gerstner

et al., 2018; Bellec et al., 2020)) sent to neuron i at time t, and eij,t =
∂̂hi,t

∂Wh,ij
=

∂hi,t

∂Wh,ij
+

∂hi,t

∂hi,t−1

∂̂hi,t−1

∂Wh,ij
is the eligibility

trace for synapse (ij) at time t. This is a three-factor rule, with the pre-and postsynaptic neuron factors in the eligibility
trace as well as a third factor from the instructive signal.

Besides eligibility traces and top-down instructive signals, recent transcriptomics data (Smith et al., 2020) suggest the
presence of widespread cell-type-specific local modulatory signals that could convey additional information for guiding
synaptic weight updates. ModProp is developed to incorporate these processes and restore the gradient terms truncated
by e-prop, thereby improving the approximation of the gradient. Specifically, the ModProp update rule is described as
follows (Liu et al., 2022b):

∆Wh,ij |ModProp ∝ Ii × eij +

(∑
α∈C

(∑
l∈α

Ilh
′
l

)
× Fαβ

)
∗ eij ,

Fαβ,s = µs−1(W s)αβ , (9)

where I and e again denote the top-down learning signal and the eligibility trace, respectively. Here, neuron j belongs
to type α, neuron p to type β, and C denotes the set of cell types. Fαβ is hypothesized to represent type-specific filter
taps of GPCRs expressed by cells of type β in response to precursors secreted by cells of type α. The operator ∗ denotes
convolution, and s indexes the filter taps. The hyperparameter µ, set to 0.25 in this study, and the genetically predetermined
(W s)αβ values for different filter taps Fαβ,s could be optimized over evolutionary timescales (Liu et al., 2022b).

We also explored an older learning rule, node perturbation (Werfel et al., 2003; Lillicrap et al., 2016), which is known to
have trouble scaling beyond small-scale networks and simple tasks. Specifically, it is implemented by

∆Wh,ij |NP ∝
∑
t

Îi,teij,t, (10)

where Ît = (Lt(ht + ξ) − Lt(ht))ξ/σ
2 provides an estimate to ∂L

∂ht
; elements of ξ are chosen independently from a

zero-mean Gaussian distribution with variance σ2.

In addition, we explored evolutionary strategies (Salimans et al., 2017) for parameter updates in our model. This method,
for a Gaussian distribution, is implemented as follows:

∆Wh,ij |ES ∝ 1

σS

S∑
s=1

L(s)ϵ(s), (11)

where ϵ(s) is sampled from a standard normal distribution N (0, I) for s = 1, ..., S. Here, L(s) represents the loss function
evaluated after perturbing the parameter by σϵ(s), σ is the standard deviation of the perturbations, and S is the number of
samples. Due to computational constraints, we set S to 50 for our experiments.

A.3. Additional Details on Training and Analysis

Our model-data comparison method utilizes Procrustes distances, as implemented in https://github.com/
ahwillia/netrep, with the configuration set to metric = LinearMetric(alpha = 1.0, center columns =
True). Additionally, in Appendix Figure 8, we employed Dynamical Systems Analysis (DSA), available at
https://github.com/mitchellostrow/DSA/tree/main. For this analysis, we tested with hyperparame-
ters n delays ∈ {5, 10, 15, 20} and rank ∈ {10, 20, 30, 40}, observing consistent trends across settings. We did
not test values beyond these ranges due to computational resource limitations. For the loss used in training RNNs,
we used cross-entropy loss for the Mante 2013 task and mean-squared error for the Sussillo 2015 task (with EMG
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outputs as the targets (Cloos et al., 2022)). As mentioned, the Mante 2013 dataset was downloaded from https:
//www.ini.uzh.ch/en/research/groups/mante/data.html. The Hatsopoulos 2007 dataset was down-
loaded from https://datadryad.org/dataset/doi:10.5061/dryad.xsj3tx9cm. However, we obtained
the Sussillo 2015 dataset from the original authors and do not have permission to redistribute it.

Our code is available at https://github.com/Helena-Yuhan-Liu/LearningRuleSimilarities/tree/
main. Both YHL and CJC contributed to the code development. We utilized PyTorch Version 1.10.2 (Paszke et al., 2019).
Simulations were executed on a server equipped with two 20-core Intel(R) Xeon(R) CPU E5-2698 v4 at 2.20GHz. The
average training duration for tasks was about 10 minutes, and the analysis pipeline required approximately 2 minutes per
model. Training employed the Adam optimizer. Unless otherwise noted, the learning rate was set at 1e − 3, optimized
through a grid search of {3e− 3, 1e− 3, 3e− 4, 1e− 4}. We used a batch size of around 100; changes in this parameter
led to negligible differences in the results. The number of time steps, T , for the Sussillo task was set to 186, matching the
original data. The number of time steps T , for the Mante task was 34, based on dt = 50 ms from the original Mante paper
and the total task duration in the Neurogym setting. Similar trends were observed when we varied dt and the durations of the
fixation and delay periods. We employed 200 hidden units for the Sussillo 2015 task and 400 hidden units for the Mante
2013 task; doubling these numbers resulted in similar trends. Each simulation was repeated with four different seeds (except
for 10 seeds for Figure 3B), and results for each seed were plotted as separate lines in our figures. Training involved 1000
SGD iterations for Sussillo 2015 and 3000 for Mante 2013, with input, recurrent, and readout weights all trainable. Local
learning rule approximations were specifically applied to input and recurrent weights, due to the locality issues discussed
in Section A.2. Unlike these weights, readout weights do not encounter such issues; hence, by default, the same readout
weights were used for both forward and backward computations. However, as verified in Appendix Figure 10, employing
random feedback readout weights for training (i.e., feedback alignment (Lillicrap et al., 2016)) resulted in comparable
distances.

By default, zero-mean Gaussian noise with a standard deviation of 0.1 was added to the hidden activity, except in cases
where the noise was removed to assess its impact. Typically, no connectivity constraints were applied, except for settings
in Figure 7B where 80% of the neurons were enforced as strictly excitatory and 20% as inhibitory. To enforce Dale’s law,
we used the same masking procedure in (Yang & Wang, 2020). Additionally, the Sussillo 2015 plot in Figure 1 applies a
sparsity constraint, limiting only 25% of the recurrent weights to be nonzero and trainable. To initialize the weights, we
initialized with random Gaussian distributions where each weight element Wh,ij ∼ N (0, g2/N), with an initial weight
variance of g; unless otherwise mentioned, we set g = 1.0. Input and readout weights were initialized similarly as in (Yang
& Wang, 2020) (see their EIRNN.ipynb notebook).

Normalized accuracy, which appears as the x-axis in several plots, is defined such that a value of 1 corresponds to
perfect performance. For Sussillo 2015, normalized accuracy is calculated as 1− normalized mean squared error, as used
in (DePasquale et al., 2018). In the case of Mante 2013, which involves a classification task where mean squared error is not
applicable, normalized accuracy is computed as 1− cross entropy loss to maintain consistency with the definition where 1
indicates the best performance. We also applied x-axis limits to constrain the range between 0 and 1 for uniformity. While
we match task accuracies for neural similarity comparisons, we note that — as observed in prior work (Bellec et al., 2020) —
e-prop typically requires more training iterations than BPTT to reach the same accuracy.

We detail the data-splitting procedure used for generating the noise floor, i.e. the baseline, in Figure 5. We split the neural data
into nonoverlapping groups each containing Nsample neurons (ineurons1, ineurons2). We sample Nsample units from the
RNN model (iunits). We compute the distance between two samples of neural data d1 = D(ineurons2, ineurons1). d1
is the lowest we can hope to get given the variability in the neurons that were recorded. We compute the distance between
samples of the model and neural data d2 = D(iunits, ineurons1). For each iteration of this procedure we get a new
estimate for the distance between the model and data, and the data-to-data distance.

Number of trials averaged 1 5 10 15 20

Distance 0.513 ± 0.008 0.358 ± 0.005 0.280 ± 0.004 0.238 ± 0.003 0.212 ± 0.003

Table 4. Illustrating greater data-data distance when computed from single trials; note that these numbers are not comparable to those in
Figure 5 due to different ways of subsampling.

Although the neural datasets used in this study contain multiple trials per condition, we did not compute data-data
similarity via trial-based subsampling. This decision reflects the substantial trial-to-trial variability in single-trial firing
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rate estimates, which can dominate the distance metric and obscure meaningful similarities—even between similar neural
responses (Cunningham et al., 2009; Kay et al., 2024). As illustrated in Table A.3, data-data distances are substantially
higher when computed from single trials, but decrease with trial averaging. This trend reflects how averaging across
trials helps recover stable, condition-specific firing patterns. While existing methods (e.g., LFADS (Pandarinath et al.,
2018)) have improved single-trial inference, accurate estimation of latent dynamics from single trials remains an open
challenge. Therefore, following standard practice in systems neuroscience, we computed similarity based on trial-averaged
responses. Our chosen data-data baseline (used in Figure 5) compares held-out subsets of neurons recorded under matched
task conditions and timepoints, and serves to assess a practical question: if more neurons had been recorded from the same
brain region, would they be distinguishable from model units?
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B. Convergence and Divergence of E-prop Updates in a Toy Setting
We present the formal statement and proof for Proposition 4.1 in Proposition B.1.

Consider a 1-dimensional linear recurrent neural network (RNN) with a single scalar recurrent weight parameter W , input
sequence {xt}Tt=1 ⊂ R, and output ŷ defined as the readout of the last hidden state hT :

ht = Wht−1 + xt, ŷ = hT , (12)

leading to

ŷ(W ) =

T−1∑
t=0

W txT−t. (13)

The loss function is the least-squares loss L = 1
2 (ŷ−y)2. Assume a target y = 0, making L = 1

2 ŷ
2. We note that this simple

setup effectively reduces to a polynomial root finding problem, with {xt}Tt=1 ⊂ R as the coefficients. The corresponding
gradient-based updates are modeled as a continuous-time dynamical system (CTDS), with specific forms for BPTT and
e-prop updates:

τ
dW (t)

dt

∣∣∣
BPTT

= − dL

dW
= −ŷ(W )ŷ′(W ), τ

dW (t)

dt

∣∣∣
e-prop

= −ŷ(W )xT−1. (14)

Proposition B.1. Consider the setup in Eqs. 12-14 and assume the polynomial ŷ(W ) has at least one real root W ∗, where
ŷ(W ∗) = 0, and BPTT converges to W ∗; the Jacobian Je-prop(W ) evaluated at W ∗ satisfies Re(λ) < 0, where λ is the
eigenvalue of Je-prop(W

∗); the input sequence {xt}Tt=1 satisfies xT−1 ̸= 0, ensuring non-degenerate e-prop updates.

If W (0) satisfies ∥W (0) − W ∗∥ < δ, where δ > 0 is the radius of a neighborhood around W ∗ within which
Re(λ) of Je-prop(W ) < 0 for all W , requiring sign(ŷ′(W )) = sign(xT−1) upon initialization, then the e-prop update
will asymptotically converge to W ∗. If W (0) is initialized such that sign(ŷ′(W )) = −sign(xT−1) and sign(ŷ′(W (t))
remains constant for t ≥ 0, then e-prop will diverge.

Proof. We analyze the system governed by the e-prop updates as a continuous-time dynamical system (CTDS):

τ
dW (t)

dt
= −ŷ(W )xT−1,

where the Jacobian is:

Je-prop(W ) =
∂

∂W

(
dW (t)

dt

)
= −1

τ
ŷ′(W )xT−1.

By definition, since Je-prop(W
∗) is a scalar for 1-dimensional RNN, its eigenvalue is itself, and W ∗ is an asymptotically

stable fixed point if and only if Je-prop(W
∗) < 0, ensuring that trajectories initialized sufficiently close to W ∗ converge to

W ∗.

We start by proving the existence of a case for convergence. Evaluate the Jacobian at W ∗:

Je-prop(W
∗) = −1

τ
ŷ′(W ∗)xT−1.

Having Je-prop(W
∗) < 0 implies:

ŷ′(W ∗)xT−1 > 0.

As provided in the Proposition statement, suppose W (0) is initialized such that ∥W (0)−W ∗∥ < δ for some δ > 0 (within
the asymptotic stability region of W ∗), within which the Jacobian remains negative Je-prop(W (t)) < 0 ∀t ≥ 0. In this
region, the CTDS is a contracting flow:

d

dt
∥W (t)−W ∗∥2 = 2(W (t)−W ∗)

dW (t)

dt
.

Substitute the update rule:
d

dt
∥W (t)−W ∗∥2 = −2

1

τ
(W (t)−W ∗)ŷ(W (t))xT−1.
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Using Taylor expansion near W ∗, ŷ(W (t)) ≈ ŷ′(W ∗)(W (t)−W ∗). Thus:

d

dt
∥W (t)−W ∗∥2 = −2

1

τ
ŷ′(W ∗)xT−1(W (t)−W ∗)2.

Since ŷ′(W ∗)xT−1 > 0, this ensures ∥W (t)−W ∗∥2 decreases monotonically, proving convergence to W ∗. As a side note,
since W (t) and W ∗ are scalars, ∥W (t)−W ∗∥2 = (W (t)−W ∗)2.

We next prove the existence of a case for failure to converge. By the Proposition statement, if W (0) is initialized such that
sign(ŷ′(W )) = −sign(xT−1), sign(ŷ′(W (t)) remains constant for t ≥ 0 and xT−1 is a constant, then

ŷ′(W ))xT−1 < 0 ∀t ≥ 0.

This would imply that
Je-prop(W (t)) > 0 ∀t ≥ 0.

Since the eigenvalue of Jacobian Je-prop(W (t)) (i.e. itself, since J is a scalar here) has strictly positive real part for all t ≥ 0
along the trajectory W (t), W (t) does not converge to any stable fixed point, including W ∗.

To help visualize this theoretical result (facilitated by the simplicity of the polynomial root-finding setup), consider the
following scenarios. For stable initialization, requiring the initialization to satisfy sign(ŷ′(W )) = sign(xT−1) would mean
that the trajectory begins on a rising edge when sign(xT−1) > 0 or a falling edge when sign(xT−1) < 0. For the unstable
initialization case, requiring the initialization to satisfy sign(ŷ′(W )) ̸= sign(xT−1) would mean that the trajectory starts on
an edge with mismatched signs, leading to initial divergence. However, if sign(ŷ′(W (t))) changes during the trajectory
(e.g., by entering a different region), the system may settle into a different basin of attraction; this scenario would violate
the assumption of a constant sign(ŷ′(W (t))) for all t ≥ 0. A particular case of instability occurs when sign(xT−1) < 0 at
initialization and the trajectory is initialized on a far-right (or far-left) rising edge. Here, the weight updates diverge without
entering any basin.

20



Neural Data Similarity and Biologically Plausible Temporal Credit Assignment Rules

C. Additional Simulations
In Appendix Figure 6 displays the similarity among models in terms of their pairwise distances and their embeddings across
different sampled training snapshots. In Appendix Figure 7, we demonstrate consistent patterns when recurrent noise is
removed and Dale’s law is enforced. We also explore ModProp (Liu et al., 2022b), which incorporates cell-type-specific local
modulatory signals to reintroduce terms omitted by e-prop; however, as ModProp is effective only under specific conditions
(Dale’s law and ReLU activation), confining Appendix Figure 7B to these settings. Further analysis of post-training weight
eigenspectrums and distances, conducted using Dynamical Similarity Analysis (DSA), reinforces the similarity between
BPTT and e-prop, as shown in Appendix Figure 8.
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Blue: truncated BPTT; Black: BPTT; Magenta: e-prop; Orange: neural data

Figure 6. UMAP embedding and pairwise distance matrix heatmap for different models when (A) best e-prop accuracy, (B) 80%, (C)
60%, and (D) 40% accuracies are reached. Here, the Sussillo 2015 dataset is illustrated. Black: BPTT, blue: truncated BPTT, magenta:
e-prop, orange: neural data. The pairwise distances show similarities across learning rules relative to data, indicated by lower distances
between models as compared to model-data distance.
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A B Dale’s lawWithout recurrent noise

Blue: truncated BPTT; Black: BPTT; Magenta: e-prop; Green: ModProp 

Figure 7. This figure replicates the core trend from Figure 1 — namely, comparable similarities across rules — under different
settings. The settings include: (A) removal of RNN hidden activity noise, and (B) enforcement of Dale’s law. This plot uses the
Sussillo2015 dataset as an illustrative example and compares Procrustes distances versus accuracy for three learning rules: BPTT (black),
e-prop (magenta), and ModProp (green) — the latter functioning exclusively under Dale’s law constraint and ReLU activation. Plotting
conventions mirroring those in Figure 1.
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Figure 8. (A) presents the eigenvalues of the recurrent weight matrix post-training, with columns representing BPTT and e-prop
respectively. Each row displays a different training setting: the base setting (referenced in Figure 1), initial weight standard deviation set
to 0, and initial weight standard deviation set to 2/

√
N . Notably, eigenvalue distributions appear more similar within each setting across

learning rules (BPTT vs. e-prop) than across different settings for the same learning rule, further highlighting the similarity between
BPTT and e-prop. B) The Dynamical Similarity Analysis (DSA), which evaluates systems based on their dynamical characteristics, is
also unable to distinguish between learning rules when considering their proximity to neural data. Similar to previous figures, e-prop is
plotted in magenta and BPTT is plotted in black.
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A BSussillo 2015 Mante 2013

Figure 9. Node perturbation (cyan) and evolutionary strategies (yellow) lead to higher Procrustes distances from the neural data compared
to BPTT (black) and e-prop (magenta) when accuracies are equivalent. This figure presents the Procrustes distance versus accuracy plots,
adhering to the plotting conventions established in Figure 1, for (A) the Sussillo 2015 task and (B) the Mante 2013 task. Here, simulations
are done without recurrent noise, as in Appendix Figure 7A, for a more stable performance of some learning rules.

A BSussillo 2015 Mante 2013

Black: BPTT
Red: FA 

Figure 10. The use of random feedback readout weights for gradient computation (red) (Lillicrap et al., 2016) resulted in distances
comparable to those achieved using exact readout weights (black). Plotting conventions are consistent with previous figures: task
performance varies with training iterations, and error bars denote variation across seeds.
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