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Abstract
The remarkable capability of Transformers to
show reasoning and few-shot abilities, without
any fine-tuning, is widely conjectured to stem
from their ability to implicitly simulate a multi-
step algorithms – such as gradient descent – with
their weights in a single forward pass. Recently,
there has been progress in understanding this
complex phenomenon from an expressivity point
of view, by demonstrating that Transformers can
express such multi-step algorithms. However,
our knowledge about the more fundamental
aspect of its learnability, beyond single layer
models, is very limited. In particular, can training
Transformers enable convergence to algorithmic
solutions? In this work we resolve this for
in-context linear regression with linear looped
Transformers – a multi-layer model with weight
sharing that is conjectured to have an inductive
bias to learn fix-point iterative algorithms. More
specifically, for this setting we show that the
global minimizer of the population training loss
implements multi-step preconditioned gradient
descent, with a preconditioner that adapts to the
data distribution. Furthermore, we show a fast
convergence for gradient flow on the regression
loss, despite the non-convexity of the landscape,
by proving a novel gradient dominance condition.
To our knowledge, this is the first theoretical
analysis for multi-layer Transformer in this
setting. We further validate our theoretical
findings through synthetic experiments.

1. Introduction
Transformers (Vaswani et al., 2017) have completely revolu-
tionized the field of machine learning and have led to state-
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of-the-art models for various natural language and vision
tasks. Large scale Transformer models have demonstrated
remarkable capabilities to solve many difficult problems,
including those requiring multi-step reasoning through large
language models (Brown et al., 2020; Wei et al., 2022b).
One such particularly appealing property is their few-shot
learning ability, where the functionality and predictions of
the model adapt to additional context provided in the input,
without having to update the model weights. This ability
of the model, typically referred to as “in-context learning”,
has been crucial to their success in various applications.
Recently, there has been a surge of interest to understand
this phenomenon, particularly since Garg et al. (2022) em-
pirically showed that Transformers can be trained to solve
many in-context learning problems based on linear regres-
sion and decision trees. Motivated by this empirical success,
Von Oswald et al. (2023); Akyürek et al. (2022) theoretically
showed the following intriguing expressivity result: multi-
layer Transformers with linear self-attention can implement
gradient descent for linear regression where each layer of
Transformer implements one step of gradient descent. In
other words, they hypothesize that the in-context learning
ability results from approximating gradient-based few-shot
learning within its forward pass. Panigrahi et al. (2023),
further, extended this result to more general model classes.

While such an approximation is interesting from the point of
view of expressivity, it is unclear if the Transformer model
can learn to implement such algorithms. To this end, Ahn
et al. (2023); Zhang et al. (2023) theoretically show, in a
Gaussian linear regression setting, that the global minimiz-
ers of a one-layer model essentially simulate a single step
of preconditioned gradient descent, and that gradient flow
converges to this solution. Ahn et al. (2023) further show for
the multi-layer case that a single step of gradient descent can
be implemented by some stationary points of the loss. How-
ever, a fundamental characterization of all the stationary
points for multi-layer Transformer, and the convergence to a
stationary point that implements multi-step gradient descent,
remains a challenging and important open question.

In this work, we focus our attention on the learnability of
such multi-step algorithms by Transformer models. Instead
of multi-layer models, we consider a closely related but
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different class of models called looped Transformers, where
the same Transformer block is looped multiple times for a
given input. Since the expectation from multi-layer models
is to simulate an iterative procedure like multi-step gradient
descent, looped models are a fairly natural choice to imple-
ment this. There is growing interest in looped models with
recent results (Giannou et al., 2023) theoretically showing
that the iterative nature of the looped Transformer model can
be used to simulate a programmable computer, thus allow-
ing looped models to solve problems requiring arbitrarily
long computations. Looped Transformer models are also
conceptually appealing for learning iterative optimization
procedures — the sharing of parameters across different
layers, in principle, can provide a better inductive bias than
multi-layer Transformers for learning iterative-optimization
procedures. In fact, by employing a regression loss at var-
ious levels of looping, Yang et al. (2023) empirically find
that looped Transformer models can be trained to solve in-
context learning problems, and that looping on an example
for longer and longer at test time converges to a desirable
fixed-point solution, thus leading them to conjecture that
looped models can learn to express iterative algorithms1.

Despite these strong expressivity results for looped models
and their empirically observed inductive bias towards
simulating iterative algorithms, very little is known about
the optimization landscape of looped models, and the the-
oretical convergence to desirable and interpretable iterative
procedures. In fact, a priori it is not clear why training
should even succeed given that looped models heavily
use weight sharing and thus do not enjoy the optimization
benefits of overparameterization that has been well studied
(Buhai et al., 2020; Allen-Zhu et al., 2019). In this work,
inspired by the empirical effectiveness of non-linear looped
Transformers (Yang et al., 2023), we delve deeper into the
problem of optimizing looped Transformers and theoret-
ically study their landscape and convergence for in-context
linear regression under the Gaussian data distribution setting
used in (Ahn et al., 2023; Zhang et al., 2023). In particular,
the main contributions of our paper are as follows:

• We obtain a precise characterization of the global min-
imizer of the population loss for a linear looped Trans-
former model, and show that it indeed implements
multi-step preconditioned gradient descent with pre-
conditioner close to the inverse of the population co-
variance matrix, as intuitvely expected.

• Despite the non-convexity of the loss landscape, we
prove the convergence of the gradient flow for in-
context linear regression with looped Transformer. To
our knowledge, ours is the first such convergence result
for a network beyond one-layer in this setting.

1The algorithm should converge to a desirable fixed point.

• To show this convergence, we prove that the loss sat-
isfies a novel gradient-dominance condition, which
guides the flow toward the global optimum. We expect
this convergence proof to be generalizable to first-order
iterative algorithms such as SGD with gradient estimate
using a single random instance (De Sa et al., 2022).

• We further translate having a small sub-optimality gap,
achieved by our convergence analysis, to the proximity
of the parameters to the global minimizer of the loss.
Furthermore we prove that the learned looped Trans-
former can extrapolate to out-of-distribution examples
with skewed covariances, thus providing theoretical
justification for the empirical findings in (Yang et al.,
2023).

2. Related Work
In-context learning. Language models, especially at larger
scale, have been shown to empirically demonstrate the
intriguing ability to in-context learn various tasks on test
data (Brown et al., 2020) More recently, Garg et al. (2022)
formalized in-context learning ability and empirically ob-
served that Transformers are capable of in-context learning
some hypothesis classes such as linear or two layer neural
networks, sometimes improving over conventional solvers.
There have since been many paper studying this intriguing
in-context learning phenomenon (Xie et al., 2022; Akyürek
et al., 2022; Von Oswald et al., 2023; Bai et al., 2023)

Transformers in modeling iterative optimization algo-
rithms. He et al. (2016) first observed that neural networks
with residual connections are able to implicitly implement
gradient descent. Von Oswald et al. (2023); Akyürek et al.
(2022) use this line of reasoning for in-context learning by
constructing weights for linear self-attention layers that can
emulate gradient descent for various in-context learning
tasks, including linear regression. Furthermore, Akyürek
et al. (2022) empirically investigate various in-context learn-
ers that Transformers can learn as a function of depth and
width. Also, von Oswald et al. hypothesize the ability of
Transformers to (i) build an internal loss based on the spe-
cific in-context task, and (ii) optimize over that loss via an it-
erative procedure implemented by the Transformer weights.
Panigrahi et al. (2023) generalize the results to show that
Transformers can implement gradient descent over a smaller
Transformer. Recently, Fu et al. (2023) empirically observe
that Transformers can learn to emulate higher order algo-
rithms such as Newton’s method that converge faster than
gradient descent.

Transformers in reasoning and computation. Indeed the
in-context capabilities of Transformers in doing reasoning
at test time and emulating an input-specific algorithm as
a computer bear deep similarities (Dasgupta et al., 2022;
Chung et al., 2022; Lewkowycz et al., 2022). Years before
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the advent of Transformers, (Siegelmann & Sontag, 1994)
study the Turing completeness of recurrent neural networks.
To show the computational power of Transformer as a
programmable device, (Pérez et al., 2019; 2021; Wei et al.,
2022a) demonstrate that Transformers can simulate Turing
machines. Furthermore, Lindner et al. (2023) propose
using Transformer as programmable units and construct a
compiler for the domain specific programming language
called RASP. Pérez et al. (2019) further find a more efficient
implementation of a programming language that is also
Turing complete using looped Transformers, without
scaling with the number of lines of code. More recently
Giannou et al. (2023) used looped models to simulate
a single-instruction program. Yang et al. (2023) show
that looped Transformers can in-context learn data-fitting
problems such as linear regression or decision trees as well
as normal Transformers but with much fewer parameters.

3. Preliminaries
3.1. In-context Learning (ICL)

One of the surprising emergent abilities of large language
models is their ability to adapt to specific learning tasks with-
out requiring any additional fine tuning. Here we restate
the formalism of in-context learning introduced by Garg
et al. (2022). Suppose for a class of functions F and in-
put domain X , we sample an in-context learning instance
I = ({xi}ni=1, {yi}ni=1, xq) is then generated by sampling
xi ∼ DX and f ∼ DF independently, then calculating
∀i ∈ {1, 2, . . . , n}, yi = f(xi). An in-context learner Mθ

parameterized by θ is then a mapping from the instance I
to a prediction for the label of the query point f(xq). The
population loss of Mθ is then defined as

L(Mθ) = EDf ,DX

[(
Mθ(I)− f(xq)

)2]
(1)

3.2. Linear regression ICL setup

In this work, we consider linear regression in-context
learning; namely, we assume sampling a linear regres-

sion instance is given by I =
({

xi, yi

}n

i=1
, xq

)
where

for w∗ ∼ N (0,Σ∗
d×d

−1), xi ∼ N (0,Σ∗
d×d) we have

yi = fw∗(xi) = w∗⊤xi for all i ∈ [n]. The goal is to
predict the label of xq, i.e. w∗⊤xq. Define the data matrix
X ∈ Rd×n, whose columns are the data points {xi}ni=1:

X = [x1, . . . , xn]

We further assume n > d, i.e. the number of samples is
larger than the dimension. This combined with the fact

that I is realizable implies that we can recover w∗ from{
xi, yi

}n

i=1
by the well-known pseudo-inverse formula:

w∗ = (XX⊤)−1Xy.

While a reasonable option for the context-learner Mθ(I) is
to implement (XX⊤)−1Xy, matrix inversion is arguably an
operation that can be costly for Transformers to implement.
On the other hand, it is known that linear regression can
also be solved by first order algorithms that move along the
negative gradient direction of the loss

ℓ22(w) = ∥X⊤w∗ − y∥2.

Using a standard analysis for smooth convex optimization,
since the Hessian of the loss ∥X⊤w∗ − y∥2 is XX⊤ with
condition number κ, gradient descent with step size 1

κ
converges in O(κ) iterations. This means that we need O(κ)
many layers in the Transformer to solve linear regression.
Particularly, Von Oswald et al. (2023) show a simple
weighting strategy for the key, query, and value matrices of
a linear self-attention model so that it implements gradient
descent, which we introduce in the next section.

3.3. Linear Self-attention layer

Here we define a single attention layer that forms the basis of
the linear Transformer model we consider. Define the matrix
Z(0), which we use as the input prompt to the Transformer,
by combining the data matrix X , their labels y, and the
query vector xq as

Z(0) =

[
X xq

y⊤ 0

]
Following (Ahn et al., 2023; Schlag et al., 2021; Von Oswald
et al., 2023), we consider the linear self-attention model
Attnlin (Z;Wk,q,v) defined as

Attnlin (Z;Wk,q,v) := WvZM(Z⊤W⊤
k WqZ),

M :=

[
In×n 0
0 0

]
∈ R(n+1)×(n+1),

where Wk,Wq,Wv are the key, query, and value matri-
ces, respectively and the index k × r below a matrix de-
termines its dimensions. Furthermore, similar to (Ahn
et al., 2023), we use mask matrix M in order to avoid the
tokens corresponding to (xi, yi) to attend the query vector
xq , and combine product of the key and query matrices into
Q = W⊤

k Wq to obtain the following parameterization for
the attention layer (we denote Wv by P ):

Attnlin (Z;Q,P ) := PZM(Z⊤QZ).

While linear attention is a simplification to the standard
softmax attention used in practice, recent work (Ahn et al.,
2024) shows that linear attention can provide valuable in-
sights into dynamics of non-linear attention as well.
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3.4. Linear looped Transformer

The linear looped transformer TFL(Z
(0);Q,P ) can be de-

fined by simply chaining L linear self-attention layers with
shared parameters Q and P . In particular, we define

Z(t) := Z(t−1) − 1

n
Attnlin (Z;Q,P ) . (2)

for all t ∈ [L]. Then, the output of an L layer looped
transformer TFL(Z

(0);Q,P ) just uses the (d+1)× (n+1)
entry of matrix Z(L) i.e.,

TFL(Z
(0);Q,P ) = −Z(L)

(d+1),(n+1). (3)

We note that the minus sign in the final output of the Trans-
former is only for simplicity of our expositions later on.
For technical reasons, throughout the paper we assume n is
large enough so that we have 8Ld2

√
n

≤ 1
22L

.

Can looped Transformer implement multi-step gradient
descent? We first examine the expressivity of looped Trans-
former. The key idea is to leverage the existing result of one
step preconditioned gradient descent from (Ahn et al., 2023)
and use the loop structure of looped Transformer to show
that it can implement multi-step preconditioned gradient
descent. For completeness, we first restate the observation
of (Ahn et al., 2023) that linear attention can implement a
step of preconditioned gradient descent with arbitrary pre-
conditioner.

Corollary 3.1 (Lemma 1 from Ahn et al. (2023)). There
is a choice of Q,P such that Linear looped Transformer
architecture as defined in Equations (2) and (3) implements
preconditioned gradient descent with arbitrary precondi-
tioner A.

Proof. For this, it suffices to pick

Q :=

[
Ad×d 0
0 0

]
, P :=

[
0d×d 0
0 1

]
, (4)

then for the matrix
[
X xq

]
∈ Rd×(n+1)[

Attnlin (Z;Q,P )
]
(d+1),

= y⊤X⊤A
[
X xq

]
(5)

= −(0− 1

n
A∇wℓ

2
2(0))

⊤X, (6)[
Attnlin (Z;Q,P )

]
1:d,

= 0d×n, (7)

where index (k : r, ) denotes the restriction of the matrix
to its rows between k and r, and we used the fact that
∇wℓ

2
2(0) = Xy. But if we update w with the gradient of

ℓ22(w) preconditioned by A and step size 1
n and assuming

w0 = 0, then

w1 = w0 −
1

n
A∇wℓ

2
2(w0) = 0− 1

n
A∇wℓ

2
2(0).

Plugging this into Equation (6):[
Attnlin (Z;Q,P )

]
(d+1),1:n

= −w⊤
1 X[

Attnlin (Z;Q,P )
]
(d+1),n+1

= −w⊤
1 xq.

Further, by using Equation (6) in Equation (2) we get[
Z(1)

]
(d+1),1:n

= y⊤ − w⊤
1 X,[

Z(1)
]
(d+1),n+1

= −w⊤
1 xq,

[
Z(1)

]
1:d,

= X. (8)

It is easy to see that Equations (8) hold for all Z(t) with w1

substituted by corresponding wt, thus, allowing implemen-
tation of multi-step gradient descent.

3.5. Loss function on the weights

In previous section, while we observed that looped Trans-
former can implement preconditioned gradient descent, the
choice of the preconditioner and its learnability by optimiz-
ing a loss function (e.g. squared error loss) still remain
unclear. Following (Ahn et al., 2023; Zhang et al., 2023),
we search for the best setting of matrices P,Q, where Q :=[
Ad×d 0
0 0

]
, i.e. only the top left d × d block can be non-

zero, and P :=

[
0d×d 0
u⊤ 1

]
for parameter vector u ∈ Rd.

The population squared loss as a function of A and u is

L(A, u) = Ew∗,X

[
(TFL(Z0;Q,P )− yq)

2
]
.

We define a parameter δ :=
(

8Ld√
n

)1/(2L)

which governs the
accuracy of our estimates, which goes to zero as n → ∞.

We are now ready to present the main theoretical results.
An important point to note is that, although the model being
considered uses linear attention and the problem instance
is linear regression, the resultant model is far from linear in
its inputs and the corresponding optimization problem can
be far from convex. This makes the analysis of multi-layer
(multi-loop) models tricky. In the next section, we present
theoretical convergence by getting around these issues.

4. Theoretical results for convergence
In this section, we show theoretical results for the conver-
gence to a preconditioned gradient descent solution with
a good preconditioner. Before presenting the main results,
it is instructive to discuss the choice of the preconditioner
A since it determines speed of convergence of wi to the
solution of the regression. Note that the exact solution
of an over-determined linear regression instance (X, y) is
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Table 1. Summary of main theoretical results and key assumptions
Results Initialization Basic Description

Theorem 4.1 Arbitrary
For the global minimizer of the loss (Aopt, uopt), uopt = 0

and the preconditioner part Aopt is close to Σ∗−1.

Theorem 4.2 u = 0,Σ∗ = I
The gradient flow of the loss converge to a loss value with small suboptimality gap,
in the proximity of the global minimizer in the parameter space

Theorem 4.3 u = 0,Σ∗ = I
The loss satisfies a gradient dominance with power 2L−1

L ,
given that the suboptimality gap is not too small

Theorem 5.4 u = 0
Small suboptimality gap implies closeness in the parameter space
(In spectral distance).

Theorem 4.4 u = 0
Instance-dependent out of distribution generalization for the minimizer of
the population loss.

w = (XX⊤)−1Xy. This can be obtained only after one
step of preconditioned gradient descent starting from the
origin and using inverse of the data covariance matrix pre-
conditioner

Σ =
1

n

n∑
i=1

xix
⊤
i .

In general, it may not be possible to pick the weights of the
Transformer to ensure such a preconditioner for all possible
regression instances as every instance (X, y) has its own
data covariance matrix 1

nXX⊤. But since xi’s are sampled
i.i.d from N (0,Σ∗), it is known that the inverse of the data
covariance matrix concentrates around the inverse of the
population covariance Σ∗. Thus, a reasonable choice of A
is the inverse of the population covariance matrix Σ∗−1.

In fact, Ahn et al. (2023) show that the global minimum of
one-layer linear self-attention model under Gaussian data
is the inverse of the population covariance matrix plus some
small regularization term. However, the characterization of
global minimizer(s) of the population loss for the multilayer
case is largely missing. Specifically, is there a global
optimum for solving regression with Transformers that is
close to gradient descent with preconditioner Σ∗−1? In this
work, we solve this open problem for looped Transformers;
given that data is sampled iid from N (0,Σ∗), we show that
the optimal looped Transformer under constraints stated
in Section 3.5, Aopt will be close to Σ∗−1.

4.1. Global optimizer

In this section, we state our main results. First, we give a
tight estimate on the set of global minimizers of the popu-
lation loss, under the Gaussian assumption, for the looped
Transformer model with arbitrary number of loops L.

Theorem 4.1 (Characterization of the optimal solution).
Suppose {Aopt, uopt} are a global minimizer for L(A, u).
Then, under condition 8Ld2

√
n

≤ 1
22L

,

1. L(Aopt, uopt) ≤ 8Ld222L√
n

2. (1 − c)Σ∗−1 ≼ Aopt ≼ (1 + c)Σ∗−1, c = 8δd1/(2L)

and uopt = 0, where recall δ :=
(

8Ld√
n

)1/(2L)

.

Remark. From Theorem 4.1, we first observe that the pa-
rameter u has no effect in obtaining a better regression
solver and has to be set to zero in the global minimizer.
This result was not known in the previous work (Ahn et al.,
2023). A value of uopt = 0 implies that the optimal looped
Transformer exactly implements L steps of preconditioned
gradient descent, with preconditioner Aopt.

Secondly, as discussed in Section 4, the choice of precondi-
tioner plays an important role in how fast gradient descent
converges to the solution of linear regression. Intuitively the
inverse of the population covariance seems like a reasonable
choice for a single fixed preconditioner, since it is close to
the inverse of the data covariance for all linear regression in-
stances. The above result shows that the global optimum is
indeed very close to the inverse of the population covariance.

Precisely how close the optimum is to the population co-
variance depends on the parameter δ = 4kd√

n
, which goes

to zero as the number of examples in each prompt goes to
infinity. In general, we do not expect the global minimizer
to be exactly equal to Σ∗−1. Indeed for the case of one layer
Transformer, which is equivalent to a loop-transformer with
looping parameter L = 1, the global minimizer found in
Ahn et al. (2023) is not exactly the inverse of the covari-
ance matrix, but close to it. Even in their case, the distance
goes to zero as n → ∞. This shows that our estimate in
Theorem 4.1 is essentially the best that one can hope for.

4.2. Convergence results

Next, we state our second result, which concerns the con-
vergence of the gradient flow of the loss to the proximity of
the global minimizer.

Theorem 4.2 (Convergence of the gradient flow). Consider
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the gradient flow with respect to the loss L(A, 0) for Σ∗ =
I:

d

dt
A(t) = −∇AL(A(t), 0).

Then, for any ξ ≥ 16d3/2Ld4L√
n

, after time t ≥(
1
ξ

)(L−1)/L
4Ld(L−1)/(2L−1)

(L−1)2 if L > 1 and t ≥ 8 ln(L(A0,0)
ξ )

if L = 1, we have

1. L(A(t)) ≤ ξ,

2. (1− 8(1 + 4d1/(2L))ξ1/(2L))Aopt ≼ A
≼ (1 + 8(1 + 4d1/(2L))ξ1/(2L))Aopt

Note that the landscape of the loss with respect to A is
highly non-convex, hence Theorem 4.2 does not follow
from the typical convex analysis of gradient flows. The
key in obtaining this result is that we show a novel gradient
dominance condition for the loss with power (2L− 1)/L,
which we state next.

Theorem 4.3 (Gradient dominance). Given Σ∗ = I , for
any A that L(A, 0) ≥ 16d3/2Ld4L√

n
, we have the following

gradient dominance condition:

∥∇AL(A, 0)∥2 ≥
L− 1

2

4d(L−1)/(2L−1)
L(A, 0)(2L−1)/L.

Remark. Theorem 4.3 illustrates that the squared norm of
the gradient is at least proportional to the power (2L−1)/L
of the value of the loss. On the other hand, it is easy to
see that the speed of change of the value of the loss on the
gradient flow, namely d

dtL(A(t), 0), is equal to the squared
norm of the gradient. But when the value of the loss is
large, then the size of the gradients increase accordingly due
to gradient dominance, therefore the convergence is faster
when the loss is high. This trend is evident in the rigorous
rate that we obtain on the convergence of the gradient flow
in Theorem 4.1.

4.3. Out of distribution generalization

In the result below, we show that a looped Transformer
learned on one in-context distribution can generalize to
other problem instances with different covariance, owing to
the fact that it has learned a good iterative algorithm.

Theorem 4.4. Let Aopt, uopt be the global minimizers of
the poplulation loss for looped Transformer with depth
L when the in-context input {xi}ni=1 are sampled from
N (0,Σ∗) and w∗ is sampled from N (0,Σ∗−1). Sup-
pose we are given an arbitrary linear regression instance

Iout =
{
xout
i , youti

}n

i=1
, wout,∗ with input matrix Xout =

[xout
1 , . . . , xout

n ], query vector xout
q , and label youtq =

wout,∗⊤xout
q . Then, if for parameter 0 < ξ < 1, the in-

put covariance matrix Σout = XoutXout⊤ of the out of
distribution instance satisfies

(1− ξ)Σ∗ ≼ Σout ≼ (1 + ξ)Σ∗, (9)

we have the following instance-dependent bound on the out
of distribution loss:

(TFL(Z
out
0 ;Q,P )− youtq )2

≤ (1 + 16δd1/(2L))2(16δd1/(2L) + ξ)2L

×
∥∥∥xout

q

∥∥∥2
Σ∗

∥∥∥wout,∗
∥∥∥2
Σ∗−1

.

5. Proof Ideas
In this section we present the high level intuitions and key
steps in the proof of the results. The proof is structured as
follows:

• First we obtain closed form formula for the loss
function in Lemma 5.1 in terms of the parameter A
and covariance Σ∗. The loss depends on how close
A1/2ΣA1/2 is to identity for a randomly sampled Σ.
Using the estimates in Lemma 5.3, we obtain an esti-
mate on the loss based on the eigenvalues of the matrix
A1/2Σ∗A1/2. Importantly, the result of Lemma 5.3 is
based on estimating the higher moments of the Wishart
matrix with arbitrary covariance, shown in Lemma 5.2
Using our estimate of the loss in Lemma 5.3, we obtain
a precise characterization of the global optimum.

• We further use Lemma 5.3 to drive an estimate on the
magnitude of the gradient based on the same eigenval-
ues, those of A1/2Σ∗A1/2. Comparing this with our
estimate for the loss from Lemma 5.3, we obtain the
gradient dominance condition in Theorem 4.3.

• We use the gradient dominance condition to estimate
the speed of convergence of the gradient flow to the
proximity of the global minimizer in Theorem 4.2.

The starting point of the proof is that we can write the loss
in a matrix power format based on A when u is set to zero:

Lemma 5.1. Given u = 0, the loss for looped Transformer
is as follows:

L(A, 0) = EX

[
tr((I −A1/2ΣA1/2)2L)

]
,

where Σ = 1
n

∑n
i=1 xix

⊤
i .

To be able to estimate the global minimizers of this loss,
first we need to estimate its value. In particular, we
hope to relate the value of the loss to the eigenvalues of
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(a) Loss curve (b) Distance to identity

Figure 1. Measuring the effect of number of samples n for looped models trained on inputs of dimension d = 5. Theorem 4.1 shows that
the global optima for looped models is A = I (since Σ∗ = I here) for large enough n. Here we verify that A converges to something
very close to I even for smaller values of n and even n < d.

Figure 2. Loss trajectory as training proceeds for looped models
and baseline multilayer models. Interestingly a 1-layer model
looped L times performs similarly to an L layer multilayer model.
Furthermore, increasing the number of loops leads to lower loss.

A. Note that if the data covariance matrix Σ was equal
to the population covariance matrix Σ∗, then loss would
turn into tr((I − A1/2Σ∗A1/2)2L), whose global mini-
mum is A = Σ∗−1. However, we can still hope to ap-
proximate the value of EX

[
tr((I −A1/2ΣA1/2)2L)

]
with

tr((I−A1/2Σ∗A1/2)2L) given that we have a control on the
expectation of the powers of the form EX

[
(A1/2ΣA1/2)k

]
for 1 ≤ k ≤ 2L. While there are some work on obtaining
formulas for the moments of the Wishart matrix (note that
ΣA is a Wishart matrix), these formulas (Bishop et al., 2018)
are in the form of large summations and do not directly pro-
vide closed-form estimates in the general case. In general,
the moment of the product of n Gaussian scalar variables can
be written as a sum over various allocations of the variables
into pairs, then multiplying the covariances of the pairs, due
to Isserlis’ Theorem. However, this gives a formula in terms
of a large summation. Here, we propose a simple combina-
torial argument in Lemma 5.2 which relates the moments of
the Wishart matrix to the cycle structure of certain graphs
related to the pairings of the Gaussian vectors, while us-

ing Isserlis’ theorem. In particular, we show the following
Lemma which relates the eigenvalues of the moments of the
data covariance matrix and the covariance matrix itself:

Lemma 5.2 (Moment controls). Suppose ∀i ∈ [n], x̃i ∼
N (0, Σ̃). Consider the eigen-decomposition Σ̃ =∑d

i=1 λiuiu
⊤
i with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd. Then,

for all 1 ≤ k ≤ 2L, E
[
( 1n

∑n
i=1 x̃ix̃

⊤
i )

k
]

can be written as

E
[
(
1

n

n∑
i=1

x̃ix̃
⊤
i )

k
]
=

d∑
j=1

α
(j)
n,d,kuju

⊤
j ,

where for all 1 ≤ j ≤ d:

λk
j − δkλk

1 ≤ α
(j)
n,d,k ≤ λk

j + δkλk
1 .

Next, we translate this Lemma to a control over the
eigenvalues of A1/2E

[
(I − ΣA)k

]
A−1/2 with respect to

that of A1/2Σ∗A1/2:

Lemma 5.3 (Eigenvalue approximation). Given the eigen-
decomposition

A1/2Σ∗A1/2 =

n∑
i=1

λiuiu
⊤
i ,

then for all k ≤ 2L, the matrix E
[
(I −A1/2ΣA1/2)k

]
can

be written as

E
[
(I −A1/2ΣA1/2)k

]
=

n∑
i=1

β
(k)
i uiu

⊤
i ,

where

(1− λi)
k − δk(λ1 + 1)k ≤ β

(k)
i

≤ (1− λi)
k + δk(λ1 + 1)k.

7
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We use Lemma 5.3 to argue that the matrix (I −
A1/2ΣA1/2)2L for data covariance matrix Σ =
1
n

∑n
i=1 xix

⊤
i roughly behaves like (I − A1/2Σ∗A1/2)2L,

plus some noise on each eigenvalue.

The rest of the proof in a high level goes as follows:
Given that the value of the loss has certain amount of sub-
optimality gap, we deduce, using Lemma 5.3, a lower bound
on the distance of the eigenvalues of A1/2ΣA1/2 from one
in 2L-norm. We then again apply Lemma 5.3, this time for
power 2L− 1, which is relevant from the algebraic form of
the gradient ∇AL(A, 0), to deduce a lower bound for norm
of the gradient based on the distance of the eigenvalues of
A1/2ΣA1/2 to one in the 4L− 2-norm. Finally by relating
these two results using Holder’s inequality, we obtain the
gradient dominance for values of sub-optimality that are not
too small.

Note that as in Lemma 5.3, the magnitude of the noise on
all the eigenvalues is controlled by the largest eigenvalue,
hence the noise is multiplicative only for the largest eigen-
value. This introduces additional difficulty in arguing about
the distance of eigenvalues of A from one given a certain
suboptimality gap. Next, using the gradient dominance con-
dition, we estimate the gradient flow ODE and upper bound
the value of the loss at a positive time t > 0 in Theorem 4.2.
To finish the proof of Theorem 4.2, we need to translate a
small suboptimality gap into closeness to global optimum,
which we prove the following Theorem:

Theorem 5.4 (Small loss implies close to optimal). For
ϵ > 4δ, if L(A, 0) ≤ ϵ2L/2, then for c = (4 + 16d1/(2L))

(1− cϵ)Aopt ≼ A ≼ (1 + cϵ)Aopt.

Note that δ goes to zero as n → ∞, so A can get arbitrarily
close to Aopt given large enough n.

6. Experiments
In this section we run experiments on in-context learning
linear regression to validate the theoretical results and to
go beyond them. In particular, we test if looped models can
indeed be trained to convergence, as the theory suggests,
and whether the learned solution is close to the predicted
global minima. Furthermore, we investigate the effect of
various factors such number of loops, number of in-context
samples and depth of the model (in the multi-layer case).
We use the codebase and experimental setup from (Ahn
et al., 2023) for all our linear regression experiments.
In particular we work with d = 10 dimensional inputs
and train with L attention layer models for multilayer
training and 1 layer attention model looped L times. Inputs
and labels are sampled exactly based on the setup from
Section 3.2, using covariance Σ∗ = I .

6.1. Effect of loops

We first test whether training with looped model converges
to a low loss, and how small the loss can be made with
more loops. In Figure 2, we see that looped models indeed
converge to very small loss very quickly, and higher loops
leads to lower loss as expected. Interestingly, we find that
a 1-layer model looped L times roughly has very loss to an
L-layer non-looped model.

6.2. Effect of in-context samples

Theorem 4.2 shows convergence of the gradient flow for
looped models when the number of in-context samples, n,
is large compared to the dimension d. In these experiments
we test the convergence of loss and iterate for smaller values
of n, when n is closer to, or even smaller than d. In Figure 1
we observe that the loss converges for all values of n > 1
and the iterates also converge to a value very close identity.
Theoretically proving this result remains an open question.

6.3. Out-of-distribution evaluation

While the looped model was trained with linear regression
instances with identity covariance, we evaluate the trained
looped model on out-of-distribution (OOD) data with a
different covariance ̸= I . The in-distribution covariance
is Σ⋆ = I while the out of distribution covariance is
Σ = UΣ2UT where U is a randomly sampled orthogonal
matrix, and Σ = [1, 1, 1/2, 1/4, 1]. The input and classifier
are sampled from the distribution described in Section 3.2.

Theorem 4.4 predicts that the model trained on identity
covariance should also generalize to other covariances, be-
cause it simulates multi-step preconditioned gradient de-
scent that works for all problems instances. In Figure 3,
we find that the learned looped model achieves small loss
for OOD data, although the scale of the loss is higher than
in-distribution (ID) data. Interestingly, for looped models
trained with just 2 (or 5) loops, evaluating them with arbi-
trarily large number of loops during test time continues to
decrease the loss even further for ID and OOD data. This
suggests that the trained looped models are indeed learning
a good iterative algorithm.

7. Conclusion
This work provides the first convergence result showing
that attention based models can learn to simulate multi-step
gradient descent for in-context learning. The result not
only demonstrates that Transformers can learn interpretable
multi-step iterative algorithms (gradient descent in this
case), but also highlights the importance of looped models
in understanding such phenomena. There are several
open questions in this space including understanding the

8



Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning?

Figure 3. In-context linear regression loss on in-distribution (left) and out-of-distribution (right) data which is sampled using a different
covariance Σ ̸= I . For looped models trained with just few loops (2, or 5), evaluating with more loops keeps improving the loss in both
cases, suggesting that it learned the correct iterative algorithm.

Figure 4. The iterate A converges to identity for all number of
loops. The converge is slower for large number of loops which is
also observed by our rate of convergence in Theorem 4.2. Interest-
ingly just training with 1 loop does not converge in this setup.

landscape of the loss, convergence of training without
weight sharing across layers, and handling of non-linearity
in the attention layers. It is also interesting to understand
the empirical phenomenon that looping the trained models
beyond the number of loops used in training can continue to
improve the test loss. One way to show this is by obtaining
a tighter upper bound on the optimal loss value.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Gradient Dominance and Convergence of SGD in multilayer Transformers
A.1. A formula for the loss in the multilayer case

Theorem A.1. Consider the linear attention layer with matrices P,Q set as in Equation (10) but with different parameters
for different layers (i.e. without weight sharing). Namely, suppose for the layer t attention, we set

Q(t) :=

[
A

(t)
d×d 0
0 0

]
, P (t) :=

[
0d×d 0

u(t)⊤ 1

]
. (10)

Now defining [
Z(t)

]
(d+1),1:n

= y(t),[
Z(t)

]
(d+1),(n+1)

= −y(t)q ,

we have the following recursions:

y(t)
⊤
= w∗⊤

t−1∏
i=0

(I − ΣA(i))X +

t−1∑
i=0

u(i)⊤ΣA(i)
t−1∏

j=i+1

(I − ΣA(j))X, (11)

y(t)q

⊤
= yq

⊤ − w∗⊤
t−1∏
i=0

(I − ΣA(i))xq −
t−1∑
i=0

u(i)⊤ΣA(i)
t−1∏

j=i+1

(I − ΣA(j))xq, (12)

with the convention that
∏−1

0 = 1 and
∑−1

0 = 0.

Proof. We show this by induction on t. For t = 0, note that w∗⊤X = y(0) and y
(0)
q = 0 = yq − w∗⊤xq. For the step of

induction, suppose we have Equations (11) and (12) for t− 1. Then, from the update rule

Z(t) = Z(t−1) − 1

n
P (t)MZ(t)A(t)Z(t)⊤,

we get

y(t+1)⊤ = y(t)
⊤
− 1

n
y(t)

⊤
X⊤A(t)X

= w∗⊤
t−1∏
i=0

(I − ΣA(i))X − w∗⊤
t−1∏
i=0

(I − ΣA(i))(XX⊤)A(i)X

+

t−1∑
i=0

u(i)⊤ΣA(i)
t−1∏

j=i+1

(I − ΣA(j))X −
t−1∑
i=0

u(i)⊤ΣA(i)
t−1∏

j=i+1

(I − ΣA(j))(XX⊤)A(t)X

= w∗⊤
t∏

i=0

(I − ΣA(t))X +

t−1∑
i=0

u(i)⊤ΣA(i)
t−1∏

j=i+1

(I − ΣA(j))X,

where we used the fact that XX⊤ = Σ. Moreover

y(t+1)
q = y(t)q − 1

n
y(t)

⊤
X⊤Qxq

= yq − w∗⊤
t−1∏
i=0

(I − ΣA(i))xq −
t−1∑
i=0

u(i)⊤ΣA(i)
t−1∏

j=i+1

(I − ΣA(j))xq

− w∗⊤
t−1∏
i=0

(I − ΣA(i))(XX⊤)A(i)xq +

t−1∑
i=0

u(i)⊤ΣA(i)
t−1∏

j=i+1

(I − ΣA(j))(XX⊤)A(j)xq

= yq − w∗⊤
t∏

i=0

(I − ΣA(i))xq −
t−1∑
i=0

u(i)⊤ΣA(i)
t∏

j=i+1

(I − ΣA(j))xq,
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which completes the step of induction.
Lemma A.2 (moments of the Gaussian covariance). Given n ≥ 4k2d2, for iid normal random vectors x1, . . . , xn ∼ N (0, I)
and data covariance Σ = 1

n

∑n
i=1 xixi

⊤ we have

E
[
(
1

n

n∑
i=1

xixi
⊤)k

]
= αn,k,dI,

for

1 ≤ αn,d,k ≤ 1 +
4kd√
n
.

Proof. Note that for 2k (correlated) normal variables u1, . . . , u2k, from Isserlis’ theorem we have

E
[
u1 . . . u2k

]
=

∑
p∈P(2k)

E
[
up1

1
up1

2

]
E
[
up2

1
up2

2

]
. . .E

[
upk

1
upk

2

]
,

where P(2k) is the set of allocations of {1, 2, . . . , 2k} into unordered pairs
(
(p11, p

1
2), p

2 = (p21, p
2
2), . . . , (p

k
1 , p

k
2)
)

. For an

array of random matrices
(
M (1), . . . ,M (2k)

)
and allocation p ∈ P(2k), let M(p) = (M(p)(1), . . . ,M(p)(2k)) be the set

of random matrices where for each pair (pi1, p
i
2) ∈ p, M(p)pi

1
and M(p)pi

2
have the same joint distribution as Mpi

1
and Mpi

2
,

while for i ̸= j, (M(p)pi
1
,M(p)pi

2
) and (M(p)pj

1
,M(p)pj

2
) are indepdenent from each other. Equipped with this notation,

we now apply Isserlis’ theorem to each summand of the product of 2k matrices M1, . . . ,M2k, which provides us with a
similar expansion of the expectation of the product of matrices:

E
[
M (1) . . .M (2k)

]
=

∑
p∈P(2k)

E
[
M(p)(1)M(p)(2) . . .M(p)(2k)

]
. (13)

Now using Equation (13)

E
[
(

n∑
i=1

xix
⊤
i )

k
]
=

∑
p∈P(k)

∑
(i1,...,ik)∈[n]k

E
[
x
(1)
i1

(p)x
(1)
i1

(p)⊤x
(2)
i3

(p)x
(2)
i4

(p)⊤ . . . x
(k)
ik

(p)x
(k)
ik

(p)⊤
]

(14)

where x(i)(p) for an allocation p ∈ P(2k) is defined similarly to M (i)(p) above. Now consider the graph Gp with vertices
{1, . . . , k} where we put an edge between j and k if one of the indices (i2j−1, i2j) is paired with (i2k−1, i2k) according to
p. A key idea that we use here is considering the cycle structure of Gp. It is clear that each vertex has degree exactly two,
hence it is decomposed into a number of cycles.

note that for the multi-indices (i1, . . . , i2k) in the sum (14) and a pair (pj1, p
j
2), if ipj

1
and ipj

2
are different, then the

corresponding xpj
1

and xpj
2

are independent. Hence, the expectation is zero:

E
[
x
(1)
i1

(p)x
(1)
i1

(p)⊤x
(2)
i2

(p)x
(2)
i2

(p)⊤ . . . x
(k)
ik

(p)x
(k)
ik

(p)⊤
]
= 0.

therefore, for each pair pi = (pi1, p
i
2), ipi

1
= ipi

2
. This means that if there is an edge between j1 and j2 in Gp, then ij1 = ij2 .

Therefore, for a cycle C = (j1, . . . , jr) in Gp we have ij1 = ij2 = · · · = ijr . Note that we have exactly n choices for the
value of these indices.

Hence, given a pairing p, the number of different ways of picking the multi-index i such that the expectation of its
corresponding term is not zero is exactly

nC(Gp),

where C(Gp) is the number of cycles in G. On the other hand, all of the non-zero terms have equal expectation. Therefore,
we can write the expectation in Equation (14) as

E
[
(

n∑
i=1

xix
⊤
i )

k
]
=

∑
p∈P(k)

nC(Gp)E
[
x
(1)
1 (p)x

(1)
1 (p)⊤x

(2)
1 (p)x

(2)
1 (p)⊤ . . . x

(k)
1 (p)x

(k)
1 (p)⊤

]
. (15)
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Next, we make the observation that for taking expectation with respect to a pair, we can substitute both of the vectors in that
pair by one of vectors in the standard basis, and sum the results. More rigorously, for a fixed matrix A, vector v, and scalar
α we have

E
[
x⊤
1 Ax1

]
= tr(A) =

∑
i

e⊤i Aei,

E
[
x1v

⊤x1

]
= v =

∑
i

eiv
⊤ei = v,

E
[
x⊤
1 vx

⊤
1

]
= v⊤ =

∑
i

e⊤i ve
⊤
i ,

E
[
x1αx

⊤
1

]
= αI =

∑
i

eiαe
⊤
i . (16)

We can use this observation to unroll the expectation in Equation (13) as a sum. For example if j1, j2 are paired according
to p, then

E
[
x
(1)
1 (p)x

(1)
1 (p)⊤x

(2)
1 (p)x

(2)
1 (p)⊤ . . . x

(k)
1 (p)x

(k)
1 (p)⊤

]
= E

[
x
(1)
1 (p) . . . x

(j1)
1 (p)

(
x
(j1)
1 (p)⊤x

(j1+1)
1 (p) . . . x

(j2−1)
1 (p)⊤

)
x
(j2)
1 (p) . . . x

(k)
1 (p)⊤

]
.

=

n∑
i=1

E
[
x
(1)
1 (p) . . . ei

(
x
(j1)
1 (p)⊤x

(j1+2)
1 (p) . . . x

(j2−1)
1 (p)⊤

)
ei . . . x

(k)
1 (p)⊤

]
.

Unrolling the expectation using Equations (16), we get

E
[
x
(1)
1 (p)x

(1)
1 (p)⊤x

(2)
1 (p)x

(2)
1 (p)⊤ . . . x

(k)
1 (p)x

(k)
1 (p)⊤

]
=

∑
(i1,...,i2k)∈[n]2k, ∀(j1,j2)∈p,ij1=ij2

ei1e
⊤
i2ei3e

⊤
i4 . . . ei2k−1

e⊤i2k .

(17)

The first observation above is that for consecutive elements e⊤ijeij+1
we should have ij = ij+1 otherwise the product is zero.

Hence, the sum above is really on multiindices of size k. Based on this observation, we consider a graph G′
p corresponding

to the allocation p whose nodes are the pairs (2, 3), (4, 5), . . . , (2k − 2, 2k − 1), (1, 2k), and we connect two nodes (j1, j2)
and (i1, i2) in G′

p if either j1 or j2 is paired with i1 or i2 according to p. Then, similar to our argument for G, for a cycle
(j1, j2, . . . , jr) in G′

p in order for the term in Equation (17) to be non-zero, we should have ij1 = ij2 = · · · = ijr . Therefore,
the total number of choices for the multi-index i in Equation (17) is nC(G′

p), in which case the term ei1e
⊤
i2
ei3e

⊤
i4
. . . ei2k−1

e⊤i2k
is equal to I . Therefore

E
[
x
(1)
1 (p)x

(1)
1 (p)⊤x

(2)
1 (p)x

(2)
1 (p)⊤ . . . x

(k)
1 (p)x

(k)
1 (p)⊤

]
= nC(G′

p)I. (18)

Combining Equations (18) and (15):

E
[
(

n∑
i=1

xix
⊤
i )

k
]
=

∑
p∈P(k)

nC(Gp)dC(G′
p)−1I.

Now we need to estimate the number of cycles in the two graphs Gp and G′
p and how they interact with the choice of the

allocation p. Note that each pair in the allocation p translates into an edge in Gp and G′
p and can be a self-loop (from a

node to itself). Another point is that from the definition of Gp and G′
p, every node has degree exactly two. The key idea

that we use here is that the total number of loops in the two graphs is bounded by k + 1. The reason is that each pair in
p can be a self-loop in at most one of the graphs (this is true from the definition of the graphs), and each self-loop in one
of the graph reduces the number of possible cycles in the other graph; suppose the number of self-loops in Gp is r. Then
the rest of the k − r nodes can at most divide into cycles of length two. This means C(Gp) ≤ r + ⌊k−r

2 ⌋. On the other
hand, note that each self-loop in Gp is created by a pair (2i− 1, 2i) in p, which is an edge between two consecutive nodes
((2i− 2, 2i− 1), (2i, 2i+ 1)) in G′

p. Such an edge reduces the number of connected components of G′
p by one. But as G′

p

13
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mentioned, G′
p decomposes into a number of loops, hence the number of its connected components is equal to the number

of its loops. Therefore, the number of loops in G′
p is at most k − r, i.e. C(G′

p) ≤ k − r + 1.

Next, we upper bound the number of p’s for which Gp has at least r self loops: We have at most
(
k
r

)
number of choices for

the self-loop nodes. Then, we are left with k − r nodes, including 2(k − r) pairs of indices (according to the definition of
Gp). This means there are at most Ck−r choices for the rest of the graph, where Ck−r is the number of different ways that
we can allocate {1, 2, . . . , 2(k − r)} into (k − r) pairs. It is easy to see that Ck−r = (2k − 2r)!!. Therefore, there are at
most

(
k
r

)
(2k − 2r)!! choices of p which results in Gp with at least r self-loops. Putting everything together

nkαn,d,k ≤
∑

p∈P(k)

nr+⌊ k−r
2 ⌋dk−r

≤
k∑

r=0

(
k

r

)
(2k − 2r)!!n

k+r
2 ds

=

k∑
s=0

(
k

s

)
(2s)!!nk− s

2 ds

≤
k∑

s=0

ks√
2πs(s/e)s

√
2s(

2s

e
)snk(

d√
n
)s

≤
k∑

s=0

(2k)snk(
d√
n
)s. (19)

Now from the assumption n ≥ 4k2d2, we get

nkαn,d,k ≤ nk(1 +
4kd√
n
).

The proof of the upper bound on αn,d,k is complete. The lower bound simply follows from Jensen inequality.

Lemma A.3. The loss can be written as

L(A, u) = EX

[∥∥∥Σ−1/2
L−1∏
i=0

(I − ΣA(i))Σ1/2
∥∥∥2]+ EX

[∥∥∥ L−1∑
i=0

d⊤i ΣA
(i)

L−1∏
j=i+1

(I − ΣA(j))Σ1/2
∥∥∥2].

Proof. Note that

E
[
(yq − y(L)

q )2
]
= Ew∗,X,xq

[(
w∗⊤

L−1∏
i=0

(I − ΣA(i))xq +

L−1∑
i=0

d⊤i ΣA
(i)

L−1∏
j=i+1

(I − ΣA(j))xq

)2]
.

Now note that w∗ is independent of
∑L−1

i=0 d⊤i ΣA
(i)

∏L−1
j=i+1(I − ΣA(j))xq . Therefore, taking expectation with respect to

w∗:

E
[
(yq − y(L)

q )2
]
= Ew∗,xq,X

[(
w∗⊤

L−1∏
i=0

(I − ΣA(i))xq

)2]
+ Exq,X

[( t−1∑
i=0

d⊤i ΣA
(i)

L−1∏
j=i+1

(I − ΣA(j))xq

)2]
.

Taking expectation with respect to xq and w∗:

E
[
(yq − y(L)

q )2
]
= EX

[∥∥∥Σ−1/2
L−1∏
i=0

(I − ΣA(i))Σ1/2
∥∥∥2
F

]
+ EX

[∥∥∥ L−1∑
i=0

d⊤i ΣA
(i)

L−1∏
j=i+1

(I − ΣA(j))Σ1/2
∥∥∥2]

14
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Corollary A.4. The loss for loop Transformer is

L(A, u) = EX

[
tr((I −A1/2ΣA1/2)2L)

]
+ EX

[∥∥∥ L−1∑
i=0

u⊤ΣA(I − ΣA)L−1−iΣ1/2
∥∥∥2].

Proof. Just note that

L(A, u) = EX

[
tr((I − Σ1/2AΣ1/2)2L)

]
+ EX

[∥∥∥ L−1∑
i=0

u⊤ΣA(I − ΣA)L−1−iΣ1/2
∥∥∥2]

= EX

[
tr((I − Σ1/2A1/2A1/2Σ1/2)2L)

]
+ EX

[∥∥∥ L−1∑
i=0

u⊤ΣA(I − ΣA)L−1−iΣ1/2
∥∥∥2]

= EX

[
tr((I −A1/2ΣA1/2)2L)

]
+ EX

[∥∥∥ L−1∑
i=0

u⊤ΣA(I − ΣA)L−1−iΣ1/2
∥∥∥2].

Lemma A.5 (Restatement of Lemma 5.2). Suppose ∀i ∈ [n], x̃i ∼ N (0,Σ∗). Consider the eigen-decomposition Σ∗ =∑d
i=1 λiuiu

⊤
i with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd. Then, E

[
( 1n

∑n
i=1 x̃ix̃

⊤
i )

k
]

can be written as

E
[
(
1

n

n∑
i=1

x̃ix̃
⊤
i )

k
]
=

d∑
j=1

α
(j)
n,d,kuju

⊤
j ,

where for all 1 ≤ j ≤ d:

λk
j − δλk

1 ≤ α
(j)
n,d,k ≤ λk

j + δλk
1 .

Proof. In the proof of Lemma A.2, we used Equations (16) to simplify the loss and write it as a sum over the normal basis
vectors ei. It is easy to see that we have the equivalence of Equations (16) for x̃i ∼ N (0,Σ∗) when ei’s are replaced by
vi =

√
λiui.

E
[
(

n∑
i=1

xix
⊤
i )

k
]
=

∑
p∈P(k)

nC(Gp)
∑

i∈[d]
C(G′

p)

( ∏
c∈C(G′

p),(1,2k)/∈c

λ
|c|
ic

)
λ
|c∗|
ic∗

vic∗ v
⊤
ic∗

,

where c∗ is the loop in G′
p that includes the node consisting of the first and the last indices , i.e. (1, 2k). But pushing the

second sum to the product:

E
[
(

n∑
i=1

xix
⊤
i )

k
]
=

∑
p∈P(k)

nC(Gp)
( ∏

c∈C(G′
p),(1,2k)/∈c

( d∑
i=1

λ
|c|
i

))( d∑
i=1

λ
|c∗|−1
i vic∗ v

⊤
ic∗

)

=
∑

p∈P(k)

nC(Gp)
( ∏

c∈C(G′
p),(1,2k)/∈c

( d∑
i=1

λ
|c|
i

))(
Σ∗|c∗|

)
.

Now if we upper bound all the eigenvalues λi in the sum
(∑d

i=1 λ
|c|
i

)
above, we have similar to Equation (19) in the proof

15
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of Lemma A.2.

nkα
(j)
n,d,k = u⊤

j E
[
(

n∑
i=1

xix
⊤
i )

k
]
uj

≤
∑

p∈P(k)

nC(Gp)
( ∏

c∈C(G′
p),(1,2k)/∈c

dλ
|c|
1

)
λ
|c∗|
j

≤
∑

p∈P(k)

nC(Gp)dC(G′
p)−1λk

j

≤ nkλk
j + nkλk

1

4kd√
n
,

and similarly

nkα
(j)
n,d,k ≥ nkλk

j (1−
4kd√
n
).

Lemma A.6 (Changing the covariance matrix). We can write the first part of the loss EX

[
tr((I −A1/2ΣA1/2)2L)

]
as

EX

[
tr((I −A1/2ΣA1/2)2L)

]
= tr(EX

[
(I − Σ̃)2L

]
),

for

Σ̃ =
1

n

n∑
i=1

x̃ix̃
⊤
i ,

where ∀i, x̃i ∼ N (0, A1/2Σ∗A1/2).

Proof. Defining x̃i = A1/2xi, then x̃i ∼ N (0, A1/2Σ∗A1/2), and

EX

[
(I −A1/2ΣA1/2)2L

]
= EX

[
(I − Σ̃)2L

]
,

for

Σ̃ =
1

n

n∑
i=1

x̃ix̃
⊤
i .

This finishes the proof.

Lemma A.7 (Restatement of Lemma 5.3). Consider the following eigendecomposition:

E
[
(A1/2ΣA1/2 − I)k

]
=

d∑
i=1

β
(k)
i uiu

⊤
i .

Then for

δk =
4kd√
n

we have

(λi − 1)k − δk(λ1 + 1)k ≤ β
(k)
i ≤ (λi − 1)k + δk(λ1 + 1)k,

where λi is the ith eigenvalue of A1/2Σ∗A1/2, where recall Σ∗ is the covariance matrix of xi’s.

16
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Proof. The idea is to open up the power of matrix and estimate each of the terms separately:

E
[
A−1/2(A1/2ΣA1/2 − I)kA1/2

]
=

k∑
i=1

(−1)i
(
k

i

)
E
[
A−1/2(A1/2ΣA1/2)iA1/2

]
. (20)

The proof Directly follows from Lemmas 5.2 and A.6.

Next, we prove some properties for the optimal solution of the loss. Theorem A.8 is another version of Theorem 4.1.

Theorem A.8 (Characterization of the optimal solution). Suppose {Aopt, dopt} is a global minimizer for the L(A, d). Then,
under the condition δd1/(2L) < 1

2 ,

1.

L(Aopt, dopt) ≤ d(2δ)2L.

2.

∥Aopt1/2Σ∗Aopt1/2 − I∥ ≤ 4δd1/(2L), dopt = 0. (21)

3.

(1− 8δd1/(2L))Σ∗−1 ≼ Aopt ≼ (1 + 8δd1/(2L))Σ∗−1. (22)

Proof. Recall the form of the loss from Corollary A.4. First, note that the second term, EX

[∥∥∥∑L−1
i=0 u⊤ΣA(I −

ΣA)L−1−i
∥∥∥2] is always positive when u ̸= 0 and is zero if u = 0, where for arbitrary vector v we define ∥v⊤∥ = ∥v∥.

Therefore uopt = 0. Next, we show the upper bound on the optimal loss:

L(Aopt, dopt) = L(Aopt, 0) ≤ L(Σ∗−1, 0).

Recall β(2L)
i is the ith eigenvalue of E

[
A−1/2(A1/2ΣA1/2 − I)kA1/2

]
. Note that from Lemma 5.3

−(2δ)2L ≤ β
(2L)
i ≤ (2δ)2L.

On the other hand, L(A, u) =
∑d

i=1 β
(2L)
i , which means L(I, 0) ≤ d(2δ)2L. To show Equation (21), suppose |λ1 − 1| ≥

4δd1/(2L). Then, using Lemma 5.3

β
(k)
i ≥ (λi − 1)k − δk(λ1 + 1)k ≥ (4δd1/(2L))2L − δ2L(1 + 4δd1/(2L))2L > d(2δ)2L.

where we used the inequality δd1/(2L) < 1
2 . Finally this implies

∥Aopt1/2Σ∗Aopt1/2 − I∥ ≤ 4δd1/(2L), dopt = 0, (23)

which means (using 4δd1/(2L) ≤ 1
2 )

(1− 8δd1/(2L))Σ∗−1 ≼ Aopt ≼ (1 + 8δd1/(2L))Σ∗−1.

Lemma A.9 (Small loss implies close to optimal). For ϵ > 3δ and parameter A suppose we have
L(A, 0) ≤ ϵ2L − δ2L(ϵ+ 2)2L. Then

(1− (4ϵ+ 16δd1/(2L)))Aopt ≼ A ≼ (1 + (4ϵ+ 16δd1/(2L)))Aopt.

17
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Proof. Consider the eigen-decomposition

A1/2Σ∗A1/2 =

d∑
i=1

λiuiu
⊤
i ,

E
[
(I −A1/2ΣA1/2)2L

]
=

d∑
i=1

β
(2L)
i uiu

⊤
i .

Then, using Lemma 5.1, we have

L(A, 0) =

d∑
i=1

β
(2L)
i .

First note that we should have |λ1 − 1| ≤ ϵ. This is because from Lemma 5.3 we get

ϵ2L − δ2L(ϵ+ 2)2L ≥ L(A, 0) ≥ β
(2L)
1 ≥ (λ1 − 1)2L − δ2L(λ1 + 1)2L,

which implies

|λ1 − 1| ≤ ϵ.

Then again using Lemma 5.3 this time for λi we should also have

ϵ2L − δ2L(ϵ+ 2)2L ≥ L(A, 0) ≥ β
(2L)
i ≥ (λi − 1)2L − δ2L(λ1 + 1)2L

≥ (λi − 1)2L − δ2L(ϵ+ 2)2L,

which implies |λi − 1| ≤ ϵ. The last inequality follows from the fact that the function f(a) = a2L − δ2L(a + 2)2L is
increasing for a ≥ ϵ based on the assumption ϵ ≥ 3δ (just by checking the derivative is positive). Hence, overall we showed

∥A1/2Σ∗A1/2 − I∥ ≤ ϵ,

which means

(1− 2ϵ)Σ∗−1 ≼ A ≼ (1 + 2ϵ)Σ∗−1.

Combining this with Equation (22) from Lemma 4.1,

(1− (4ϵ+ 16δd1/(2L)))Aopt ≼ A ≼ (1 + (4ϵ+ 16δd1/(2L)))Aopt.

Theorem A.10 (Restatement of Theorem 5.4). For ϵ > 4δ, if L(A, 0) ≤ ϵ2L/2, then

(1− (4 + 16d1/(2L))ϵ)Aopt ≼ A ≼ (1 + (4 + 16d1/(2L))ϵ)Aopt.

Proof. Directly from Lemma A.9.

Lemma A.11. Suppose L(A) ≥ ϵ2L + dδ2L(ϵ+ 2)2L. Then

d∑
i=1

(λi − 1)2L ≥ ϵ2L.

Proof. Suppose the claim is not true, i.e.
∑d

i=1(λi − 1)2L < ϵ2L. Then, (λ1 − 1)2L ≤ ϵ2L or |λ1 − 1| ≤ ϵ. Then using
Lemma 5.3:

L(A) ≤
d∑

i=1

β
(2L)
i ≤

d∑
i=1

(λi − 1)2L + dδ2L(2 + ϵ)2L < ϵ2L + dδ2L(2 + ϵ)2L,

which is a contradiction. Hence, the proof is complete.

18



Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning?

Lemma A.12 (Estimate on the gradient). Given Σ∗ = I , the gradient of the loss can be estimated as

(2L)

d∑
j=1

(
(λj − 1)2L−1 − δ2L(λ1 + 1)2L−1

)
uju

⊤
j ≼ ∇AL(A, 0) ≼ (2L)

d∑
j=1

(
(λj − 1)2L−1 + δ2L(λ1 + 1)2L−1

)
uju

⊤
j .

Proof. Note that the loss can be written as

L(A, 0) = EX

[
tr(I − Σ1/2AΣ1/2)2L

]
= EX

[
tr(I − ΣA)2L

]
.

Taking derivative

∇AL(A, 0) = −
2L−1∑
i=0

EX

[
(I − ΣA)iΣ(I − ΣA)2L−1−i

]
. (24)

But note that

EX

[
(I − ΣA)iΣ(I − ΣA)2L−1−i

]
= EX

[
A−1/2(I −A1/2ΣA1/2)i(A1/2ΣA1/2)A−1(I −A1/2ΣA1/2)2L−1−iA1/2

]
Expanding this term, we get terms of the form EX

[
A−1/2(A1/2ΣA1/2)ℓ1A−1(A1/2ΣA1/2)ℓ2A1/2

]
for ℓ1 ≥ 1:

EX

[
(I − ΣA)iΣ(I − ΣA)2L−1−i

]
(25)

=
∑

0≤ℓ1≤i

∑
0≤ℓ2≤2L−1−i

(
2L− 1− i

ℓ1

)(
i

ℓ2

)
(−1)ℓ1+ℓ2EX

[
A−1/2(A1/2ΣA1/2)ℓ1+1A−1(A1/2ΣA1/2)ℓ2A1/2

]
(26)

Now similar to the proof of Lemma 5.2, we calculate the expectation of each term of this form. The subtle point here is that
even though there is the matrix A−1 in between the random matrices, it has shared eigenvalues as the covariance matrix
of the gaussians, hence the computation goes through similarly expect that for the cycle c̃ in G′

p which includes the vertex

(2ℓ1, 2ℓ1 + 1) generates a λ
|c̃|−1
i instead of λ|c̃|

i . More rigorously, for A =
∑

λiuiu
⊤
i We can argue that

EX

[
A−1/2(A1/2ΣA1/2)ℓ1+1A−1(A1/2ΣA1/2)ℓ2A1/2

]
=

∑
i

γjuju
⊤
j ,

where for k = ℓ1 + ℓ2, similar to the proof of Lemma A.2, for x̃i = A1/2xi:

nkγj = u⊤
j E

[
(

n∑
i=1

x̃ix̃
⊤
i )

ℓ1+1A−1(

n∑
i=1

x̃ix̃
⊤
i )

ℓ2
]
uj

≤
∑

p∈P(k)

nC(Gp)
( ∏

c∈C(G′
p),(1,2k)/∈c

dλ
|c|−1{(2ℓ1,2ℓ1+1)∈c}
1

)
λ
|c∗|−1{(2ℓ1,2ℓ1+1)∈c∗}
j

≤
∑

p∈P(k)

nC(Gp)dC(G′
p)−1

( ∏
c∈C(G′

p),(1,2k)/∈c

λ
|c|−1{(2ℓ1,2ℓ1+1)∈c}
1

)
λ
|c∗|−1{(2ℓ1,2ℓ1+1)∈c∗}
j

≤ nkλk−1
j + nkλk−1

1

4kd√
n
,

and similarly

nkγj ≥ nkλk−1
j − nkλk−1

1

4kd√
n
,

which implies

λk−1
j − δkλ1

k−1 ≤ γj ≤ λk−1
j + δkλ1

k−1.
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Plugging this into Equation (26) we get

EX

[
(I − ΣA)iΣ(I − ΣA)2L−1−i

]
=

∑
0≤ℓ1≤i

∑
0≤ℓ2≤2L−1−i

∑
j

(
2L− 1− i

ℓ1

)(
i

ℓ2

)
((−1)ℓ1+ℓ2λℓ1+ℓ2

j + δ2Lλℓ1+ℓ2
1 )uju

⊤
j

≼
∑
j

(
(λj − 1)2L−1 + δ2L(λ1 + 1)2L−1

)
uju

⊤
j ,

and similarly

EX

[
(I − ΣA)iΣ(I − ΣA)2L−1−i

]
≽

∑
j

(
(λj − 1)2L−1 − δ2L(λ1 + 1)2L−1

)
uju

⊤
j .

Combining this with Equation (24) concludes the result.

Theorem A.13 (Restatement of Theorem 4.3). Suppose 4δd3/(4L) ≤ ϵ ≤ 1 and 4dδ4L−2 ≤ 1. Then if L(A, 0) ≥
ϵ2L + dδ2L(ϵ+ 2)2L, we have

∥∇L(A, 0)∥2 ≥
L− 1

2

d(L−1)/(2L−1)
ϵ4L−2.

Proof. Using Lemma 5.3, we have ∇AL(A, 0) =
∑

i γiuiu
⊤
i such that

∥∇AL(A, 0)∥2 ≥ (2L)

d∑
i=1

(
(λi − 1)2L−1 − δ2L(λ1 + 1)2L−1

)2

≥ (2L)

d∑
i=1

(1
2
(λi − 1)4L−2 − δ4L(λ1 + 1)4L−2

)
≥ L

( d∑
i=1

(λi − 1)4L−2
)
− 2dLδ4L(λ1 + 1)4L−2. (27)

Now using Lemma A.11

dmax
i

(λi − 1)2L ≥
2L∑
i=1

(λi − 1)2L ≥ ϵ2L,

or

max
i

|λi − 1| ≥ ϵ/d1/(2L).

But this implies

dδ4L(λ1 + 1)4L−2 ≤ dδ4L(2 + max
i

|λi − 1|)4L−2 ≤ 1

4
(max

i
|λi − 1|)4L−2.

The last inequality holds as the assumption on ϵ implies

(1 +
2

maxi |λ1 − 1|
)4L−2 ≤ (1 +

2d1/(2L)

ϵ
)4L−2 ≤ (

3d1/(2L)

ϵ
)4L ≤ 1

2dδ4L
.

Plugging this into Equation (27):

∥∇AL(A, 0)∥2 ≥ (L− 1

2
)
∑
i

(λi − 1)4L−2.
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Using Lemma A.11 and Holder, we get

d∑
i=1

(λi − 1)4L−2 ≥ 1

d1/(2L)−1/(4L−2)

( d∑
i=1

(λi − 1)2L
)(2L−1)/L

=
1

d(L−1)/(2L−1)

( d∑
i=1

(λi − 1)2L
)(2L−1)/L

≥ 1

d(L−1)/(2L−1)

(
ϵ2L

)(2L−1)/L

=
1

d(L−1)/(2L−1)
ϵ4L−2,

which completes the proof.

Theorem A.14 (Restatement of Theorem 4.3). For any A that L(A, 0) ≥ 2d3/2(4δ)2L, we have the following gradient
dominance condition:

∥∇AL(A, 0)∥2 ≥
L− 1

2

4d(L−1)/(2L−1)
L(A, 0)(2L−1)/L.

Proof. For ϵ > 4δd3/(4L) we have ϵ2L ≥ dδ2L(ϵ+2)2LTherefore, according to Theorem 4.3, for ϵ > 4δd3/(4L) if we have
L(A, 0) ≥ 2ϵ2L, then

∥∇L(A, 0))∥2 ≥
L− 1

2

d(L−1)/(2L−1)
ϵ4L−2. (28)

Therefore, for any A if we have (L(A, 0)/2)1/(2L) ≥ 4δd3/(4L), then if we define ϵ = (L(A, 0)/2)1/(2L), we have
L(A, 0) = 2ϵ2L, which then implies (from Equation (28))

∥∇L(A, 0))∥2 ≥ L− 1

d(L−1)/(2L−1)
(
L(A, 0)

2
)(2L−1)/L.

Therefore, we showed that if L(A, 0) ≥ 2d3/2(4δ)2L, then ∥∇AL(A, 0)∥2 ≥ L− 1
2

4d(L−1)/(2L−1)L(A, 0)(2L−1)/L.

Theorem A.15 (Restatement of Theorem 4.2). Consider the gradient flow with respect to the loss L(A, 0)):

d

dt
A(t) = −∇AL(A(t), 0).

Then, for any ξ ≥ 2d3/2(4δ)2L, after time t ≥
(

1
ξ

)(L−1)/L
4Ld(L−1)/(2L−1)

(L−1)2 if L > 1 and t ≥ 8 ln(L(A0,0)
ξ ) if L = 1, we

have

1. L(A(t)) ≤ ξ,

2. (1− 8(1 + 4d1/(2L))ξ1/(2L))Aopt ≼ A
≼ (1 + 8(1 + 4d1/(2L))ξ1/(2L))Aopt

Proof. Let f(t) = L(A(t), 0). Then from Theorem 4.3, if f(t) ≥ ξ ≥ 2d3/2(4δ)2L, then we have

f ′(t) = ⟨ d
dt

A(t),∇AL(A, 0)⟩

− ⟨∇AL(A, 0),∇AL(A, 0)⟩
= −∥∇AL(A, 0)∥2

≤ −
L− 1

2

4d(L−1)/(2L−1)
f(t)(2L−1)/L.
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Therefore, if we define the ODE

g(0) = f(0),

∀t ≥ 0, g′(t) = −
L− 1

2

4d(L−1)/(2L−1)
g(t)(2L−1)/L, (29)

then we have

f(t) ≤ g(t),∀t ≥ 0.

Solving the ODE (29) for L > 1

g(t) = (
4d(L−1)/(2L−1)

L− 1
2

L

L− 1
)L/(L−1) 1

(t+ c)L/(L−1)

= (
4Ld(L−1)/(2L−1)

(L− 1)(L− 1
2 )

)L/(L−1) 1

(t+ c)L/(L−1)
.,

for

c =
4Ld(L−1)/(2L−1)

(L− 1)(L− 1
2 )f(0)

(L−1)/L
=

4Ld(L−1)/(2L−1)

(L− 1)(L− 1
2 )L(A0, 0)

(L−1)/L
.

Therefore, we get the following upper bound on f :

f(t) ≤ (
4Ld(L−1)/(2L−1)

(L− 1)(L− 1
2 )

)L/(L−1) 1

(t+ c)L/(L−1)
≤ (

4Ld(L−1)/(2L−1)

(L− 1)(L− 1
2 )

)L/(L−1) 1

tL/(L−1)
.

Therefore, to guarantee f(t) ≤ ξ we pick t ≥
(

1
ξ

)(L−1)/L
4Ld(L−1)/(2L−1)

(L−1)(L− 1
2 )

. Next, we handle the case L = 1 separately. For
L = 1, the ODE in Equation (29) becomes

g′(t) = −1

8
g(t),

whose solution is

g(t) = g(0)e−t/8 = f(0)e−t/8 = L(A0, 0)e
−t/8.

Therefore, for L = 1 we get

f(t) ≤ L(A0, 0)e
−t/8,

so in order to guarantee f(t) ≤ ξ we pick t ≥ 8 ln(L(A0, 0)/ξ). This proves the first argument. The second argument is a
consequence of applying Lemma A.9 to L(A(t)) ≤ ξ.

Theorem A.16 (Restatement of Theorem 4.4). Let Aopt, uopt be the global minimizers of the poplulation loss for
looped Transformer with depth L when the in-context input {xi}ni=1 are sampled from N (0,Σ∗) and w∗ is sampled

from N (0,Σ∗−1). Suppose we are given an arbitrary linear regression instance Iout =
{
xout
i , youti

}n

i=1
, wout,∗ with input

matrix Xout = [xout
1 , . . . , xout

n ], query vector xout
q , and label youtq = wout,∗⊤xout

q . Then, if for parameter 0 < ξ < 1, the

input covariance matrix Σout = XoutXout⊤ of the out of distribution instance satisfies

(1− ξ)Σ∗ ≼ Σout ≼ (1 + ξ)Σ∗, (30)

we have the following instance-dependent bound on the out of distribution loss:

(TFL(Z
out
0 ;Q,P )− youtq )2

≤ (1 + 16δd1/(2L))2(16δd1/(2L) + ξ)2L

×
∥∥∥xout

q

∥∥∥2
Σ∗

∥∥∥wout,∗
∥∥∥2
Σ∗−1

.
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Proof. Note that from Lemma, the global optimum Aopt, uopt satisfies uopt = 0 and

(1− 8δd1/(2L))Aopt−1
≼ Σ∗ ≼ (1 + 8δd1/(2L))Aopt−1

. (31)

But combining this with Equation (30), we get

(1− ξ)(1− 8δd1/(2L))Aopt−1
≼ Σout ≼ (1 + ξ)(1 + 8δd1/(2L))Aopt−1

,

which implies

−(16ζδd1/(2L) + ξ)I ≤ −(8(1 + ξ))δd1/(2L) + ξ)I ≤
(
I −Aopt1/2ΣoutAopt1/2

)
≤ (8(1− ξ)δd1/(2L) + ξ)I

≤ (16δd1/(2L) + ξ)I. (32)

Furthermore, plugging in the formula of yLq for the out of distribution instance, we have using Equation (31)

(TFL(Z
out
0 ;Q,P )− youtq )2

=
(
wout,∗⊤Aout−1/2

(I −Aopt1/2ΣoutAopt1/2)LAopt1/2xout
q

)2

≤
(
wout,∗⊤Aopt−1

wout,∗
)∥∥∥I −Aopt1/2ΣoutAopt1/2

∥∥∥2L
×
(
xout
q

⊤
Aoptxout

q

)
≤ (1 + 16δd1/(2L))2

(
wout,∗⊤Σ∗−1wout,∗

)
×
∥∥∥I −Aopt1/2ΣoutAopt1/2

∥∥∥2L(xout
q

⊤
Σ∗xout

q

)
.

But note that from Equation (32)

(TFL(Z
out
0 ;Q,P )− youtq )2

≤ (1 + 16δd1/(2L))2(16δd1/(2L) + ξ)2L

×
∥∥∥xout

q

∥∥∥2
Σ∗

∥∥∥wout,∗
∥∥∥2
Σ∗−1

.
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