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ABSTRACT

This paper introduces a novel mathematical property applicable to diverse images,
referred to as FINOLA (First-Order Norm+Linear Autoregressive). FINOLA rep-
resents each image in the latent space as a first-order autoregressive process, in
which each regression step simply applies a shared linear model on the normalized
value of its immediate neighbor. This intriguing property reveals a mathematical
invariance that transcends individual images. Expanding from image grids to con-
tinuous coordinates, we unveil the presence of two underlying partial differential
equations. We validate the FINOLA property from two distinct angles: image
reconstruction and self-supervised learning. Firstly, we demonstrate the ability of
FINOLA to auto-regress up to a 256×256 feature map (the same resolution to the
image) from a single vector placed at the center, successfully reconstructing the
original image by only using three 3×3 convolution layers as decoder. Secondly,
we leverage FINOLA for self-supervised learning by employing a simple masked
prediction approach. Encoding a single unmasked quadrant block, we autore-
gressively predict the surrounding masked region. Remarkably, this pre-trained
representation proves highly effective in image classification and object detection
tasks, even when integrated into lightweight networks, all without the need for
extensive fine-tuning. The code will be made publicly available.

1 INTRODUCTION
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Figure 1: FINOLA on image reconstruction. Each image is firstly encoded into a single vector q.
Then, FINOLA is applied to q to iteratively generate the feature map z(x, y) through autoregression,
which is governed by two partial differential equations (PDEs). Finally, a decoder composed of
upsampling and convolutional layers is used to reconstruct the image. Best viewed in color.

Autoregressive language models, as exemplified by GPT Radford et al. (2018; 2019); Brown et al.
(2020), have achieved remarkable success in the realm of Natural Language Processing (NLP).
These models generate text by predicting the probability distribution of the next word in a sequence,
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Figure 2: Masked FINOLA on self-supervised pre-training: a single unmasked quadrant passes
through encoder-FINOLA-decoder network to predict the surrounding masked region. Introducing
masked prediction into FINOLA trades restoration accuracy for gaining semantic representation.

based on the preceding words. This success has not been confined to NLP; it has extended into
Computer Vision, witnessed in the form of innovations like iGPT Chen et al. (2020a) for unsuper-
vised learning, PixelCNN van den Oord et al. (2016a); Salimans et al. (2017) for image generation,
and DALL-E Ramesh et al. (2021) for text-to-image synthesis. These methods share two common
characteristics: (a) they employ autoregression over a discrete space, offering a probabilistic view
of potential codes, and (b) they rely on multiple preceding values (up to kth order) through complex
models, such as Transformer blocks.

In contrast, our work introduces a simple and first-order autoregressive approach, termed FINOLA
(First-Order Norm+Linear Autoregression), designed to represent images. FINOLA operates by
modeling images as feature maps and employing a straightforward autoregressive process. The key
idea is that each pixel in the feature map depends solely on its immediate neighbor, simplifying the
process to a first-order relationship. This is achieved by normalizing the values of the preceding
neighbor and applying a shared linear model (norm+linear). Mathematically, it is represented as:

z(x+ 1, y) = z(x, y) +Azn(x, y)

z(x, y + 1) = z(x, y) +Bzn(x, y)
where zn(x, y) =

z(x, y)− µz

σz
, (1)

where z represents the feature map with spatial dimensionsH×W andC channels (z ∈ RH×W×C).
The matrices A and B are both learnable, with dimensions C × C. Notably, the feature z(x, y) is
normalized across C channels for each position (x, y) by subtracting the mean µz and dividing by
the standard deviation σz . An intriguing aspect is that the coefficient matrices A and B capture
the relationship between each position and its rate of change, remaining invariant across different
images. This underscores an intriguing intrinsic mathematical property shared by images within
high-dimensional space. Moreover, the resulting feature map, obtained through autoregression, is
deterministically used to predict the original image.

When extending Eq. 1 from a discrete image grid to continuous x and y coordinates, it unveils a
mathematical description in the form of partial differential equations (PDEs):

∂z

∂x
= Azn,

∂z

∂y
= Bzn. (2)

This mathematical representation offers a new insight, transcending individual instances. We vali-
date FINOLA through two vision tasks: image reconstruction and self-supervised learning.

Image reconstruction: As illustrated in Figure 1, our approach begins by encoding the input image
into a single vector q with C channels. Subsequently, we generate the feature map z ∈ RW×H×C

by placing q at the center of the feature map, i.e., z(W2 ,
H
2 ) = q, and then apply FINOLA to

complete the feature map. Finally, we reconstruct the image to its original resolution using a decoder
comprising upsampling and 3×3 convolutional layers. It’s noteworthy that FINOLA can generate
feature maps at various scales, ranging from 8×8 to 256×256 for an input image size of 256×256.
In the most extreme case, where the feature map matches the resolution of the original image, the
decoder only includes three 3×3 convolutional layers, highlighting FINOLA’s effectiveness.

Self-supervised pre-training: FINOLA demonstrates potential for self-supervised pre-training. By
employing a straightforward masked prediction task—in which a single unmasked quadrant block is
encoded, and FINOLA is utilized to predict the masked region (as depicted in Figure 2)—our method
achieves performance on par with established techniques (He et al. (2021); Xie et al. (2022)) in self-
supervised learning. Additionally, masked FINOLA is well-suited for lightweight networks like
Mobile-Former Chen et al. (2022), featuring 5.8M parameters and 285M FLOPs. It yields a highly
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Figure 3: Parallel implementation of FINOLA: Horizontal and vertical regressions are separated.
The left approach performs horizontal regression first, enabling parallel vertical regression. Simi-
larly, the right approach starts with vertical regression, enabling parallel horizontal regression. The
results of these approaches are averaged, corresponding to the two autoregression paths from the
initial position marked by q. Best viewed in color.

capable encoder that can be shared for both image classification and object detection, eliminating
the need for fine-tuning.

Comparing FINOLA and masked FINOLA, we observed that introducing masked prediction sac-
rifices restoration accuracy in favor of gaining semantic representation. This leads to notable im-
provements in both linear probing and fine-tuning for ImageNet classification. Additionally, masked
FINOLA exhibits a significant increase in Gaussian curvature on the surfaces of critical features, in-
dicating a greater curvature of the latent space for capturing semantics.

It’s important to emphasize that our work does not aim to achieve state-of-the-art performance.
Instead, our objective is to spotlight FINOLA as a mathematical property inherent in images, rep-
resented through partial differential equations (PDEs). We hope this contribution cultivate a deeper
comprehension of images within the research community.

2 FINOLA: FIRST-ORDER NORM+LINEAR AUTOREGRESSION

This section offers a comprehensive explanation of the utilization of first-order norm+linear autore-
gression, known as FINOLA. Additionally, our approach unveils the extension of FINOLA into two
partial differential equations (PDEs), providing insights into the underlying mathematical principles.

FINOLA: FINOLA generates a W ×H feature map z(x, y) autoregressively, starting from a single
position, e.g., the center z(W2 ,

H
2 ). It is a first-order process, predicting each position using only its

immediately previous neighbor. The prediction is simple, achieved by applying a linear model on
the normalized values of the previous neighbor.

This prediction is performed independently along the x and y axes using two separate linear models
represented by C × C matrices, denoted as A and B, as shown in Eq. 1. For predicting positions
further away, such as z(x+ u, y) with u > 1, the process is repeated u times as:

z(x+ u, y) = ϕu(z(x, y))

z(x, y + v) = ψv(z(x, y))
where ϕ(z) = z +

A(z − µz)

σz
, ψ(z) = z +

B(z − µz)

σz
, (3)

where ϕu(·) denotes applying ϕ by u times, rather than indicating a power function. Importantly, the
matrices A and B, once learned from data, remain invariant across images, capturing the consistent
relationship between the feature map’s spatial derivatives and the feature values.

For diagonal predictions, e.g. from z(x, y) to z(x + u, y + v), the equations are combined as
(ϕuψv + ψvϕu)/2. When predicting towards the left or up (with negative values of u or v), we
introduce two additional learnable matrices, A− and B−, to perform predictions in the same manner
as for right and down directions. Specifically, prediction toward the left is expressed as z(x−1, y) =
z(x, y) +A−zn(x, y).

Parallel implementation: Autoregression can be computationally intensive due to its sequential
nature. FINOLA mitigates this by capitalizing on the independence of the x and y axes, enabling
parallel execution, significantly boosting efficiency. As shown in Figure 3, performing horizontal
regression first allows for parallel execution of subsequent vertical regression, and vice versa. In
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practice, both approaches are combined by averaging their results. Each element in the result repres-
ents the average of the two autoregression paths originating from the initial position, marked as q.

Partial Differential Equations (PDEs): Eq. 1 undergoes a transformation into a difference equa-
tion when we substitute x + 1 and y + 1 with x + ∆x and y + ∆y, respectively, while letting ∆x
and ∆y approach 1. As we further consider infinitesimal values for ∆x and ∆y, we arrive at the
formulation of partial differential equations (PDEs) as follows:

z(x+∆x, y)− z(x, y)

∆x
= Azn(x, y)

z(x, y +∆y)− z(x, y)

∆y
= Bzn(x, y)

∆x→0, ∆y→0
=========⇒

∂z

∂x
= Azn

∂z

∂y
= Bzn

. (4)

These PDEs are inherently non-linear due to the normalization process. They represent a theoret-
ical extension of FINOLA from a discrete grid to continuous coordinates. However, establishing
their theoretical validity poses a substantial challenge. Instead, we present empirical evidence in
subsequent experiments, demonstrating the effectiveness of FINOLA in generating feature maps for
image reconstruction across a range of grid sizes, spanning from 8×8 to 256×256.

3 VALIDATION OF FINOLA

We validate FINOLA through two vision tasks: image reconstruction and self-supervised learning.
In this section, we will delve into the application of FINOLA in these tasks.

3.1 FINOLA ON IMAGE RECONSTRUCTION

Network architecture: Utilizing FINOLA for image reconstruction is a straightforward process. As
depicted in Figure 1, it begins by encoding the input image into a single vector q with C channels.
Next, we position q at the center of the feature map, i.e., z(W2 ,

H
2 ) = q, and apply FINOLA to

complete the feature map z ∈ RW×H×C . Finally, the original image is reconstructed by passing
the feature map through a decoder, which consists of upsampling and 3×3 convolutional layers.
Detailed architecture information for the encoder and decoder can be found in Appendix C.

Multiple resolutions of generated feature maps: FINOLA is capable of generating feature maps
at various scales, ranging from 8×8 to 256×256 for an input image size of 256×256. It’s important
to note that as the resolution of feature maps increases, the corresponding decoder requires fewer
upsample/convolutional blocks. In the most extreme case, when the feature map matches the reso-
lution of the original image, the decoder includes only three 3×3 convolutional layers (see Table 8
in Appendix C). We intentionally reduce decoder complexity to evaluate FINOLA’s performance in
handling larger resolutions.

Training Loss: The entire network is trained end-to-end using mean square error over image pixels
as the loss function.

3.2 MASKED FINOLA ON SELF-SUPERVISED PRE-TRAINING

FINOLA can be applied to self-supervised learning through a straightforward masked prediction
task, which we refer to as Masked FINOLA to distinguish it from the vanilla FINOLA. Unlike
vanilla FINOLA that support various resolutions of feature map, masked FINOLA performs mask
prediction at resolution 1

16 , which is consistent with established baselines like MAE He et al. (2021),
SimMIM Xie et al. (2022).

Simple block masking: FINOLA is applied through a simple masked prediction design that in-
volves using a single unmasked image block (see Figure 4) to predict the surrounding masked re-
gion. Specifically, we crop out the unmasked block and pass it through the encoder, leveraging the
power of FINOLA to generate a full-size feature map. Finally, a decoder is applied to recover the
pixels in masked region. Unlike vanilla FINOLA, the reconstruction loss is computed only from the
masked region. Please note that the unmasked block floats around the image randomly.

Masked FINOLA variants: Masked FINOLA comprises two variants: the element-wise approach
(Masked-FINOLA-E) and the block-wise approach (Masked-FINOLA-B), as depicted in Figure 4.
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Figure 4: Two Masked FINOLA variants: element-wise (left) and block-wise (right) approaches.
In the element-wise approach, autoregression is performed similarly to vanilla FINOLA, with the
compressed vector q observing only the unmasked block rather than the entire image. Conversely,
the block-wise approach does not compress the unmasked block. Each unmasked position exclu-
sively predicts three masked positions, as indicated by arrows, using Eq. 3. Assignments are grouped
together, with shared offsets within each group. The grouping varies depending on the location of
the unmasked quadrant, resulting in 1, 2, and 4 groups for corner, edge, and middle locations, re-
spectively. Best viewed in color.

The element-wise variant (Masked-FINOLA-E) operates similarly to vanilla FINOLA, with the
compressed vector q only observing the unmasked block rather than the entire image (see Figure
4-left). To accommodate the longer training required in masked FINOLA (e.g., 1600 epochs), we
follow He et al. (2021) to replace the convolutional decoder with a simple linear layer, transforming
a C-channel token into a 16×16×3 image patch.

In contrast, the block-wise variant (Masked-FINOLA-B) preserves the unmasked block in its en-
tirety, without compression. It requires the unmasked block to have a quadrant size. As shown in
Figure 4-right, each unmasked position is tasked with predicting three masked positions, denoted by
arrows and computed using Eq. 3. These assignments are organized into groups, and within each
group, all unmasked positions share common offsets for reaching their assigned masked positions.
The configuration of these groups dynamically adapts based on the location of the unmasked quad-
rant, resulting in 1, 2, or 4 groups for corner, edge, or middle positions, respectively. To promote
communication across these groups, transformer blocks are integrated into the decoder.

Relation to MAE He et al. (2021): Masked FINOLA shares a similar architecture with MAE but
differs notably in masking and prediction strategies. Firstly, Masked FINOLA adopts a regular
masking design, grouping all unmasked patches into a single block, in contrast to MAE’s utiliza-
tion of random unmasked patches. This design choice suits efficient CNN-based networks. Sec-
ondly, Masked FINOLA employs a first-order norm+linear autoregression approach for predicting
the masked region, whereas MAE utilizes masked tokens within an attention model.

3.3 COMPARING FINOLA WITH MASKED FINOLA

In Table 1, we present a comparison between vanilla FINOLA and two masked FINOLA variants,
assessing both their architectural distinctions and performance in image reconstruction and classifi-
cation tasks. The introduction of masking, a characteristic of Masked FINOLA, entails a trade-off
between restoration accuracy and enhanced semantic representation. Notably, among the masked
FINOLA variants, the block-wise approach outperforms the element-wise counterpart, underscor-
ing the challenges associated with masked prediction following compression. Figure 5 offers a
geometric comparison. It reveals that Masked FINOLA exhibits a significant increase in Gaussian
curvature on the surfaces of critical features, suggesting a greater curvature in the latent space for
capturing semantics. Please see Appendix E for additional comparisons.

4 IMAGE RECONSTRUCTION EXPERIMENTS

We evaluate FINOLA for image reconstruction on ImageNet-1K Deng et al. (2009). For model and
training details, please refer to Appendices C and D. Here, we summarize our key findings:
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Table 1: Comparing FINOLA and Masked FINOLA on ImageNet-1K. Masked FINOLA variants
trade restoration accuracy for enhanced semantic representation. The block-wise masked FINOLA
outperforms the element-wise variant in linear probing (lin), probing with a single transformer
block (tran-1), and fine-tuning (tran-1-ft).

Model Compress Autoregression Decoder Recon-PSNR lin tran-1 tran-1-ft
FINOLA ✓ element up+conv 25.8 17.9 46.8 81.9
Masked FINOLA-E ✓ element linear 16.7 54.1 67.8 82.2
Masked FINOLA-B ✗ block trans+linear 17.3 66.4 78.7 82.5

Top-1 Top-5 Top-10 Top-20 Top-50 All
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Figure 5: Comparing Gaussian curvature of critical features: FINOLA vs. Masked FINOLA.
We evaluate this comparison using 50k IN-1K validation images, analyzing 16×16 surfaces in 3D
space (x, y, zk). Gaussian curvature is computed for all channels at each grid element. Channels
within each image are sorted based on the root square mean of peak positive κ+ and negative cur-
vatures κ−, and the distribution is plotted for the top-K features. Masked FINOLA demonstrates
significantly larger curvature on critical features than vanilla FINOLA, highlighting the effective-
ness of masked prediction in curving the latent space to capture semantics. Best viewed in color.

1. Validation across multiple resolutions and image sizes: FINOLA consistently performs well
across various resolutions (8×8 to 256×256) and different image sizes (256×256 and 512×512).

2. Validation of norm+linear model: The combination of normalization and a linear model is
crucial for success.

3. Comparable performance with well-known baselines: FINOLA achieves performance com-
parable to the first stage of VQGAN Esser et al. (2021) and stable diffusion Rombach et al.
(2021) in image reconstruction. It also comparable with JPEG in image compression

4. Comprehensive ablations and analysis: Our ablation studies provide valuable insights into the
control factors within FINOLA.

Validation across multiple resolutions and image sizes: We empirically validate the partial deriva-
tive equations (PDEs) in Eq. 2 by assessing FINOLA’s performance in image reconstruction across
various feature map resolutions and image sizes. Table 2-(a) displays reconstruction PSNR scores
across different feature map resolutions. The reconstruction remains consistent across most resolu-
tions, with slightly reduced performance at 128x128 and 256x256. This decrease is primarily due
to significantly smaller decoders (with only 1.7M and 1.2M parameters, respectively). Notably, at
256x256 resolution, the feature map matches the image size, and the decoder comprises only three
3x3 convolutional layers to cover a 7-pixel field of view (see Table 8 in Appendix C).

Table 2-(b) presents results for three image sizes. FINOLA performs well on larger images, albeit
with slightly lower PSNR scores, attributed to the higher compression rate of the encoder. In all
cases, the encoder outputs a vector q with 3072 channels, a dimension intentionally maintained to
assess the model’s ability to handle larger images with increased visual details.

Validation of the norm+linear model: To validate the norm+linear approach, we compared it with
two alternative methods for completing the feature map: (a) repeating q by W × H times and (b)
a linear model without normalization. The reconstruction PSNR scores are reported in Table 3-(a).
Repetition exhibits significantly lower scores, even though adding positional embedding provides a
modest boost in performance. However, it still falls far behind norm+linear by a substantial margin,
with a PSNR difference of 4.5 or more. The linear model alone experiences a slight performance
drop at low resolution (16×16), but it fails to converge at higher resolutions (64×64). This clearly
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Table 2: Validation across multiple resolutions and image sizes: PSNR values of image recon-
struction are reported for multiple resolutions and image sizes on the ImageNet-1K validation set.
The feature map has C = 3072 channels. Default resolution and image size are indicated with †.

Resolution 8×8 16×16† 32×32 64×64 128×128 256×256
Decoder 25.3M 18.5M 9.6M 7.9M 1.7M 1.2M
PSNR 25.4 25.8 25.8 25.7 25.3 24.6

(a) Resolution of feature map z.

Image Size 256×256† 384×384 512×512
Feature Map 16×16 24×24 32×32

PSNR 25.8 24.5 24.2

(b) Image size.

Table 3: Validation of norm+linear model: PSNR values of image reconstruction are reported for
alternative autogression and normalization models on the ImageNet-1K validation set. The feature
map has C = 3072 channels. ‡ denotes the use of position embedding.

Resolution Repetition Repetition‡ Linear Norm+Linear
16×16 16.1 20.2 25.4 25.8
64×64 13.3 21.2 not converge 25.7

(a) Autoregression models.

Stage Batch-Norm Layer-Norm
Training 25.1 25.5

Validation 16.3 25.8

(b) Normalization models.

demonstrates the critical importance of norm+linear for achieving successful reconstruction. Fur-
thermore, Table 3-(b) highlights the significance of utilizing layer normalization. When replaced
with batch normalization, the PSNR score during validation sees a significant drop, despite a less
severe drop during training.

Comparable performance with well-known baselines: FINOLA not only uncovers mathematical
invariances underlying images but also achieves performance on par with established baselines. Ta-
ble 4-(a) presents a comparison of FINOLA with the first stage (autoencoding) of VQGAN Esser
et al. (2021) and stable diffusion Rombach et al. (2021) in terms of image reconstruction. This eval-
uation is conducted on the ImageNet-Val dataset with a 256×256 image size. Remarkably, FINOLA
attains higher PSNR scores while utilizing a smaller training dataset (1M images in ImageNet com-
pared to 9M images in OpenImage) and a lower latent dimension. In Table 4-(b), we compare
FINOLA with JPEG for image compression. Remarkably, by employing only uniform quantization
per channel without further coding of the quantized bits, FINOLA achieves higher PSNR values
with lower bits per pixel on both the ImageNet and Kodak Company (1999) datasets.

Comprehensive ablations and analysis: Our ablation studies and analysis shed light on key aspects
of FINOLA. We summarize three ablations of hyper-parameters:

• The dimension of q (or the number of channels) is critical, reaching a plateau when using more
than 3072 channels (see Table 14-(a) and Figure 9 in Appendix F.1).

• The model size of the encoder is less critical but still related (see Table 14-(b) and Figure 10
in Appendix F.1).

• The position of placing q is not critical (see Figure 11 in Appendix F.1).

We also made three intriguing observations about how images are distributed in the space of the
compressed vector q (referred to as the embedding space):

• The reconstruction from the averaged q̄ over 50k images in the validation set results in a gray
image (see Figure 13 in Appendix F.1).

• The space is predominantly occupied by noisy images (see Figure 12 in Appendix F.1).
• The reconstruction from an interpolation between two embeddings, αq1 + (1−α)q2, yields a

mix-up of corresponding images (see Figure 14 in Appendix F.1).

5 SELF-SUPERVISED PRE-TRAINING EXPERIMENTS

Our primary goal is to validate FINOLA as a fundamental mathematical property inherent in images.
We aim to demonstrate its performance on par with established techniques like MAE He et al.
(2021), SimMIM Xie et al. (2022), and MoCo Chen et al. (2020d). We focus on block-wise masked
FINOLA (Masked-FINOLA-B) and evaluate its performance in ImageNet-1K classification and
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Table 4: Comparing FINOLA with baselines: FINOLA’s performance is compared to the first
stage of VQGAN Esser et al. (2021) and stable diffusion Rombach et al. (2021) for image recon-
struction on the ImageNet-1K validation set. Additionally, FINOLA’s image compression results
are compared to JPEG on ImageNet and Kodak Company (1999). It’s worth noting that FINOLA
employs uniform quantization per channel without further coding of the quantized bits.

Model Feature Dimension Training Set PSNR
VQGAN 16×16×256 OpenImage 19.9
Stable Diffusion 16×16×256 OpenImage 24.1
FINOLA 1×1×3072 ImageNet 25.8

(a) Image reconstruction evaluated on ImageNet-Val.

Method ImageNet Kodak
Bit/Pixel PSNR Bit/Pixel PSNR

JPEG 0.50 24.5 0.20 24.0
FINOLA 0.19 24.9 0.19 25.6

(b) Image compression.

Table 5: Comparison with masked encod-
ing methods on ImageNet-1K using lin-
ear probing. The baseline methods include
iGPT Chen et al. (2020a), BEiT Bao et al.
(2021), SimMIM Xie et al. (2022), MAE
He et al. (2021) and MAE-Lite Wang et al.
(2022). Three Mobile-Former backbones
of varying widths are used. FINOLA pre-
training demonstrates the ability to learn ef-
fective representations for small models. †

denotes our implementation.

Method Model Params Top-1
iGPT iGPT-L 1362M 69.0
BEiT ViT-B 86M 56.7
SimMIM ViT-B 86M 56.7
MAE ViT-B 86M 68.0
MAE† ViT-S 22M 49.2
MAE-Lite ViT-Tiny 6M 23.3
FINOLA MF-W720 6M 51.3
FINOLA MF-W1440 14M 62.8
FINOLA MF-W2880 28M 66.4

Table 6: Comparison with previous self-
supervised methods on ImageNet-1K fine-tuning.
The baseline methods includes MoCo-v3 Chen*
et al. (2021), MAE-Lite Wang et al. (2022), UM-
MAE Li et al. (2022b), MAE He et al. (2021), and
SimMIM Xie et al. (2022). Three Mobile-Former
backbones of varying widths are used, followed by a
tran-4 decoder with 4 transformer blocks.

Method Model MAdds Params Top-1
MoCo-v3 ViT-Tiny 1.2G 6M 76.8
MAE-Lite ViT-Tiny 1.2G 6M 78.0
FINOLA MF-W720 0.7G 7M 78.4
MoCo-v3 ViT-S 4.6G 22M 81.4
UM-MAE Swin-T 4.5G 29M 82.0
MAE-Lite ViT-S 4.6G 22M 82.1
SimMIM Swin-T 4.5G 29M 82.2
FINOLA MF-W1440 2.6G 20M 82.2
MoCo-v3 ViT-B 16.8G 86M 83.2
MAE ViT-B 16.8G 86M 83.6
SimMIM ViT-B 16.8G 86M 83.8
SimMIM Swin-B 15.4G 88M 84.0
FINOLA MF-W2880 9.9G 57M 83.9

COCO object detection. For brevity, we refer to Masked FINOLA-B as ”FINOLA” throughout this
section. Please refer to Appendices C, D, and G for network structure, training setup, and additional
experiments, respectively. Here are our key findings:

FINOLA achieves comparable performance with established baselines (e.g., MAE, SimMIM):
We evaluate FINOLA as complete end-to-end systems and compare them with baselines. For exam-
ple, we compare FINOLA+MobileFormer with MAE+ViT in the context of ImageNet classification.
Our comparisons include linear probing (Table 5) and fine-tuning (Table 6). FINOLA achieves com-
parable performance on both evaluations while requiring lower FLOPs.

FINOLA provides a robust task-agnostic encoders: Pre-training with FINOLA followed by fine-
tuning on ImageNet-1K (IN-1K) consistently outperforms IN-1K supervised pre-training in both
ImageNet classification and COCO object detection (see Figure 6). The gains in object detection
are substantial, ranging from 5 to 6.4 AP. Remarkably, even without IN-1K fine-tuning, FINOLA
pre-training alone outperforms the supervised counterpart in object detection by a clear margin (3 to
4.5 AP, detailed in the Appendix). This highlights FINOLA’s ability to encode spatial structures.

When compared to MoCo-V2 (as shown in Table 17 in Appendix G.3), FINOLA demonstrates
comparable performance in linear probing while surpassing MoCo-V2 in IN-1K fine-tuning, COCO
object detection, and instance segmentation. FINOLA’s superior performance suggests its effective
encoding of spatial structures, supporting the idea that the underlying PDEs capture intrinsic spatial
structures present in images.

FINOLA has strong performance when fine-tuning on COCO: see details in Appendix G.4.
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COCO Det APIN-1K Top 1Pre-trainingEncoder

35.275.7supervised
MF-W720 41.6 (+6.4)75.8 (+0.1)FINOLA+IN1K-FT

38.379.4supervised
MF-W1440 44.0 (+5.7)80.5 (+0.9)FINOLA+IN1K-FT

40.580.8supervised
MF-2880 45.5 (+5.0)82.5 (+1.7)FINOLA+IN1K-FT

FINOLA vs. Supervised Pre-training 
as task-agnostic encoders

Figure 6: Task-agnostic encoders evaluated on ImageNet (IN-1K) classification and COCO object
detection. We assess three IN-1K pretraining methods: (a) supervised (Sup-IN1K), (b) FINOLA,
and (c) FINOLA with fine-tuning on IN-1K (FINOLA+IN1K-FT). The dots represent different
Mobile-Former backbones. For classification, we add a tran-1 decoder (with a single transformer
block) trained with class supervision. It’s important to note that the backbone remains task-agnostic,
frozen during object detection. FINOLA performs lower than Sup-IN1K in classification but sur-
passes it in object detection. After fine-tuning on IN-1K, FINOLA+IN1K-FT shows improvements
in both tasks, providing robust task-agnostic encoders.

6 RELATED WORK

Image autoregression van den Oord et al. (2016b;a); Salimans et al. (2017); Chen et al. (2018);
Yu et al. (2022b) use conditional probability distributions to generate high-quality images based on
previously generated pixels. These models have evolved from pixel-level focus to operating in the
latent space using vector quantization van den Oord et al. (2017); Razavi et al. (2019); Esser et al.
(2021). In contrast, we present a first-order norm+linear autoregression to generate feature map.

Masked image modeling (MIM) is inspired by the success of BERT Devlin et al. (2019) and ViT
Dosovitskiy et al. (2021) to learn representation by predicting masked region from unmasked coun-
terpart. BEiT Bao et al. (2021) and PeCo Dong et al. (2021) predict on tokens, MaskFeat Wei et al.
(2022) predicts on HOG, and MAE He et al. (2021) reconstructs original pixels. Recent works fur-
ther explore combining MIM and contrastive learning Zhou et al. (2022); Dong et al. (2022); Huang
et al. (2022); Tao et al. (2022); Assran et al. (2022); Jiang et al. or techniques suitable for ConvNets
Gao et al. (2022); Jing et al. (2022); Fang et al. (2022). Different from these works that use random
masking, FINOLA uses regular masking and simpler norm+linear prediction.

Contrastive methods: Becker & Hinton (1992); Hadsell et al. (2006); van den Oord et al. (2018);
Wu et al. (2018); He et al. (2019); Chen & He (2020); Caron et al. (2021) achieve significant
progress. They are most applied to Siamese architectures Chen et al. (2020b); He et al. (2019);
Chen et al. (2020d); Chen* et al. (2021) to contrast image similarity and dissimilarity and rely on
data augmentation. Chen & He (2020); Grill et al. (2020) remove dissimilarity between negative
samples by handling collapse carefully. Chen et al. (2020c); Li et al. (2021a) show pre-trained
models work well for semi-supervised learning and few-shot transfer.

7 CONCLUSION

This paper introduces FINOLA, a novel framework that represents every image as a first-order
norm+linear autoregressive process. This discovery unveils the presence of underlying partial dif-
ferential equations (PDEs) governing the latent feature space. We validate FINOLA through experi-
ments in image reconstruction and self-supervised learning, demonstrating its remarkable capability
to autoregress feature maps up to the original image’s resolution. This empowers successful im-
age reconstruction using a minimalist decoder architecture. Additionally, we leverage FINOLA for
self-supervised learning by employing a straightforward masked prediction approach. Our findings
reveal that this pre-trained representation excels in various downstream tasks, including image clas-
sification and object detection, without the need for extensive fine-tuning. In summary, FINOLA
provides valuable mathematical insights into the realm of image representations.
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A CALCULATION OF GAUSSIAN CURVATURE

To compute the Gaussian curvature, we consider the feature map per channel as a set of W × H
surfaces zk(x, y) in 3D space, where x, y, and zk denote the coordinates. At each position (x, y),
the Gaussian curvature for the kth channel can be determined using the following equation:

κk(x, y) =

∂2zk
∂x2

∂2zk
∂y2 −

(
∂2zk
∂x∂y

)2

(
1 + (∂zk∂x )2 + (∂zk∂y )2

)2 . (5)

Subsequently, we rank the channels based on the root mean square of the peak positive curvature
(κ+) and the peak negative curvature (κ−) over the surface.

B LIMITATIONS

The major limitation of our image reconstruction method is the loss of high-frequency details, as
demonstrated in Figure 1. The resulting images exhibit blurred faces, trees, and deformed small
texts. This limitation may be attributed to the choice of loss function, as we currently use the mean
square error. In future work, we plan to explore the use of adversarial loss, as suggested in VQGAN
Esser et al. (2021), to promote high-quality reconstruction and address this limitation.

C NETWORK ARCHITECTURES

In this section, we provide detailed information on the network architecture components used in
our study. Specifically, we describe (a) the Mobile-Former encoders, (b) the pooler to compress the
feature map into a single vector, (c) the decoders employed in both FINOLA and Masked FINOLA,
(d) the decoders designed for image classification, and (e) the decoders tailored for object detection.

Mobile-Former encoders: Mobile-Former Chen et al. (2022) is used as the encoder in our ap-
proach. It is a CNN-based network that extends MobileNet Sandler et al. (2018) by adding 6 global
tokens in parallel. To preserve spatial details, we increase the resolution of the last stage from 1

32

to 1
16 . We evaluate three variants of Mobile-Former, which are detailed in Table 7. Each variant

consists of 12 blocks and 6 global tokens, but they differ in width (720, 1440, 2880). These mod-
els serve as the encoders (or backbones) for image reconstruction, self-supervised pre-training, and

Table 7: Specification of Mobile-Former encoders. “bneck-lite” denotes the lite bottleneck block
Li et al. (2021b). “M-F” denotes the Mobile-Former block and “M-F↓” denotes the Mobile-Former
block for downsampling.

Stage Resolution Block MF-W2880 MF-W1440 MF-W720
#exp #out #exp #out #exp #out

token 6×256 6×256 6×192
stem 2562 conv 3×3 – 64 – 32 – 16

1 1282 bneck-lite 128 64 64 32 32 16

2 642 M-F↓ 384 112 192 56 96 28
M-F 336 112 168 56 84 28

3 322
M-F↓ 672 192 336 96 168 48
M-F 576 192 288 96 144 48
M-F 576 192 288 96 144 48

4 162

M-F↓ 1152 352 288 96 240 80
M-F 1408 352 704 176 320 88
M-F 1408 352 704 176 480 88
M-F 2112 480 1056 240 528 120
M-F 2880 480 1440 240 720 120
M-F 2880 480 1440 240 720 120

conv 1×1 – 2880 – 1440 – 720
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Table 8: Decoder specifications. The decoder’s complexity decreases as the spatial resolution in-
creases from 8×8 to 256×256). “res-conv” represents a residual block He et al. (2016) consisting
of two 3x3 convolutional layers, while “up-conv” performs upsampling followed by a 3x3 convolu-
tional layer.

Resolution 8×8 16×16 32×32 64×64 128×128 256×256
block #out block #out block #out block #out block #out block #out

82 res-conv 512

162 up-conv 512
res-conv 512 res-conv 512

322 up-conv 512 up-conv 512
res-conv 256 res-conv 256 res-conv 256

642 up-conv 256 up-conv 256 up-conv 256
res-conv 256 res-conv 256 res-conv 256 res-conv 256

1282 up-conv 256 up-conv 256 up-conv 256 up-conv 256
res-conv 128 res-conv 128 res-conv 128 res-conv 128 res-conv 128

2562
up-conv 128 up-conv 128 up-conv 128 up-conv 128 up-conv 128
res-conv 128 res-conv 128 res-conv 128 res-conv 128 res-conv 128 res-conv 128
conv3×3 3 conv3×3 3 conv3×3 3 conv3×3 3 conv3×3 3 conv3×3 3

#param 25.3M 18.5M 9.6M 7.9M 1.7M 1.2M

Table 9: Mobile-Former decoder specifications for COCO object detection: 100 object queries
with dimension 256 are used. “down-conv” includes a 3×3 depthwise convolution (stride=2) and
a pointwise convolution (256 channels). ”up-conv” uses bilinear interpolation, followed by a 3×3
depthwise and a pointwise convolution. ”M-F+” replaces the Mobile sub-block with a transformer
block, while ”M-F−” uses the lite bottleneck Li et al. (2021b) to replace the Mobile sub-block.

Stage MF-Dec-522 MF-Dec-211
query 100×256 100×256

1
32

down-conv down-conv
M-F+ ×5 M-F+ ×2

1
16

up-conv up-conv
M-F− ×2 M-F− ×1

1
8

up-conv up-conv
M-F− ×2 M-F− ×1

evaluation in image classification and object detection tasks. For image reconstruction, we also ex-
plore two wider models, W4320 and W5760, which increase the number of channels from W2880
by 1.5 and 2 times, respectively. It’s important to note that these models were manually designed
without an architectural search for optimal parameters such as width or depth.

Pooling the compressed vector q: In both FINOLA and element-wise masked FINOLA, the com-
pressed vector q is obtained by performing attentional pooling Lee et al. (2019); Yu et al. (2022a) on
the feature map. This pooling operation involves a single multi-head attention layer with learnable
queries, where the encoder output serves as both the keys and values.

Decoders for FINOLA pre-training: Table 8 provides the architecture details of the decoders used
in FINOLA. The complexity of the decoder decreases as the spatial resolution increases, going from
8×8 to 256×256. Unlike vanilla FINOLA, which employs stacked upsampling and convolution
blocks, the Masked FINOLA variants utilize simpler architectures—a linear layer for transforming
features into 16×16 image patches. This choice facilitates longer training. As mentioned in the
main paper, the decoder of Masked-FINOLA-B incorporates transformer blocks (without positional
embedding) to enable spatial communication. It’s worth noting that vanilla FINOLA is trained for
100 epochs on ImageNet, while Masked FINOLA undergoes training for 1600 epochs.

Decoders for ImageNet classification: We utilize three decoders to evaluate the pre-trained en-
coders in FINOLA. These decoders are as follows:

• lin decoder: It consists of a single linear layer and is used for linear probing.
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Table 10: Pre-training setting for FINOLA and masked FINOLA variants.

Config FINOLA Masked FINOLA
optimizer AdamW AdamW
base learning rate 1.5e-4 1.5e-4
weight decay 0.1 0.1
batch size 128 1024
learning rate schedule cosine decay cosine decay
warmup epochs 10 10
training epochs 100 1600
image size 2562 2562

augmentation RandomResizeCrop RandomResizeCrop

Table 11: Settings for linear probing and tran-1 probing on ImageNet-1K: The encoders are
frozen during both tasks.

Config Linear probing tran-1 probing
optimizer SGD AdamW
base learning rate 0.1 0.0005
weight decay 0 0.1
batch size 4096 4096
learning rate schedule cosine decay cosine decay
warmup epochs 10 10
training epochs 90 200
augmentation RandomResizeCrop RandAug (9, 0.5)
label smoothing – 0.1
dropout – 0.1 (MF-W720) 0.2 (MF-W1440/W2880)
random erase – 0 (MF-W720/W1440) 0.25 (MF-W2880)

• tran-1 decoder: It incorporates a shallower transformer decoder with a single trans-
former block followed by a linear classifier and is employed for tran-1 probing and
fine-tuning.

• tran-4 decoder: This decoder is composed of four transformer blocks followed by a
linear classifier and is utilized for fine-tuning alone.

The transformer decoders are designed with different widths (192, 384, 768) to correspond with the
three Mobile-Former encoders, which have widths of 720, 1440, and 2880, respectively.

Decoders for object detection: The decoders used in the DETR framework with Mobile-Former
Chen et al. (2022) are described in Table 9. Both decoders consist of 100 object queries with a
dimension of 256. While they share a similar structure across three scales, they differ in terms of
their depths. Since the backbone network ends at a resolution of 1

16 , the decoder incorporates a
downsampling step to further reduce the resolution to 1

32 . This enables the decoder to efficiently
process the features for object detection.

D TRAINING SETUP

In this section, we provide detailed training setups for different tasks, including:

• Image reconstruction using FINOLA on ImageNet-1K.
• Masked FINOLA pre-training on ImageNet-1K.
• Linear probing on ImageNet-1K.
• tran-1 probing on ImageNet-1K.
• Fine-tuning on ImageNet-1K.
• COCO object detection.

FINOLA pre-training: The pre-training settings for image compression and reconstruction using
FINOLA are provided in Table 10. The learning rate is scaled as lr = base lr×batchsize / 256.
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Table 12: Setting for end-to-end fine-tuning on ImageNet-1K.

Config Value
optimizer AdamW
base learning rate 0.0005
weight decay 0.05
layer-wise lr decay 0.90 (MF-W720/W1440) 0.85 (MF-W2880)
batch size 512
learning rate schedule cosine decay
warmup epochs 5
training epochs 200 (MF-W720) 150 (MF-W1440) 100 (MF-W2880)
augmentation RandAug (9, 0.5)
label smoothing 0.1
mixup 0 (MF-W720) 0.2 (MF-W1440) 0.8 (MF-W2880)
cutmix 0 (MF-W720) 0.25 (MF-W1440) 1.0 (MF-W2880)
dropout 0.2
random erase 0.25

Masked FINOLA pre-training: Similar to the vanilla FINOLA, masked FINOLA also follows
the training setup described in Table 10, but with a larger batch size due to the simpler decoder
architecture that requires less memory consumption.

Linear probing: In our linear probing, we follow the approach described in He et al. (2021) by
incorporating an additional BatchNorm layer without affine transformation (affine=False). Detailed
settings can be found in Table 11.

tran-1 probing: The settings for tran-1 decoder probing are presented in Table 11. It is impor-
tant to note that the default decoder widths are 192, 384, and 768 for MF-W720, MF-W1440, and
MF-W2880, respectively.

End-to-end fine-tuning on ImageNet-1K: The settings for the end-to-end fine-tuning of both the
encoder and tran-1 decoder are presented in Table 12. The decoder weights are initialized from
the tran-1 probing stage.

Decoder probing on COCO object detection: In this configuration, the backbone pre-trained on
ImageNet-1K is frozen, and only the decoders are trained for 500 epochs on 8 GPUs with 2 images
per GPU. We employ AdamW optimizer with an initial learning rate of 1e-4. The learning rate is
decreased by a factor of 10 after 400 epochs. The weight decay is 1e-4, and the dropout rate is 0.1.

Fine-tuning on COCO object detection: In this setting, both the encoder and decoder are fine-
tuned. The fine-tuning process consists of an additional 200 epochs following the decoder probing
stage. The initial learning rate for both the encoder and decoder is set to 1e-5, which decreases to
1e-6 after 150 epochs.

E ADDITIONAL COMPARISON BETWEEN FINOLA AND MASKED FINOLA

Comparison of FINOLA and masked FINOLA on ImageNet classification: Table 13 presents
the results of linear and tran-1 probing applied to the vanilla FINOLA across various dimensions
of the latent space. Notably, even the highest accuracy achieved by the vanilla FINOLA falls signif-
icantly behind both masked FINOLA variants (element-wise or block-wise). This stark difference
highlights the remarkable power of masked prediction in learning semantic representations.

Comparison of FINOLA and masked FINOLA on image reconstruction: Figure 7 presents a
comparison of reconstructed samples obtained using FINOLA and masked FINOLA. In the case
of the two masked FINOLA variants (element-wise and block-wise), the encoders are frozen, and
only their attentional pooling and FINOLA components are fine-tuned. To ensure a fair comparison,
we utilize the same architecture for the decoders in the masked FINOLA variants as in FINOLA,
training them from scratch. The corresponding peak signal-to-noise ratio (PSNR) values on the
ImageNet validation set are provided at the bottom. While the masked variants preserve color and
shape information, they exhibit a loss of texture details compared to the vanilla FINOLA. Notably,
as demonstrated in the main paper, the masked FINOLA variants demonstrate stronger semantic
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Table 13: FINOLA vs. masked
FINOLA on ImageNet Deng et al.
(2009) classification: Compared to
masked FINOLA variants, FINOLA
performs poorly on both linear prob-
ing (lin) and probing with a sin-
gle transformer block (tran-1) with
clear margins. Even we search over
the dimension of latent space from
64 to 3072, the gap is still large,
i.e. more than 20%. Block-wise
masked FINOLA (Masked-FINOLA-
B) outperforms the element-wise vari-
ant (Masked-FINOLA-E), achieving
higher accuracy. Please note that the en-
coders are frozen when performing lin-
ear and tran-1 probing.

Pre-training Dim of q lin tran-1

64 10.2 20.2

128 11.5 24.0

256 15.0 29.0

FINOLA 512 20.1 34.1

1024 23.0 39.6

2048 23.2 41.1

3072 17.9 46.8

Masked
FINOLA-E 512 54.1 67.8

Masked
FINOLA-B —- 66.4 78.7

Original FINOLA
Masked 
FINOLA-E

Masked 
FINOLA-B

PSNR 
IN-1K val

25.8 16.7 17.3

Figure 7: FINOLA vs. masked FINOLA on image re-
construction: In this comparison, the encoders of the two
masked FINOLA variants are frozen, and their attentional
pooling and FINOLA components are fine-tuned. To en-
sure a fair comparison, we replace the decoders in the
masked FINOLA variants with the same architecture as
FINOLA, trained from scratch. When compared to vanilla
FINOLA, the masked variants preserve color and shape
information but exhibit a loss of texture details.

Table 14: Image reconstruction ablation experiments on ImageNet-1K. We report PSNR on the
validate set. The reconstruction quality correlates to (a) the number of channels in the latent space
and (b) complexity of encoder. Default settings are marked by †.

#Channels 4096 3072† 2048 1024 512 256 128 64
PSNR 25.9 25.8 25.1 23.7 22.2 20.8 19.4 18.2

(a) Number of channels in latent space.

Encoder 67.6M 43.5M 25.0M† 12.0M 5.0M
PSNR 26.1 26.0 25.8 25.1 24.4

(b) Model size of encoders.

representation. This comparison highlights that FINOLA and masked FINOLA adhere to the same
mathematical principles (involving partial differential equations) but strike different balances be-
tween semantic representation and preserving fine details.

Comparison between two Masked FINOLA variants: Figure 8 showcases the results of linear
probing, tran-1 probing, and fine-tuning for two masked FINOLA variants trained with different
schedules. The block-wise masked FINOLA consistently outperforms its element-wise counterpart
across all evaluations. These findings demonstrate the effectiveness of directly applying FINOLA on
the unmasked features to predict the masked region, as opposed to performing compression before
applying FINOLA.
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linear probing tran-1 probing tran-1 fine-tuning

Figure 8: Comparison of element-wise and block-wise masked FINOLA. The evaluation includes
linear probing, tran-1 probing, and tran-1 fine-tuning. Block-wise masked FINOLA consis-
tently outperforms the element-wise counterpart across all evaluations. Notably, the performance
gap in fine-tuning is smaller compared to linear and tran-1 probing. Best viewed in color.

Original d4096 d3072 d2048 d1024 d512 d256 d128 d64

Figure 9: Image reconstruction examples. The leftmost column shows the original images. The
number of channels in the latent space, decreasing from 4096 to 64 from the left to right, controls
the reconstruction quality. Best viewed in color.

F ADDITIONAL EXPERIMENTAL RESULTS ON IMAGE RECONSTRUCTION

In this section, we present additional experimental results on image reconstruction.

F.1 ABLATION STUDIES

The number of channels in the latent space is crucial. Table 14-(a) presents the PSNR values for
various latent space dimensions, while Figure 9 showcases the corresponding reconstructed exam-
ples. The image quality is noticeably poor when using only 64 channels, resulting in significant loss
of details. However, as the number of channels increases, more details are successfully recovered.
Using more than 3072 channels yields reasonably good image quality, achieving a PSNR of 25.8.

The model size of encoder is less critical but also related. As shown in Figure 10 and Table 14-
(b), the larger model has better image quality. But the gap is not significant. When increasing model
size by 13 times from 5.0M to 67.6M, the PSNR is slightly improved from 24.4 to 26.1. Note all
encoders share similar architecture (Mobile-Former with 12 blocks), but have different widths.

The position of q is not critical: Figure 11 showcases the reconstructed samples obtained by
placing the compressed vector q at different positions, including the center and four corners. The
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Original 67.6M 43.5M 25.0M 12.0M 5.0M

PSNR 
IN-1K val

26.1 26.0 25.8 25.1 24.4

Figure 10: Impact of encoder size on image reconstruction quality: The image reconstruction
quality shows a slight improvement as the size of the encoder increases. Even with a small encoder
containing 5 million parameters (right column), it effectively compresses an image into a single
vector capable of reconstructing the entire image. Best viewed in color.

corresponding peak signal-to-noise ratio (PSNR) values on the ImageNet validation set are provided
at the bottom. While placing q at the center yields slightly better results compared to corner posi-
tions, the difference is negligible. It is important to note that each positioning corresponds to its own
pre-trained model with non-shared parameters.

F.2 INSPECTING THE EMBEDDING SPACE

In this subsection, we list main observations and analysis in the space of the compressed vector
q (named embedding space). This will help us to understand how images are distributed in the
embedding space.

Three observations: Below we list three observations that reveal properties of the embedding space.

Dominance of noisy images in the space: To analyze the distribution of images in the embedding
space, we collected q vector for all 50,000 images from the ImageNet validation set and computed
their statistics (mean and covariance). By sampling embeddings based on these statistics and recon-
structing images, we consistently observed the emergence of similar noisy patterns, as depicted in
Figure 12. This observation highlights the prevalence of noisy images throughout the space, with
good images appearing as isolated instances surrounded by the abundance of noise.

Averaged embedding q̄ yields a gray image: In Figure 13, we observe that the reconstructed image
obtained from the averaged embedding q̄, computed over 50,000 images from the ImageNet valida-
tion set, closely resembles a gray image. We further investigate the relationship between real image
embeddings q and the averaged embedding q̄ through interpolations along the embedding space. As
depicted in the left figure, the reconstructed images maintain their content while gradually fading
into a gray image. Additionally, we extend this connection to mirror embeddings in the right figure,
represented by 2q − q̄, which correspond to images with reversed colors. These findings suggest
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Original Center Top-left Top-right Bottom-left Bottom-right

𝒒

𝒒 𝒒

𝒒 𝒒

PSNR 
IN-1K val

25.8 25.7 25.6 25.6 25.4

Figure 11: Comparison of different positions of compressed vector q: The quality of image
reconstruction shows minimal sensitivity to the position of q. Placing it at the center yields slightly
better results compared to corner positions. It is worth noting that each positioning has its own
pre-trained model with non-shared parameters. Best viewed in color.

that despite the prevalence of noisy images, the line segment connecting an image embedding to the
average embedding encompasses different color transformations of the same image.

Reconstruction from interpolated embeddings: In Figure 14, we present the reconstructed images
obtained by interpolating between two image embeddings using the equation αq1+(1−α)q2. This
process of embedding mixup results in a corresponding mixup of the images, allowing for a smooth
transition between the two original images by varying the value of α. However, it is important
to note that the resulting reconstruction may not precisely match the simple mixup of the original
images, represented by αI1 + (1− α)I2.

Combining the three observations discussed above, our findings suggest that the presence of noisy
images in Figure 12 indicates the mixing of multiple surrounding images. As the number of image
embeddings involved in the mixing process increases, the resulting reconstructions tend to resemble
a gray image, as depicted in Figure 13.

Principle component analysis (PCA): The reconstruction results shown in Figure 15 are obtained
using PCA with the top-K principle components. These components correspond to the largest K
eigenvalues of the covariance matrix computed from 50,000 image embeddings in the ImageNet val-
idation set. The principle components capture essential information, starting with color and layout,
and gradually encoding finer image details as more components are included in the reconstruction
process.
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Figure 12: Reconstruction from random samples: The reconstructed images are generated by
sampling from the statistics (mean and covariance) of compressed embeddings q obtained from
the ImageNet validation set, consisting of 50,000 images. Although the samples are not similar
to images of Gaussian noise, they lack semantic meaning and appear as noisy images. Multiple
samplings consistently yield similar noisy patterns. Best viewed in color.

Original

Mean
𝒒 𝒒"0.75𝒒+0.25𝒒" 0.5𝒒+0.5𝒒" 0.25𝒒+0.75𝒒" 𝒒 𝒒" 2𝒒" − 𝒒

Mean

Figure 13: Reconstruction from the average embedding q̄: The reconstructed image correspond-
ing to the average embedding q̄ computed from 50,000 ImageNet validation images closely resem-
bles a gray image (shown in the right column of the left figure). In the left figure, we demonstrate
the interpolation along a line connecting embeddings from different images to the average embed-
ding. Notably, the reconstructed images progressively fade into a gray image. In the right figure,
we extend the connection between an image embedding q and the average embedding q̄ to a mir-
ror embedding 2q − q̄, corresponding to an image with reversed colors. This comparison provides
insights into the nature of the embedding space. Best viewed in color.
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𝒒𝟏 𝒒𝟐0.75𝒒𝟏+0.25𝒒𝟐 0.5𝒒𝟏+0.5𝒒𝟐 0.25𝒒𝟏+0.75𝒒𝟐

Figure 14: Reconstruction from interpolated embeddings: The images are reconstructed by in-
terpolating embeddings of two images, αq1 + (1 − α)q2. Although the mixed embedding passes
through a non-linear network that includes FINOLA and a multi-layer decoder, it leads to mixing up
images as output. Best viewed in color.

G ADDITIONAL EXPERIMENTS ON SELF-SUPERVISED PRE-TRAINING

In this section, we present more ablations on block-wise masked FINOLA (Masked-FINOLA-B)
and additional comparisons between Masked-FINOLA-B and baselines. For brevity, we will use the
term ”FINOLA” to refer to Masked-FINOLA-B throughout the remainder of this section.

G.1 ABLATION STUDIES

Ablation on training schedule: The impact of training schedule length on three Mobile-Former
encoders is depicted in Figure 16. Notably, the accuracies of both linear and tran-1 probings
demonstrate a consistent improvement as the training duration increases. Interestingly, even with a
pre-training of just 100 epochs, fine-tuning with tran-1 achieves commendable performance. This
finding diverges from the observations in MAE He et al. (2021), where longer training is essential
for fine-tuning improvements.

Ablation on the number of transformer blocks in the decoder: We investigate the impact of
the number of transformer blocks in the decoder on FINOLA pre-training using the Mobile-Former-
W2880 as encoder. Each transformer block in the decoder consists of 512 channels, but does not use
positional embedding. The results, shown in Table 15, demonstrate that adding more transformer
blocks leads to consistent improvements in both linear and tran-1 probing tasks. However, we
observe that the performance of fine-tuning is less sensitive to changes in the decoder depth.

G.2 COMPARABLE PERFORMANCE WITH ESTABLISHED BASELINES

Comparison with additional baselines on ImageNet fine-tuning: The fine-tuning results of FI-
NOLA are compared with those of previous self-supervised methods in Table 16. For this compari-
son, FINOLA utilizes the Mobile-Former-W1440 encoder, followed by a tran-4 decoder consist-
ing of four transformer blocks with 384 channels. The results demonstrate that FINOLA achieves
comparable performance to the baselines while requiring lower floating-point operations (FLOPs).
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Original All-3072 Top-1536 Top-768 Top-384 Top-192

Figure 15: Reconstruction from top principle components: The top-K principle components
correspond to the largest K eigenvalues of the covariance matrix computed from 50,000 image em-
beddings in the ImageNet validation set. With a selection of top-192 components (the right column),
the color and layout of the images are primarily determined, but the resulting reconstructions appear
blurred with noticeable loss of details. As more principle components are incorporated, the finer
details are gradually restored. Best viewed in color.

Mobile-Former-W720 Mobile-Former-W1440 Mobile-Former-W2880

Figure 16: Training schedules of Masked-FINOLA-B. Longer training schedule provides consis-
tent improvement for linear and tran-1 probing over different models, while fine-tuning perfor-
mance is not sensitive to training schedule. Best viewed in color.

This highlights the effectiveness and efficiency of FINOLA in the context of self-supervised pre-
training.

G.3 ROBUST TASK AGNOSTIC ENCODERS

Comparisons with MoCo-v2: As shown in Table 17, FINOLA demonstrates comparable perfor-
mance to MoCo-V2 in linear probing, while surpassing MoCo-V2 in tran-1 probing that uses a
single transformer block as a decoder for classification, IN-1K fine-tuning, object detection and seg-
mentation. The backbone is frozen for both COCO object detection and segmentation. FINOLA’s
superior performance suggests it learns more effective intermediate features, contributing to more
representative decoder features. Furthermore, the improved performance in object detection empha-
sizes FINOLA’s ability to encode spatial structures effectively.
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Table 15: Ablation on the number of trans-
former blocks in the decoder: Evaluation
is conducted on ImageNet using Mobile-
Former-W2880 as the encoder. Each trans-
former block consists of 512 channels. Each
model is pre-trained for 800 epochs. Increas-
ing the decoder depth exhibits consistent im-
provement for linear and tran-1 probing,
while fine-tuning performance shows limited
sensitivity to decoder depth.

#Blocks lin tran-1 tran-1-ft
1 61.1 74.4 82.2
2 62.6 76.5 82.3
3 63.5 77.3 82.2
4 63.8 78.0 82.3
5 64.0 78.1 82.3
6 65.0 78.3 82.4

Table 16: Comparison with self-supervised base-
lines on ImageNet-1K fine-tuning. The baseline
methods includes iBOT Zhou et al. (2022), MoCo-
v3 Chen* et al. (2021), MAE He et al. (2021),
MAE-Lite Wang et al. (2022), CMAE Huang et al.
(2022), and ConvMAE Gao et al. (2022). Mobile-
Former-W1440 (pre-trained for 1600 epochs) is
used as encoder, followed by a tran-4 decoder
with 4 transformer blocks with 384 channels.

Method Model MAdds Params Top-1
iBOT ViT-S 4.6G 22M 82.3
MoCo-v3 ViT-S 4.6G 22M 81.4
MAE ViT-S 4.6G 22M 79.5
MAE-Lite ViT-S 4.6G 22M 82.1
CMAE ViT-S 4.6G 22M 80.2
ConvMAE ConvViT-S 6.4G 22M 82.6
FINOLA MF-W1440 2.6G 20M 82.2

Table 17: Comparisons with MoCo-v2 Chen et al. (2020d) on ImageNet classification, COCO
object detection and instance segmentation. Three Mobile-Former backbones with different widths
are used. In tran-1, the encoder is frozen while a transformer block is trained as a decoder using
class labels. In tran-1-ft, encoders are fine-tuned. Encoders are frozen in both COCO object
detection and instance segmentation. DETR framework is used for object detection, while Mask-
RCNN (1×) is used for segmentation. FINOLA outperforms MoCo-V2 in most evaluations, except
on par in linear probing.

Pre-training Encoder
IN-1K Top-1 COCO Det (Box-AP) COCO Seg (Mask-AP)

lin tran-1 tran-1-ft w/o IN-ft with IN-ft w/o IN-ft with IN-ft
MoCo-V2 MF-W720 51.6 52.9 74.3 31.8 39.9 23.2 25.3
FINOLA 51.3 65.5 75.6 40.0 41.6 26.3 28.4
MoCo-V2 MF-W1440 60.4 58.5 79.2 30.3 39.0 25.6 25.7
FINOLA 62.8 75.2 80.5 42.6 44.0 30.6 32.7
MoCo-V2 MF-W2880 66.5 63.8 80.0 25.5 31.7 27.8 25.2
FINOLA 66.4 78.7 82.5 43.3 45.5 33.3 35.1

These experiments demonstrate that the proposed masked FINOLA is able to learn task-agnostic
representation by using a simple masking design. This supports that the underling PDEs capture the
intrinsic spatial structures present in images.

Comparison with the IN-1K supervised pre-training on transferring to COCO object detec-
tion: Table 18 presents the results of COCO object detection using frozen backbones. The evalua-
tion utilizes three Mobile-Former encoders with different widths and two Mobile-Former decoders
with different depths. Notably, FINOLA pre-training followed by ImageNet-1K (IN-1K) fine-tuning
consistently outperforms the IN-1K supervised pre-training across all evaluations, demonstrating the
effectiveness of task-agnostic encoders. Impressively, even FINOLA pre-training alone, without IN-
1K fine-tuning, surpasses the supervised counterpart on object detection by a significant margin of
2.6–5.2 AP. This showcases FINOLA’s ability to encode spatial structures.

G.4 FINE-TUNING ON COCO

Furthermore, fine-tuning the backbone on COCO further enhances detection performance. Table
19 provides a comprehensive comparison of fine-tuning results using the Mobile-Former Chen
et al. (2022) in the DETR Carion et al. (2020) framework. Unlike the frozen backbone configura-
tion, where FINOLA outperforms supervised pre-training significantly (as shown in Table 18), they
achieve similar performance in COCO fine-tuning. This is because the advantage of FINOLA pre-
training on spatial representation diminishes when object labels in COCO provide strong guidance.
However, FINOLA maintains its leading position by leveraging fine-tuning on IN-1K to improve
semantic representation and transfer it to object detection. Compared to the supervised baseline,
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Table 18: COCO object detection results on the val2017 dataset using a frozen backbone pre-
trained on ImageNet-1K. Evaluation is conducted over three backbones and two heads that use
Mobile-Former Chen et al. (2022) end-to-end in DETR Carion et al. (2020) framework. Our FI-
NOLA consistently outperform the supervised counterpart. Notably, fine-tuning on ImageNet-1K
(denoted as ”IN-ft”) yields further improvements. The initial ”MF” (e.g., MF-Dec-522) denotes
Mobile-Former. The madds metric is based on an image size of 800×1333.

Head Backbone
AP AP50 AP75 APS APM APLmodel madds param model madds param pre-train IN-ft

(G) (M) (G) (M)

MF
Dec
522

34.6 19.4 MF
W2880

77.5 25.0
supervised – 40.5 58.5 43.3 21.1 43.4 56.8
FINOLA ✗ 43.3 (+2.8) 61.5 46.8 23.7 46.9 60.1
FINOLA ✓ 45.5 (+5.0) 63.8 49.5 25.1 49.1 63.5

32.3 18.6 MF
W1440

20.4 11.7
supervised – 38.3 56.0 40.8 19.0 40.9 54.3
FINOLA ✗ 42.6(+4.3) 60.3 46.1 22.6 46.2 60.0
FINOLA ✓ 44.0(+5.7) 62.3 47.3 23.8 47.6 61.0

31.1 18.2 MF
W720

5.6 4.9
supervised – 35.2 52.1 37.6 16.9 37.2 51.7
FINOLA ✗ 40.0(+4.8) 57.9 42.9 20.6 43.3 56.8
FINOLA ✓ 41.6(+6.4) 59.4 45.0 21.2 45.0 58.9

MF
Dec
211

15.7 9.2 MF
W2880

77.5 25.0
supervised – 34.1 51.3 36.1 15.5 36.8 50.0
FINOLA ✗ 36.7(+2.6) 53.7 39.3 18.2 39.7 52.2
FINOLA ✓ 41.0(+6.9) 59.2 44.4 20.9 44.6 58.3

13.4 8.4 MF
W1440

20.4 11.7
supervised – 31.2 47.8 32.8 13.7 32.9 46.9
FINOLA ✗ 36.0(+4.8) 52.7 38.7 16.6 39.1 52.5
FINOLA ✓ 39.2(+8.0) 56.9 42.0 19.7 42.8 56.2

12.2 8.0 MF
W720

5.6 4.9
supervised – 27.8 43.4 28.9 11.3 29.1 41.6
FINOLA ✗ 33.0(+5.2) 49.3 35.0 15.3 35.1 48.9
FINOLA ✓ 35.8(+8.0) 52.6 38.3 16.4 38.3 52.0

Table 19: COCO object detection results on the val2017 dataset after fine-tuning both the
backbone and head on COCO. Evaluation is performed on three different backbones and two heads,
utilizing the Mobile-Former Chen et al. (2022) end-to-end in the DETR Carion et al. (2020) frame-
work. Our approach, which involves FINOLA pre-training followed by ImageNet-1K fine-tuning,
surpasses the performance of the supervised baselines. The initial ”MF” (e.g., MF-Dec-522) de-
notes Mobile-Former, while ”IN-ft” indicates fine-tuning on ImageNet-1K. The reported madds
values are based on the image size of 800×1333.

Head Backbone
AP AP50 AP75 APS APM APLmodel madds param model madds param pre-train IN-ft

(G) (M) (G) (M)

MF
Dec
522

34.6 19.4 MF
W2880

77.5 25.0
supervised – 48.1 66.6 52.5 29.7 51.8 64.0
FINOLA ✗ 48.0(-0.1) 66.2 52.3 28.2 51.4 64.1
FINOLA ✓ 49.0 (+0.9) 67.7 53.4 30.1 52.9 65.5

32.3 18.6 MF
W1440

20.4 11.7
supervised – 46.2 64.4 50.1 27.1 49.8 62.4
FINOLA ✗ 46.8(+0.6) 64.9 51.0 26.6 50.6 63.4
FINOLA ✓ 47.3(+1.1) 65.6 51.4 27.3 50.7 63.9

31.1 18.2 MF
W720

5.6 4.9
supervised – 42.5 60.4 46.0 23.9 46.0 58.5
FINOLA ✗ 43.3(+0.8) 61.0 47.0 23.1 46.6 61.0
FINOLA ✓ 44.4(+1.9) 62.1 48.1 24.3 47.8 61.5

MF
Dec
211

15.7 9.2 MF
W2880

77.5 25.0
supervised – 44.0 62.8 47.7 25.8 47.3 60.7
FINOLA ✗ 44.4(+0.4) 62.5 48.2 24.7 47.6 60.7
FINOLA ✓ 46.0(+2.0) 64.8 49.9 26.2 50.0 62.7

13.4 8.4 MF
W1440

20.4 11.7
supervised – 42.5 60.6 46.0 23.6 45.9 57.9
FINOLA ✗ 42.4(-0.1) 60.2 45.9 21.9 45.7 60.0
FINOLA ✓ 43.8(+1.3) 61.8 47.5 23.9 47.1 60.8

12.2 8.0 MF
W720

5.6 4.9
supervised – 37.6 55.1 40.4 18.9 40.6 53.8
FINOLA ✗ 37.2 (-0.4) 54.3 39.7 18.7 39.8 53.4
FINOLA ✓ 39.3(+1.7) 56.7 42.4 19.4 42.1 56.5

FINOLA pre-training followed by IN-1K fine-tuning achieves a gain of 0.9–2.0 AP for all three
encoders and two decoders.
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Table 20: Comparison with DETR-based models on COCO detection. All baselines are fine-
tuned on COCO. FINOLA-DETR utilizes Mobile-Former (MF-W2880) as the backbone, which has
similar FLOPs and model size to the ResNet-50 used in other methods. MAdds are calculated based
on an image size of 800×1333.

Model Query AP AP50 AP75 APS APM APL
MAdds Param

(G) (M)
DETR-DC5Carion et al. (2020) 100 43.3 63.1 45.9 22.5 47.3 61.1 187 41
Deform-DETRZhu et al. (2020) 300 46.2 65.2 50.0 28.8 49.2 61.7 173 40
DAB-DETRLiu et al. (2022) 900 46.9 66.0 50.8 30.1 50.4 62.5 195 48
DN-DETRLi et al. (2022a) 900 48.6 67.4 52.7 31.0 52.0 63.7 195 48
DINOZhang et al. (2022) 900 50.9 69.0 55.3 34.6 54.1 64.6 279 47
FINOLA-DETR (frozen) 100 45.5 63.8 49.5 25.1 49.1 63.5 112 44FINOLA-DETR (fine-tune) 49.0 67.7 53.4 30.1 52.9 65.5

Table 20 compares FINOLA-DETR (in which the backbone is fine-tuned in the DETR framework)
with existed DETR baselines. FINOLA-DETR achieves an AP of 49.0, outperforming most DETR-
based detectors except DINO Zhang et al. (2022). Remarkably, our method achieves these re-
sults while using significantly fewer FLOPs (112G vs. 279G) and object queries (100 vs. 900).
When compared to DETR-DC5 with a fine-tuned backbone, FINOLA-DETR with a frozen back-
bone achieves a 2.2 AP improvement while reducing MAdds by 40%.

These results showcase the efficacy of FINOLA in capturing rich image representations even with
more compact models, offering a promising approach for efficient self-supervised learning.
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