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Abstract

Neural networks are often described as black boxes, reflecting the significant
challenge of understanding their internal workings and interactions. We propose
a different perspective that challenges the prevailing view: rather than being in-
scrutable, neural networks exhibit patterns in their raw population activity that
mirror regularities in the training data. We refer to this as the Reflection Hypoth-
esis and provide evidence for this phenomenon in both simple recurrent neural
networks (RNNs) and complex large language models (LLMs). Building on this
insight, we propose to leverage our cognitive tendency of chunking to segment
high-dimensional neural population dynamics into interpretable units that reflect
underlying concepts. We propose three methods to extract recurring chunks on
a neural population level, complementing each other based on label availabil-
ity and neural data dimensionality. Discrete sequence chunking (DSC) learns a
dictionary of entities in a lower-dimensional neural space; population averaging
(PA) extracts recurring entities that correspond to known labels; and unsupervised
chunk discovery (UCD) can be used when labels are absent. We demonstrate the
effectiveness of these methods in extracting concept-encoding entities agnostic to
model architectures. These concepts can be both concrete (words), abstract (POS
tags), or structural (narrative schema). Additionally, we show that extracted chunks
play a causal role in network behavior, as grafting them leads to controlled and
predictable changes in the model’s behavior. Our work points to a new direction
for interpretability, one that harnesses both cognitive principles and the structure
of naturalistic data to reveal the hidden computations of complex learning sys-
tems, gradually transforming them from black boxes into systems we can begin to
understand.

1 Introduction

Neural networks are known as “black boxes” [80, [71 [73] 93] 56, [25]], highlighting the inherent
challenge to make sense of a vast number of computing units. Their computations are performed
by up to billions of interacting components, in stark contrast to the traditional scientific practice of
modeling phenomena through a number of well-defined symbolic entities in physics or mathematics.

A substantial portion of the interpretability challenge is cognitive [1}60] and demands asking the
question: what makes high-dimensional data meaningful for cognition? And what constitutes the
basic units and entities for perception that underlie the constitution of the symbols that we are adept
at studying in physics or math?
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We present a novel perspective on interpreting artificial neural networks by referencing how cognitive
entities arise from sensory data. Similar to the vast neural activities, perceptual data that flood into our
sensory stream is similarly high-dimensional and complex. However, there is an inherent tendency
for cognition to rapidly discern recurring patterns in perceptual sequences as chunks and entities
([91L190L 14, 113]]) - a process that even infants do with minimal exposure [[75}76}3]. Our perceptual and
cognitive system adeptly organizes the the overwhelming flow of the sensory stream into a structured
representation of entities, relations, and events over time [37} 135} 231 126} 46\ (14, |89] 88]].

Psychologists have long postulated that identifying patterns in perception serves as an inverse model to
uncover structured reality, in which recurring elements often reflect shared causal mechanisms 64, [7]).
We termed this the "reflection hypothesis" and examined if the neural network’s hidden activity
reflects the regularities in the data it learns to predict, first in RNNs trained to predict sequences
with known regularities, and then in large language models. Evidence that structured information
exists in high-dimensional neural data suggests the possibility of leveraging our cognitive tendency
to chunk information and discern recurring patterns and entities directly from neural population
activities. Hence, we developed several methods to extract these recurring entities from low to high
dimensions of neural population activities, complementing each other in their usage cases. We show
the advantage of this simple method over popular interpretability approaches. Our findings suggest a
novel interpretability framework that leverages the cognitive principle of chunking to find emerging
entities within artificial neural activities, paving the way for future work that decomposes network
computation into interactions and relations between symbolic entities.

2 Related Work

Most interpretability approaches hold a salient agreement on what is interpretable and what to
interpret. What is interpretable is influenced by models in physics and mathematics, where operations
and derivations are framed around the manipulation of a small set of well-defined symbols. Hence,
interpretable concepts are confined to word-level or token-level description, and methods try to learn
a mapping between the neural activities and the target interpretable concept [33} 94} 91110, 69, 20].

Current methods on what to interpret to understand the computations inside a neural network are
heavily influenced by neuroscience: either on the level of neurons as a computation unit or in
low-dimensional neural activity descriptions. The earliest interpretability approaches, inspired
by discoveries of “grandmother cells” and “Jennifer Aniston neurons” inside the brain, focused
on understanding the semantic meanings that drive the activity of individual neurons. Similarly,
studies in ANNs, from BERT to GPT, have identified specific neurons and attention heads whose
activations correlate with semantic meanings in the data 68}, 25185157, 8}, 136} 165/ 163} 72}, /43]]. Sparse
autoencoders (SAEs)can be seen as an intermediate step that encourage the hidden neurons to be more
monosemantic [32} 154, [18][15] 44]. Thereby, an autoencoder maps neural activities of a hidden unit
layer to a much larger number of intermediate hidden units while encouraging a small number of them
to be active. This way, the activity of the target hidden layer can be represented as a superposition
of several individual neurons within the SAE. Other approaches such as representation engineering
captures the distinct neural activity corresponding to the target concept or function, such as bias or
truthfulness [94]]. Then, it uses a linear model to identify the neural activity direction that predicts the
concept under question or interferes with the network behavior.

The current interpretability approaches that study language-based descriptions as conceptual entities
in terms of individual neurons or low-dimensional projections suffer from limitations on both ends:
meanings are finite, and individual neurons are limited in their expressiveness and may not map
crisply to these predefined conceptual meanings. Just like the failure in physics to have a closed-
form description of motion beyond two interacting bodies [[79], confined, symbolic definitions of
interpretation have inherent limitations in precision. This cognitive constraint, i.e., our reliance on
well-defined symbolic entities for understanding, has made deciphering the complexity of billions
of neural activities an especially daunting task. It underscores a fundamental trade-off between the
expressiveness of a model and our ability to understand it [86]].

Focusing solely on individual neurons is also insufficient to capture the broader mechanisms under-
lying neural activity across a network. Monosemantic neurons, which respond to a single concept,
make up only a small fraction of the overall neural population [[72] 25|85 (19, 184} 59]. Empirically,
especially for transformer models [25], neurons are often observed to be polysemantic, i.e. associated



with multiple, unrelated concepts [63} 25} |67]], which complicates the task of understanding how
neural population activity evolves across layers [25,139]. This highlights the need for more holistic
approaches that account for the complex, distributed nature of neural representations.

3 Chunks from Neural Embeddings (CNE)

We effortlessly perceive high-dimensional perceptual signals by segmenting them into recurring,
meaningful patterns, i.e., chunks. These patterns reside in a subset of our perceptual dimensions as
cohesive wholes [58| 148l 137, 135]. We employ this strategy to simplify the complexity of naturalistic
data. As naturalistic data possess a compositional structure and contain rich regularities, isolating
recurring entities as concepts is an effective way for an agent to decompose their observations into
entities and their relations [89, |87].

Similar to humans, Al systems aim to understand reality from naturalistic data. The regularities
in naturalistic data may drive converging representations in diverse Al models. Recent findings
suggests that neural networks of different architectures, scales, and sizes learn representations that
are remarkably similar [5,[61]], even when trained on different data sources [52]. This phenomenon is
more pronounced in larger, more robust models [|6, 21} 47, [74], and across multiple data modalities
[52, 161} 147, [74]. Recently, it has been hypothesized that such convergences reflect an underlying
statistical model of reality [41}128].

The Reflection Hypothesis: We posit that the underlying cause of these observations is that, like
human cognition, neural networks reflect the structures and regularities present in their training data
through their internal computations. Specifically, we hypothesize that a well-trained neural network
should exhibit trajectories of neural activity that mirror the structure of the data.

Formally, denote the sequence as S = (s',s2,...,s"), indexed by I = {1,2,3,--- ,n}. A
pattern in the input is defined as a recurring subsequence carrying the same concept P =
(st, s ... s"*F=1) C S of fixed or variable length k. A neural network with a set of neu-
rons W (JW| = d) exerts a sequence of population activities S, = (h',h? ... h") in response to
the input sequence. Each neural population vector has embedding dimension d: h* € R¢.

The Reflection Hypothesis posits that such recurring input patterns P are mirrored within the internal
neural dynamics of the model, such that their corresponding neural activations (h?, ht1, ... hitk=1)
lie within a population-level chunk defined as a ball B(hc, A) C R? centered at a prototypical
activation vector h with radius A. Regularities in the input sequence are reflected as localized
activity patterns in subdimensions of neural population dynamics.

If this hypothesis is even partially true, it suggests that neural network activity can be decomposed
into recurring “chunks,” analogous to how human perception segments high-dimensional visual input
into meaningful units. Such chunks, elicited by activities of neural subpopulations, may represent
distinct computations and serve as interpretable entities. Extracting these entities allows a reduction of
the highly complex neural computation to the emergence of these chunks. We develop architecturally
agnostic methods to extract chunks and evaluate their efficacy in concept encoding, interpretability,
and their causal role in altering network behavior.

3.1 Extracting Entities

Depending on the dimensionality d and the nature of the problem, we develop three chunk extraction
methods: discrete sequence chunking for small d, neural population averaging for large d and
when there is an identifiable pattern in .S, and unsupervised chunk discovery when the supervising
concept is unavailable.

Discrete Sequence Chunking (DSC) When d is relatively small, we can use a cognitive-inspired
method to extract recurring patterns [87], which is also used for text compression [31}, 92, 2] or
tokenization. The idea is to cluster the neuron activations individually, use the cluster indices to
represent the network activity as strings, and then further group frequently occurring string sequences
into chunks. For this purpose, we convert each hidden neural activity vector h € R into a string
of discrete integers, and transform the sequence of vectors S}, into a one-dimensional sequence of
strings S° = (11,12, ...,1™). Each I/ has length d and contains the nearest cluster index for each of the
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Figure 1: a. Naturalistic data are highly redundant and compositional, e.g. in language sequences,
cognitive systems learn a dictionary of recurring concrete and abstract entities. b - e. In simple
networks that contain a small number of neurons, chunking methods can be used to learn a dictionary
of frequently recurring population trajectories. This discrete representation can reliably predict the
input in the sequence and the network’s predictions on the next character.

d neurons, i.e., I/ = concat(M (hy), M(hz), ..., M(hg)). M is a clustering function that assigns
the closest cluster index to the activity of the neuron.

We then apply a chunking method on S° to extract a vocabulary of patterns of string combinations,
which represent patterns in neural state trajectories. The vocabulary of chunks D is initialized with
the set of unique strings in S°.This vocabulary grows iteratively by merging the top /N frequent
adjacent chunk pairs above a threshold. Within each new iteration, the updated vocabulary is used
to reparse the sequence, repeating until convergence (see SI[I0). This identifies recurring neural
population trajectories that segment the activity sequence. The resulting dictionary D can then parse
S in terms of extracted chunks.

Neural Population Averaging (PA) In larger-scale networks like transformers, d can be very big.In
this case, identifying recurring patterns in the sequence allows us to uncover the internal structures
of neural population chunks by averaging the relevant population activities, akin to extracting task-
induced neural response functions [17, 27, [16].

We assume that there are recurring activities of neural subpopulations, which account for the network’s
computation as elicited by a recurring concept s in the sequence (such as a particular word ‘cheese’).
Denote the indices of the concept encoding chunks as C(s) C W, i.e., a subset of the neurons in
h among the whole neuron population W (]IW| = d). Denote the set of indices where the pattern
appears in the input sequence as V' (s) C I. From the Strong Law of Large Numbers (SLLN), the
population mean of concept-encoding neural subpopulation activities he(,) converges to the true
mean as |V (s)| approaches infinity:
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where p = E[h(4)] is the true mean of the subpopulation neural activity.

Given training data containing the sequence S, the corresponding neural population activity .Sy, and a
recurring pattern s in .S, we aim to estimate the signal-relevant chunk. This includes the mean neural
subpopulation activity h () within the subpopulation neurons C'(s) C W, as well as the range of

deviation A within which the neural activities h¢ ) fluctuate he ).



To do this, we first compute the mean population response of signal s by averaging over the token-
. . . = y h .. . .

specific hidden state representations h = %))Im A neuron 1 is hypothesized to be inside C/(s)

if its activity at the time of the concept-specific index fluctuates within a pre-set tolerance level around

the mean signal-relevant activity C(s) = {i € W : |h; ; — h;| <tol Vj € V(s)}

After estimating the neural subpopulation C'(s) and h¢ (), we then calculate a maximal deviation
acceptable in the training data:

hos) i — hero |2
A — max Ihes),; c(s)ll3
JEV(s) d

(@)

We define the deviation A as a threshold for acceptable fluctuation around the mean neural subpopu-
lation activity ho (). An unknown neural activity vector h is classified as belonging to the chunk

he () if it lies within the closed ball B centered at h¢ () with radius A:

h —h 2
Ihes) _ c)lls <A

h e E(hc(s), A) iff

Using this criterion, we identify instances of an unknown neural subpopulation vector hg ) in the
test data using the chunk identification function

I T
{17 if Ihe(s) dhC(s)”Z < A(s),

Jenunk(he(s), he(s), A(s)) = 3)

0, otherwise.

and evaluate its quality as a neural population activity classifier for the occurrence of the signal s
using true positive rate (TPR) and false positive rate (FPR).

Since the neural subpopulation C(s), the chunk h¢(,), and the deviation threshold A depend on
a tolerance parameter, we generate a series of increasingly stringent tolerance thresholds: tol; =
2x 0.8, i=0,1,...,39. As A is tied to the tolerance threshold, we find the optimal tolerance
parameter and the associated A that maximizes TPR while minimizing FPR on the training data.

Unsupervised Chunk Discovery (UCD) While discrete sequence chunking applies to small d and
population averaging hinges on knowing the location of the recurring concepts, we also develop an
unsupervised method to discover recurring patterns in the embedding space.

To this purpose, we formulate the chunk finding question as learning a dictionary matrix D € R¥*4
that includes the recurring chunks embedded in the latent space of dimension d.

Given the embedding data X € R4 from one single layer of an LLM - processing some tokenized
input with batch size M and embedding dimension d, we optimize a loss function £(X, D) that
encourages each embedding to match its most similar dictionary entry:

1
£=51 2 el ST X "
mef{l,--M}

Here, SIM(d, x) denotes the normalized cosine similarity between d and x: SIM(d, x) = m.

The loss function encourages each embedding X,,, to align closely with one of the chunks Dy,.

4 Results

4.1 Evaluating Reflection Hypothesis on Simple RNNs

First, we assessed the reflection hypothesis using a simple recurrent neural network (Figure Za and
appendix [D.T) trained on synthetic sequences containing a known pattern. We begin with sequences in
which ABCD appear periodically (Figure[2p), then gradually increase complexity: first by embedding
ABCD sparsely within a background of repeated Es (Figure [2t), and then by placing ABCD amid
randomly occurring background symbols (E, F, G) to simulate noise (Figure[2[d). In each case, the
RNN is trained to predict the next character. Across all conditions, the network’s hidden states
consistently exhibit activity patterns that reflect the pattern occurrences in the sequence.
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Figure 2: a. Hidden states can be grafted to causally change network memory and prediction. b.
Embedding grafting enables faster transfer learning of a compositional vocabulary. c. When RNNs
learn from sequences that contain context-dependent predictions, training creates extra chunks inside
the embedding space. d. Left: The neural population trajectory can be parsed by bigger chunks, which
translates to smaller sequence parsing length with an increasing level of hierarchy in the training
sequence. The number of extracted chunks increases with the level of hierarchy inside sequences.

Understanding the neural state and its mapping to the input We apply Discrete Sequence
Chunking to transform continuous hidden unit activities to a symbolic and discretized description.
We denote population activities by the alternation of indices that mark the belonging cluster centroid
of individual neurons and visualize the population activity by the indices of the assigned nearest
cluster. This symbolic description of the neural activities allows decoding the trajectory of the hidden
state and its corresponding input via a look-up table (appendix [D.2), and reaches a perfect decoding
accuracy on the test set. From the symbolic description of neural trajectories, we can then apply
chunk discovery methods to learn a dictionary of symbolized chunks. This dictionary contains the
maximally recurring patterns inside the network, which consistently reflect the patterns in the input.

Grafting PA chunks causally alter the network’s behavior We then test whether the extracted
chunks causally alter the network’s output in a predictable way. Starting from a state predicting B
from input A (with prior input E), we replace the hidden state with those corresponding to A, B, or C,
while pairing with inputs B, C, or D, reliably shifts the output predictably to C, D, or E (Figure 2] a).

Grafting neural population activity in chunks facilitates compositional learning Humans
learn complex sequences by reusing simpler parts [51) 50]. RNNSs, by contrast, struggle with
reuse and composing the new from the known [49]. We test whether the population grafting may
artificially induce the network to compose and reuse a previously learned vocabulary to compose
a new vocabulary. We trained two identical RNNs on synthetic training sequences with randomly
sampled words from a dictionary { ABCD, GHI, JKLMN} occurring within null E characters.

We then further train the two RNNs in a transfer sequence with the word ABCDLMN - a composite
of two-word parts in the training vocabulary. Without perturbation, the control RNN suffers from a
performance degradation consistent with the observations in the literature. For the other RNN, we
learn a lookup table that maps its discrete population state to the concurrent input. As this RNN
learns on the transfer sequence, whenever the input is D (the network state should be C), we graft the
neural population state to the cluster centroid of the hidden state induced by the previous input being
J paired with the input character being K, thereby forcing the network to generate the next prediction
as L instead of E. Shown in Figure [2]b are the learning curves between the two networks during
the transfer sequence. The perturbed RNN predicts the transfer sequence with higher accuracy than
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Figure 3: The reflection hypothesis: ANNs’ neural activities can be parsed into entities that reflect
the structured regularities in training sequences. a-c. Population activity of the initial 5 neurons
(unsorted) from an RNN trained to predict the next sequence character, from a sequence that contains
repeating ABCD patterns and another that contains ABCD embedding in a default background noise
(random E, F, and G); d. Raw neural activity of the first 50 neurons of LLaMA-3 (unsorted) across
all layers (32) processing the prompt up to the last token of each highlighted word.

control, artificially grafting hidden states forcefully induces the RNN to reuse existing representations
to predict a sequence composition.

Training creates additional population states that distinguishes contexts We further hypothe-
sized that learning may create additional patterns of neural population activities inside the network to
distinguish different contexts. We create sequences with a vocabulary that contains context-dependent
subsequence parts: a vocabulary {CDAB, AB, ABCD} among a default sequence of Es. In this
sequence, the CD inside ABCD conveys a different meaning than that inside CDAB. While the
former predicts E shall follow, the latter predicts that AB shall follow. We used DSC to learn a
dictionary of chunks from an untrained and a trained network separately, responding to the input
sequence of a fixed length. We then use the learned chunk to parse the neural trajectory and measure
the length of the parsing. Shown in Figure[2]c, a trained RNN contains a neural trajectory that can be
parsed by a number of chunks similar to the number of words in the sequence, and is higher than the
untrained network. The trained network also processes neural trajectories that contain a more diverse
set of chunks, suggesting that training creates additional neural trajectory patterns to distinguish
context-specific meanings.

Hierarchically structured input sequence corresponds to a more diverse number of chunks in
neural activities. Another implication of the reflection hypothesis is that when the input sequence
contains an inherent hierarchical structure, i.e., alphabets can become word parts, which can become
words, etc., then a neural network that learns to predict the sequence should also exhibit a more
diverse set of population state to distinguish the ever-more complex context dependency given rise by
the hierarchical structure. To test this, we generated synthetic sequences with hierarchical vocabulary
following [87]]. Starting with an alphabet {A, B, C, D} and default null symbol E, we iteratively built
new words by concatenating pairs from the existing vocabulary over c steps. Word probabilities were
sampled from a uniform Dirichlet distribution, scaled by 0.2, with the remaining 0.8 assigned to E.
We sampled from this vocabulary to construct the training sequences. We then independently trained
RNNs on sequences with an increasing number of hierarchical depth c and extracted neural population
chunks using DSC. As shown in Figure2ld, the number of extracted neural chunks grew with hierarchy
level/vocabulary size. Additionally, as the structure of the input becomes more nested, population
trajectories could be parsed into increasingly larger chunks of neural trajectories, indicating that the
network internalized the nested structure.

4.2 Reflection Hypothesis Evaluated on Large Language Models

We next test the reflection hypothesis on larger models, and then use the population averaging and
unsupervised chunk learning method to extract recurring entities that may reflect the network’s
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Figure 4: The identifiability of the presence of extracted chunks evaluated by signal detection
measures, and a comparison between SAE. Grafting and freezing word-related population chunks
alter the network’s sequence generation.

representation of concepts. We started with LLaMA3-8B [22] due to its open-source access and
architectural complexity. LLaMA3 predicts the next token based on the ever-expanding preceding
context; hence, it analyzes LLaMA3’s hidden states as it incrementally processes tokenized sequences,
from the beginning of each sentence up to the latest nth token S = (s, s, ..., s™). We recorded the
hidden state sequence across all layers S, = (h!, h?, ..., h™) to track the evolution of the model’s
internal activity as new tokens are included. We then examine the existence of neural chunks applying
the Neural Population Averaging and Unsupervised Chunk Discovery.

Recurring words in a sentence Figure 3ld shows normalized activations of the first 50 neurons (un-
sorted) across all LLaMA3’s layers for the word “cheese”. Consistent with the reflection hypothesis,
the two differently tokenized occurrences of “cheese” evoke similar neural activity patterns, more so
than a different word like “ingredient,” suggesting the presence of common neural subpopulation
activities encoding recurring concepts. Using recurring words in language as the pattern of interest
s, we applied PA to identify the neural subpopulation C'(s), the mean chunk activity h¢ (s, and the
fluctuation radius A(s) at the last token of each word bearing a variety of tokenization forms.

We assessed the extracted chunks and thresholds by measuring how well chunk detection predicted the
occurrence of the word concept s. Figure|shows that the population averaging method yielded neural
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Figure 5: Average decoding performance of the top 100 words in English, applying population
averaging on a variety of models. Error bar denotes the standard error of the mean.
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subpopulation chunks that are predictive of the example words “cheese”, “cake”, and “cheesecake”
in each layer and distinct from one another, with low false positives and high true positives across
all layers throughout. Additionally, we compared PA with a pretrained sparse autoencoder (SAE)
on LLaMA-3 [24], using the most active concept-related neurons as decoders. Similar to PA, we
selected the activation thresholds of concept encoding neurons from training data and applied them
to test data. Overall, PA-extracted population activity predicts the presence of the selected concept
better than the individual concept neurons identified by SAE.

We generalized our method for identifying concept-encoding neural population chunks to other
large-scale models with distinct architectures and sequence-processing mechanisms, including the
encoder-decoder model T5 (t5-small [66]), the RNN-based RWKYV (rwkv-4-169m-pile) [[70], and the
state-space model Mamba (mamba-130m-hf [38]]; see Figures [24] 23] [26]in the SI for decoding the
example concepts). We evaluated chunk quality by testing whether concepts could be predicted from
chunk detections on held-out neural recordings corresponding to test prompts. Beyond the illustrated
concepts, we extended the concepts to the top 100 most frequent English words. Overall, we found
that PA consistently extracts chunks whose activations correspond to meaningful concepts across
diverse architectures. The presence of a chunk reliably predicts the presence of its associated concept
in the text with minimal false positives.

Chunks Encoding Abstract Schema and Narrative Structures We evaluated PA’s ability to
find chunks encoding more abstract narrative structure by training on 20 stories following a schema
(e.g., visit food location — buy item — eat — react) and 13 control stories with narrative structure
inconsistent with the schema (examples shown in Figure [6). We extracted shared subpopulation
chunks at the end-of-sentence token using PA, and tested on 18 new schema-consistent and 15
inconsistent stories. Schema-related chunks are activated at sentence boundaries in structured
narratives but not in controls, suggesting that PA captures abstract narrative schemas beyond surface-
level concepts or syntax.

Grafting and Freezing Neural Populations We tested the causal roles of these extracted signal-

relevant neural subpopulation activities he(s) by grafting neurons to discovered chunks and gen-
erating the subsequent text with LLaMA-3. To do this, we fed in a prompt and graft the neural

subpopulation C'(s) to h(s) at a specific token position of the prompt. Shown in Figure perturbing
the hidden units to embeddings corresponding to words such as “cheese”, “cake”, or “cheesecake”
biases the network towards generating sequences related to the grafted topic. Conversely, we also
experimented with freezing the words by setting the corresponding neural subpopulation of chunk
support set to zero he () = 0, and used prompts that lure the network to generate the frozen word
concept. As shown in Figure ] freezing the chunk related to a topic can cause the model to avoid

using the concept-specific word.

We then evaluate the general effectiveness of grafting general concepts on the ROCStories benchmark
[62], sampling 2,000 sentences to extract neural population chunks corresponding to the top 20
frequent concept words (filtered to avoid short or overlapping terms) in addition to the existing
concepts collected. To assess context-dependent effects of prompt used when grafting the concept-
encoding neural chunks, we used prompts from the TREC Question Classification dataset [53]], which
includes six coarse-grained context categories. For each category, we sampled 50 prompts and
evaluated grafting success by measuring the difference in concept occurrence probability between
grafted and ungrafted (control) LLaMA-3 generations. To reduce computational cost, we categorized
grafting into early (layers 1-9), middle (10-19), and late (20-29) interventions. Results are shown
in Table[T] We found that grafting consistently increased concept occurrence across contexts, with
early-layer grafting being the most effective.

Schema Control
[ went to the bakery, bought a I took a bite of the burrito I brought N Decoding Performance Across Layers (Test)
Go to food Purchase ’ : "
location | =] item chocolate muffin, walked to the nearby from home, then walked into the office &
/ park, took a bite, and smiled. --- and said hi to everyone. - Training [ HHH
TS — 0
& o I went to the coffee shop, ordered a I microwaved leftovers, ate on the
. eact to the B
Go to eating perchased latte, sat down, took a sip, and loved couch, and scrolled through my '
location —) p R -1
item it. phone. --- 0 5 10 15 20 2 30

Layer

Figure 6: Example sentences consistent with one narrative structure, and the control sentences which
are inconsistent in training and test sets. Decoding accuracy of narrative-consistent structures in the

test set.
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Table 1: Effect of grafting on TREC categories (percentages).

TREC Category No Graf. Early Graf. Middle Graf. Late Graf.
ABBR (Abbreviations, acronyms) 14.9% 55.9% 30.8% 18.0%
DESC (Descriptions, definitions) 15.6% 49.0% 28.1% 20.7%
ENTY (Entities) 12.6% 48.1% 22.5% 16.9%
HUM (Human-related) 11.9% 46.7% 21.5% 15.2%
LOC (Locations) 10.7% 47.5% 20.5% 14.4%
NUM (Numeric answers) 11.5% 45.3% 21.8% 16.0%

Unsupervised Chunk Discovery We investigate whether recurring chunks in the neural embedding
space can be identified in an unsupervised manner, when labels in text are unavailable. To this end,
we train a chunk dictionary D on LLaMA3’s hidden activity while processing sentence-wise prompts
derived from Emma by Jane Austen, sourced from the Project Gutenberg corpus [4Q], accessed via
NLTK [I1]]. As this is a bigger embedding dataset, we then trained D (K = 2000, d = 4096) by
minimizing the similarity loss function formulated in [3.T]individually for each layer of LLaMA-3.

This way, we can simplify high-
dimensional embeddings by represent-

““““““““““““ . AL ELEELL I ing them as the appearance and disap-

o viood r happy pearance of identifiable chunks. This
house disposition . . . .

u ml enables visualization of the interac-

u ml u seemed tions between input tokens and the
- n 1
| | |

unte activations of these recurring enti-
o ties. Figure [7h illustrates chunk in-
best teractions across LLaMA’s layers dur-

. n
m
with | | blessings . . .
e R .. n ing early text processing. Recurring
|

J I R ! - :’t chunk patterns emerge. For example,
L " ; commas and adjectives show similar
BXENEBEEIEG Boovousunn activations in early layers (Figure [p),
but their representations later elicit
distinct chunks in deeper layers. The
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww _ full plot can be found shown in SI
dever ‘\ @ We also interpret the unsuper-
«mowte ] vised learned chunks by correlating
them with part-of-speech (POS) tags,
Figure 7: Upper: Describing the network’s processing of the result can be found in SI[E6l
tokens as the succession of unsupervised learned chunks.
Lower: Layer-wise processing of similar token types.

5 Conclusion, Discussion

We propose the Reflection Hypothesis,
which posits that neural population activity reflects the structure of the data. We provide evidence in
support of this hypothesis and, building on this insight, leverage the cognitive principle of chunking
to isolate perceptual entities as units of interpretation. Using the methods we introduce, we identify
chunks and test their feasibility across models ranging from small-scale RNNs to a number of
large-scale LLMs. We find that these chunks correlate strongly with both concrete and abstract
concepts—spanning recurring words, sentence structure, and POS tags. These results suggest that
chunking provides a powerful lens for segmenting high-dimensional neural activity into structured
trajectories. This work invites future research to formalize its theoretical foundations, investigate the
learning dynamics that give rise to such entities, and apply this perspective to build a mechanistic
understanding of the inner workings of complex learning systems.
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Supplementary Information (SI)

A Extended Discussion on Related Work

A.1 Comparison with Other Interpretability Approaches

Our work is a different approach from a number of other interpretability methods. For example, Black
et al. define polytopes as linear regions in input space and study their geometry [12]]. Vielhaben et
al. define concepts as linear subspaces in feature space, spanned by an unbounded number of basis
vectors [83]. Our definition of a chunk is compact and bounded subspace, hence it does not tolerate
addition or scalar multiplication of some basis vectors. In fact we would expect a certain level of
scalar multiplication may run into other chunks. We suggest that chunks themselves are interpretable.

Other approaches, such as Tamkin et al., propose architectures that enforce sparsity and interpretability.
In particular, they learn a codebook of features through codebook bottlenecks [78]], which requires
training new models with modified architectures. By contrast, our goal is to interpret the raw
activity of large models directly, independent of their training procedures or architectures, rather than
optimizing a new model.

A.2 Comparison with SAEs and Representation Engineering

Our method for grafting and freezing corresponds to steering and unlearning in SAE work [29,57].
However, the chunk grafting is simpler and more direct than that of SAEs. In SAEs, steering is
typically achieved by clamping a feature to a specific value—either through a constant multiplier or
a scaled value relative to its maximum activation [81]. This clamped feature then probabilistically
influences the network’s output during text generation.

However, SAE features often do not correspond clearly to human-interpretable concepts. The
mapping between features and words is indirect, requiring additional steps such as VocabProj or
MaxAct to identify associated tokens [29]. This makes steering both complex and fragile. Interpreting
SAE features remains an open challenge, and developing effective steering methods is still an active
area of research [77].

In contrast, PA offers more interpretable units by design. Chunks are derived from recurring patterns
in the model’s activations, grounded in actual input semantics. This enables more transparent and
effective interventions, such as concept grafting or unlearning, without the need for specialized
heuristics. We also evaluated our steering efficiency on a bigger corpus across multiple contexts, and
verified that the extracted chunks can be an efficient way of steering network behavior.

The other main difference between this approach and SAE is compute efficiency. The population
averaging (PA) method is a post hoc analysis that requires no optimization or gradient computation.
Neural activations are precomputed, and the only cost lies in computing prototype vectors and
evaluating distances across a small number of deviation thresholds—operations that scale linearly
with the number of tokens and the embedding dimension.

In contrast, sparse autoencoders (SAEs) require multiple forward and backward passes through
both encoder and decoder networks, typically over many training epochs. This results in orders-of-
magnitude greater computational cost. PA, by contrast, offers a lightweight and accessible alternative
for large-scale interpretability research. The unsupervised chunk discovery method also remains
computationally feasible. It runs efficiently on a single GPU. Given precomputed neural activations,
it can be applied broadly to various architectures and datasets.

This work also differs from representation engineering, which isolates neural activity associated
with a predefined concept or function, such as bias or truthfulness [94]]. Representation engineering
typically fits a linear model to identify activity directions that predict or intervene on the target concept.
However, this approach assumes the concept of interest is known a priori. In contrast, we assign a
single chunk to summarize the neural activity of a concept, enabling discovery without prior labels.
In contrast to grafting with chunks, which directly overwrites neural activity with a given chunk,
representation engineering applies a latent direction whose effect depends on a chosen magnitude.
Determining this strength is a nontrivial hyperparameter choice and not always straightforward.
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A.3 Comparison with Concepted-based Interpretability Literature on Vision Models

Our work is different from concept-based interpretability methods for image classifiers. In [34], [30]
and [45] concepts correspond to visual features in the image dataset (e.g. pixels of a wheel), and they
study what part of the image influences the network’s classification decision. In contrast, our work
primarily studies network interpretability processing sequences of tokens. Our work examines how
the internal structure of the network exhibits recurring patterns of entities. We reframe interpretability
by connecting neural population trajectories to human chunking.

B Definition of Grafting and Freezing

Grafting refers to the targeted insertion of previously learned chunks into a neural network’s internal
computation. We modify its internal activations h at a specified layer [ and neural subset C by
grafting the chunk h¢ ; <— h¢; to replace the original neural subpopulation activities.

Freezing refers to the operation of zeroing out the neural activations that support the chunk. This is im-
plemented by replacing the network activation with stored chunk representations at the corresponding
neurons. At a given layer [, we enforce: h¢o; = 0.

C Pseudocode of Learning Chunks Using Discrete Sequence Chunking

Algorithm 1: LearnChunks

Input : K, freq_threshold, symbolized_neural_states, n_iter
Output : state_parse, vocab

vocab < unique(symbolized_neural_states);

null_state < GetMostFreq(symbolized_neural_states);

state_parse < Parse state trajectory by individual units;

for n_iter do

ChunkCandidates <
MostCommon(XK ,Counter(zip(state_parse[: —1], state_parse[l :])));

6 merged_dict < Merge(cr,, cg) € ChunkCandidates if (count(cr, cg) >
freq_threshold and cp, # null_state cg # null_state);

vocab.update(merged_dict);

MergeOverlappingChunks(vocab);

state_parse, vocab < ParseStateSeq(symbolized_neural_states,vocab);

[~ VS T S I

10 return state_parse, vocab;

Algorithm 2: Neural Population State Chunking

Input :trainingsequence
Output : state_parse, vocab

1 Initialize RNN;

2 hidden_states, sequence < TrainRNN(sequence)

3 symbolic_hidden_states < ClusterAndAssignSymbolToEachNeuron(hidden_states);
4 state_parse, vocab < LearnChunks(symbolic_hidden_activity, sequence);

D RNN

D.1 Recurrent Neural Network (RNN) Architecture

We provide more details on the structure of RNN. The RNN used by this work can be described by
the following equation:

Xn

hn = Wch |:hn1} + bh (5)
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Xn
Op = Wca |:hn:| + bo (6)

y+ = log (softmax(o;)) @)

The hidden state is initialized as all zeros hy = 0. x,,, bj, € Rl h,,, b, € R?, W, € RIX(@+2]),
W, € RIIx(d+).

We implemented a simple RNN with 12 hidden units, consisting of two linear layers: one for updating
the hidden state and another for generating output predictions. At each time step, the input vector is
concatenated with the previous hidden state and passed through these layers. The output is normalized
using log softmax to produce a probability distribution over the output classes. The RNN is optimized
with cross-entropy loss using Adam (learning rate = 0.005). Training is conducted on random
subsequences of length 200 per batch, with the hidden state initialized to zero at the start of training.
We track hidden states for analysis.

For the experiment in Figure[I]of the main paper, the training sequence alternates between pattern
("ABCD") and noise ("E") repeated k ~ U(1,20) times. The RNN processes one-hot inputs from a
vocabulary, with inputs concatenated to hidden states and passed through two linear layers to produce
log-probabilities. The model was trained for 160 iterations using Adam (Ir = 0.005), with each
iteration sampling a 200-character sequence for next-character prediction via cross-entropy loss.

To evaluate cross-model consistency, we applied the unsupervised chunk discovery method to RNNs
with different architectures. All models exhibited consistent structural regularities (Figure [T0), with
similar chunk counts and alignment to input patterns (Figure[TT) despite having different architectures.

D.2 Example of a Lookup Table that maps from symbolic clustered state to the input

Neural Population State | Input
021340200433
004042212403
032340212204
032410212204
032010212204
221103343111
213211131132
144304324321
040322404444
300000000020
340432012022
440332412200
400040312200
402040312202
002040312202
032010212202

Table 2: Sample Look-up Table. The left column corresponds to the string that represents the neural

population state. The right column are the corresponding concurrent input.

esleslesleslesHeslesRwl@ioele-esNeslesNesRes!

We apply Discrete Sequence Chunking to the hidden states of a simple RNN which was trained on a
sequence of ABCD within default E characters. In table 2] we show the resulting lookup table for the
discrete strings corresponding to input signals. Many distinct population states correspond to Es, and
for A, B, C, and D, separately, there is a distinct population state for each. Presumably, the network
creates additional states also to distinguish Es in different contexts.

D.3 Validation of PA on RNNs

We also validated that PA works for simpler cases on RNNs demonstrated earlier in the paper by
applying PA and UCD to RNNs trained on sequences with repeated "ABCD" patterns. PA revealed
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Figure 8: Applying population averaging on RNNs predicting simple sequences. Left: The chunk
extracted from population averaging aligns closely with the signal-triggered neural embeddings.
Middle: When ABCD does not occur in the sequence, embedding deviates strongly from the
extracted chunks. The count of chunk occurrence in the neural population (x axis) correlates with the
number of ABCD occurrences in the sequence. Blue line: perfect alignment.
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Figure 9: Applying the unsupervised chunking method to a simple sequence containing repeated
instances of ABCD. Left: recurring population activity extracted from the discrete chunk learning.
Right: recurring population activity extracted from the unsupervised chunk discovery method.

recurring chunk states whose activation frequency perfectly matched pattern occurrences in the
sequence [8]

We look at the neural population activity when the network learns from a sequence with repeating
ABCD as a cohesive chunk amid background noise composed of random occurrences of E, F, and
G. We get the population template by averaging the population activity vector H € R4*4 over the
occurrences of the chunk ABCD:

T = ZiL:_14 1 ((s’ia Si+1y Si4+2, Si+3) = ABCD) Hi (8)
Zfz_fl 1((si, Si+1, Si+2, Si+3) = ABCD)

|IH[:,i:4+4] — T3

d =
v size(T)

®

Figure [§] suggests that neural activities, once adapted to the training data, deviate very little from
the neural population template. Setting a threshold between the population activity and template
deviation suffices to distinguish the occurrences of the input pattern based on the neural trajectory.
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Figure 10: Neural population activity of the first 5 neurons (unsorted) across three distinct RNNs.
Population activities exhibit a regularity reflecting patterns of the input sequence despite different
network architectures.

D.4 Validate UCD on RNNs

To evaluate cross-model consistency, we applied the unsupervised chunk discovery method to the
simple example in RNN. UCD learns similar chunks which aligns with the DSC extracted chunks

(Figure9).

D.5 The Reflection Hypothesis Across RNN Architectures

We show that the reflection hypothesis stays intact, independent of the RNN’s size. Figure[I0]plots
RNN’s neural activity with an increasing number of hidden neurons (12, 24, and 48, separately).
Across all RNNSs, the neural activities reflect regularities in the training sequence.

Moreover, applying DSC on the RNNs suggests that the number of chunks extracted stays consistent
across RNNs with different numbers of hidden units (Figure [TT).

D.6 Contrasting Trained versus Untrained RNNs

We provide a comprehensive comparison of trained and untrained RNNs, focusing on the characteris-
tics of their neural trajectory patterns as revealed by the chunking method.

Figure[I2]a takes the neural population trajectory as a sequence, uses the learned neural chunks to
parse the symbolic neural trajectory, and measures the length of the population trajectory sequence
broken into chunks. A comparison of the sequence parsing length suggests that the trained network
has a similar amount of neural trajectory chunks to the number of chunks in the ground truth sequence.
The untrained network contains more regularities in its neural trajectory. This is an indicator training
that encourages the network to create new distinct neural trajectory states that help the network
distinguish different contexts. This property is especially important in this task as overlapping
subsequences with different prefixes shall lead to distinct predictions.
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Figure 11: The number of chunks stays consistent across RNN with different number of hidden units.
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Figure 12: Comparison between trained and untrained RNNs on sequences with overlapping words
across 10 independent runs and randomly initialized RNNs. a. Sequence parse length. Dashed line is
the ground truth sequence parsing length. b. Number of unique neural population states. c. Chunk
dictionary size. d. Chunk dictionary size (filtered desolate chunks (threshold=5)) Error bars represent
the standard error of the mean.

Figure [T2] b suggests that the trained RNN contains more unique neural population states than
an untrained RNN. This observation supports the hypothesis that during training, RNN creates
more population states that are useful for distinct contextual predictions. Figure [2]c, d, shows
the vocabulary size as acquired by the symbolic chunking method. d is a filtered version of c,
where obsoletely occurring chunks are excluded. The trained RNN’s neural trajectory contains
more recurring chunks than the untrained RNN. Also note that the size of the vocabulary containing
recurring neural trajectories is bigger than the ground truth vocabulary in the sequence, pointing
to a possibility that neural networks acquire multiple neural population chunks that can represent
the same word in the sequence. However, the larger vocabulary size can also be an artifact of the
clustering algorithm, which has more clusters than proper.

D.7 Grafting Neural Chunks versus Grafting Input

We examine the effects of grafting at two levels—neural population chunks and input—on the
behavior of RNNs when transferring to sequences with compositional components. Chunk-level
grafting leads to reliable reuse (Fig. [D.7); input grafting proves ineffective. This suggests that
merely changing the input is insufficient to alter network behavior; rather, behavior is shaped by the
coordinated activity of a larger set of computing units beyond those directly encoding the input.
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Figure 13: a. Simply grafting inputs is ineffective and do not encourage reuse. b. Grafting only the
neural chunks encourages compositional reuse and transfer.
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Figure 14: Layer-wise statistics of PA extracted chunks commonly preceding the concept “cake”.

E Population Averaging

E.1 Example Layer-wise Statistics PA-extracted Chunks

Beyond using PA to identify concept-encoding chunks for concepts occurring at the end of a prompt
sequence, the same approach can also be applied to other positions in the sequence. Specifically, PA
can isolate chunks that encode concepts appearing at earlier points in the sequence (prior to the end
token), as well as chunks that encode the future occurrence of a target concept. The latter correspond
to invariant neural subpopulations whose activity reliably precedes the later appearance of a given
concept, which corresponds to predictive structure in the network’s dynamics.

Figures T4} [T3] [T6] and[T7]present layer-wise statistics of the learned parameters obtained from the
training data using the population averaging (PA) method. From left to right, the plots display: Left,
the optimal tolerance threshold across layers, Middle the number of neurons contributing to recurring
embedding activity, and Right the maximal deviation threshold.

Note that the maximal deviation learned by the method typically increases from earlier to later
layers. This trend reflects the architecture of LLaMA, where deeper layers exhibit a broader range of
variability in their neural activity. In addition, the analysis reveals that concept encoding is generally
supported by substantial populations of neurons rather than isolated units. Sparse encodings of
concepts are rare. This suggest that concepts emerge through distributed patterns of activity across
the network rather than through localized neural encoding.

E.2 Sample Dictionary of Chunks Memorizing and Predicting Signals in Text

We then generalize this method to other locations of the token, such as prior to or following the
occurrences of the signal at indices V' (s), denote the set of indices undergoing this k step shift as
Vks)={t—k|teV(s)}, V*F(s)={t+k|te V(s)}. The former (k > 0) examines
the network’s neural activity representing a memory of the signal, and the latter (k < 0) examines

22



Optimal Threshold Across Layers Number of Encoding Neurons Across Layers Maximal Deviation Across Layers
4000

0.20 4

3000 015 1

2000 0.10

1000 0.05

oOptimal Threshold
Maximal Deviation

Number of Encoding Neurens

0.00 -
4] 10 20 30 4] 10 20 30 0 10 20 30

Layers Layers Layers

Figure 15: Layer-wise statistics of PA extracted chunks commonly preceding the concept “in”.
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Figure 16: Layer-wise statistics of PA extracted chunks commonly proceeding the concept “of”.

the network’s neural activity that is predictive of signals happening subsequent to the input prompt
sequence.

E.3 Visualizing Concept Encoding Chunks at Different Sequence Token Positions

Figure 20| visualizes the subpopulation activity chunks extracted by the population-averaging method
responding to the word “cheese”, “cake”, and “cheesecake” with their variety of tokenized form,
ending with the current, previous, and subsequent signal indices. One observation is that the
information about context is represented in the latter rather than the earlier layer of the network.
Meanwhile, information about the memory of a signal was represented much more sparsely among
the neurons in the network than the most recent signal. Additionally, the temporal coding of the signal
is not uniform, representing the same word ‘cheese’ as memory, as the latest token, or as prediction is
manifested in distinct neural population activities. There is a smaller neural population responsible
for predicting a future signal than encoding for the current signal or the past signal. Evaluation of the
decoding performance using the extracted chunks is shown in Figure [E.3]and [E.3]

Optimal Threshold Across Layers Number of Encoding Neurons Across Layers Maximal Deviation Across Layers
- 3.0 4
4000

2.54

3000
2.04

2000

Optimal Threshold
Maximal Deviation
=
w
L

1000

Number of Encoding Neurons

[} 10 20 30 [} 10 20 30 ] 10 20 30
Layers Layers Layers

Figure 17: Layer-wise statistics of PA extracted chunks encoding the latest word being “people”.
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Figure 20: Visualization of the extracted neural subpopulation for the words “cheese”, “cake”, and
“cheesecake”, respectively, in both directions.
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E.4 Generalizing to Other Concepts

We used the population averaging method to extract neural subpopulation activity chunks of llama
accounting for the 100 most frequently occurring words in English (as can be seen in main text
Figure[5), adapting the threshold parameters on hidden activities collected from a training prompt
and evaluating hidden activities collected from a test prompt (appendix [H). For each word, we study
subpopulation activities ranging from the two steps prior to and two steps subsequent to the last
sequence token position. We observed subpopulation chunks that represent information in both
directions.

We also show more examples of decoding accuracy to evaluate how indicative the extracted sub-
population chunk is of the signal’s existence in Figure 21} 22] 23] Note that decoding performance
in the Oth layer is usually perfect, as the Oth layer is the embedding layer having a fixed dictionary
mapping tokens to the token embeddings. In subsequent layers, the presence of the extract indicates
the occurrence of the recurring tokens in the input sequence. Having the recurring token in the
input at the last sequence location elicits the network’s hidden activity to lie within the range of the
extracted embedding chunk.

Generally, the population averaging method learns chunks that are more predictive of the signal in
the input sequence with words that have specific meanings than words that serve as prepositions; this
can be caused by the network creating many neural population states to distinguish a preposition in
different contexts, similar to the observation with RNNs (population averaging would be fragile in
this case). We included more examples of chunk evaluation of this type.
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E.5 Extracting Chunks from a Range of LLMs

We here present more details of results evaluating the extracted PA chunks on other large models.
Figure [24] 23] 26] shows the PA chunks corresponding to the sample concepts extracted from mamba
(large-scale state-space model), TS (encoder-decoder architecture), and RWKYV (large scale RNN).
From the left to the right are the decoding accuracy (divided into true positives and false positives) on
the neural activities recorded from the test prompt; the optimal threshold extracted by PA across the
layers; the number of concept-encoding neurons across layers; and the maximal deviation from the
mean chunk prototype across layers.
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Figure 24: Evaluation of the extracted chunks in mamba (25 layers, embedding dimension = 768,
large-scale RNN) on the three example words illustrated in the main paper.
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Figure 25: Evaluation of the extracted chunks in T5 (7 encoder layers, embedding dimension = 512,
encoder-decoder architecture) on the three example words illustrated in the main paper.
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Figure 26: Evaluation of the extracted chunks in RWKYV (13 layers, large-scale RNN) on the three
example words illustrated in the main paper.

E.6 Quantification on Causal Intervention

We quantified the effectiveness of causal evaluation by the percentage of concept occurrence in the
generated sequences by LLM, comparing intervention (grafting/freezing) with control (no interven-
tion) for the illustrated example concepts.

Table 3: Percentage of target concept occurrence for grafting and control using the prompt: “Hi, how
are you doing?” (N = 100).
Target Concept Without Grafting With Grafting

cake 1% 83%
cheese 0% 90%
cheesecake 0% 16%

Table 4: Percentage of target concept occurrence for freezing and control across two prompts
(N = 100). Row 1: Freezing results for the prompt: “What is the name of a rich, savory food made
from curdled milk, often aged to enhance its flavors?” Target word: cheese, Perturbation Layers:
2-10, N = 100. Row 2: Freezing results for the prompt: “Name three most common desserts in
Europe.” Target concept: cake, N = 100.

Target Concept No Freezing Freezing

cheese 67% 33%

cake 36% 9%

Generally, grafting is more effective than freezing in influencing target concept occurrence. However,
both types of intervention have measurable effects on influencing the model’s generated text.

E.7 Comment on Context Sensitivity of PA Chunks

Population averaging assumes that averaging hidden states across multiple contexts yields a mean-
ingful, general *chunk’ for the concept. We study context-sensitivity of PA in extracting the internal
representations in transformers. Indeed, modern language models such as Transformers are known to
exhibit highly context-sensitive internal representations, and a given word (e.g., "bank") may evoke
distinct activations depending on its context (e.g. a river bank versus a financial bank).
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However, our goal is not to model context-specific usage, but rather to extract the core structural
regularities that persist across contexts—analogous to approaching semantic prototypes in word2vec
and GloVe. We assume that the mean of many contextual embeddings approximates a central semantic
prototype, and averaging over many diverse instances of the identical concepts serves to extract the
common representation shared across contexts.

This assumption on the algorithm then finds its empirical validation in the experiments. We observe
that PA and UCD-derived chunks correlate well with many concepts. This suggests that for at least a
subset of words, there exists a stable representation despite contextual variations. And this is the first
step towards interpretability at a population dynamic level.

We acknowledge that this would be the case for some concepts, but sometimes multiple concepts
map to the same word, such as ‘bank’ contains a different meaning on different occasions. In these
cases there may be two chunks of neural population activities encoding for river bank and financial
bank. And for some words such as prepositions, they have much more contextual nuance, we would
expect this method to be less effective.

Word With Perturbation Control (No Perturb.) A (Perturb - Control)

school 78.7% 0.7% 78.0%
christmas 74.3% 0.3% 74.0%
she 71.7% 0.0% 71.7%
family 71.3% 1.7% 69.7%

Table 5: Words with the highest perturbation effectiveness (percentages).

Word With Perturbation Control (No Perturb.) A (Perturb - Control)

if 7.3% 6.7% 0.7%
at 11.7% 7.7% 4%
on 28.7% 23.0% 5.7%

Table 6: Words with the lowest perturbation effectiveness (population averaging chunks).

Indeed we observed that the grafting success of the PA chunks is dependent on the type of words.
We noticed grafting can be very successful on concrete words, examples the concepts most effective
by grafting include school, christmas, family (table[5). For non-specific words such as prepositions
and conjunctions, grafting can be ineffective. Examples are ‘if”, ‘at’, ‘on’ (table [6). This is often
correlated with PA quality which can also be reflected in the PA decoding evaluation metrics for
those specific concepts. In short, despite contextual dependency, empirical evidence suggests that
this assumption works well for at least a substantial subset of all existing concepts, and this paves a
way for future investigation to expand the interpretability step-wise towards more contextual subtlety.

F Unsupervised Chunking

F.1 Attempted Architectures that Led to the Current Design

We also experimented with SAE-like variants for chunk discovery, using a reconstruction loss with
continuous hidden activations and tying the decoder weights to the transpose of the encoder weights.
However, this approach yielded too many hidden units to interpret meaningfully, and the continuous,
additive nature of the reconstruction did not align well with our definition of chunks. To improve
interpretability, we also tried variations that binarized the hidden layer, but this variant struggled to
train effectively. Moreover, even with binarized activations, the additive reconstruction process still
diverged from our intended definition of neural chunks as discrete, reusable population patterns.

F.2 Evaluating Chunk Qualities

To evaluate the chunks extracted from UCD, we have explored a number of measures to assess the
quality of the extracted chunks.

A good chunk needs to approximate the embedding. Therefore we check the normalized cosine
similarity between the maximally matching chunk in the dictionary with each data point, and ensure
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Figure 27: a. Similarity scores between the maximally similar chunk and the embedding it explains
are largely unimodal, with a peak near one due to predictable tokens (e.g., start/end markers). b. Most
embeddings are explained by a single dominant chunk, with low similarity to other chunks. c. Chunk
identification frequency is unimodal; chunks are identified a similar number of times. d. Learned
chunks lie in a sparse subspace, with weight distributions centered near zero.

that the cosine similarity between embedding and its matching kernel are reasonably similar. Figure
a shows the distribution of cosine similarities between embedding chunks and the embeddings in
the 10th layer. The average cosine similarity between the maximally similar dictionary chunk and the
embeddings is concentrated around 0.5.

To verify semantic distinctness, for one embedding, it needs to be similar to a few chunks while being
different from most chunks in the dictionary. Figure[27]b shows the distribution of cosine similarities
between embedding chunks and the embeddings in the 10th layer.

Additionally, the number of times that each chunk is identified to be the most similar chunk to the
current embedding should be distributed in a reasonable way. There should not be a few chunks that
are identified. This identification diversity is illustrated in Figure 27]c. Chunk usage is also unimodal,
with most chunks selected a similar number of times.

Chunks lie in a sparse subspace with weights centered near zero (Figure ), and each embedding
is typically explained by a single dominant chunk (Figure 27p). Figure 29]also shows two example
chunk representations and the embeddings they explain, compared to control embeddings.

On top of that, we visually inspect samples of the extracted chunks, two of its matching embedding,
and a non-matching embedding as a control. Two sets of these examples are shown in Figure 28]

F.3 Visualization

Figure a illustrates the most frequently identified chunk in the 10th layer (visualized as a v/d x V/d
image, where d is the embedding dimensionality), alongside two embedding examples where this
chunk is identified as the maximally similar. Additionally, we include a control embedding where the
same chunk is not identified as maximally similar. The extracted chunk is visually more similar to
the two embedding examples than to the control embedding, demonstrating that this method extracts
visually similar recurring neural population activities.

F.4 The influence of hyperparameter K on Unsupervised Chunk Discovery
We tested the impact of varying K (500-8000) on early, middle, and late layers shown in[30} Increasing

K does not consistently reduce loss, and the method’s performance does not dramatically differ;
overall, this method’s effectiveness remains stable across a range of hyperparameter choices.
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Chunk and embedding examples of which the chunk is maximally similar, compared to a control embedding

Chunk Embedding 1 Embedding 2 control
Embedding Sample 1 Embedding Sample 2 control
Figure 28: Two example chunk representations and the embeddings they explain, compared to

randomly selected control embeddings. Chunk-associated embeddings exhibit high similarity and
structure, while control embeddings show low similarity.

Example chunks learned by unsupervised chunk discovery
Chunk Example 1 Chunk Example 2 Chunk Example 3 Chunk Example 4

Figure 29: Example chunks learned by the unsupervised chunk discovery method.

F.5 Full plot on layer-wise chunk processing in LLaMA-3

UCD simplifies high-dimensional activations into interpretable patterns of chunk appearance and
disappearance. Figure [3T]illustrates chunk interactions across LLaMA-3’s all layers processing the
beginning of Emma.

F.6 Correlating sentence POS tags with chunk activities

We can interpret the unsupervised learned chunks by mapping them to interpretable linguistic
structures, such as part-of-speech (POS) tags. To achieve this, we extracted the POS tags for the
corpus using the averaged perceptron tagger [L1], following the Penn Treebank POS Tagset [53]. We
then computed the correlation between each chunk with each POS tag for every layer.

Figure 32k visualizes the maximum correlation between each POS tag and its most correlated
discovered chunk across network layers (excluding the embedding layer). Our findings align with
prior research showing that certain POS tags are processed in the earlier layers of the network
[42][82]) and clearly demonstrate that there are chunk activities purely responsible for certain pos tags
(possessive nouns, for example), while others hold very strong correlations.

Additionally, the POS-tag-correlated neural activities peak in earlier layers but also persist in later
layers, indicating a sustained representation of syntactic information throughout the network. These
findings suggest that chunk activities learned without supervision can serve as candidates for inter-
preting computational components within the network that are responsible for processing abstract
concepts.
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Effect of K on Loss Across Layers
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Figure 30: Effect of hyperparameter choice on the unsupervised chunk discovery method. The effect
of K on the loss (upper plots) and maximal correlation with POS tags (lower plots) across layers 4,
16, and 30 (early, middle, and late). Increasing K does not consistently reduce loss, and the method’s
performance do not dramatically differ across choices of hyperparameters.
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Figure 32: Part-of-speech tags and their maximal correlation across all layers in LLaMA-3.
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G Computational Cost of Applying Chunk Extraction at Scale

All interpretability methods that analyze neural population activities need access to LLM neural
activities, which can be acquired in a single forward pass on the data. This is required for SAE,
representation engineering, and chunking methods alike.

For PA that extracts chunks from shorter input, taking a 1,000-token sequence, for example, our
method is lightweight. The cosine-similarity-based matching and tolerance sweep are applied to
hidden state arrays of ~16MB per layer, resulting in total memory usage under 200MB. Even across
all 32 layers, the complete decoding procedure finishes in under 1 minute on a standard CPU. This
makes our analysis tractable even in constrained environments.

The unsupervised chunk learning model consists of ~8.2 million parameters (learning a matrix
of shape [2000, 4096]) and operates primarily through matrix multiplication for cosine similarity
computation. With input sequences comprising ~200,000 tokens (e.g., Austen—Emma), the batch-
based training regime (batch size 32) requires under 100MB of GPU memory per step. On a single
NVIDIA RTX 3090, training for 1 epoch takes 30-60 seconds, and 100 epochs takes about 1-2 hours.
All layers will take 32-64 hours if done sequentially. In comparison to the SAE variate, where the
latent layer has 131,072 neurons (i.e., 32x the input dimension of 4096). This increases the parameter
count to ~1.07 billion. The same setting completes 100 epochs in approximately 6—10 hours per layer.
All layers will take 192-320 GPU-hours.

Envisioning Chunk Discovery Scaling to Production-Sized LLMs (e.g., 70B+)

When applied to a production-scale model like LLaMA-70B, the proposed methodology remains
tractable. For PA over sequences such as one containing 1000 tokens, each hidden state array
occupies ~32MB, and the total memory usage across all 80 layers is approximately 2.5GB if done
simultaneously. The total runtime will be a few minutes on CPU per concept across all layers. The
unsupervised chunk learning model, which learns a 2000 x 8192 matrix (~16.4 million parameters),
will require under 1GB of GPU memory per step and trains in approximately 2-3 minutes per epoch,
totaling 3—5 hours for 100 epochs on a single NVIDIA RTX 3090, with batch size 32 and 200,000
input tokens. All 80 layers shall take 240 - 400 GPU-hours. In contrast, the sparse autoencoder
variant with a 262,144-dimensional latent layer (32x overcomplete) increases the parameter count to
~4.1 billion, requiring ~50GB of memory and 12-20 hours to train over 100 epochs per layer. All 80
layers will take 860 - 1600 GPU-hours.

H Prompt Bank

We show the prompt used to extract the demonstrated word in the main manuscript using the
population averaging method:

prompt_cheesecake_train = "Cheese is one of the most versatile ingredients in the culinary world,
and cheese can be used in everything from savory dishes to desserts. Cheese lovers often enjoy
pairing cheese with crackers, wine, or fruit, but cheese also shines in baking. Cake, on the other
hand, is the quintessential dessert, with cake being a staple at celebrations. Cake comes in many
forms, such as chocolate cake, vanilla cake, or even carrot cake. However, when you bring cheese
and cake together to create cheesecake, a magical transformation happens. Cheesecake is a dessert
like no other, with cheesecake offering the creaminess of cheese and the sweetness of cake in perfect
harmony. Cheesecake can be topped with fruits like strawberries or blueberries, or cheesecake can
be flavored with chocolate or caramel. Some people prefer classic cheesecake, while others enjoy a
more decadent cheesecake loaded with toppings. Regardless of the variation, cheesecake remains
one of the most beloved desserts worldwide. The crust of cheesecake, often made from crushed
biscuits or graham crackers, complements the smooth filling, making cheesecake irresistible. Cheese
plays a central role in cheesecake, while the influence of cake ensures that cheesecake is always a
delightful dessert. Whether you love cheese, crave cake, or are obsessed with cheesecake, this dessert
proves that the combination of cheese and cake is truly extraordinary. Every bite of cheesecake
reminds us that cheese and cake, when united in cheesecake, are a match made in heaven. Cheesecake
aficionados often debate whether baked cheesecake or no-bake cheesecake is superior, but all agree
that cheesecake is a dessert worth savoring. With so many variations, cheesecake enthusiasts never
tire of exploring new ways to enjoy their favorite dessert. Cheese and cake come together seamlessly
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in cheesecake, showing how cheese and cake can create something greater than their individual parts.
Cheesecake is, without a doubt, the ultimate testament to the greatness of cheese and cake in unison."

The extracted chunks are then evaluated on the recorded hidden activity of the following prompt:

prompt_cheesecake_test = Cheese is a culinary treasure that has delighted taste buds for centuries.
Whether it’s creamy, tangy, or sharp, cheese offers endless possibilities. Cheese finds its way into
countless dishes, from savory casseroles to gooey pizzas, and its versatility knows no bounds. Cake,
too, is a universal favorite, with cake symbolizing joy, celebration, and indulgence. Cake comes in
every flavor imaginable—chocolate cake, vanilla cake, red velvet cake—and each cake brings its
own special charm. But when cheese and cake are combined to form cheesecake, something truly
extraordinary happens. Cheesecake is a dessert that transcends expectations, merging the velvety
richness of cheese with the sweet, airy allure of cake. Cheesecake can be baked or chilled, simple or
elaborate, yet every cheesecake captures the perfect balance of flavors. Classic cheesecake recipes
highlight the creamy taste of cheese, while fruit-topped cheesecake adds a burst of freshness. Some
people swear by chocolate cheesecake or caramel-drizzled cheesecake, while others can’t resist a
zesty lemon cheesecake. No matter the variation, cheesecake consistently proves that the union of
cheese and cake is a match made in heaven. The crust of cheesecake, typically crafted from crushed
cookies or graham crackers, provides the ideal foundation for the smooth and luscious cheese layer.
Every bite of cheesecake reminds us why this dessert has stood the test of time. Fans of cheese,
cake, and cheesecake alike agree that cheesecake combines the best of both worlds. Whether you’re
indulging in a slice of classic cheesecake, exploring new cheesecake flavors, or savoring the rich
taste of a perfectly baked cheesecake, it’s clear that cheese and cake reach their pinnacle when united
in cheesecake. Cheesecake is a testament to how cheese and cake, when brought together, create
something greater than the sum of their parts. From the first bite to the last, cheesecake is a celebration
of everything wonderful about cheese, cake, and, of course, cheesecake itself.’

We show the prompt used to extract the top 100 frequent words using the population averaging
method:

prompt_frequent_words_train = "In today’s world, people often feel the push and pull of con-
nection and solitude. With technology and social media on the rise, we now have countless ways to
stay in touch with those we know and love. However, the question of whether this digital world can
truly satisfy our need for real connection remains. To be truly connected is to share experiences, to
understand and to be understood. This kind of connection goes far beyond a screen. The desire to
connect is universal, and people have searched for it throughout history. In ancient times, communities
formed to support one another, to live together, and to build bonds that could help them through
challenges. Today, people may still crave this closeness, yet it is not always easy to find in our
fast-paced world. While the internet gives us access to almost anyone, anywhere, it does not always
give us the depth of connection that true friendship and family relationships can offer. Consider a
family spending time together. For many people, family is a source of strength, a place where they
feel safe and understood. But as life becomes busier, it can be easy to let work, hobbies, or other
commitments pull us away from family time. Many people find that they must make a conscious
effort to set aside time for their loved ones. To sit down for a meal together, to talk about the day,
to share thoughts and laughter — these moments are priceless. They are what remind us of who
we are and who we want to become. Friendship, too, plays a significant role in life. Friends are
often the people we choose to spend time with, the ones who share our interests and support us. To
have friends is to feel understood in a unique way, to laugh together, to encourage each other, and
sometimes just to sit in silence knowing someone is there. A true friend listens without judgment,
stands by us in hard times, and celebrates with us in good times. However, maintaining friendships
can require work and commitment. With busy lives, people can sometimes lose touch, only to realize
later how much those friendships meant. In the workplace, relationships are equally important. Many
people spend a significant amount of time at work, so having good connections there can make a big
difference. Working with others requires collaboration, understanding, and respect. When people feel
connected to their colleagues, they tend to work better together, share ideas freely, and support each
other. A positive work environment can foster not only productivity but also well-being. People are
more likely to feel satisfied in their work when they know they are valued and understood by those
around them. Of course, technology plays a large role in modern connections. Platforms like social
media allow people to connect across distances, to share life events, and to communicate instantly.
For some, these tools make it easier to stay in touch with family and friends, to share news, and to
express themselves. However, while technology can bring people closer, it can also create a sense of
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distance. Seeing the lives of others through a screen is different from experiencing life together in
person. The highlights of life shared online may not always show the full picture, leaving people to
wonder if they are missing out. To have genuine connection, people often need to go beyond what is
easy and convenient. Sometimes, this means reaching out, making an effort, and being open. True
connection requires understanding and empathy. It asks us to listen, to be present, and to care. In
a world that often moves fast, taking the time to connect deeply can feel like a challenge, but it is
also incredibly rewarding. The value of connection is evident in difficult times. When people go
through challenges, it is often those close connections that help them through. Whether it’s a friend
who listens, a family member who offers support, or a colleague who steps in to lend a hand, these
connections give people strength. Knowing that someone else understands or is there to help can
make all the difference. Moreover, the ability to connect also fosters compassion. When people share
experiences, they begin to see the world from each other’s perspectives. This understanding can
lead to greater kindness and less judgment. People who feel connected are often more empathetic,
more understanding, and more willing to help others. This creates a positive cycle, as kindness and
empathy tend to inspire more of the same. For people to have a balanced and fulfilled life, connection
is essential. But to nurture these connections takes effort. It is not always easy to set aside time, to
reach out, or to stay in touch. Life can be busy, and distractions are everywhere. However, those
who make the effort to connect often find that their lives are richer and more satisfying. The joy of
shared laughter, the comfort of understanding, and the strength of support are all things that make life
meaningful. As we move through life, the connections we make help to shape who we are. We learn
from others, grow with them, and find new perspectives. Each person we meet adds to our experience
and helps us to see the world in new ways. Sometimes, people find that their most valuable lessons
come from those who are different from them. To connect with people from various backgrounds
and with different life experiences is to broaden our view of the world. In conclusion, to live fully
is to connect meaningfully. Whether through family, friends, colleagues, or even strangers, these
bonds enrich life. They offer joy, comfort, and understanding, and they remind us that we are not
alone. While technology may change the way we communicate, it cannot replace the depth of real
connection. To make time for those who matter, to share moments, and to care is to live a life of
purpose and love."

The extracted chunks on the top 100 frequent words are then evaluated on the recorded hidden activity
of the following prompt:

prompt_frequent_words_test = "In the world we live in, each day is filled with choices we all
make, big or small. The way we approach these choices can be what shapes not only our own lives
but also the lives of those around us. To be the kind of person who reflects on what they do, who they
are, and who they want to become, is to take a meaningful step toward self-awareness and growth.
One of the first things to know about making decisions is that they are all interconnected. When
we choose to do one thing, it often means we cannot do another. This may seem obvious, but to
understand the full impact of this reality, it helps to look at the ways in which choices play out in real
life. We are always presented with options, and while some decisions may seem trivial at first, they
add up over time. We can think about it like this: to choose a path, even if small, can set in motion
a series of events that shape our lives in ways we could never fully predict. For example, people
make decisions on how to spend their time. Time is one of the most valuable resources we have.
There is no getting more of it, and once it’s gone, it’s gone for good. How we choose to spend it —
whether working, relaxing, being with family, or helping others — says a lot about what we value.
Some people may spend time worrying about things that, in the end, are not as important as they
seem, while others may put time into making themselves or others better. This shows the difference
in what people find to be meaningful or valuable in life. When we look at those around us, we see
that everyone is trying to figure out what it means to live a good life. Some believe that to have a
successful career is key, while others might think that family or friendships are the foundation of a
fulfilling life. Whatever the focus may be, it’s clear that we all want a life filled with purpose. The
concept of purpose is one that everyone seems to look for, although it can mean different things to
different people. People sometimes find that purpose comes from the roles they play in the lives of
others. For instance, many parents feel that to have children and raise them well is one of the most
meaningful things they can do. They look to guide their children, to give them the tools they need to
make their own choices. The idea of helping others extends beyond family, as people also contribute
to their communities in many ways. Volunteering, supporting friends, and giving back are just some
ways people find meaning in their lives. In work, too, people seek purpose. It’s common to find
that people want to do something that they can be proud of, something that allows them to use their
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talents and contribute to society. This desire to work well is what drives many people forward and
keeps them motivated. Yet, work can also become overwhelming, especially when people forget to
balance their time between work and other areas of life. Balance is essential in any good life. We
often have to remind ourselves not to let any one part of life take up all of our attention. It’s not easy,
but it is essential if we want to live fully. This balance extends to how people think about success. For
some, success is about achieving certain goals, like owning a home, getting a promotion, or earning a
certain amount of money. For others, success is about having good relationships, feeling at peace, and
being happy. Each person will have their own idea of what it means to succeed. Some may be quick
to compare themselves to others, thinking that if someone else has something they don’t, they are
somehow lacking. But to make comparisons is not often helpful. We each have our own journey, and
to look too much at what others have can take away from the joy of our own experiences. Another
important part of life is facing challenges. There are times when things don’t go as planned, and it’s
easy to feel frustrated. However, these moments are often when we learn the most about ourselves.
Challenges can show us what we are capable of and remind us that we are stronger than we think.
People often say that to know hardship is to know strength, and it’s true that the challenges we face
can make us wiser and more resilient. People also face choices about how they treat those around
them. Kindness, empathy, and patience are qualities that many strive to have, but it’s not always
easy to be kind in a busy, fast-paced world. However, those who make a habit of treating others
with respect and understanding often find that they are happier and more fulfilled. Relationships,
whether with family, friends, or colleagues, require effort and care. By giving time to nurture these
connections, we make life richer not only for ourselves but also for others. In moments of reflection,
people often think about their lives and ask themselves, “Am I doing what I want to do? Am I living
the life I want to live?” These questions can be difficult to answer, but they are important. To pause
and look within is to take stock of what matters. This reflection can help guide future decisions and
keep people on the path that is right for them. At the end of the day, life is made up of moments,
decisions, and interactions. To be mindful of how we choose to spend these moments, of who we
choose to spend them with, and of what we put into the world, is to live with purpose. While each
person’s path may be unique, we all share the desire to find happiness and meaning. In seeking to
make each day count, to treat others well, and to pursue goals that matter to us, we contribute to a
world that is better for all. It may not always be easy, and we may not always make the right choices.
But to try, to reflect, and to grow from each experience, is to live a life well-lived. We each have the
power to make choices that, in time, build a story of who we are and what we stand for. Let that story
be one of kindness, purpose, and joy, shared with those who mean the most to us."

I Compute Disclosure

All experiments were conducted on a shared internal cluster equipped with NVIDIA Quadro RTX
6000. Collecting data on neural activities from LLaMA-3-8B residual streams took approximately 25
GPU hours, and from SAE neurons took 5 GPU hours. Training the unsupervised chunk discovery
across 32 layers took about 90 GPU hours. Additional exploratory and ablation experiments, which
were not included in the final version of the paper, consumed approximately another 50 GPU hours.
The total compute used for the experiments reported in the paper is estimated at around 170 GPU
hours. We include these details in the supplementary material to facilitate reproducibility.

J Ethics Disclosure and Broader Impact Statement

This work contributes to the interpretability of large-scale neural networks by identifying recurring
structured patterns ("chunks") in their internal representations. On the positive side, enhancing
the transparency of these models can aid in better debugging, auditing, and alignment with human
expectations, potentially reducing harmful outputs and supporting trustworthy Al deployment in
high-stakes settings such as healthcare, education, or legal decision-making.

Furthermore, our chunk-based approach can facilitate more sample-efficient or modular fine-tuning
by enabling structured interventions in network behavior, which may reduce computational costs and
environmental impact in downstream applications.

However, we also acknowledge that improved model interpretability may lower the barrier to
misuse by enabling more precise model manipulation, adversarial targeting, or extraction of private
information from model internals. Additionally, interpretability methods may be incorrectly assumed
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to confer safety or fairness guarantees when, in reality, they offer only partial insights. These risks
underscore the importance of using interpretability tools in a contextual and ethical manner, especially
in deployment.

We encourage responsible application and further research into robust, human-aligned interpretability
frameworks that include social considerations beyond technical performance.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introductions make claims that are substantiated by the
method and result part of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have a section in the paper that discusses the limitations of this work and
encourages future work to investigate further on the topic.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide complete proofs in this paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in SI or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have disclosed detailed information in the main text as well as the supple-
mentary information, which are necessary to reproduce this paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided open access to the data and code to produce the main
experimental finding and supplementary material in the attached zip file of this submission.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included in the paper all the training and test details necessary to
understand the results. Sometimes we do need to be brief in the main paper due to space
limit, but in such cases we add sufficient detail in the SI.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in SI, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report error bars and confidence intervals that are clearly defined.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

43


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were run on a shared internal cluster using NVIDIA A100
GPUs. Collecting data on neural activities from LLaMA-3-8B residual streams took approx-
imately 25 GPU hours, and from SAE neurons took 5 GPU hours. Training the unsupervised
chunk discovery across 32 layers took about 90 GPU hours. Additional exploratory and
ablation experiments, which were not included in the final version of the paper, consumed
approximately another 50 GPU hours. The total compute used for the experiments re-
ported in the paper is estimated at around 170 GPU hours. We include these details in the
supplementary material to facilitate reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and can confirm that our
research conforms to the code of ethics as provided by the conference guideline.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: This work contributes to the interpretability of large-scale neural networks
by identifying recurring structured patterns ("chunks") in their internal representations. On
the positive side, enhancing the transparency of these models can aid in better debugging,
auditing, and alignment with human expectations, potentially reducing harmful outputs and
supporting trustworthy Al deployment in high-stakes settings such as healthcare, education,
or legal decision-making.

Furthermore, our chunk-based approach can facilitate more sample-efficient or modular
fine-tuning by enabling structured interventions in network behavior, which may reduce
computational costs and environmental impact in downstream applications.

However, we also acknowledge that improved model interpretability may lower the barrier
to misuse by enabling more precise model manipulation, adversarial targeting, or extraction
of private information from model internals. Additionally, interpretability methods may
be incorrectly assumed to confer safety or fairness guarantees when, in reality, they offer
only partial insights. These risks underscore the importance of contextual and ethical use of
interpretability tools, especially in deployment.

We encourage responsible application and further research into robust, human-aligned
interpretability frameworks that include social considerations beyond technical performance.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not think our paper poses such risks, as this paper do not release
pretrained language models or scraped datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

45



* We recognize that providing effective safeguards is challenging, and many papers
do not require this, but we encourage authors to take this into account and make a
best-faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use publicly available models and datasets whose creators are properly
credited in the main text and references. Specifically, we rely on pretrained language models
such as LLaMA-3, T5, RWKYV, and Mamba, and we acknowledge their respective authors
and original repositories. All models were used in accordance with their respective licenses
and terms of use (e.g., non-commercial academic usage for LLaMA-3). Any additional
assets (e.g., codebases for sparse autoencoders or tokenizers) are similarly cited and used
under their permissible terms. We include relevant license information and attributions in
both the main text and supplementary material.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: We do not currently release new assets (e.g., code or models) with this
submission. We intend to make them publicly available upon acceptance, at which point we
will include comprehensive documentation to support reproducibility.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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15.

16.

Answer: [NA]

Justification: This research does not involve crowdsourcing nor research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: This paper does not contain studies on participants, hence do not involve the
approval process of Institutional Review Boards.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development introduced by this paper does not involve LLMs.
Rather, this work studies LLMs.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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